Добірка наукової літератури з теми "Acoustophoresi"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Acoustophoresi".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Acoustophoresi"

1

Lee, SangWook, Byung Woo Kim, Hye-Su Shin, Anna Go, Min-Ho Lee, Dong-Ki Lee, Soyoun Kim, and Ok Chan Jeong. "Aptamer Affinity-Bead Mediated Capture and Displacement of Gram-Negative Bacteria Using Acoustophoresis." Micromachines 10, no. 11 (November 11, 2019): 770. http://dx.doi.org/10.3390/mi10110770.

Повний текст джерела
Анотація:
Here, we report a simple and effective method for capturing and displacement of gram-negative bacteria using aptamer-modified microbeads and acoustophoresis. As acoustophoresis allows for simultaneous washing and size-dependent separation in continuous flow mode, we efficiently obtained gram-negative bacteria that showed high affinity without any additional washing steps. The proposed device has a simple and efficient channel design, utilizing a long, square-shaped microchannel that shows excellent separation performance in terms of the purity, recovery, and concentration factor. Microbeads (10 µm) coated with the GN6 aptamer can specifically bind gram-negative bacteria. After incubation of bacteria culture sample with aptamer affinity bead, gram-negative bacteria-bound microbeads, and other unbound/contaminants can be separated by size with high purity and recovery. The device demonstrated excellent separation performance, with high recovery (up to 98%), high purity (up to 99%), and a high-volume rate (500 µL/min). The acoustophoretic separation performances were conducted using 5 Gram-negative bacteria and 5 Gram-positive bacteria. Thanks to GN6 aptamer’s binding affinity, aptamer affinity bead also showed binding affinity to multiple strains of gram-negative bacteria, but not to gram-positive bacteria. GN6 coated bead can capture Gram-negative bacteria but not Gram-positive bacteria. This study may present a different perspective in the field of early diagnosis in bacterial infectious diseases. In addition to detecting living bacteria or bacteria-derived biomarkers, this protocol can be extended to monitoring the contamination of water resources and may aid quick responses to bioterrorism and pathogenic bacterial infections.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cobb, Corie Lynn, Matthew R. Begley, Emilee Nicole Armstrong, and Keith Edward Johnson. "(Invited) Manufacturing 3D Electrode Architectures Via Acoustophoresis." ECS Meeting Abstracts MA2022-02, no. 6 (October 9, 2022): 608. http://dx.doi.org/10.1149/ma2022-026608mtgabs.

Повний текст джерела
Анотація:
Achieving high-energy and high-power density Lithium-ion batteries (LIBs) with fast charge behavior is critical for the future of electric vehicle applications. Conventional LIBs have planar anode and cathode electrode stacks that can be optimized for energy or power, but not both simultaneously due to fundamental ion transport limitations with increasing electrode thickness. Three-dimensional (3D) electrode architectures1,2 can remove these performance trade-offs through engineered ion-transport in thick electrodes. However, scalable manufacturing methods for patterning these architectures over large areas at meaningful time scales is still limited. As a path to solving this challenge, we leverage both modeling and experiments to investigate the feasibility of deploying acoustophoresis to assemble and pattern 3D battery electrodes. Acoustophoresis employs acoustic standing waves to focus particles and enables near micron-scale control over particle placement in a fluid medium at time scales < 1 second. Prior research has shown the potential for rapid assembly of particles with this approach,3,4 making acoustic-based processing a promising methodology for manufacturing 3D electrodes over large areas. In this talk, we expand a previously developed model4 that solves differential equations of acoustic forces to track particle trajectories and define how the acoustic forces are influenced by slurry viscosity, particle loading, and particle morphology. Our initial experiments with different material systems, including LiNi0.6Mn0.2Co0.2O2 (NMC-622), help validate our model and process conditions to as a path towards acoustophoretic fabrication of 3D electrode architectures. References C. L. Cobb and S. E. Solberg, J. Electrochem. Soc., 164, A1339–A1341 (2017). C. L. Cobb and M. Blanco, Journal of Power Sources, 249, 357–366 (2014). D. S. Melchert et al., Materials & Design, 109512 (2021). R. R. Collino et al., Materials Research Letters, 6, 191–198 (2018). Acknowledgements This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Manufacturing Office (AMO) Award Number DE-EE0009112. The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tandar, Clara E., Ryan Dubay, Eric Darling, and Jason Fiering. "Cell-like microparticles with tunable acoustic properties for calibrating devices." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A36. http://dx.doi.org/10.1121/10.0015454.

Повний текст джерела
Анотація:
Mechanophenotype of biological cells has demonstrated correlation with biomolecular states and cell function. Hence, new methods to measure mechanophenotype at high throughput are of growing interest. Acoustophoretic microdevices can characterize cell mechanical features; however, calibration particles with physiologically relevant properties are needed to quantify and optimize device performance. Currently, conventional polymer microspheres are rigid and do not replicate cell deformation and compressibility. To address this, we developed monodisperse, tunable, cell-like microparticles (MPs) from polyacrylamide hydrogel, fabricated with a microfluidic droplet generator. Size and compressibility are adjusted by fabrication parameters, and density is adjusted by incorporation of nanoparticles (NPs). Here, we present for the first time microparticles of reduced density and acoustic contrast (lower than unloaded MPs) achieved by loading MPs with nanoparticles of low molecular weight alkanes. We produced the NPs by sonication and photopolymerization before addition to the MP precursor. NP-loaded MPs were less dense than unloaded MPs at 1005.9 and 1013.6kg/m3, respectively, and they exhibited negative acoustic contrast by acoustophoresis in aqueous medium while that of unloaded MPs was positive. These new particles extend the tunable range of acoustic contrast, mimicking and exceeding that of most biological cells and could also aid cell separation when conjugated to cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Heyman, Joseph S. "Acoustophoresis separation method." Journal of the Acoustical Society of America 94, no. 2 (August 1993): 1176–77. http://dx.doi.org/10.1121/1.406934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Leibacher, Ivo, Alexander Garbin, Philipp Hahn, and Jürg Dual. "Acoustophoresis of Disks." Physics Procedia 70 (2015): 21–24. http://dx.doi.org/10.1016/j.phpro.2015.08.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hsu, Jin-Chen, Chih-Hsun Hsu, and Yeo-Wei Huang. "Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices." Micromachines 10, no. 1 (January 13, 2019): 52. http://dx.doi.org/10.3390/mi10010052.

