Добірка наукової літератури з теми "Active load pull"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Active load pull".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Active load pull"
Hashmi, M. S., A. L. Clarke, S. P. Woodington, J. Lees, J. Benedikt, and P. J. Tasker. "An Accurate Calibrate-Able Multiharmonic Active Load–Pull System Based on the Envelope Load–Pull Concept." IEEE Transactions on Microwave Theory and Techniques 58, no. 3 (March 2010): 656–64. http://dx.doi.org/10.1109/tmtt.2010.2040403.
Повний текст джерелаGhannouchi, F. M., R. Larose, R. G. Bosisio, and Y. Demers. "A six-port network analyzer load-pull system for active load tuning." IEEE Transactions on Instrumentation and Measurement 39, no. 4 (1990): 628–31. http://dx.doi.org/10.1109/19.57245.
Повний текст джерелаMarchetti, M., M. J. Pelk, K. Buisman, W. Neo, M. Spirito, and L. de Vreede. "Active Harmonic Load–Pull With Realistic Wideband Communications Signals." IEEE Transactions on Microwave Theory and Techniques 56, no. 12 (December 2008): 2979–88. http://dx.doi.org/10.1109/tmtt.2008.2007330.
Повний текст джерелаRomier, M., M. Romier, M. Romier, A. Barka, H. Aubert, H. Aubert, J. P. Martinaud, and M. Soiron. "Load-Pull Effect on Radiation Characteristics of Active Antennas." IEEE Antennas and Wireless Propagation Letters 7 (2008): 550–52. http://dx.doi.org/10.1109/lawp.2008.2005652.
Повний текст джерелаAndersson, Christer M., Mattias Thorsell, and Niklas Rorsman. "Nonlinear Characterization of Varactors for Tunable Networks by Active Source–Pull and Load–Pull." IEEE Transactions on Microwave Theory and Techniques 59, no. 7 (July 2011): 1753–60. http://dx.doi.org/10.1109/tmtt.2011.2135377.
Повний текст джерелаHone, Thomas M., Souheil Bensmida, Kevin A. Morris, Mark A. Beach, Joe P. McGeehan, Jonathan Lees, Johannes Benedikt, and Paul J. Tasker. "Controlling Active Load–Pull in a Dual-Input Inverse Load Modulated Doherty Architecture." IEEE Transactions on Microwave Theory and Techniques 60, no. 6 (June 2012): 1797–804. http://dx.doi.org/10.1109/tmtt.2012.2190748.
Повний текст джерелаXie, Chengcheng, Shuman Mao, Gang Yu, Huanpeng Wang, Ruimin Xu, and Yuehang Xu. "A simplified active load-pull behavioral model for power amplifiers." IEICE Electronics Express 16, no. 20 (2019): 20190536. http://dx.doi.org/10.1587/elex.16.20190536.
Повний текст джерелаPoulin, D. D., J. R. Mahon, and J. P. Lanteri. "A high power on-wafer pulsed active load pull system." IEEE Transactions on Microwave Theory and Techniques 40, no. 12 (1992): 2412–17. http://dx.doi.org/10.1109/22.179910.
Повний текст джерелаThorsell, Mattias, and Kristoffer Andersson. "Fast Multiharmonic Active Load–Pull System With Waveform Measurement Capabilities." IEEE Transactions on Microwave Theory and Techniques 60, no. 1 (January 2012): 149–57. http://dx.doi.org/10.1109/tmtt.2011.2170090.
Повний текст джерелаNawaz, Asad A., Minsu Ko, Andrea Malignaggi, Dietmar Kissinger, John D. Albrecht, and A. Cagri Ulusoy. "Harmonic Tuning of Stacked SiGe Power Amplifiers Using Active Load Pull." IEEE Microwave and Wireless Components Letters 28, no. 3 (March 2018): 245–47. http://dx.doi.org/10.1109/lmwc.2018.2801027.
Повний текст джерелаДисертації з теми "Active load pull"
Woodington, Simon Philip. "Behavioural model analysis of active harmonic load-pull measurements." Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/13000/.
Повний текст джерелаHashim, Shaiful Jahari. "Wideband active envelope load-pull for robust power amplifier and transistor characterisation." Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54181/.
Повний текст джерелаPereira, Alison Willian. "Fully-automated load-pull system based on mechanical tuners." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17027.
Повний текст джерелаPor razões de potência, linearidade e e ciência o ampli cador é um componente limitador de performance em qualquer tipo de aplicações relacionadas com estações base de voz e dados, motivando a indústria das telecomunica ções a investir em sistemas capazes de ajudar o projetista de Ampli cador de Potência (AP) a obter o máximo deste elemento ativo. O sistema de 'load-pull' é uma ferramenta essencial para auxiliar o projeto de ampli cadores de potência, permitindo determinar as condições ideais de impedância que maximizam a sua performance. Esta dissertação insere-se na área de caracterização e projeto de AP, em rádio frequência e visa a concepção, implementação e validação de um sitema automático de 'load-pull' passivo. Neste trabalho, realizou-se um estudo sobre os mais diversos tipos de sistemas de 'load-pull' utilizados na caracterização de transistores de alta potência. De modo a cumprir a nalidade desta dissertação, construí-se um sistema passivo automatizado de 'load-pull' capaz de lidar com potência 250W forma de onda contínua (CW) e 2.5 kWde potência de pico em relação a envolvente de modulação (PEP), onde a repetibilidade da malha de saída deste sistema é -60dB a uma frequência correspondente de 1.8GHz, garantindo uma boa precisão das impedâncias apresentadas ao transístor de microondas.
Due to power, linearity and e ciency reasons the PA is the performance limiting component in any state-of-the-art mobile voice and data base station, motivating the telecommunications industry to invest in systems capable of helping the designer of PA to get the most of the active devices. The load-pull system is an essential tool to assist the design of PA, allowing to determine the optimum matching conditions that maximizes the PA performance parameters. This dissertation ts in the area of radio frequency characterization and PA design, aiming the artful conception, implementation and validation of an automated passive load-pull system. In this work a study was also performed on the most diverse types of load-pull systems that are used in the characterization of high power transistors. In order to ful ll the purpose of this dissertation, an automated load-pull system was built, being capable to handle 250W of power in continuous wave (CW) and 2.5kW in peak-to-envelope (PEP), where the system repeatability of its output network is -60dB at a frequency of 1.8GHz, granting a good accuracy of impedances presented to the microwave transistor.
Casbon, Michael Anthony. "Design and application of an advanced fully active harmonic load pull system using pulsed RF measurements and synchronised laser energy." Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/115731/.
Повний текст джерелаDanilovic, Milisav. "Active Source Management to Maintain High Efficiency in Resonant Conversion over Wide Load Range." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/76618.
Повний текст джерелаPh. D.
Amairi, Amor. "Caractérisation en petit signal, en puissance et en impédances des transistors à effet de champ millimétriques : étude et réalisation d'un banc de "load-pull à charge active" 26,5-40 GHz." Lille 1, 1991. http://www.theses.fr/1991LIL10090.
Повний текст джерелаGasseling, Tony. "Caractérisation non linéaire avancée de transistors de puissance pour la validation de leur modèle CAO." Limoges, 2003. http://www.theses.fr/2003LIMO0041.
Повний текст джерелаAdvanced functional characterizations of power transistors for the validation of nonlinear models of SC devices used in CAD packages. This work deals with different functional characterization methods for the design of optimized power amplifiers. These characterizations are carried out on transistors at the first stages of the design, in a source and load-pull environment. Thus, it is shown that a pulsed load-pull set up is very useful to validate the technologies used for the generation of high power at RF and microwave frequencies. It also enables to deeply validate the thermoelectric nonlinear models of transistors developed for this purpose. For the design of amplifiers which operate up to millimetric frequencies (Ku / K Band), reaching high power under constraint of efficiency and linearity is one of the most critical point because of the weak reserves of power gain proposed. In this context, the development of an active source and load-pull setup is of prime importance. It enables to primarily determine the transistor optimum operating conditions (Matching and DC bias) to reach the best trade off between efficiency and linearity. Finally, a new method to perform Hot Small-Signal S-Parameter measurements of power transistors operating under large signal conditions is proposed. An application to the prediction of parametric oscillations when the transistor is driven by a pump signal is demonstrated
Capelli, Thomas. "Amplificateur de puissance pour réseaux phasés d’antenne 5G multi-bande en technologie ST CMOS065SOIMMW." Thesis, Bordeaux, 2022. http://www.theses.fr/2022BORD0176.
Повний текст джерелаMobile telecommunications, in order to support its insatiable needs, has been finding ways to improve its capabilities for over thirty years now. In 2019 the fifth generation (5G) is on trial to ensure connection not only to the ever-growing cell phone market, but also to the vast world of the Internet of Things (IoT). In order to meet its goals, 5G marks an unprecedented expansion in the frequency bands used. Indeed, bands up to 60 GHz and beyond are part of the network's ambitions and this implies radical technological changes that impact all dedicated electronics. New higher frequencies, higher propagation losses in the air, and higher requirements, antenna phased arrays are introduced to overcome all these constraints and impose a completely new system architecture and interface for the RF front-end of mobile communications.In this work, we propose an analysis of these phased antenna arrays and the constraints they represent particularly for power amplifiers (PA), such as the parasitic load variation and the behavior of the components generated by the non-linear behavior of the latter. An evaluation of the active load variation due to the different coupling existing in the antenna networks is proposed as well as its impact on the performance of the amplifiers, particularly in terms of power added efficiency (PAE). The behavior of nonlinearities such as third-order intermodulation products (IMD3) is shown in antenna arrays. A concept using the principle of beam generation and steering of antenna arrays is proposed, allowing for relaxing the linearity constraints of 5G amplifiers and thus allowing a reduction of their power consumption. An implementation of an AP using this principle is demonstrated in ST CMOS 65 nm PD-SOI technology at 28 GHz
Bousbia, Hind. "Analyse et développement de la caractérisation en puissance, rendement et linéarité de transistors de puissance en mode impulsionnel." Limoges, 2006. http://aurore.unilim.fr/theses/nxfile/default/f409eab6-d21e-443d-9d6b-b14970380c32/blobholder:0/2006LIMO0063.pdf.
Повний текст джерелаIt is admitted today that wide band-gap materials will make it possible to push back the borders reached to date in the field of RF power generation. The analysis of the properties of wide band-gap materials, and especially the GaN material, highlights that it is a serious candidate for telecommunication and radar applications. RF field effect transistors on GaN are prone to show dispersive behaviors due to heating and trapping effects. A non linear electrothermal model of these high frequency FETs transistors on GaN used in this work makes possible the analysis of dispersive behaviors due to heating and trapping effects. A comparison of performances in terms of output power, power added efficiency and linearity has been made between simulation and measurement results for two type of excitation: one tone pulsed signal and two tones pulsed signal. The use of a one tone pulsed excitation permitted the validation of an HBT electrothermal model and the expertise of different technological process of these transistors. The use of a two tone pulsed excitation has permitted to observe the trade-offs between power added efficiency and linearity versus trapping effects. The measurements carried out on an original configuration of the load pull set up for intermodulation measurements under pulsed conditions had shown the actual limitations of the transistor model
Romier, Maxime. "Simulation électromagnétique des antennes actives en régime non-linéaire." Phd thesis, Toulouse, INPT, 2008. http://oatao.univ-toulouse.fr/7824/1/romier.pdf.
Повний текст джерелаЧастини книг з теми "Active load pull"
Ghannouchi, Fadhel M., and Mohammad S. Hashmi. "Active Load-Pull Systems." In Load-Pull Techniques with Applications to Power Amplifier Design, 55–85. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4461-5_3.
Повний текст джерелаBanerjee, Avijit, and Timothy F. Watson. "Principles of management of the badly broken down tooth." In Pickard's Guide to Minimally Invasive Operative Dentistry. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780198712091.003.0009.
Повний текст джерелаТези доповідей конференцій з теми "Active load pull"
Simpson, G. "Hybrid active tuning load pull." In 2011 77th ARFTG Microwave Measurement Conference (ARFTG). IEEE, 2011. http://dx.doi.org/10.1109/arftg77.2011.6034576.
Повний текст джерелаAlimohammadi, Yashar, Eigo Kuwata, Xuan Liu, Thoalfukar Husseini, James Bell, Lei Wu, Paul Tasker, and Johannes Benedikt. "Pulse Profiling Active Load Pull Measurements." In 2020 IEEE/MTT-S International Microwave Symposium (IMS). IEEE, 2020. http://dx.doi.org/10.1109/ims30576.2020.9223989.
Повний текст джерелаWilliams, Tudor, Brian Wee, Randeep Saini, Simon Mathias, and Marc Vanden Bossche. "A digital, PXI-based active load-pull tuner to maximize throughput of a load-pull test bench." In 2014 83rd ARFTG Microwave Measurement Conference (ARFTG). IEEE, 2014. http://dx.doi.org/10.1109/arftg.2014.6899527.
Повний текст джерелаAl-Rawachy, Azam, Thoalfukar Husseini, Johannes Benedikt, James Bell, and Paul Tasker. "Behavioural Model Extraction using Novel Multitone Active Load-pull." In 2019 IEEE/MTT-S International Microwave Symposium - IMS 2019. IEEE, 2019. http://dx.doi.org/10.1109/mwsym.2019.8700779.
Повний текст джерелаHone, Thomas M., Souheil Bensmida, Kevin A. Morris, Mark A. Beach, Joe P. McGeehan, Jonathan Lees, Johannes Benedikt, and Paul J. Tasker. "Inverse active load-pull in an inverse Doherty amplifier." In 2013 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR). IEEE, 2013. http://dx.doi.org/10.1109/pawr.2013.6490170.
Повний текст джерелаGaquiere, C., E. Bourcier, B. Bonte, and Y. Crosnier. "A Novel 26-40 GHz Active Load Pull System." In 25th European Microwave Conference, 1995. IEEE, 1995. http://dx.doi.org/10.1109/euma.1995.336975.
Повний текст джерелаArnaud, Caroline, Jean-Louis Carbonero, Jean-Michel Nebus, and Jean-Pierre Teyssier. "Comparison of Active and Passive Load-Pull Test Benches." In 57th ARFTG Conference Digest. IEEE, 2001. http://dx.doi.org/10.1109/arftg.2001.327461.
Повний текст джерелаWoodington, S. P., R. S. Saini, D. Willams, J. Lees, J. Benedikt, and P. J. Tasker. "Behavioral model analysis of active harmonic load-pull measurements." In 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010. IEEE, 2010. http://dx.doi.org/10.1109/mwsym.2010.5515580.
Повний текст джерелаWoodington, S., R. Saini, D. Williams, J. Lees, J. Benedikt, and P. J. Tasker. "Behavioral model analysis of active harmonic load-pull measurements." In 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010. IEEE, 2010. http://dx.doi.org/10.1109/mwsym.2010.5517261.
Повний текст джерелаDavies-Smith, Cory, Roberto Quaglia, Simon Woodington, Aamir Sheikh, and Paul Tasker. "An Enhanced Active Load-Pull Algorithm for Faster Convergence." In 2021 51st European Microwave Conference (EuMC). IEEE, 2022. http://dx.doi.org/10.23919/eumc50147.2022.9784250.
Повний текст джерела