Добірка наукової літератури з теми "Acoustic source identification"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Acoustic source identification".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Acoustic source identification"
Deng, Jiang Hua, Jun Hong Dong, and Guang De Meng. "Sound Source Identification and Acoustic Contribution Analysis Using Nearfield Acoustic Holography." Advanced Materials Research 945-949 (June 2014): 717–24. http://dx.doi.org/10.4028/www.scientific.net/amr.945-949.717.
Повний текст джерелаWróbel, Jakub, and Damian Pietrusiak. "Noise Source Identification in Training Facilities and Gyms." Applied Sciences 12, no. 1 (December 22, 2021): 54. http://dx.doi.org/10.3390/app12010054.
Повний текст джерелаSamet, A., M. A. Ben Souf, O. Bareille, M. N. Ichchou, T. Fakhfakh, and M. Haddar. "Structural Source Identification from Acoustic Measurements Using an Energetic Approach." Journal of Mechanics 34, no. 4 (May 15, 2017): 431–41. http://dx.doi.org/10.1017/jmech.2017.24.
Повний текст джерелаPing, Guoli, Zhigang Chu, and Yang Yang. "Compressive Spherical Beamforming for Acoustic Source Identification." Acta Acustica united with Acustica 105, no. 6 (November 1, 2019): 1000–1014. http://dx.doi.org/10.3813/aaa.919406.
Повний текст джерелаDou, Yan Tao, Xiao Li Xu, Xiao Jun Cai, Guo Xin Wu, and Zhi Xiang Sun. "The AE Identification Methods to Welding Defect by Wavelet Analysis." Applied Mechanics and Materials 63-64 (June 2011): 355–60. http://dx.doi.org/10.4028/www.scientific.net/amm.63-64.355.
Повний текст джерелаEller, Matthias, and Nicolas P. Valdivia. "Acoustic source identification using multiple frequency information." Inverse Problems 25, no. 11 (October 5, 2009): 115005. http://dx.doi.org/10.1088/0266-5611/25/11/115005.
Повний текст джерелаFriesel, M. A. "Acoustic emission source identification using longwaveguide sensors." NDT International 19, no. 3 (June 1986): 203–6. http://dx.doi.org/10.1016/0308-9126(86)90110-0.
Повний текст джерелаPing, Guoli, Zhigang Chu, Yang Yang, and Xu Chen. "Iteratively Reweighted Spherical Equivalent Source Method for Acoustic Source Identification." IEEE Access 7 (2019): 51513–21. http://dx.doi.org/10.1109/access.2019.2911857.
Повний текст джерелаPrateepasen, Asa, Chalermkiat Jirarungsatean, and Pongsak Tuengsook. "Identification of AE Source in Corrosion Process." Key Engineering Materials 321-323 (October 2006): 545–48. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.545.
Повний текст джерелаWang, Rujia, and Shaoyi Bei. "Optimization of Fixed Microphone Array in High Speed Train Noises Identification Based on Far-Field Acoustic Holography." Advances in Acoustics and Vibration 2017 (February 1, 2017): 1–11. http://dx.doi.org/10.1155/2017/1894918.
Повний текст джерелаДисертації з теми "Acoustic source identification"
Sasidharan, Nair Unnikrishnan. "Jet noise source localization and identification." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1482412964456451.
Повний текст джерелаFacciotto, Nicolò. "Source differentiation and identification of acoustic emission signals by time-frequency analysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Знайти повний текст джерелаChesnais, Corentin. "Holographie vibratoire : Identification et séparation de champs vibratoires." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI127/document.
Повний текст джерелаThe source field reconstruction aims at identifying the excitation field measuring the response of the system. In Near-field Acoustic Holography, the response of the system (the radiated acoustic pressure) is measured on a hologram using a microphones array and the source field (the acoustic velocity field) is reconstructed with a back-propagation technique performed in the wave number domain. The objective of the present works is to use such a technique to reconstruct displacement field on the whole surface of a plate by measuring vibrations on a one-dimensional holograms. This task is much more difficult in the vibratory domain because of the complexity of the equation of motion of the structure. The method presented here and called "Structural Holography" is particularly interesting when a direct measurement of the velocity field is not possible. Moreover, Structural Holography decreases the number of measurements required to reconstruct the displacement field of the entire plate. This method permits to separate the sources in the case of multi-sources excitations by considering them as direct or back waves. It’s possible to compute the structural intensity of one particular source without the contributions of others sources. The aim of this PHD is to present the principles of Structural Holography, its limits, its applications and illustrate them with examples of infinite plate, supported plate and on experimental results
Wu, Weiliang. "The detection of incipient faults in small multi-cylinder diesel engines using multiple acoustic emission sensors." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/65649/1/Weiliang_Wu_Thesis.pdf.
Повний текст джерелаLe, Magueresse Thibaut. "Approche unifiée multidimensionnelle du problème d'identification acoustique inverse." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI010.
Повний текст джерелаExperimental characterization of acoustic sources is one of the essential steps for reducing noise produced by industrial machinery. The aim of the thesis is to develop a complete procedure to localize and quantify both stationary and non-stationary sound sources radiating on a surface mesh by the back-propagation of a pressure field measured by a microphone array. The inverse problem is difficult to solve because it is generally ill-conditioned and subject to many sources of error. In this context, it is crucial to rely on a realistic description of the direct sound propagation model. In the frequency domain, the equivalent source method has been adapted to the acoustic imaging problem in order to estimate the transfer functions between the source and the antenna, taking into account the wave scattering. In the time domain, the propagation is modeled as a convolution product between the source and an impulse response described in the time-wavenumber domain. It seemed appropriate to use a Bayesian approach to use all the available knowledge about sources to solve this problem. A priori information available about the acoustic sources have been equated and it has been shown that taking into account their spatial sparsity or their omnidirectional radiation could significantly improve the results. In the assumptions made, the inverse problem solution is written in the regularized Tikhonov form. The regularization parameter has been estimated by an empirical Bayesian approach. Its superiority over methods commonly used in the literature has been demonstrated through numerical and experimental studies. In the presence of high variability of the signal to noise ratio over time, it has been shown that it is necessary to update its value to obtain a satisfactory solution. Finally, the introduction of a missing variable to the problem reflecting the partial ignorance of the propagation model could improve, under certain conditions, the estimation of the complex amplitude of the sources in the presence of model errors. The proposed developments have been applied to the estimation of the sound power emitted by an automotive power train using the Bayesian focusing method in the framework of the Ecobex project. The cyclo-stationary acoustic field generated by a fan motor was finally analyzed by the real-time near-field acoustic holography method
Li, Lin. "Identification des sources acoustiques induites par les singularites d'un circuit hydraulique." Paris 6, 1988. http://www.theses.fr/1988PA066366.
Повний текст джерелаFischer, Jeoffrey. "Identification de sources aéroacoustiques au voisinage de corps non profilés par formation de voies fréquentielle et temporelle." Thesis, Poitiers, 2014. http://theses.univ-poitiers.fr/62768/2014-Fischer-Jeoffrey-These.
Повний текст джерелаThe localization of aeroacoustic sources of automotive bodies is currently a topic of major interest to industry. Beamforming is a robust method typically used in this context. The main objective of this thesis relates to the detection of aeroacoustic sources on bluff bodies. Two experimental configurations are considered : a forwardfacing step that is an academic event, and a three dimensional bluff body generating A-pillar vortices approaching the automotive industry. Source localization through classical beamforming has enabled to detect the main regions of acoustic emission for different frequency ranges, namely : upstream and downstream vortices around thestep and A-pillar vortices generated on both sides of the 3D bluff body. In addition, relationships have been observed between wall pressure fluctuations and acoustic field radiated. The study was then directed to the detection of intermittent acoustic events to determine whether, like jet noise, the noise radiated by an obstacle in the flow is composed of intermittent signatures. A thresholding process on the far field measurements was used to select events representing 80% of the energy of the original signal and 20% of its time for both configurations. A time-domain beamforming algorithm, directly linked to the time reversal technique, has been developed to achieve a spatio-temporal information about the intermittent noise sources. The use of this technique has proved that the events selected with the tresholding technique correspond to intermittent acoustic sources which space and time informations canbe determined (they follow a Gamma distribution). The aeroacoustic noise radiated by the bluff bodies considered in this study can therefore be seen as a succession of intermittent events that can be identified. Finally, the reconstruction of intermittent acoustic signals using a family of wavelets was performed. The Fourier spectra of the original and reconstructed signals are highly similar, a difference of about 10% was observed, confirming the importance of intermittent events in the noise radiated by bluff bodies
Halama, Jakub. "Metodika pro bezkontaktní diagnostiku automobilových tlumičů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-377521.