Повний текст джерела
Анотація:
We present a numerical and experimental study of acoustophoretic manipulation in a microfluidic channel using dual-wavelength standing surface acoustic waves (SSAWs) to transport microparticles into different outlets. The SSAW fields were excited by interdigital transducers (IDTs) composed of two different pitches connected in parallel and series on a lithium niobate substrate such that it yielded spatially superimposed and separated dual-wavelength SSAWs, respectively. SSAWs of a singltablee target wavelength can be efficiently excited by giving an RF voltage of frequency determined by the ratio of the velocity of the SAW to the target IDT pitch (i.e., f = cSAW/p). However, the two-pitch IDTs with similar pitches excite, less efficiently, non-target SSAWs with the wavelength associated with the non-target pitch in addition to target SSAWs by giving the target single-frequency RF voltage. As a result, dual-wavelength SSAWs can be formed. Simulated results revealed variations of acoustic pressure fields induced by the dual-wavelength SSAWs and corresponding influences on the particle motion. The acoustic radiation force in the acoustic pressure field was calculated to pinpoint zero-force positions and simulate particle motion trajectories. Then, dual-wavelength SSAW acoustofluidic devices were fabricated in accordance with the simulation results to experimentally demonstrate switching of SSAW fields as a means of transporting particles. The effects of non-target SSAWs on pre-actuating particles were predicted and observed. The study provides the design considerations needed for the fabrication of acoustofluidic devices with IDT-excited multi-wavelength SSAWs for acoustophoresis of microparticles.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Foresti, Daniele, Katharina T. Kroll, Robert Amissah, Francesco Sillani, Kimberly A. Homan, Dimos Poulikakos, and Jennifer A. Lewis. "Acoustophoretic printing." Science Advances 4, no. 8 (August 2018): eaat1659. http://dx.doi.org/10.1126/sciadv.aat1659.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Urbansky, Anke, Andreas Lenshof, Josefina Dykes, Thomas Laurell, and Stefan Scheding. "­Separation of Lymphocyte Populations from Peripheral Blood Progenitor Cell Products Using Affinity Bead Acoustophoresis." Blood 124, no. 21 (December 6, 2014): 315. http://dx.doi.org/10.1182/blood.v124.21.315.315.

Повний текст джерела
Анотація:
Abstract Introduction: Processing of peripheral blood progenitor cells (PBPC) for clinical transplantation or research applications aims to effectively isolate or deplete specific cell populations. We have previously reported the use of a novel ultrasound-based sorting technology, called acoustophoresis, for sorting of platelets (Dykes et al., PloS one 2011) and CD4+ cells from PBPC products (Lenshof et al., Cytometry Part A 2014). Here, we investigated the performance of microfluidic acoustophoresis for the separation of CD8+ lymphocytes from PBPC, and present a method for affinity-bead-mediated acoustic separation of cells which otherwise cannot be discriminated acoustically. In an acoustic standing wave field radiation forces induce movement of particles depending on particle and medium properties, such as for example particle size, density and compressibility. Targeting of cells by affinity specific beads generates cell-bead complexes that exhibit distinct acoustic properties relative to non-targeted cells and, thus, become possible to isolate. Method: PBPC samples (n=16) were obtained from patients and healthy donors. Following density gradient centrifugation, mononuclear cells were labelled with anti-CD8 microbeads (Dynal) and sorted either on an acoustophoresis-microchip (Figure 1) or standard magnetic cell sorting technique for comparison. PBPC samples, target and waste fractions were analysed for purity, separation efficiency, recovery, T-cell function and progenitor cell content. Results: PBPC products contained a mean of 11.6 ± 7.1% CD8+ cells before sorting. Purities obtained with acoustic sorting of CD8+ lymphocytes were 93.3 ± 6.8% compared to 94.4 ± 8.6% for magnetic sorting (n=16). Viabilities of sorted cells were 97.0 ± 3.9% (acoustic) and 97.5 ± 3.5% (magnetic). Mean separation efficiency recovery of acoustic sorted CD8+ cells was 57 ± 19% of the total CD8+ cells compared to a median recovery of magnetic sorted CD8+ cells of 43 ± 17%. Leukocyte subpopulation analysis performed after CD8 selection showed a relative increase of CD4 cells in the non-target fractions due to the removal of CD8 cells. Functional testing of sorted CD8+ lymphocytes showed unimpaired mitogen mediated proliferation capacity after 2-day, 4-day and 6-day stimulation with CD3/CD28. Furthermore, hematopoietic progenitor cell assays revealed a preserved colony forming ability of the post-sorted non-target cells Conclusion: Acoustophoresis is a promising technology to efficiently sort bead-labelled lymphocyte populations from PBPC samples with high purity and recovery without impairing lymphocyte function. Affinity-bead acoustophoresis is, thus, an interesting technology for stem cell processing in PBPC. Figure 1 Picture of the acoustophoresis platform. The cell suspension with bead-labeled CD8+ cells enters through the side inlets (a) while the wash buffer (Histopaque-1077) is injected through the center inlet (b). Radiation forces in the acoustic standing wave field move the cell-bead complex faster to the center compared to non-target cells and can be separated in the center outlet of the channel (c). Non-target cells exit through the side outlets (d). The total length of the acoustophoresis microchip is 35mm. Figure 1. Picture of the acoustophoresis platform. The cell suspension with bead-labeled CD8+ cells enters through the side inlets (a) while the wash buffer (Histopaque-1077) is injected through the center inlet (b). Radiation forces in the acoustic standing wave field move the cell-bead complex faster to the center compared to non-target cells and can be separated in the center outlet of the channel (c). Non-target cells exit through the side outlets (d). The total length of the acoustophoresis microchip is 35mm. Disclosures Laurell: Acousort AB: shareholder Other. Scheding:Acousort AB: Co-founder and board member Other.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brooks, Todd L., and Robert E. Apfel. "Novel configurations for acoustophoresis." Journal of the Acoustical Society of America 102, no. 5 (November 1997): 3184. http://dx.doi.org/10.1121/1.420853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Baasch, Thierry, Ivo Leibacher, and Jürg Dual. "Multibody dynamics in acoustophoresis." Journal of the Acoustical Society of America 141, no. 3 (March 2017): 1664–74. http://dx.doi.org/10.1121/1.4977030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Acoustophoresi"

