Добірка наукової літератури з теми "Activity /osmotic coefficients"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Activity /osmotic coefficients".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Activity /osmotic coefficients"

1

Castellanos, Miguel A., Mercedes Caceres, and Javier Nunez. "Osmotic and activity coefficients of some cobaltammine salts." Journal of Chemical & Engineering Data 30, no. 3 (July 1985): 344–49. http://dx.doi.org/10.1021/je00041a033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ding-Quan, Wu, Xu Zheng-Liang, and Qu Song-Sheng. "The Activity Coefficients and Osmotic Coefficients of Sodium Tungstate in Aqueous Solution." Acta Physico-Chimica Sinica 6, no. 05 (1990): 633–37. http://dx.doi.org/10.3866/pku.whxb19900523.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Passamonti, Francisco J., María R. Gennero de Chialvo, and Abel C. Chialvo. "Evaluation of the activity coefficients of ternary molecular solutions from osmotic coefficient data." Fluid Phase Equilibria 559 (August 2022): 113464. http://dx.doi.org/10.1016/j.fluid.2022.113464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Duignan, Timothy T., and X. S. Zhao. "Prediction of the Osmotic/Activity Coefficients of Alkali Hydroxide Electrolytes." Industrial & Engineering Chemistry Research 60, no. 41 (October 6, 2021): 14948–54. http://dx.doi.org/10.1021/acs.iecr.1c02950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lyubartsev, Alexander P., and Aatto Laaksonen. "Osmotic and activity coefficients from effective potentials for hydrated ions." Physical Review E 55, no. 5 (May 1, 1997): 5689–96. http://dx.doi.org/10.1103/physreve.55.5689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Attwood, D., N. A. Dickinson, V. Mosquera, and V. Perez Villar. "Osmotic and activity coefficients of amphiphilic drugs in aqueous solution." Journal of Physical Chemistry 91, no. 15 (July 1987): 4203–6. http://dx.doi.org/10.1021/j100299a050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Apelblat, Alexander. "Activity and osmotic coefficients in electrolyte solutions at elevated temperatures." AIChE Journal 39, no. 5 (May 1993): 918–23. http://dx.doi.org/10.1002/aic.690390523.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tsurko, Elena N., Roland Neueder, Rainer Müller, and Werner Kunz. "Osmotic Coefficients and Activity Coefficients in Aqueous Aminoethanoic Acid–NaCl Mixtures at 298.15 K." Journal of Chemical & Engineering Data 59, no. 9 (August 19, 2014): 2741–49. http://dx.doi.org/10.1021/je500271z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sergievskii, V. V., and A. M. Rudakov. "Dependence of the osmotic coefficients and average ionic activity coefficients on hydrophobic hydration in solutions." Russian Journal of Physical Chemistry A 90, no. 8 (July 21, 2016): 1567–73. http://dx.doi.org/10.1134/s003602441607027x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wu, Dingquan, Songsheng Qu, and Zhengliang Xu. "Isopiestic activity coefficients and osmotic coefficients of sodium molybdate and sodium tungstate in aqueous solution." Journal of Chemical Thermodynamics 22, no. 1 (January 1990): 35–39. http://dx.doi.org/10.1016/0021-9614(90)90028-o.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Activity /osmotic coefficients"

1

Bley, Michael. "Simulating Osmotic Equilibria by Molecular Dynamics - From Vapor-Liquid Interfaces to Thermodynamic Properties in Concentrated Solutions." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS122.

Повний текст джерела
Анотація:
L’objectif de cette thèse de doctorat est le développement d’une nouvelle méthode théorique basée sur la simulation des équilibres liquide-gaz par simulations de dynamique moléculaire. Cette nouvelle m´méthode prédit les propriétés thermodynamiques telles que l’activité des solvants et les coefficients d’activité des solutés en phases aqueuses et organiques impliquées dans les systèmes d’extraction liquide-liquide. Ces propriétés thermodynamiques sont nécessaires pour les approches de modélisation thermodynamique mésoscopique permettant d’estimer l’efficacité et la s´électivité d’un système d’extraction par solvant jusqu’au une échelle industrielle. Les propriétés thermodynamiques et structurales des solutions électrolytiques aqueuses et des phases organiques, y compris les agrégats résultant des molécules d’extraction des amphiphiles, sont en bon accord avec les données expérimentales et théoriques disponibles. L’approche de dynamique moléculaire de l’équilibre osmotique fournit un nouvel outil puissant permettant d’accéder aux données thermodynamiques
The aim of this PhD thesis is the development of a new theoretical method based on the simulation of vapor-liquid equilibria by means of molecular dynamics (MD) simulation. This new method predicts thermodynamic properties such as solvent activities and solute activity coefficients of aqueous and organic phases used in liquid-liquid extraction systems. These thermodynamic properties are required for mesoscopic thermodynamic modeling approaches estimating the efficiency and selectivity of a given solvent extraction system up to an industrial scale. Thermodynamic and structural properties of aqueous electrolyte solutions and organic solvent phase including aggregates resulting from amphiphilic extractant molecules are reproduced in very good agreement with previously available experimental and theoretical data. The osmotic equilibrium MD approach provides a new and powerful tool for accessing thermodynamic data
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Crozier, Paul S. "Slab-Geometry Molecular Dynamics Simulations: Development and Application to Calculation of Activity Coefficients, Interfacial Electrochemistry, and Ion Channel Transport." BYU ScholarsArchive, 2002. https://scholarsarchive.byu.edu/etd/2.