Повний текст джерелаSamet, Ahmed. "Contribution à l'identification des sources vibratoires et à la détection des défauts par approche énergétique." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC055/document.
Повний текст джерелаThe identification of inputs forces acting on structures and the detection of defects from operating measurement have been important topics in both academic and industrial projects. The choice of the used tool or method depends on the frequency band of study since there are appropriate approaches for each frequency domain. An energetic method so called the simplified energy method (MES) is used to predict the distribution of the vibro-acoustic energy density in the medium and high frequency band. The objective of this thesis is to extend this energy method to solve inverse vibro-acoustic problems and to identify the sources of vibrations on one hand and to detect the defects on the other hand. The inverse MES formulation (IMES) is numerically validated for continuous coupling-based systems such as the case of a system composed with several coupled plates and the case of a system composed of an acoustic cavity coupled with a plate. In addition, a new numerical methodology is proposed to extend this IMES identification tool for the detection of defects. A parametric analysis is performed in the case of plate with defects in order to test the robustness and the efficiency of this approach. Finally, an experimental study is carried out to validate the IMES technique to identify and locate the input loads for several scenarios, and detecting the defects
Cabell, Randolph H. "The automatic identification of aerospace acoustic sources." Thesis, Virginia Tech, 1989. http://hdl.handle.net/10919/45932.
Повний текст джерелаThis work describes the design of an intelligent recognition system used to distinguish noise signatures of five different acoustic sources. The system uses pattern recognition techniques to identify the information obtained from a single microphone. A training phase is used in which the system learns to distinguish the sources and automatically selects features for optimal performance. Results were obtained by training the system to distinguish jet planes, propeller planes, a helicopter, train, and wind turbine from one another, then presenting similar sources to the system and recording the number of errors. These results indicate the system can successfully identify the trained sources based on acoustic information. Classification errors highlight the impact of the training sources on the system's ability to recognize different sources.
Master of Science
Книги з теми "Acoustic source identification"
Fuller, C. R. Application of pattern recognition techniques to the identification of aerospace acoustic sources: Annual report, year one. [Washington, DC: National Aeronautics and Space Administration, 1988.
Знайти повний текст джерелаRecasens, Daniel. Phonetic Causes of Sound Change. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198845010.001.0001.
Повний текст джерелаЧастини книг з теми "Acoustic source identification"
Castagnède, Bernard. "Acoustic Emission Source Location in Anisotropic Composite Plates." In Mechanical Identification of Composites, 433–41. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3658-7_49.
Повний текст джерелаZiola, Steve, and Ian Searle. "Automated Source Identification Using Modal Acoustic Emission." In Review of Progress in Quantitative Nondestructive Evaluation, 413–19. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5947-4_55.
Повний текст джерелаBoone, Marinus M. "Design and Development of an Acoustic Antenna System for Industrial Noise Source Identification." In Underwater Acoustic Data Processing, 379–84. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2289-1_42.
Повний текст джерелаYamamoto, Masahiro, and Barbara Kaltenbacher. "An Inverse Source Problem Related to Acoustic Nonlinearity Parameter Imaging." In Time-dependent Problems in Imaging and Parameter Identification, 413–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57784-1_14.
Повний текст джерелаKim, Byung Hyun, Tae Jin Shin, and Sang Kwon Lee. "Sound Source Identification Based on Acoustic Source Quantification by Measuring the Particle Velocity Directly." In Lecture Notes in Electrical Engineering, 279–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33832-8_22.
Повний текст джерелаHuang, Yiteng, and Jacob Benesty. "Adaptive Multichannel Time Delay Estimation Based on Blind System Identification for Acoustic Source Localization." In Adaptive Signal Processing, 227–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-11028-7_8.
Повний текст джерелаKhon, Han H., Oleg V. Bashkov, Tatiana I. Bashkova, and Anton A. Bryansky. "Experimental Validation of Identification Crack Propagation in Plates as a Source of Acoustic Emission." In Current Problems and Ways of Industry Development: Equipment and Technologies, 77–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69421-0_9.
Повний текст джерелаTraore, Oumar I., Paul Cristini, Nathalie Favretto-Cristini, Laurent Pantera, Philippe Vieu, and Sylvie Viguier-Pla. "Contribution of Functional Approach to the Classification and the Identification of Acoustic Emission Source Mechanisms." In Contributions to Statistics, 251–59. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55846-2_33.
Повний текст джерелаRicharz, W. G. "Source Identification Techniques — A Critical Evaluation." In Aero- and Hydro-Acoustics, 95–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_10.
Повний текст джерелаAgus, Trevor R., Clara Suied, and Daniel Pressnitzer. "Timbre Recognition and Sound Source Identification." In Timbre: Acoustics, Perception, and Cognition, 59–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14832-4_3.
Повний текст джерелаТези доповідей конференцій з теми "Acoustic source identification"
Calkins, Luke, Reza Khodayi-mehr, Wilkins Aquino, and Michael M. Zavlanos. "Physics-Based Acoustic Source Identification." In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619483.
Повний текст джерелаDumbacher, Susan, Jason Blough, Darren Hallman, and Percy Wang. "Source Identification Using Acoustic Array Techniques." In SAE Noise and Vibration Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951360.
Повний текст джерелаRaveendra, S. T., and S. Sureshkumar. "Identification of Incoherent Noise Sources." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/nca-23512.
Повний текст джерелаKhan, Tariq, Pradeep Ramuhalli, Ravi Raveendra, and W. Zhang. "Near-field acoustic holography for acoustic noise source identification in turbomachinery." In 2009 IEEE Sensors Applications Symposium (SAS). IEEE, 2009. http://dx.doi.org/10.1109/sas.2009.4801802.
Повний текст джерелаde Melo Filho, Noe Geraldo Rocha, Marcus Vinicius Girao de Morais, Alvaro Campos Ferreira, and Mario Olavo Magno de Carvalho. "Experimental Modal Identification of Vibro-Acoustic Cavities with Calibrated Acoustic Source." In SAE Brasil International Noise and Vibration Colloquium 2012. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2012. http://dx.doi.org/10.4271/2012-36-0619.
Повний текст джерелаCalkins, Luke, Reza Khodayi-mehr, Wilkins Aquino, and Michael M. Zavlanos. "Sensor Planning for Model-Based Acoustic Source Identification." In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147971.
Повний текст джерелаJin Yang, Yumei Wen, and Ping Li. "Application of blind system identification in acoustic source location." In 2008 10th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, 2008. http://dx.doi.org/10.1109/icarcv.2008.4795794.
Повний текст джерелаGolliard, Joachim, Ne´stor Gonza´lez Di´ez, Gu¨nes¸ Nakibog˘lu, Avraham Hirschberg, and Stefan Belfroid. "Aeroacoustic Source Identification in Gas Transport Pipe System." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57309.
Повний текст джерелаTrethewey, Martin W., and Costas C. Christofi. "Source Identification and Acoustic Modeling of Enclosures from Experimental Data." In SAE Noise and Vibration Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/870972.
Повний текст джерелаHugo, Ronald, Scott Nowlin, Kim McCrae, Frank Eaton, and Ila Hahn. "Acoustic noise-source identification in aircraft-based atmospheric temperature measurements." In 30th Plasmadynamic and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3621.
Повний текст джерелаЗвіти організацій з теми "Acoustic source identification"
Walsh, Timothy, Wilkins Aquino, and Michael Ross. Source identification in acoustics and structural mechanics using Sierra/SD. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1095940.
Повний текст джерела