1

Toru, Sylvain. "Réalisation d'une pince acoustofluidique pour la manipulation de bioparticules." Thesis, Ecully, Ecole centrale de Lyon, 2014. http://www.theses.fr/2014ECDL0028/document.

Повний текст джерела
Анотація:
Cette thèse s’inscrit dans le contexte du développement des laboratoires sur puce (LOC, « Lab On a Chip », permettant de réaliser plusieurs opérations nécessaires à l’analyse d’un échantillon biologique à l'intérieur d'un seul microsystème. Dans ce type de dispositif, de nombreuses étapes sont nécessaires avant d’arriver au résultat d’une analyse donnée (introduction de l'échantillon, concentration, mélange, purification, séparation, etc.). L’équipe microsystèmes du laboratoire Ampère étudie depuis plusieurs années différentes techniques de manipulation sans contact de particules, pour le tri ou de manipulation de particules individuelles dans les laboratoires sur puce, telles que la diélectrophorèse ou la magnétophorèse. Dans cette thèse, nous nous intéressons à la manipulation acoustique de micro particules. Cette technique se révèle notamment avantageuse pour la manipulation d’objets biologiques comme des bactéries, car elle permet de s’affranchir de certaines contraintes de marquage ou de changement de milieu. Notre choix s’est porté sur l’emploi des ondes acoustiques de surface (SAW, « Surface Acoustic Waves »), compatibles avec la filière PDMS très utilisée dans la communauté des LOC. Outre la possibilité de simplifier l’intégration microfluidique de la pince acoustique, la technologie SAW offre une alternative aux dispositifs à pièges acoustiques fixes existant dans la littérature en permettant un contrôle en temps réel des particules piégées. C’est ce que nous avons réalisé expérimentalement : en jouant sur le déphasage entre les signaux d’alimentation électriques des transducteurs électromécaniques, nous pouvons modifier la position des noeuds et des ventres de l’onde acoustique résultante. Ainsi, nous avons pu contrôler en temps réel la position d’une bille en latex de 3 μm ou encore d’un faisceau de bactéries E.coli. Par ailleurs, nous avons réalisé une simulation par éléments finis de la puce acoustofluidique dans son ensemble permettant une meilleure compréhension de tous les phénomènes en jeu et l’optimisation du transfert énergétique entre la source électrique et la particule manipulée. Cette simulation nous indique notamment que l’amplitude de l’onde acoustique stationnaire sur le substrat piézoélectrique varie environ d’un facteur deux en fonction du déphasage imposé entre les deux sources électriques. Cela impacte donc dans la même proportion la force acoustique résultante. Cette variation semble être validée par nos dernières expériences
In lab-on-a-chip (LOC) technologies, many sample preparation steps are required before achieving a biological analysis on a single chip (sample introduction, concentration, mixing, purification, separation, etc.). The microsystem team of the Ampere Lab has studied for many years different contactless particle manipulation techniques, for sorting or manipulating bioparticles in LOC platforms, such as dielectrophoresis and magnetophoresis. In this thesis, we focus on acoustic manipulation of microparticles. This technique is advantageous for the manipulation of biological objects such as bacteria, because labelling and medium exchange can be avoided. We chose to work with surface acoustic waves (SAW), because this approach is consistent with the use of PDMS, widely used in microfluidics. Besides an easier microfluidic integration of the acoustic tweezers, the SAW technology provides an alternative to the existing devices with fixed acoustic traps, allowing a real time control of the trapped particles. This was experimentally achieved by playing on the phase shift between the two electrical signals driving the IDT, thereby modifying the position of nodes and antinodes of the resulting pressure wave. As a result, we could control in real time the position of a 3 μm latex bead or an E.coli bacteria alignment. We have also developed a finite-element model of the whole acoustofluidic chip allowing a better understanding of the physics and the optimization of the energy transfer between the electrical source and the trapped particle. Among different results, this model informs us that the magnitude of the acoustic radiation force varies by a factor of two with the phase shift between the electrical sources. This result seems to be validated by our last experiments
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Björnander, Rahimi Klara. "Enrichment of microparticles in droplets using acoustophoresis." Thesis, Uppsala universitet, Mikrosystemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-349376.