Повний текст джерела
Анотація:
Methods of slab-geometry molecular dynamics computer simulation were tested, compared, and applied to the prediction of activity coefficients, interfacial electrochemistry characterization, and ion transport through a model biological channel-membrane structure. The charged-sheets, 2-D Ewald, corrected 3-D Ewald, and corrected particle-particle-particle-mesh (P3M) methods were compared for efficiency and applicability to slab-geometry electrolyte systems with discrete water molecules. The P3M method was preferred for long-range force calculation in the problems of interest and was used throughout. The osmotic molecular dynamics method (OMD) was applied to the prediction of liquid mixture activity coefficients for six binary systems: methanol/n-hexane, n-hexane/n-pentane, methanol/water, chloroform/acetone, n-hexane/chloroform, methanol/ chloroform. OMD requires the establishment of chemical potential equilibrium across a semi-permeable membrane that divides the simulation cell between a pure solvent chamber and a chamber containing a mixture of solvent and solute molecules in order to predict the permeable component activity coefficient at the mixture side composition according to a thermodynamic identity. Chemical potential equilibrium is expedited by periodic adjustment of the mixture side chamber volume in response to the observed solvent flux. The method was validated and shown to be able to predict activity coefficients within the limitations of the simple models used. The electrochemical double layer characteristics for a simple electrolyte with discrete water molecules near a charged electrode were examined as a function of ion concentration, electrode charge, and ion size. The fluid structure and charge buildup near the electrode, the voltage drop across the double layer, and the double layer capacitance were studied and were found to be in reasonable agreement with experimental findings. Applied voltage non-equilibrium molecular dynamics was used to calculate the current-voltage relationship for a model biological pore. Ten 10-nanosecond trajectories were computed in each of 10 different conditions of concentration and applied voltage. The channel-membrane structure was bathed in electrolyte including discrete water molecules so that solvation, entry, and exit effects could be studied. Fluid structure, ion dynamics, channel selectivity, and potential gradients were examined. This work represents the first such channel study that does not neglect the vital contributions of discrete water molecules.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ge, Xinlei. "Extraction of Metal Values : Thermodynamics of Electrolyte Solutions and Molten Salts Extraction Process." Doctoral thesis, Stockholm : Skolan för industriell teknik och management, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Duignan, Timothy Thomas. "Modelling specific ion effects with the continuum solvent." Phd thesis, 2015. http://hdl.handle.net/1885/13642.

Повний текст джерела
Анотація:
Electrolyte solutions play a central role in many processes from industry to biology. Understanding and building predictive models of their properties has therefore been a fundamental goal of physical chemistry from its beginnings. The challenge remains. In this thesis I outline a continuum solvent model of univalent monatomic ions in water. This model calculates the free energy of: 1) a single ion in bulk, 2) of an ion approaching the air–water interface and 3) of two ions approaching each other. Its central advancements are to include quantitatively accurate ionic dispersion interaction energies, missing from classical theories, including the higher order multipole moment contributions to these interactions. It also includes the contribution from the cavity formation energy consistently, including the effect of changes in the cavity’s shape. Lastly, it uses a quantum mechanical treatment of the ions and provides satisfactory values for their size parameters. Because one consistent framework is used with the same assumptions to calculate the free energies in these three different situations the number of parameters can be minimised and the model can be properly tested. These three calculations can be used to reproduce experimental solvation free energies, solvation entropies, partial molar volumes, surface tensions and activity/osmotic coefficients of the alkali-halide electrolyte solutions. A minimum of parameters are used and crucially no salt–specific fitting parameters are necessary. The model is quantitative and predictive and is therefore a satisfactory model of electrolyte solutions. It provides an explanation of several key qualitative puzzles regarding these properties. Namely that ions of the same size can have different solvation energies, that large ions can adsorb to the air–water interface and that ions in solution that have similar solvation energies are more strongly attracted to each other than ions that have dissimilar solvation energies. The continuum solvent model and separate ab initio calculations show that dispersion interactions play a key role in controlling these effects. In particular, dispersion energies explain the attraction of large ions for each other in water and the difference in solvation energy of ions of the same size. The success of the model implies that it is possible to understand the key properties of electrolyte solutions using a continuum solvent model. This is an important conclusion considering the massive computational demands of explicit solvent treatments.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mazzini, Virginia. "Specific ion effects in non-aqueous solutions." Phd thesis, 2017. http://hdl.handle.net/1885/144595.

Повний текст джерела
Анотація:
Electrolyte solutions play a central role in life and technological processes because of their complexity. This complexity is yet to be described by a predictive theory of the specific effects that different ions induce in solution. The vast majority of investigations of specific-ion effects have been conducted in aqueous solutions. These studies have revealed that amongst the complexity, the effectiveness of the ions often follow trends that are apparent across a number of very different experiments, revealing an underlying order (e.g. the Hofmeister series). It is often assumed that water itself is intricately involved in these trends. Here I investigate specific-ion effects in non-aqueous solvents rather than water. By extending the investigation to a number of non-aqueous solvents, the role of the solvent in specific-ion effect trends can be elucidated and a better understanding of the general phenomenon gained. Firstly, a more definite terminology is developed for describing the specific-ion effects trends in order to address the current confusion in the literature and provide a basis for the following investigations. An extensive investigation of the scarce literature demonstrates that water is by no means a special solvent with regards to ion-specificity, and that within the complexity there is universality. An investigation of electrostriction under the conditions of infinite dilution shows that the same fundamental specific ion trends are observed across all solvents, demonstrating that ion-specificity arises from the ions themselves. In this regard the influence of solvents, surfaces and real concentrations of electrolytes can be seen as perturbations to this fundamental series. Further work shows that for systems that are perturbed, the trends in non-aqueous protic solvents can be expected to follow the same trend in water; and in aprotic solvents the cations are more likely to adhere to the trend in water than the anions. My experimental work focuses on specific-anion effects of seven Hofmeister sodium salts in the solvents: water, methanol, formamide, dimethyl sulfoxide and propylene carbonate. Two very different experiments were performed; the elution of electrolytes from a size-exclusion chromatography column and an investigation of the electrolyte moderated swelling of a cationic brush (PMETAC) using a Quartz Crystal Microbalance (QCM). The trends observed are consistent across these experiments. A forward or reverse Hofmeister series is observed in practically all salt-solvent combinations, and the reversal is attributed to the polarisability of the solvent. Finally, a qualitative model of ion specific trends is formulated, where the specific-ion effects are fundamentally a property of the ion, and the associated trends correspond to the Hofmeister series for anions and the lyotropic series for cations. When the concentration is increased, or surfaces introduced, the effects of ion-ion interactions and ion-surface interactions can perturb the fundamental series. The perturbation of the series is related to the proticity of the solvent for ion-ion interactions, whereas the polarisability of the solvent and ion are important when a surface is present. This work for the first time individuates the principal properties of the solvent that affect their ordering: proticity and polarisability.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Activity /osmotic coefficients"

1

Goldberg, Robert N. GAMPHI--a database of activity and osmotic coefficients for aqueous electrolyte solutions. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Goldberg, Robert N. GAMPHI--a database of activity and osmotic coefficients for aqueous electrolyte solutions. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Goldberg, Robert N. GAMPHI--a database of activity and osmotic coefficients for aqueous electrolyte solutions. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Goldberg, Robert N. GAMPHI--a database of activity and osmotic coefficients for aqueous electrolyte solutions. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Goldberg, Robert N. GAMPHI--a database of activity and osmotic coefficients for aqueous electrolyte solutions. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Goldberg, Robert N. GAMPHI--a database of activity and osmotic coefficients for aqueous electrolyte solutions. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Activity /osmotic coefficients"

1

Burchfield, Thomas E., and Earl M. Woolley. "Model for Thermodynamics of Ionic Surfactants: Effect of Electrolytes on Osmotic and Activity Coefficients." In Surfactants in Solution, 69–76. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-1831-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pitzer, Kenneth S., and Janice J. Kim. "Thermodynamics of Electrolytes.: IV. Activity and Osmotic Coefficients for Mixed Electrolytes." In World Scientific Series in 20th Century Chemistry, 413–19. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789812795960_0060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pitzer, Kenneth S., and Guillermo Mayorga. "Thermodynamics of Electrolytes.: III. Activity and Osmotic Coefficients for 2–2 Electrolytes." In World Scientific Series in 20th Century Chemistry, 405–12. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789812795960_0059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pitzer, Kenneth S., and Guillermo Mayorga. "Thermodynamics of Electrolytes.: II. Activity and Osmotic Coefficients for Strong Electrolytes with One or Both Ions Univalent." In World Scientific Series in 20th Century Chemistry, 396–404. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789812795960_0058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії