Добірка наукової літератури з теми "Active Brownian Particles"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Active Brownian Particles".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Active Brownian Particles"
Romanczuk, P., M. Bär, W. Ebeling, B. Lindner, and L. Schimansky-Geier. "Active Brownian particles." European Physical Journal Special Topics 202, no. 1 (March 2012): 1–162. http://dx.doi.org/10.1140/epjst/e2012-01529-y.
Повний текст джерелаArkar, Kyaw, Mikhail M. Vasiliev, Oleg F. Petrov, Evgenii A. Kononov, and Fedor M. Trukhachev. "Dynamics of Active Brownian Particles in Plasma." Molecules 26, no. 3 (January 21, 2021): 561. http://dx.doi.org/10.3390/molecules26030561.
Повний текст джерелаSvetlov, Anton S., Mikhail M. Vasiliev, Evgeniy A. Kononov, Oleg F. Petrov, and Fedor M. Trukhachev. "3D Active Brownian Motion of Single Dust Particles Induced by a Laser in a DC Glow Discharge." Molecules 28, no. 4 (February 14, 2023): 1790. http://dx.doi.org/10.3390/molecules28041790.
Повний текст джерелаCugliandolo, Leticia F., Giuseppe Gonnella, and Isabella Petrelli. "Effective Temperature in Active Brownian Particles." Fluctuation and Noise Letters 18, no. 02 (May 29, 2019): 1940008. http://dx.doi.org/10.1142/s021947751940008x.
Повний текст джерелаSchimansky-Geier, Lutz, Michaela Mieth, Helge Rosé, and Horst Malchow. "Structure formation by active Brownian particles." Physics Letters A 207, no. 3-4 (October 1995): 140–46. http://dx.doi.org/10.1016/0375-9601(95)00700-d.
Повний текст джерелаСергеев, К. С., and K. S. Sergeev. "Dynamics of Ensemble of Active Brownian Particles Controlled by Noise." Mathematical Biology and Bioinformatics 10, no. 1 (February 16, 2015): 72–87. http://dx.doi.org/10.17537/2015.10.72.
Повний текст джерелаDulaney, Austin R., and John F. Brady. "Machine learning for phase behavior in active matter systems." Soft Matter 17, no. 28 (2021): 6808–16. http://dx.doi.org/10.1039/d1sm00266j.
Повний текст джерелаGroßmann, R., L. Schimansky-Geier, and P. Romanczuk. "Active Brownian particles with velocity-alignment and active fluctuations." New Journal of Physics 14, no. 7 (July 13, 2012): 073033. http://dx.doi.org/10.1088/1367-2630/14/7/073033.
Повний текст джерелаCaprini, Lorenzo, Claudio Maggi, and Umberto Marini Bettolo Marconi. "Collective effects in confined active Brownian particles." Journal of Chemical Physics 154, no. 24 (June 28, 2021): 244901. http://dx.doi.org/10.1063/5.0051315.
Повний текст джерелаWang, Liya, Xinpeng Xu, Zhigang Li, and Tiezheng Qian. "Active Brownian particles simulated in molecular dynamics." Chinese Physics B 29, no. 9 (September 2020): 090501. http://dx.doi.org/10.1088/1674-1056/aba60d.
Повний текст джерелаДисертації з теми "Active Brownian Particles"
Bechinger, Clemens. "Active Brownian motion of asymmetric particles." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-179545.
Повний текст джерелаBechinger, Clemens. "Active Brownian motion of asymmetric particles." Diffusion fundamentals 20 (2013) 16, S. 1, 2013. https://ul.qucosa.de/id/qucosa%3A13540.
Повний текст джерелаSiebert, Jonathan Tammo [Verfasser]. "Computer simulations of active Brownian particles / Jonathan Tammo Siebert." Mainz : Universitätsbibliothek Mainz, 2018. http://d-nb.info/1173827951/34.
Повний текст джерелаWittkowski, Raphael [Verfasser]. "Brownian dynamics of active and passive anisotropic colloidal particles / Raphael Wittkowski." Aachen : Shaker, 2012. http://d-nb.info/1066197733/34.
Повний текст джерелаBäuerle, Tobias Doyle [Verfasser]. "Collective phenomena in active Brownian particles with feedback controlled interaction rules / Tobias Doyle Bäuerle." Konstanz : KOPS Universität Konstanz, 2020. http://d-nb.info/1221524798/34.
Повний текст джерелаKrinninger, Philip [Verfasser], and Matthias [Akademischer Betreuer] Schmidt. "Effective Equilibrium, Power Functional, and Interface Structure for Phase-Separating Active Brownian Particles / Philip Krinninger ; Betreuer: Matthias Schmidt." Bayreuth : Universität Bayreuth, 2019. http://d-nb.info/1177143070/34.
Повний текст джерелаWittkowski, Raphael [Verfasser], Hartmut [Akademischer Betreuer] Löwen, Helmut [Akademischer Betreuer] Brand, and Holger [Akademischer Betreuer] Stark. "Brownian dynamics of active and passive anisotropic colloidal particles / Raphael Wittkowski. Gutachter: Helmut Brand ; Holger Stark. Betreuer: Hartmut Löwen." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2012. http://d-nb.info/1024161064/34.
Повний текст джерелаNötel, Jörg. "Active Brownian Particles with alpha Stable Noise in the Angular Dynamics: Non Gaussian Displacements, Adiabatic Eliminations, and Local Searchers." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19681.
Повний текст джерелаActive Brownian particles described by Langevin equations are used to model the behavior of simple biological organisms or artificial objects that are able to perform self propulsion. In this thesis we discuss active particles with constant speed. In the first part, we consider angular driving by white Levy-stable noise and we discuss the mean squared displacement and diffusion coefficients. We derive an overdamped description for those particles that is valid at time scales larger the relaxation time. In order to provide an experimentally accessible property that distinguishes between the considered noise types, we derive an analytical expression for the kurtosis. Afterwards, we consider an Ornstein-Uhlenbeck process driven by Cauchy noise in the angular dynamics of the particle. While, we find normal diffusion with the diffusion coefficient identical to the white noise case we observe a Non-Gaussian displacement at time scales that can be considerable larger than the relaxation time and the time scale provided by the Ornstein-Uhlenbeck process. In order to provide a limit for the time needed for the transition to a Gaussian displacement, we approximate the kurtosis. Afterwards, we lay the foundation for a stochastic model for local search. Local search is concerned with the neighborhood of a given spot called home. We consider an active particle with constant speed and alpha-stable noise in the dynamics of the direction of motion. The deterministic motion will be discussed before considering the noise to be present. An analytical result for the steady state spatial density will be given. We will find an optimal noise strength for the local search and only a weak dependence on the considered noise types. Several extensions to the introduced model will then be considered. One extension includes a distance dependent coupling towards the home and thus the model becomes more general. Another extension concerned with an erroneous understanding by the particle of the direction of the home leads to the result that the return probability to the home depends on the noise type. Finally we consider a group of searchers.
Locatelli, Emanuele. "Dynamical and collective properties of active and passive particles in Single File." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423763.
Повний текст джерелаIl moto di particelle in mezzi irregolari, complessi o affollati è un fenomeno comune, dalla scala microscopica a quella macroscopica. Lo si può incontrare tanto in situazioni comuni, come il traffico, quanto in meccanismi biologici, come la riproduzione e la crescita delle cellule, e in importanti processi chimici e tecnologici, come la catalisi di idrocarburi. In molti casi, il trasporto in mezzi confinati o affollati è guidato da elementi 'attivi', cioè unità che consumano energia per sostenere il loro stato di moto. Fra i diversi sistemi soggetti a confinamento, particolare rilevanza è rivestita dalla diffusione di sfere impenetrabili in un canale così stretto da non permettere il passaggio di più di una particella alla volta, conosciuto come diffusione in Single File. La diffusione in Single File è il meccanismo responsabile del trasporto di ioni attraverso la membrana cellulare, della diffusione in materiali micro e nanoporosi ed è stata osservata in molti altri sistemi naturali ed artificiali. Scopo di questa tesi è lo studio su scala mesoscopica di particelle passive (diffusive) o attive (auto-propellenti) in condizioni di Single File, con particolare attenzione all'effetto dell'attività sulla dinamica e sulle proprietà delle particelle nel caso siano presenti condizioni al contorno assorbenti. Gran parte del lavoro è stato svolto nello sviluppo di risultati analitici e numerici nel contesto dei Processi Stocastici. Inoltre, mediante tecniche di manipolazione ottica di singola particella in canali microfluidici, abbiamo ottenuto una eccellente confronto fra dati sperimentali e numerici per il processo di svuotamento di un sistema di particelle in condizioni di Single File. In questa tesi, dopo una breve introduzione ai processi diffusivi fortemente confinati, passeremo in rassegna i lavori più rilevanti della letteratura teorica e sperimentale sulla Single File Diffusion, con particolare attenzione ad un formalismo matematico, il Reflection Principle Method, che sarà applicato in maniera estensiva nel corso della tesi. Studieremo poi le proprietà di un sistema di particelle diffusive in Single File in presenza di condizioni al contorno assorbenti, concentrandoci sulla survival probability, cioè la probabilità di trovare una particella fra gli estremi del sistema al tempo t. Mostreremo come, in condizioni di Single File, abbiamo ottenuto una soluzione analitica per il processo di svuotamento, cioè calcoleremo la probabilità che caratterizza la progressiva diminuzione del numero di particelle in presenza di condizioni al contorno assorbenti, e per la survival probability di una particella 'marcata' all'interno della Single File sia in presenza che in assenza di una forza esterna costante. Caratterizzeremo gli andamenti dei tempi caratteristici di sopravvivenza, chiamati Tempi Medi di Primo Passaggio, in funzione della taglia del canale e del numero iniziale di particelle. Indagheremo inoltre numericamente il caso in cui solo la particella centrale del sistema in Single File subisce l'effetto delle condizioni al contorno assorbenti. Osserviamo un decadimento esponenziale della survival probability, come accade nell'usuale moto Browniano, anche in presenza di estremo confinamento. Introdurremo l'attività nella Single File attraverso un modello di particelle Self-Propelled, di cui descriveremo le proprietà in dettaglio. In particolare in questo modello le particelle possono essere o runners o tumblers, a seconda che la loro traiettoria sia dominata da lunghi tratti rettilinei o da cambi di direzione. In condizioni di Single File, i runners tendono a formare aggregati dinamici: questi cluster vengono continuamente formati e distrutti dalle fluttuazioni casuali della forza propulsiva. Per i tumblers, le probabilità di sopravvivenza sono ben descritte dalla teoria analitica sviluppata per le particelle passive. Per contro, la formazione di cluster dinamici accresce i comportamenti anomali nei tempi caratteristici di sopravvivenza dei runners e ne induce una notevole capacità di opporsi all'azione di un campo esterno.
Nötel, Jörg [Verfasser], L. [Gutachter] Schimansky-Geier, H. [Gutachter] Engel, and E. E. N. [Gutachter] Macau. "Active Brownian Particles with alpha Stable Noise in the Angular Dynamics: Non Gaussian Displacements, Adiabatic Eliminations, and Local Searchers / Jörg Nötel ; Gutachter: L. Schimansky-Geier, H. Engel, E. E. N. Macau." Berlin : Humboldt-Universitaet zu Berlin, 2019. http://d-nb.info/1175995150/34.
Повний текст джерелаКниги з теми "Active Brownian Particles"
Brownian Agents and Active Particles: Collective dynamics in the natural and social sciences. Berlin: Springer, 2003.
Знайти повний текст джерелаBrowning [sic] agents and active particles: Collective dynamics in the natural and social sciences. 2nd ed. Berlin: Springer, 2007.
Знайти повний текст джерелаBrowning [sic] agents and active particles: Collective dynamics in the natural and social sciences. 2nd ed. Berlin: Springer, 2007.
Знайти повний текст джерелаFarmer, J. D., and Frank Schweitzer. Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences. Springer London, Limited, 2007.
Знайти повний текст джерелаSchweitzer, Frank. Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences (Springer Series in Synergetics). Springer, 2007.
Знайти повний текст джерелаBrowning Agents and Active Particles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73845-9.
Повний текст джерелаЧастини книг з теми "Active Brownian Particles"
Callegari, Agnese, and Giovanni Volpe. "Numerical Simulations of Active Brownian Particles." In Soft and Biological Matter, 211–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23370-9_7.
Повний текст джерелаEbeling, Werner. "Nonlinear Dynamics of Active Brownian Particles." In Computational Statistical Physics, 141–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04804-7_9.
Повний текст джерелаSchweitzer, F. "Active Brownian Particles with Internal Energy Depot." In Traffic and Granular Flow ’99, 161–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59751-0_15.
Повний текст джерелаLozano, Celia, Tobias Bäuerle, and Clemens Bechinger. "Active Brownian Particles with Programmable Interaction Rules." In Active Matter and Nonequilibrium Statistical Physics, 219–29. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192858313.003.0007.
Повний текст джерела"Active Brownian particles and Nosé-Hoover dynamics." In Advanced Series in Nonlinear Dynamics, 303–15. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812771513_0016.
Повний текст джерелаSCHWEITZER, FRANK. "Modelling Migration and Economic Agglomeration with Active Brownian Particles." In Modeling Complexity in Economic and Social Systems, 137–59. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777263_0010.
Повний текст джерелаТези доповідей конференцій з теми "Active Brownian Particles"
Velu, Sabareesh K. P., Erçağ Pinçe, Agnese Callegari, Parviz Elahi, Sylvain Gigan, Giovanni Volpe, and Giorgio Volpe. "Controlling Active Brownian Particles in Complex Settings." In Optical Trapping Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ota.2017.otm2e.2.
Повний текст джерелаVolpe, Giorgio, Sylvain Gigan, and Giovanni Volpe. "Simulation of active Brownian particles in optical potentials." In SPIE NanoScience + Engineering, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2014. http://dx.doi.org/10.1117/12.2061049.
Повний текст джерелаYadav, Sunil Kumar, and Shankar P. Das. "Field-theoretic model for dynamics of active Brownian particles." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112870.
Повний текст джерелаArgun, Aykut, and Giovanni Volpe. "Statistics of Brownian particles held in non-harmonic potentials in an active bath." In Optical Manipulation and Its Applications. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/oma.2019.at1e.3.
Повний текст джерелаIto, Kana, and Akira Satoh. "On the Hybrid-Type Method of Brownian Dynamics and Lattice Boltzmann for Activating the Brownian Motion of Magnetic Particles." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87165.
Повний текст джерелаOu-Yang, H. Daniel, and Chong Shen. "Fluctuation-dissipation of an active Brownian particle under confinement." In Optical Trapping and Optical Micromanipulation XV, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2018. http://dx.doi.org/10.1117/12.2325011.
Повний текст джерелаShen, Chong, Zhiyu Jiang, Lanfang Li, and H. Daniel Ou-Yang. "Extract active fluctuations from total fluctuations of a confined active Brownian particle." In Optical Trapping and Optical Micromanipulation XVII, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2020. http://dx.doi.org/10.1117/12.2570663.
Повний текст джерелаYokoyama, Haruka, and Akira Satoh. "On the Behavior of an Oblate Spheroidal Hematite Particle in a Simple Shear Flow Under a Uniform Magnetic Field Applied in the Flow Direction." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64226.
Повний текст джерелаTian, Lin, and Goodarz Ahmadi. "Effect of Brownian Dynamics on Ellipsoidal Fibers in Human Tracheobronchial Airways." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-32335.
Повний текст джерелаOkada, Kazuya, and Akira Satoh. "Analysis of a Stokes Flow Past a Cube (Friction and Diffusion Coefficients for Brownian Dynamics Simulations)." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10549.
Повний текст джерела