Повний текст джерела
Анотація:
Acoustophoresis is a label free method where the acoustic radiation force is used to manipulate microparticles inside microfluidic channels. The magnitude of the force is dependent of several parameters, which include the density, speed of sound and size of the microparticles, as well as the amplitude of the pressure waves. Recently, acoustophoresis has been used in microfluidics to manipulate microparticles inside moving droplets. In this Master's thesis project, two microfluidic chip designs are used to enrich droplets with polystyrene beads (10 μm in diameter) using acoustophoresis. The microchips have been fabricated with two different fabrication methods; crystalline dependent wet etching and crystalline independent dry etching. In the microchips, water droplets in oil are generated with microparticles suspended in them. By using a channel width that is half a wavelength of the incoming acoustic waves, pressure nodal lines are created in the middle of the channel in which the microparticles align. The droplets then enters a droplet splitting feature, where they are divided into three daughter droplets. Since the majority of the incoming particles are recovered in the center daughter droplet while some of the droplet volume is removed, the center droplet is enriched with the microparticles. For the wet etched design stable droplet splitting was observed when the volumetric flow was 18 μL/min and the incoming droplets had a length-to-width ratio larger than 3. The maximum recovery for this design was 81.1% ± 13.8% with an applied voltage at 10 Vpp. Stable droplet splitting was observed for the dry etched chip at 10.5 μL/min and 18 μL/min at 10 and 20 Vpp, when the incoming droplet had a length-to-width ratio of 3. In this chip the maximum recovery was 93.2% ± 8.3% at the volumetric flow of 10.5 μL/min and an applied voltage of 20 Vpp.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Faridi, Muhammad Asim. "Bioparticle Manipulation using Acoustophoresis and Inertial Microfluidics." Doctoral thesis, KTH, Proteomik och nanobioteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200304.

Повний текст джерела
Анотація:
Despite the many promising advances made in microfluidics, sample preparation remains the single largest challenge and bottleneck in the field of miniaturised diagnostics. This thesis is focused on the development of sample preparation methods using active and passive particle manipulation techniques for point of care diagnostic applications. The active technique is based on acoustophoresis (acoustic manipulation) while the passive method is based on inertial microfluidics (hydrodynamic manipulation). In paper I, acoustic capillary-based cavity resonator was used to study aggregation of silica and polystyrene particles. We found that silica particles show faster aggregation time (5.5 times) and larger average area of aggregates (3.4 times) in comparison to polystyrene particles under the same actuation procedure. The silica particles were then used for acoustic based bacteria up-concentration. In paper II, a microfluidic-based microbubbles activated acoustic cell sorting technique was developed for affinity based cell separation. As a proof of principle, separation of cancer cell line in a suspension with better than 75% efficiency is demonstrated. For the passive sample preparation, inertial and elasto-inertial microfluidic approach that uses geometry-induced hydrodynamic forces for continuous size-based sorting of particles in a flow-through fashion were studied and applied for blood processing (paper III-V). In paper III, a simple ushaped curved channel was used for inertial microfluidics based enrichment of white blood cells from diluted whole blood. A filtration efficiency of 78% was achieved at a flow rate of 2.2 ml/min. In paper IV, elasto-inertial microfluidics where viscoelastic flow enables size-based migration of cells into a non- Newtonian solution, was used to continuously separate bacteria from unprocessed whole blood for sepsis diagnostics. Bacteria were continuously separated at an efficiency of 76% from undiluted whole blood sample. Finally, in paper V, the inertial and elasto-inertial techniques were combined with a detection platform to demonstrate an integrated miniaturized flow cytometer. The all-optical-fiber technology based system allows for simultaneous measurements of fluorescent and scattering data at 2500 particles/s. The use of inertial and acoustic techniques for sample preparation and development of an integrated detection platform may allow for further development and realization of point of care testing (POCT) systems.

QC 20170124

Стилі APA, Harvard, Vancouver, ISO та ін.
4

Forss, Elin. "Evaluation of OSTE-hybrid materials for acoustophoresis applications." Thesis, KTH, Medicinteknik och hälsosystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277052.

Повний текст джерела
Анотація:
This project aimed at exploring new hybrid materials to be used for acoustophoresis applications. Acoustophoresis can be used to manipulate particles inside a microfluidic channel by creating ultrasound standing waves within the channel [1]. This can be used for cell separation [2] or trapping of particles [3]. The intent of this project was to create materials for use in microfluidic channels that would be cheaper and easier to manufacture than those traditionally used, while still having adequate acoustic properties to allow for use in acoustopheresis. This was done by investigating whether the addition of glass-beads or glass-bubbles could increase the acoustic properties of an off-stoichiometry-thiol-enes (OSTE) based polymer. Hybrid samples with different volume fractions of glass-beads or glass-bubbles added to the OSTE polymer were manufactured and characterised according to their acoustic properties using the pulse-echo buffer-rod method. The acoustic properties measured were the density, attenuation, acoustic impedance and the reflection coefficient between water and the material. The addition of glass-beads was found to increase the acoustic impedance while the inverse was found for the addition of glass-bubbles. Both the addition of glass-beads and glass-bubbles were found to increase the attenuation. The hybrid material that was found to have the most suitable acoustic properties was OSTE/Glass-beads 40%, whose acoustic impedance had been increased ∼60% compared to pure OSTE. Consequently, the OSTE/Glass-beads 40% material was used to manufacture a microfluidic channel. A particle trapping experiment showed that the OSTE/Glass-beads 40% microfluidic channel was able to obtain bead trapping. This means that a standing wave was able to be generated within the channel and that it was strong enough to trap particles in the centre of the channel. However, evaluation of the particle trapping efficiency of the channel showed that it was not as effective as those using traditional materials. Therefore, future work is recommended to optimise a channel design for the OSTE/Glass-beads 40% material to increase the particle trapping efficiency.
I detta projekt undersöktes ett nytt hybridmaterial för användning i applikationer inom akustofores. Akustofores kan användas till att manipulera partiklar inuti mikrofluidkkanaler genom att generera ståendevågor i kanalen med hjälpav ultraljud [1]. Detta kan användas till cellseparation [2] eller till att fånga partiklar [3]. Målet i detta projekt var att skapa material som skulle bli billigare och möjliggöra enklare fabricering av kanalerna som används inom akustofores än de material som traditionellt används, med bibehållande av tillräckliga akustiskaegenskaper. Detta genomfördes genom att undersöka om tillsättning av glaspärlor eller glasbubblor kunde förbättra de akustiska egenskaperna av en off-stoichiometry-thiol-enes (OSTE) baserad polymer. Hybridprover gjorda på OSTE-polymeren med olika volymandelar av glaspärloroch glasbubblor tillverkades och kategoriserades med avseende på deras akustiska egenskaper med hjälp av pulseeko buffertstång metoden. De akustiska egenskaperna som uppmättes var densitet, attenuering, akustisk impedans och reflektions koefficienten mellan vatten och materialet. Resultatet av projektet visade att tillsättning av glaspärlor ökade den akustiska impedansen  i motsatts till glasbubblorna som visade sig minska den. Vidare visade det sig att både tillsättningen av glaspärlor och glasbubblor ökade attenueringen. Det hybridmaterial som visade sig ha de mest lämpliga akustiska egenskaperna var OSTE/glaspärlor med en 40% volymandel av glaspärlor. Den akustiska impedansen hade förhöjts med cirka 60% jämfört med vanlig OSTE. Därför valdes det hybrid-materialet till att tillverka en mikrofluidikkanal. Därefter genomfördes ett partikelfångstexperiment som visade att, OSTE/glaspärlor med en 40% volymandel av glaspärlor, kunde erhålla partikelfångst i kanalen. Detta innebär att en stående våg kunde genereras i kanalen och att den var tillräckligt stark för att kunna fånga partiklarna i mitten av kanalen. Däremot visade utvärdering av kanalens partikelfångsteffektivitet att den inte var lika effektiv som kanaler gjorda av traditionellt använda material. Därför rekommenderas framtida arbete till att designa en optimerad kanaldesign med OSTE/Glas-pärlor 40% materialets egenskaper i åtanke för att förhoppningsvis kunna öka partikelfångst effektivitet.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

