Добірка наукової літератури з теми "Action-Angle variables"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Action-Angle variables".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Action-Angle variables"
Spergel, David N. "Natural Action–Angle Variables." Symposium - International Astronomical Union 127 (1987): 483–84. http://dx.doi.org/10.1017/s0074180900185857.
Повний текст джерелаBates, Larry, and Jedrzej Śniatycki. "On action-angle variables." Archive for Rational Mechanics and Analysis 120, no. 4 (December 1992): 337–43. http://dx.doi.org/10.1007/bf00380319.
Повний текст джерелаYEON*, Kyu Hwang, and Eun Ji LIM. "Quantum Action-angle Variables." New Physics: Sae Mulli 63, no. 5 (May 31, 2013): 524–30. http://dx.doi.org/10.3938/npsm.63.524.
Повний текст джерелаLlave, R. de la, A. González, À. Jorba, and J. Villanueva. "KAM theory without action-angle variables." Nonlinearity 18, no. 2 (January 22, 2005): 855–95. http://dx.doi.org/10.1088/0951-7715/18/2/020.
Повний текст джерелаLahiri, Abhijit, Gautam Ghosh, and T. K. Kar. "Action-angle variables in quantum mechanics." Physics Letters A 238, no. 4-5 (February 1998): 239–43. http://dx.doi.org/10.1016/s0375-9601(97)00926-2.
Повний текст джерелаChavanis, Pierre-Henri. "Kinetic theory with angle–action variables." Physica A: Statistical Mechanics and its Applications 377, no. 2 (April 2007): 469–86. http://dx.doi.org/10.1016/j.physa.2006.11.078.
Повний текст джерелаMahajan, S. M., and C. Y. Chen. "Plasma kinetic theory in action-angle variables." Physics of Fluids 28, no. 12 (1985): 3538. http://dx.doi.org/10.1063/1.865308.
Повний текст джерелаBellucci, Stefano, Armen Nersessian, Armen Saghatelian, and Vahagn Yeghikyan. "Quantum Ring Models and Action-Angle Variables." Journal of Computational and Theoretical Nanoscience 8, no. 4 (April 1, 2011): 769–75. http://dx.doi.org/10.1166/jctn.2011.1751.
Повний текст джерелаHakobyan, T., O. Lechtenfeld, A. Nersessian, A. Saghatelian, and V. Yeghikyan. "Action-angle variables and novel superintegrable systems." Physics of Particles and Nuclei 43, no. 5 (September 2012): 577–82. http://dx.doi.org/10.1134/s1063779612050152.
Повний текст джерелаKhein, Alexander, and D. F. Nelson. "Hannay angle study of the Foucault pendulum in action‐angle variables." American Journal of Physics 61, no. 2 (February 1993): 170–74. http://dx.doi.org/10.1119/1.17332.
Повний текст джерелаДисертації з теми "Action-Angle variables"
Boucetta, Mohamed. "Modèles locaux d'actions hamiltoniennes et variables action-angle." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376032479.
Повний текст джерелаDehouck, Victor. "Invariance Adiabatique dans les Mouvements Rythmiques Volontaires Humains." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCK066.
Повний текст джерелаHuman motion is inherently complex. Even an ordinary task like lifting a glass of water involves many degrees of freedom i.e., different muscle groups, multiple joints and an infinite number of trajectories for the arm. Nevertheless, motion is readily available to healthy subjects, and seems to be naturally optimized by the central nervous system. This is often modelized as the minimization of a given parameter of the system e.g., energy or jerk, which appear as natural candidates. Unfortunately, these approaches are often limited in their scopes, and cannot describe periodic motion in time-changing environments. In such systems, adiabatic invariants are relevant observables originating from Hamiltonian mechanics. The aim of this doctoral dissertation is to investigate the role and use of adiabatic invariants in human motor control. This was done in a series of experiments. First, we studied them as a constraint for the global stability of gait, even when exposed to a variability-altering task, such as metronome keeping. Then, we used recent results in physics to assess the inherent variability of long-range walking as a diffusion phenomenon of the distribution of adiabatic invariants. Finally, we explored them in time-changing environments, specifically by altering “gravity” both in a centrifuge and a parabolic flight context, where they seem to be relevant quantities to show changes in motor strategies. The different findings in this dissertation point to adiabatic invariants revealing generic hidden constraints affecting periodic human motion
Horsin, Romain. "Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S062/document.
Повний текст джерелаThis thesis concerns the long time behavior of certain Vlasov equations, mainly the Vlasov- HMF model. We are in particular interested in the celebrated phenomenon of Landau damp- ing, proved mathematically in various frameworks, foar several Vlasov equations, such as the Vlasov-Poisson equation or the Vlasov-HMF model, and exhibiting certain analogies with the inviscid damping phenomenon for the 2D Euler equation. The results described in the document are the following.The first one is a Landau damping theorem for numerical solutions of the Vlasov-HMF model, constructed by means of time-discretizations by splitting methods. We prove more- over the convergence of the schemes. The second result is a Landau damping theorem for solutions of the Vlasov-HMF model linearized around inhomogeneous stationary states. We provide moreover a quite large amount of numerical simulations, which are designed to study numerically the nonlinear case, and which seem to show new phenomenons. The last result is the convergence of a scheme that discretizes in time the 2D Euler equation by means of a symplectic Crouch-Grossmann integrator
Papaphilippou, Yannis. "APPLICATION DE LA METHODE D'ANALYSE EN FREQUENCE EN DYNAMIQUE GALACTIQUE." Phd thesis, Université Paris-Diderot - Paris VII, 1997. http://tel.archives-ouvertes.fr/tel-00836476.
Повний текст джерелаKhorev, Alexeĭ Borisovich. "The concept of approximate action-angle variables for nonintegrable Hamiltonian dynamics." Phd thesis, 2002. http://hdl.handle.net/1885/148601.
Повний текст джерелаКниги з теми "Action-Angle variables"
Mann, Peter. Poisson Brackets & Angular Momentum. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0017.
Повний текст джерелаMann, Peter. The Structure of Phase Space. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0023.
Повний текст джерелаЧастини книг з теми "Action-Angle variables"
Dittrich, W., and Martin Reutera. "Action-Angle Variables." In Classical and Quantum Dynamics, 83–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56430-7_8.
Повний текст джерелаDittrich, Walter, and Martin Reuter. "Action-Angle Variables." In Classical and Quantum Dynamics, 93–117. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36786-2_8.
Повний текст джерелаDittrich, Walter, and Martin Reuter. "Action-Angle Variables." In Classical and Quantum Dynamics, 75–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-97465-6_7.
Повний текст джерелаDittrich, Walter, and Martin Reuter. "Action-Angle Variables." In Classical and Quantum Dynamics, 93–117. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58298-6_8.
Повний текст джерелаDittrich, Walter, and Martin Reuter. "Action-Angle Variables." In Classical and Quantum Dynamics, 93–117. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21677-5_8.
Повний текст джерелаDittrich, Walter, and Martin Reuter. "Action-Angle Variables." In Classical and Quantum Dynamics, 75–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-97921-7_7.
Повний текст джерелаSpergel, David N. "Natural Action-Angle Variables." In Structure and Dynamics of Elliptical Galaxies, 483–84. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3971-4_84.
Повний текст джерелаOevel, G., B. Fuchssteiner, and M. Błaszak. "Action-Angle Variables and Asymptotic Data." In Nonlinear Evolution Equations and Dynamical Systems, 123–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84039-5_22.
Повний текст джерелаStupakov, Gennady, and Gregory Penn. "Action-Angle Variables and Liouville’s Theorem." In Graduate Texts in Physics, 31–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90188-6_3.
Повний текст джерелаStupakov, Gennady, and Gregory Penn. "Action-Angle Variables for Betatron Oscillations." In Graduate Texts in Physics, 87–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90188-6_7.
Повний текст джерелаТези доповідей конференцій з теми "Action-Angle variables"
Visinescu, Mihai. "Complete integrability of geodesics in toric Sasaki-Einstein space T 1,1 and action-angle variables." In HIGH ENERGY GAMMA-RAY ASTRONOMY: 6th International Meeting on High Energy Gamma-Ray Astronomy. Author(s), 2017. http://dx.doi.org/10.1063/1.4972349.
Повний текст джерелаRenno, Jamil M. "Inverse Dynamics Based Fuzzy Logic Controller for a Single-Link Flexible Manipulator." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79028.
Повний текст джерелаKulshreshtha, Digvijay B., and S. A. Channiwala. "Flow in Atomizers: Influence of Different Parameters on the Performance Characteristics of Plain Orifice Atomizer and Pressure Swirl Atomizer of a Fuel Injection System of Gas Turbine Combustor." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77122.
Повний текст джерелаButcher, Eric A., and S. C. Sinha. "Canonical Perturbation of a Fast Time-Periodic Hamiltonian via Liapunov-Floquet Transformation." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4107.
Повний текст джерелаKwon, Hyun Jung, Yujiang Xiang, Salam Rahmatalla, R. Timothy Marler, Karim Abdel-Malek, and Jasbir S. Arora. "Optimization-Based Digital Human Dynamics: Santos™ Walking Backwards." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35616.
Повний текст джерелаGatapova, Elizaveta Ya, Vladimir V. Kuznetsov, Oleg A. Kabov, and Jean-Claude Legros. "Annular Liquid Film Flow Under Local Heating in Microchannel." In ASME 3rd International Conference on Microchannels and Minichannels. ASMEDC, 2005. http://dx.doi.org/10.1115/icmm2005-75253.
Повний текст джерелаRaghavan, Madhusudan. "Kinematics of the Full-Toroidal Traction Drive Variator." In ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/mech-14170.
Повний текст джерелаBalabina, Tat'yana, Mariya Karelina, and Aleksey Mamaev. "THE INFLUENCE OF THE LENGTHS OF THE LINKS OF THE HINGED FOUR-LINK ON THE ANGLE OF HEIGHT, RETURN ANGLE AND RELATIVE DISPLACEMENT OF LINKS CONNECTED BY THE ELASTIC ELEMENT DURING THE OUTPUT LINK STABILITY." In PROBLEMS OF APPLIED MECHANICS. Bryansk State Technical University, 2020. http://dx.doi.org/10.30987/conferencearticle_5fd1ed03b024e0.49570399.
Повний текст джерелаMeng, Qingkai, Zhifang Ke, Wei Wei, Molei Zhao, Jinghan Tu, and Qingdong Yan. "Study on the Transient Dynamic Characteristics of the Pitch-Regulated Device for Coaxilcopter Under Aerodynamic Loads." In ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gt2023-103937.
Повний текст джерелаCarneiro, J. Falca˜o, and F. Gomes de Almeida. "VSC Approach Angle Based Boundary Layer Thickness: A New Variation Law and Its Stability Proof." In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-5948.
Повний текст джерелаЗвіти організацій з теми "Action-Angle variables"
Reiman, A. H., and N. Pomphrey. Computation of magnetic coordinates and action-angle variables. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5663222.
Повний текст джерелаMorrison, P. J., and D. Pfirsch. Dielectric energy versus plasma energy, and Hamiltonian action-angle variables for the Vlasov equation. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/10147775.
Повний текст джерелаMorrison, P. J., and D. Pfirsch. Dielectric energy versus plasma energy, and Hamiltonian action-angle variables for the Vlasov equation. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/5064541.
Повний текст джерела