shahzad, mohd adnan faqui. "Microfluidic Chip development for acoustophoresis assisted selective cell sorting." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223658.

Повний текст джерела
Анотація:
Analysis of blood samples is one of the major steps in diagnosing pathological conditions like cancer. The upstream sample preparation for the pathological cell analysis from complex biological fluid like blood, involves selective cell sorting. It can be achieved using fluorescently activated or magnetically activated cell sorters. Another way is to sort them using acoustophoresis which is cheaper, gives better spatial control and is also rapid apart from the fact that, it does not affect the cellular viability.6,9 In acoustophoresis, particles depending upon their density and compressibility relative to the suspended medium migrate to either pressure anti-nodes or nodes, when subjected to acoustic field. Poly vinyl alcohol-based microbubbles have a strong negative acoustic contrast factor and hence migrate to the anti-nodes in a standing ultrasonic wave. Previously, this property was utilized for cell separation by conjugating the bubbles to cells and subjecting them to ultrasonic waves in a silicon glass based microfluidic channel.55 A protocol for coating the microbubbles with avidin, so that these can readily attach to the cells has been developed in this work. However, microfluidic channel is obtained from a master mold which is developed in a clean room facility using photolithography. A cost-effective way has been developed for the production of a mold using a Computerized Numerical Control system (where the positive master for the microfluidic channel is drilled onto a PMMA sheet) for continuous separation of cancer cells. Alternate methods like a cutting plotter (which uses a double sided adhesive tape as a positive master) and a 3-D printer have been investigated, in order to be used as a mold for the microfluidic channel. As a proof, microbubbles-cell complex was focused in a PDMS based microfluidic channel, by utilizing standing Bulk acoustic waves. At flow rate of 10µl/min, efficiency greater than 80% has been achieved. This technique is low cost and can be implemented in places without a clean room facility for size independent cell sorting.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kothapalli, Satya V. V. N. "Nano-Engineered Contrast Agents : Toward Multimodal Imaging and Acoustophoresis." Doctoral thesis, KTH, Medicinsk bildteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172397.

Повний текст джерела
Анотація:
Diagnostic ultrasound (US) is safer, quicker and cheaper than other diagnostic imaging modalities. Over the past two decades, the applications of US imaging has been widened due to the development of injectable, compressible and encapsulated microbubbles (MBs) that provide an opportunity to improve conventional echocardiographic imaging, blood flow assessment and molecular imaging. The encapsulating material is manufactured by different biocompatible materials such as proteins, lipids or polymers. In current research, researchers modify the encapsulated shell with the help of advanced molecular chemistry techniques to load them with dyes (for fluorescent imaging), nanoparticles and radioisotopes (for multimodal imaging) or functional ligands or therapeutic gases (for local drug delivery). The echogenicity and the radial oscillation of MBs is the result of their compressibility, which undoubtedly varies with the encapsulated shell characteristics such as rigidity or elasticity. In this thesis, we present acoustic properties of novel type of polyvinyl alcohol (PVA)-shelled microbubble (PVA-MB) that was further modified with superparamagnetic iron oxide nanoparticles (SPIONs) to work as a dual-modal contrast agent for magnetic resonance (MR) imaging along with US imaging. Apparently, the shell modification changes their mechanical characteristics, which affects their acoustic properties. The overall objective of the thesis is to investigate the acoustic properties of modified and unmodified PVA-MBs at different ultrasound parameters. The acoustic and mechanical characterization of SPIONs modified PVA-MBs revealed that the acoustical response depends on the SPION inclusion strategy. However they retain the same structural characteristics after the modification. The modified MBs with SPIONs included on the surface of the PVA shell exhibit a soft-shelled behavior and produce a higher echogenicity than the MBs with the SPIONs inside the PVA shell. The fracturing mechanism of the unmodified PVA-MBs was identified to be different from the other fracturing mechanisms of conventional MBs. With the interaction of high-pressure bursts, the air gas core is squeezed out through small punctures in the PVA shell. During the fracturing, the PVA-MBs exhibit asymmetric (other modes) oscillations, resulting in sub- and ultra-harmonic generation. Exploiting the US imaging at the other modes of the oscillation of the PVA-MBs would provide an opportunity to visualize very low concentrations of (down to single) PVA-MBs. We further introduced the PVA-MBs along with particles mimicking red blood cells in an acoustic standing-wave field to observe the acoustic radiation force effect. We observed that the compressible PVA-MBs drawn toward pressure antinode while the solid blood phantoms moved toward the pressure node. This acoustic separation method (acoustophoresis) could be an efficient tool for studying the bioclearance of the PVA-MBs in the body, either by collecting blood samples (in-vitro) or by using the extracorporeal medical procedure (ex-vivo) at different organs. Overall, this work contributes significant feedback for chemists (to optimize the nanoparticle inclusion) and imaging groups (to develop new imaging sequences), and the positive findings pave new paths and provide triggers to engage in further research.

QC 20150827


3MiCRON
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Imani, Jajarmi Ramin. "Acoustic separation and electrostatic sampling of submicron particles suspended in air." Doctoral thesis, KTH, Strömningsfysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196857.

Повний текст джерела
Анотація:
We investigate experimentally the effects of acoustic forces on submicron aerosol in a channel flow. This technique can potentially overcome some of the limitations of conventional separation systems and provide advanced manipulation capabilities such as sorting according to size or density. The theoretical framework for acoustophoresis at such small length scales where molecular effects are expected to be significant is still incomplete and in need of experimental validation. The main objectives of this thesis are to identify the physical limitations and capabilities of acoustophoretic manipulation for submicron aerosol particles. Two sets of experiments were carried out: first, qualitative results revealed that acoustic manipulation is possible for submicron particles in air and that the acoustic force follows the trend expected by theoretical models developed for particles in inviscid fluids. The acoustic force on submicron particles was estimated in a second set of measurements performed with quantitative diagnostic tools. Comparison of these results with available theoretical models for the acoustic radiation forces demonstrates that for such small particles additional forces have to be considered. At submicron length scales, the magnitude of the forces observed is orders of magnitude higher than the predictions from the inviscid theory. One potential application for acoustophoresis is specifically investigated in this thesis: assist electrostatic precipitation (ESP) samplers to target very small aerosols, such as those carrying airborne viruses. To identify the shortcomings of ESP samplers that acoustophoresis should overcome, two ESP designs have been investigated to quantify capture efficiency as a function of the particle size and of the air velocity in a wind tunnel. The results reveal that both designs have limitations when it comes to sampling submicron aerosol particles. When exposed to polydispersed suspensions they behave as low-pass filters.

QC 20161125

Стилі APA, Harvard, Vancouver, ISO та ін.
8

Leuthner, Moritz. "Improving cell secretome analysis and bacteria evolution by means of acoustophoresis." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285985.

Повний текст джерела
Анотація:
In both, cell secretome analysis and bacteria evolution, controlled handling of particles with a few to sub-micrometers in size and media exchange are inevitable in order to investigate body fluid’s proteins or change the surrounding culture conditions for pivoted evolution. Typically, nanofiltration and ultra-centrifugation are employed which can lead to cell damage, need large sample volumes and have a high sample loss. Using contactless and label-free acoustic cell manipulation, disadvantages of other magnetic, dielectric or hydrodynamic methods can be avoided. Here, a novel design using acoustic forces for small particle trapping and media exchange is thoroughly numerically investigated including first- and second-order acoustic effects. The device comprises parallel aligned medium and air channels separated by a thin wall. Particle trapping occurs at this thin wall. The medium channel dimensions (height and width) and thin wall thickness are optimized with respect to trapping forces. Thinnest walls are preferable and an aspect ratio of 0.8. First preliminary experimental variation with polystyrene particles showed good agreement with the simulations. Thereby the particle trapping efficiency is evaluated under quiescent flow conditions. For particle trapping, a device with a channel height of 290μm and an aspect ratio of 0.7 is superior which supports the numerical results. Finally, medium exchange of E. coli bacteria is demonstrated with best results for a device with a channel height of 450μm and an aspect ratio of 0.8 showing that 13.4% of the initial bacteria were released after medium exchange which can be used for further processing.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kjellman, Jacob. "Towards omnimaterial printing : Expanding the material palette of acoustophoretic printing." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251006.

Повний текст джерела
Анотація:
Dropp-genereringstekniker är viktiga för industrier som läkemedelsindustrin, livsmedelsindustrin, kosmetikindustrin etc. Traditionella droppgenereringstekniker är dock begränsade i mängden av material som kan processas till droppform. Ett exempel inkjet som är en väletablerad teknik för att generera droppar med hög hastighet (1-10 kHz) och precision (10-20 μm), men kan bara stöta ut vätskor med låga viskositet, ungefär 10-100 gånger viskositeten av vattnet. Akustophoretisk utskrift motiv är att övervinna denna materialbegränsning och har framgångsrikt avkopplat dropputstötning från bläckviskositet. Metoden utnyttjar ickelinjära akustiska krafter för att skriva ut en stor mängd av material med hög kontroll, med viskositet som sträcker sig över fyra storleksordningar (0,5 mPa · s till 25 000 mPa · s). Emellertid är utstötningen baserad på bildandet av en hängande droppe, och i den aktuella prototypen begränsas materialpaletten av akustophoretisk utskrift genom sprider sig över munstycket, vilket begränsar den minsta tillåtnas ytspänningen till ungefär 60 mN / m. I detta arbete införs en munstycksbeläggningsteknik för att expandera mängden av utskrivbara material, med tillåtna ytspänningar så låga som 25 mN / m. Genom att utnyttja generera nanostrukturer med låg ytenergi på munstyckspetsen, tillverkas superavstötande beläggning. Grunden för nanostrukturerna genererades med hjälp av sot från ett paraffin-vaxljus. Ett robust tillverkningsprotokoll har etablerats, och beläggningen fysikaliska egenskaper och prestanda har karaktäriserats. Tre nya tillämpningsområden undersöktes, vilket demonstrerade noviteten hos denna nya metod. Detta arbete banar vägen för en ny uppsättning material som ska behandlas i en droppe-per droppe metodik.
Droplet generation techniques are essential for industries such as the pharmaceutical, food industry, cosmetic industry, etc. However, traditional droplet generation techniques are limited in the palette of materials that can processed in a droplet form. For example, inkjet which is a well-established technology to generate droplets of high speed (1-10 kHz) and precision (10-20 μm), but can only eject fluids with low viscosities, roughly 10-100 folds the one of water. Acoustophoretic printing aims to overcome this material limitation and have successfully decoupled droplet ejection from ink viscosity. The method harnesses nonlinear acoustic forces to print a wide range of materials on demand, spanning over four orders of magnitudes (0.5 mPa·sto 25,000 mPa·s). However, the ejection is based on the formation of a pendant drop, and in the current prototype, the material palette of acoustophoretic printing is limited by nozzle wetting, limiting the allowable minimum surface tension to about 60 mN/m. In this work, a nozzle coating technique is introduced in order to expand the material window by processing fluid with a surface tension as low as 25 mN/m. By leveraging self-assembling of nanostructures on the nozzle tip, superamphiphobic coating is successfully manufactured by using a candle soot template.A robust manufacturing protocol has been established, and the coating characterized in its physics and performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Durand-Vidal, S. "Phenomenes de transports couples : acoustophorese et conductivite dans des solutions electrolytiques simples et micellaires." Paris 6, 1995. http://www.theses.fr/1995PA066308.

Повний текст джерела
Анотація:
Dans ce travail nous decrivons l'effet de force ionique dans l'acoustophorese et la conductivite de melanges d'electrolytes. Cet effet est considere comme une perturbation lineaire de l'etat d'equilibre, etat decrit a l'aide de l'approximation spherique moyenne, et les resultats obtenus sont analytiques. L'influence de la frequence est prise en compte dans les equations de l'acoustophorese et la reproduction des experiences d'acoustophorese est etendue a 1m au lieu de 0,01m. Une description de la conductivite des sels simples en terme de rayons moyens est aussi proposee et donne des resultats tres satisfaisants. Enfin, la description, en rayons individuels, de la conductivite des melanges d'electrolytes simples et de systemes micellaires avant et apres la concentration micellaire critique (cmc) concorde avec l'experience jusqu'a des concentrations de 1m au lieu de 0,1m. Ces ameliorations theoriques permettent une meilleure comprehension et une quantification de l'effet de force ionique. Ainsi, le nombre d'hydratation des cations devient accessible par l'acoustophorese et la quantification plus coherente de l'effet des ions simples est proposee pour les suspensions colloidales. Concernant la conductivite des melanges d'electrolytes, une fois la description validee pour les melanges d'ions simples, on determine, de facon plus coherente pour les systemes micellaires, les coefficients de diffusion a dilution infinie et a la cmc. Ce travail devrait aussi permettre de mieux prendre en compte des proprietes physico-chimiques telles que l'association ou la condensation des contre-ions a des concentrations relativement elevees
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Acoustophoresi"

1

Lenshof, Andreas, and Thomas Laurell. "Acoustophoresis." In Encyclopedia of Nanotechnology, 1–6. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_423-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aliano, Antonio, Giancarlo Cicero, Hossein Nili, Nicolas G. Green, Pablo García-Sánchez, Antonio Ramos, Andreas Lenshof, et al. "Acoustophoresis." In Encyclopedia of Nanotechnology, 45–50. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Augustsson, Per, Cecilia Magnusson, Hans Lilja, and Thomas Laurell. "Acoustophoresis in Tumor Cell Enrichment." In Circulating Tumor Cells, 227–48. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119244554.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gupta, Sharda, and Arindam Bit. "Acoustophoresis-based biomedical device applications." In Bioelectronics and Medical Devices, 123–44. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-08-102420-1.00008-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Acoustophoresi"

1

MacDonald, Michael P., Craig McDougall, Paul O'Mahoney, Yongqiang Qiu, Alan McGuinn, Nicholas A. Willoughby, and Christine E. M. Demore. "Optically enhanced acoustophoresis." In Optical Trapping and Optical Micromanipulation XIV, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2017. http://dx.doi.org/10.1117/12.2276323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lai, Tsz Wai, Sau Chung Fu, Ka Chung Chan, Christopher Yu Hang Chao, and Anthony Kwok Yung Law. "Numerical Study on the Influence of Microchannel’s Geometry on Sub-Micron Particles Separation Using Acoustophoresis." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23571.

Повний текст джерела
Анотація:
Abstract Application of acoustophoresis to cell and particle separation in microchannel filled with fluid medium has been drawing increasing attention in many disciplines in the past decades due to its high precision and minimum damage to the matters of interest. Previous studies on particle separation often rely on the size-dependent feature of the acoustic radiation force (ARF), while the acoustic streaming effect (ASE) is a hurdle as the particle size goes down. Sub-micron particles circulate according to the streaming vortices and become inseparable from the particles settled on the pressure node. Instead of suppressing the ASE, this study intends to utilize the combined effect of ARF and ASE on sub-micron particle sorting by altering the microchannel’s cross-sectional shapes. The roles of ARF and ASE on particles with 0.2um and 2um in radius in various cross-sectional shapes are studied numerically. The studied geometries include 1. rectangular, 2. trapezoidal, and 3. triangular. The results show that changing the cross-sectional shapes affects the acoustic field’s magnitude and distribution, the streaming patterns, the magnitude of streaming velocity, and the movement of sub-micron particles. In non-rectangular microchannel, sub-micron particles circulate towards and settle at the center of the streaming vortices. This phenomenon shows the potential to manipulate the streaming-dominant particles, thereby enhancing the acoustophoretic particle sorting performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gao, Lei, James Hardwick, Diego Martinez Plasencia, Sriram Subramanian, and Ryuji Hirayama. "DATALEV: Acoustophoretic Data Physicalisation." In UIST '22: The 35th Annual ACM Symposium on User Interface Software and Technology. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3526114.3558638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Zhongzheng, Arum Han, and Yong-Joe Kim. "Two-Dimensional Numerical Analyses of Acoustophoresis Phenomena in Microfluidic Channel With Microparticle-Suspended, Viscous, Moving Fluid Medium." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89912.

Повний текст джерела
Анотація:
Microfluidic, acoustophoretic separation of cells and microparticles has gained significant interest since it can offer a high-throughput, high-efficient, label-free, continuous separation. However, the designs of state-of-the-art, acoustophoretic separation devices have been mainly derived from a simplistic, one-dimensional (1-D), analytical acoustic model in a “static” fluid medium. Therefore, it is not possible to consider the effects of 2-D or 3-D geometries, “moving” fluid media, and viscous boundary layers that can significantly influence cell/microparticle motions in reality. Here, a 2-D numerical modeling procedure for analyzing the acoustophoretic microparticle motion in microfluidic channels is presented to address the aforementioned deficiencies. Here, the mass and momentum conservation equations and the state equation are decomposed into zeroth-, first-, and second-order governing equations by using a perturbation method. Then, zeroth-, first-, and second-order acoustic pressures are calculated by applying a sixth-order finite difference method to the decomposed governing equations with appropriate boundary conditions under an acoustic excitation. In particular, non-reflective boundary conditions are derived for the first- and second-order governing equations and applied at the ends of a microchannel. The acoustophoretic force calculated by integrating the acoustic pressure over the surface of a rigid microparticle along with viscous drag force is then applied to the Newton’s equation of motion to analyze the acoustophoretic motion of the microparticle. By comparing numerical and 1-D analytical microparticle motions, the proposed numerical modeling procedure is validated for a 1-D plane-wave-like excitation case. It is also shown that numerically-predicted microparticle behavior is quite different from that of the 1-D analytical model for a 2-D acoustic excitation case in a realistic microchannel. Additionally, the effects of the microparticle’s size and density on its acoustophoretic motions are studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Faridi, Muhammad Asim, Adnan Faqui Shahzad, Aman Russom, and Martin Wiklund. "Milliliter Scale Acoustophoresis Based Bioparticle Processing Platform." In ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icnmm2018-7634.

Повний текст джерела
Анотація:
Bioparticles such as mammalian cells and bacteria can be manipulated directly or indirectly for multiple applications such as sample preparation for diagnostic applications mainly up-concentration, enrichment & separation as well as immunoassay development. There are various active and passive microfluidic particle manipulation techniques where Acoustophoresis is a powerful technique showing high cell viability. The use of disposable glass capillaries for acoustophoresis, instead of cleanroom fabricated glass-silicon chip can potentially bring down the cost factor substantially, aiding the realization of this technique for real-world diagnostic devices. Unlike available chips and capillary-based microfluidic devices, we report milliliter-scale platform able to accommodate 1ml of a sample for acoustophoresis based processing on a market available glass capillary. Although it is presented as a generic platform but as a demonstration we have shown that polystyrene suspending medium sample can be processed with trapping efficiency of 87% and the up-concentration factor of 10 times in a flow through manner i.e., at 35μl/min. For stationary volume accommodation, this platform practically offers 50 times more sample handling capacity than most of the microfluidic setups. Furthermore, we have also shown that with diluted blood (0.6%) in a flow-through manner, 82% of the white blood cells (WBCs) per ml could be kept trapped. This milliliter platform could potentially be utilized for assisting in sample preparation, plasma separation as well as a flow-through immunoassay assay development for clinical diagnostic applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Samarasekera, Champika, and John T. W. Yeow. "Low-cost implementation of acoustophoretic devices." In SPIE BiOS, edited by Bonnie L. Gray and Holger Becker. SPIE, 2016. http://dx.doi.org/10.1117/12.2223290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Khoury, M., R. Barnkob, L. Laub Busk, P. Tidemand-Lichtenberg, H. Bruus, and K. Berg-Sørensen. "Optical stretching on chip with acoustophoretic prefocusing." In SPIE NanoScience + Engineering, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2012. http://dx.doi.org/10.1117/12.945923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cacace, Teresa, Pasquale Memmolo, Massimiliano M. Villone, Marco De Corato, Melania Paturzo, Pier Luca Maffettone, and Pietro Ferraro. "Phase contrast imaging in acoustophoresis platforms for biological applications." In Quantitative Phase Imaging V, edited by Gabriel Popescu and YongKeun Park. SPIE, 2019. http://dx.doi.org/10.1117/12.2510107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cacace, T., P. Memmolo, V. Bianco, M. Paturzo, M. Vassalli, and P. Ferraro. "Calibration and imaging in acoustophoresis microfluidic platforms by digital holography." In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dolatmoradi, Ata, and Bilal El-Zahab. "Thermally assisted acoustophoresis as a new stiffness-based separation method." In SPIE BiOS, edited by Bonnie L. Gray and Holger Becker. SPIE, 2017. http://dx.doi.org/10.1117/12.2253481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії