Добірка наукової літератури з теми "Acoustic source identification"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Acoustic source identification".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Acoustic source identification"

1

Deng, Jiang Hua, Jun Hong Dong, and Guang De Meng. "Sound Source Identification and Acoustic Contribution Analysis Using Nearfield Acoustic Holography." Advanced Materials Research 945-949 (June 2014): 717–24. http://dx.doi.org/10.4028/www.scientific.net/amr.945-949.717.

Повний текст джерела
Анотація:
The main goal of the present paper is to provide a method of source identification. Firstly, statistically optimal near-field acoustical holography (SONAH) techniques are applied to locate sound sources with the reflected sound field. In the presence of reflection plane parallel and perpendicular to the source plane, the incoming wave and reflected waves are separated based on the acoustic superposition principle and acoustic mirror image principle to satisfy the condition of the sound sources reconstruction using SONAH. Secondly, contribution of noise source to the special field point is analyzed and noise source ranking of interior panel groups are evaluated based the proposed three step acoustic contribution method. Finally, this method is verified experimentally.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wróbel, Jakub, and Damian Pietrusiak. "Noise Source Identification in Training Facilities and Gyms." Applied Sciences 12, no. 1 (December 22, 2021): 54. http://dx.doi.org/10.3390/app12010054.

Повний текст джерела
Анотація:
This paper deals with noise problems in industrial sites adapted for commercial training venues. The room acoustics of such an object were analyzed in the scope of the reverberation time and potential acoustic adaptation measures are indicated. Identification and classification of noise sources in training facilities and gyms was carried out based on the acoustic measurements. The influence of rubber padding on impact and noise reduction was investigated in the case of chosen noise-intensive exercise activities performed in a previously described acoustic environment. Potential noise reduction measures are proposed in the form of excitation reduction, vibration isolation, and room acoustics adaptation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Samet, A., M. A. Ben Souf, O. Bareille, M. N. Ichchou, T. Fakhfakh, and M. Haddar. "Structural Source Identification from Acoustic Measurements Using an Energetic Approach." Journal of Mechanics 34, no. 4 (May 15, 2017): 431–41. http://dx.doi.org/10.1017/jmech.2017.24.

Повний текст джерела
Анотація:
AbstractAn inverse energy method for the identification of the structural force in high frequency ranges from radiated noise measurements is presented in this paper. The radiation of acoustic energy of the structure coupled to an acoustic cavity is treated using an energetic method called the simplified energy method. The main novelty of this paper consists in using the same energy method to solve inverse structural problem. It consists of localization and quantification of the vibration source through the knowledge of acoustic energy density. Numerical test cases with different measurement points are used for validation purpose. The numerical results show that the proposed method has an excellent performance in detecting the structural force with a few acoustical measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ping, Guoli, Zhigang Chu, and Yang Yang. "Compressive Spherical Beamforming for Acoustic Source Identification." Acta Acustica united with Acustica 105, no. 6 (November 1, 2019): 1000–1014. http://dx.doi.org/10.3813/aaa.919406.

Повний текст джерела
Анотація:
This study examines a compressive spherical beamforming (CSB) method, using a rigid spherical microphone array to localize and quantify the acoustic contribution of sources. The method relies on the array signal model in the spherical harmonics domain that can be represented as a spatially sparse problem. This makes it possible to use compressive sensing to solve an underdetermined problem via promoting sparsity. The estimation of the angular position of sources with respect to the microphone array, as well as the three-dimensional localization over a volume are investigated. Several sparse recovery algorithms [orthogonal matching pursuit (OMP), generalized OMP, ϱ1-norm minimization, and reweighted ϱ1-norm minimization] are examined for this purpose. The numerical and experimental results indicate that sparse recovery methods outperform conventional spherical harmonics beamforming. Reweighted ϱ1-norm has good adaptability to noise, improving the robustness of CSB. The method can successfully localize the angular position of sources, and quantify their relative pressure contribution. The method is promising to localize sources in a three-dimensional domain of interest. However, the three-dimensional localization is more sensitive to noise, source distance, and properties of the sensing matrix than the two-dimensional localization.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dou, Yan Tao, Xiao Li Xu, Xiao Jun Cai, Guo Xin Wu, and Zhi Xiang Sun. "The AE Identification Methods to Welding Defect by Wavelet Analysis." Applied Mechanics and Materials 63-64 (June 2011): 355–60. http://dx.doi.org/10.4028/www.scientific.net/amm.63-64.355.

Повний текст джерела
Анотація:
In the engineering applications area, welding defect is a major hidden danger of structure security. the bending failure process of welded specimens is detected by using AE technique and the data samples of typical welding defect source are collected, and by using wavelet technique the typical AE datas acquired through experiment are analyzed, characteristic information of the typical acoustic emission source such as electromagnetic noise, plastic deformation, micro-crack initiation, crack unsteady expansion and fracture, etc are extracted. A serial acoustic emission source identification methods based on the energy spectrum coefficients of wavelet are established and which can realize accurately distinguishing of different acoustic emission sources, so as to provide a theoretical basis to detect equipment welding defects by acoustic emission technology dynamic in engineering practice.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Eller, Matthias, and Nicolas P. Valdivia. "Acoustic source identification using multiple frequency information." Inverse Problems 25, no. 11 (October 5, 2009): 115005. http://dx.doi.org/10.1088/0266-5611/25/11/115005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Friesel, M. A. "Acoustic emission source identification using longwaveguide sensors." NDT International 19, no. 3 (June 1986): 203–6. http://dx.doi.org/10.1016/0308-9126(86)90110-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ping, Guoli, Zhigang Chu, Yang Yang, and Xu Chen. "Iteratively Reweighted Spherical Equivalent Source Method for Acoustic Source Identification." IEEE Access 7 (2019): 51513–21. http://dx.doi.org/10.1109/access.2019.2911857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Prateepasen, Asa, Chalermkiat Jirarungsatean, and Pongsak Tuengsook. "Identification of AE Source in Corrosion Process." Key Engineering Materials 321-323 (October 2006): 545–48. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.545.

Повний текст джерела
Анотація:
In this paper acoustic emission (AE) was implemented to detect and study the corrosion on austenitic stainless steel grade AISI 304. Two tests were conducted at room temperature using an acidic 30% Chloride solution in passive tests procedure and 3% NaCl solution in electrochemical process. From the experimental works, it appeared that AE signals could be detected during corrosion. Data were studied in time and frequency domain to characterize and to find out the relation between AE parameter and corrosion. In addition the source of generated acoustic signals and corrosive mechanism in the different corrosive environment condition were discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Rujia, and Shaoyi Bei. "Optimization of Fixed Microphone Array in High Speed Train Noises Identification Based on Far-Field Acoustic Holography." Advances in Acoustics and Vibration 2017 (February 1, 2017): 1–11. http://dx.doi.org/10.1155/2017/1894918.

Повний текст джерела
Анотація:
Acoustical holography has been widely applied for noise sources location and sound field measurement. Performance of the microphones array directly determines the sound source recognition method. Therefore, research is very important to the performance of the microphone array, its array of applications, selection, and how to design instructive. In this paper, based on acoustic holography moving sound source identification theory, the optimization method is applied in design of the microphone array, we select the main side lobe ratio and the main lobe area as the optimization objective function and then put the optimization method use in the sound source identification based on holography, and finally we designed this paper to optimize microphone array and compare the original array of equally spaced array with optimization results; by analyzing the optimization results and objectives, we get that the array can be achieved which is optimized not only to reduce the microphone but also to change objective function results, while improving the far-field acoustic holography resolving effect. Validation experiments have showed that the optimization method is suitable for high speed trains sound source identification microphone array optimization.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Acoustic source identification"

1

Sasidharan, Nair Unnikrishnan. "Jet noise source localization and identification." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1482412964456451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Facciotto, Nicolò. "Source differentiation and identification of acoustic emission signals by time-frequency analysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Знайти повний текст джерела
Анотація:
In the context of Structural Health Monitoring, the Acoustic Emission Technique may be efficiently used to detect damage on aerospace structures. This study focuses on the development of a source identification algorithm to distinguish different acoustic emission events in aluminium sheets, which have been collected during experimental tests. The future goal will be the design of a Holistic Structural Health Monitoring System which will make the complete aircraft an intelligent structure able to diagnose its own structural damage based on the condition of the structure while maintaining safety.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chesnais, Corentin. "Holographie vibratoire : Identification et séparation de champs vibratoires." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI127/document.

Повний текст джерела
Анотація:
La reconstruction de champ source a pour but d’identifier le champ d’excitation en mesurant la réponse du système. Pour l’Holographie acoustique de champ proche (Near-field Acoustic Holography), la réponse du système (pression acoustique rayonnée) est mesurée sur un hologramme bidimensionnel utilisant un réseau de microphones et le champ source (le champ de vitesse acoustique) est reconstruit par une technique de rétropropagation effectuée dans le domaine des nombres d’ondes. L’objectif des travaux présentés est d’utiliser le même type de techniques pour reconstruire le champ de déplacement sur toute la surface d’une plaque en mesurant les vibrations sur des hologrammes à une dimension (lignes de mesures). Dans le domaine vibratoire, l’équation du mouvement de plaque implique la présence de 4 types d’ondes différents, deux étant purement évanescents. Ces derniers peuvent introduire des instabilités dans l’application de la méthode, notamment lorsque les hologrammes sont placés dans le champ lointain des efforts appliqués à la structure. La méthode présentée ici, appelée ”Holographie Vibratoire”, est particulièrement intéressante quand une mesure directe du champ de vitesse est impossible. L’holographie vibratoire permet également de séparer les sources dans le cas d’excitations multiples en les considérant comme des ondes allers ou retours. Il est alors possible d’isoler l’influence de chaque source et de quantifier notamment les champs d’intensités structurales que chacune d’elles génère. L’objectif de cette thèse est de présenter les principes de l’holographie Vibratoire, ses limites, ses applications et de les illustrer par des exemples sur plaque infinie, plaque appuyée et sur des résultats expérimentaux
The source field reconstruction aims at identifying the excitation field measuring the response of the system. In Near-field Acoustic Holography, the response of the system (the radiated acoustic pressure) is measured on a hologram using a microphones array and the source field (the acoustic velocity field) is reconstructed with a back-propagation technique performed in the wave number domain. The objective of the present works is to use such a technique to reconstruct displacement field on the whole surface of a plate by measuring vibrations on a one-dimensional holograms. This task is much more difficult in the vibratory domain because of the complexity of the equation of motion of the structure. The method presented here and called "Structural Holography" is particularly interesting when a direct measurement of the velocity field is not possible. Moreover, Structural Holography decreases the number of measurements required to reconstruct the displacement field of the entire plate. This method permits to separate the sources in the case of multi-sources excitations by considering them as direct or back waves. It’s possible to compute the structural intensity of one particular source without the contributions of others sources. The aim of this PHD is to present the principles of Structural Holography, its limits, its applications and illustrate them with examples of infinite plate, supported plate and on experimental results
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wu, Weiliang. "The detection of incipient faults in small multi-cylinder diesel engines using multiple acoustic emission sensors." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/65649/1/Weiliang_Wu_Thesis.pdf.

Повний текст джерела
Анотація:
This thesis investigates condition monitoring (CM) of diesel engines using acoustic emission (AE) techniques. The AE signals recorded from a small size diesel engine are mixtures of multiple sources from multiple cylinders. Thus, it is difficult to interpret the information conveyed in the signals for CM purposes. This thesis develops a series of practical signal processing techniques to overcome this problem. Various experimental studies conducted to assess the CM capabilities of AE analysis for diesel engines. A series of modified signal processing techniques were proposed. These techniques showed promising results of capability for CM of multiple cylinders diesel engine using multiple AE sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Le, Magueresse Thibaut. "Approche unifiée multidimensionnelle du problème d'identification acoustique inverse." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI010.

Повний текст джерела
Анотація:
La caractérisation expérimentale de sources acoustiques est l'une des étapes essentielles pour la réduction des nuisances sonores produites par les machines industrielles. L'objectif de la thèse est de mettre au point une procédure complète visant à localiser et à quantifier des sources acoustiques stationnaires ou non sur un maillage surfacique par la rétro-propagation d'un champ de pression mesuré par un réseau de microphones. Ce problème inverse est délicat à résoudre puisqu'il est généralement mal-conditionné et sujet à de nombreuses sources d'erreurs. Dans ce contexte, il est capital de s'appuyer sur une description réaliste du modèle de propagation acoustique direct. Dans le domaine fréquentiel, la méthode des sources équivalentes a été adaptée au problème de l'imagerie acoustique dans le but d'estimer les fonctions de transfert entre les sources et l'antenne, en prenant en compte le phénomène de diffraction des ondes autour de l'objet d'intérêt. Dans le domaine temporel, la propagation est modélisée comme un produit de convolution entre la source et une réponse impulsionnelle décrite dans le domaine temps-nombre d'onde. Le caractère sous-déterminé du problème acoustique inverse implique d'utiliser toutes les connaissances a priori disponibles sur le champ sources. Il a donc semblé pertinent d'employer une approche bayésienne pour résoudre ce problème. Des informations a priori disponibles sur les sources acoustiques ont été mises en équation et il a été montré que la prise en compte de leur parcimonie spatiale ou de leur rayonnement omnidirectionnel pouvait améliorer significativement les résultats. Dans les hypothèses formulées, la solution du problème inverse s'écrit sous la forme régularisée de Tikhonov. Le paramètre de régularisation a été estimé par une approche bayésienne empirique. Sa supériorité par rapport aux méthodes communément utilisées dans la littérature a été démontrée au travers d'études numériques et expérimentales. En présence de fortes variabilités du rapport signal à bruit au cours du temps, il a été montré qu'il est nécessaire de mettre à jour sa valeur afin d'obtenir une solution satisfaisante. Finalement, l'introduction d'une variable manquante au problème reflétant la méconnaissance partielle du modèle de propagation a permis, sous certaines conditions, d'améliorer l'estimation de l'amplitude complexe des sources en présence d'erreurs de modèle. Les développements proposés ont permis de caractériser, in situ, la puissance acoustique rayonnée par composant d'un groupe motopropulseur automobile par la méthode de la focalisation bayésienne dans le cadre du projet Ecobex. Le champ acoustique cyclo-stationnaire généré par un ventilateur automobile a finalement été analysé par la méthode d'holographie acoustique de champ proche temps réel
Experimental characterization of acoustic sources is one of the essential steps for reducing noise produced by industrial machinery. The aim of the thesis is to develop a complete procedure to localize and quantify both stationary and non-stationary sound sources radiating on a surface mesh by the back-propagation of a pressure field measured by a microphone array. The inverse problem is difficult to solve because it is generally ill-conditioned and subject to many sources of error. In this context, it is crucial to rely on a realistic description of the direct sound propagation model. In the frequency domain, the equivalent source method has been adapted to the acoustic imaging problem in order to estimate the transfer functions between the source and the antenna, taking into account the wave scattering. In the time domain, the propagation is modeled as a convolution product between the source and an impulse response described in the time-wavenumber domain. It seemed appropriate to use a Bayesian approach to use all the available knowledge about sources to solve this problem. A priori information available about the acoustic sources have been equated and it has been shown that taking into account their spatial sparsity or their omnidirectional radiation could significantly improve the results. In the assumptions made, the inverse problem solution is written in the regularized Tikhonov form. The regularization parameter has been estimated by an empirical Bayesian approach. Its superiority over methods commonly used in the literature has been demonstrated through numerical and experimental studies. In the presence of high variability of the signal to noise ratio over time, it has been shown that it is necessary to update its value to obtain a satisfactory solution. Finally, the introduction of a missing variable to the problem reflecting the partial ignorance of the propagation model could improve, under certain conditions, the estimation of the complex amplitude of the sources in the presence of model errors. The proposed developments have been applied to the estimation of the sound power emitted by an automotive power train using the Bayesian focusing method in the framework of the Ecobex project. The cyclo-stationary acoustic field generated by a fan motor was finally analyzed by the real-time near-field acoustic holography method
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Lin. "Identification des sources acoustiques induites par les singularites d'un circuit hydraulique." Paris 6, 1988. http://www.theses.fr/1988PA066366.

Повний текст джерела
Анотація:
A partir de la theorie de la generation des ondes acoustiques par les ecoulements turbulents, on demontre (par simulation numerique) qu'il est possible d'identifier la source acoustique associee a une singularite de circuit en presence des sources perturbatrices appartenant au meme circuit
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fischer, Jeoffrey. "Identification de sources aéroacoustiques au voisinage de corps non profilés par formation de voies fréquentielle et temporelle." Thesis, Poitiers, 2014. http://theses.univ-poitiers.fr/62768/2014-Fischer-Jeoffrey-These.

Повний текст джерела
Анотація:
La localisation de sources aéroacoustiques sur les corps automobiles est actuellement un sujet d’intérêt majeur pour les industriels. Le traitement d’antenne microphonique par formation de voies (beamforming) est une méthode robuste, classiquement utilisée dans ce cadre. L’objectif principal de ce manuscrit concerne ainsi la détection de sources aéroacoustiques sur des corps non profilés. Deux configurations expérimentales sont envisagées : une marche montante qui représente un cas académique, et un corps tridimensionnel générant des structures tourbillonnaires de type montant de baie se rapprochant du cadre de l’industrie automobile. La localisation de sources par formation de voies classique a permis d’identifier, pour différentes gammes de fréquence, les principales régions d’émission acoustique, à savoir : les zones tourbillonnaires amont et aval sur la marche et les montants de baie latéraux sur le corps tridimensionnel. De plus, des tendances similaires dans les mesures de pression pariétale fluctuante et de pression acoustique en champ lointain ont été observées. L’étude s’est ensuite dirigée vers la détection d’intermittences acoustiques afin de déterminer dans quelle mesure, à l’instar du bruit de jet, le bruit d’écoulement en présence d’obstacle présente un caractère intermittent. Un processus de seuillage sur le champ lointain mesuré a permis de sélectionner des événements représentant 80% de l’énergie du signal original et 20% de sa durée sur les deux configurations. Une méthode de formation de voies temporelle, en lien direct avec la technique de retournement temporel, a été développée afin de réaliser une imagerie de sources aéroacoustiques en fonction du temps.L’utilisation de cette technique permet de montrer que les événements sélectionnés à partir du seuillage correspondent à des sources intermittentes dont on peut déterminer les lieux et les instants d’émission (obéissant à une distribution statistique Gamma). Le bruit aéroacoustique généré par les corps non profilés considérés dans cette étude peut donc être vu comme une succession d’événements intermittents identifiables. Enfin, la reconstruction des signaux acoustiques à partir d’une famille d’ondelettes a été effectué. Les spectres du signal original et filtré sont fortement semblables, une différence de l’ordre de 10% ayant été observée entre eux pour les deux maquettes, confirmant l’importance des événements intermittents dans le rayonnement aéroacoustique des corps non profilés
The localization of aeroacoustic sources of automotive bodies is currently a topic of major interest to industry. Beamforming is a robust method typically used in this context. The main objective of this thesis relates to the detection of aeroacoustic sources on bluff bodies. Two experimental configurations are considered : a forwardfacing step that is an academic event, and a three dimensional bluff body generating A-pillar vortices approaching the automotive industry. Source localization through classical beamforming has enabled to detect the main regions of acoustic emission for different frequency ranges, namely : upstream and downstream vortices around thestep and A-pillar vortices generated on both sides of the 3D bluff body. In addition, relationships have been observed between wall pressure fluctuations and acoustic field radiated. The study was then directed to the detection of intermittent acoustic events to determine whether, like jet noise, the noise radiated by an obstacle in the flow is composed of intermittent signatures. A thresholding process on the far field measurements was used to select events representing 80% of the energy of the original signal and 20% of its time for both configurations. A time-domain beamforming algorithm, directly linked to the time reversal technique, has been developed to achieve a spatio-temporal information about the intermittent noise sources. The use of this technique has proved that the events selected with the tresholding technique correspond to intermittent acoustic sources which space and time informations canbe determined (they follow a Gamma distribution). The aeroacoustic noise radiated by the bluff bodies considered in this study can therefore be seen as a succession of intermittent events that can be identified. Finally, the reconstruction of intermittent acoustic signals using a family of wavelets was performed. The Fourier spectra of the original and reconstructed signals are highly similar, a difference of about 10% was observed, confirming the importance of intermittent events in the noise radiated by bluff bodies
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Halama, Jakub. "Metodika pro bezkontaktní diagnostiku automobilových tlumičů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-377521.

Повний текст джерела
Анотація:
The diploma thesis deals with the application of acoustic methods for evaluating the technical condition of the shock absorbers. Analysis of acoustic radiation during damping operation leads to the definition of a new non-contact diagnostic methodology that can determine the condition of the shock absorbers. The first part of the thesis focuses on the noise radiation of the shock absorbers, which is caused by discontinuous dumping. Further, the methods for the noise source localization available at The Institute of Machine and Industrial Design are described – with their functionalities, advantages and limitations. Based on all the information, an appropriate method is selected and used in the experimental part of this work. Then, aeration and removing the full volume of oil with damage of the shock absorber tube are caused (induced) on several types of the shocks. Noise radiation is measured by a microphone array and by a sound meter; the acoustic maps, frequency spectra and the synchronous filtration graphs are calculated from the measured data. From the differences in the acoustic radiations of each shock condition, a suitable diagnostic criterion for a specific shock absorber is defined. The final part discusses obtained results. Based on these results, a general diagnostic methodology, applicable to any type of shock absorber, is formulated.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Samet, Ahmed. "Contribution à l'identification des sources vibratoires et à la détection des défauts par approche énergétique." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC055/document.

Повний текст джерела
Анотація:
L’identification des efforts vibratoires agissant sur les structures et la détection des défauts à partir des mesures opérationnelles sont des sujets importants dans des projets académiques et industriels. Le choix de l’outil ou de la méthode utilisée dépend de la bande de fréquences d'étude puisqu’il existe des approches appropriées pour chaque domaine fréquentiel. Une méthode énergétique appelée la méthode énergétique simplifiée (MES) est utilisée pour prédire la répartition de la densité d'énergie vibroacoustique en moyennes et hautes fréquences. L'objectif de ce mémoire est d'étendre cette méthode pour résoudre les problèmes vibro-acoustiques inverses pour identifier d'une part les sources de vibration et d'autre part pour détecter les défauts. La formulation MES inverse (IMES) est numériquement validée pour des systèmes continus basés sur le couplage tel que le cas d’un système comportant plusieurs plaques couplées et celui d’un système composé d’une cavité acoustique couplée avec une plaque. En plus, une nouvelle méthodologie numérique est proposée, pour étendre cet outil d'identification IMES pour la détection des défauts. Une analyse paramétrique est effectuée pour le cas d’un modèle présentant des défauts afin de tester la robustesse et l’efficacité de cette approche. Finalement, une étude expérimentale est effectuée pour valider la technique IMES à fin d'identifier et localiser les charges exercées pour plusieurs cas, et détecter les défauts
The identification of inputs forces acting on structures and the detection of defects from operating measurement have been important topics in both academic and industrial projects. The choice of the used tool or method depends on the frequency band of study since there are appropriate approaches for each frequency domain. An energetic method so called the simplified energy method (MES) is used to predict the distribution of the vibro-acoustic energy density in the medium and high frequency band. The objective of this thesis is to extend this energy method to solve inverse vibro-acoustic problems and to identify the sources of vibrations on one hand and to detect the defects on the other hand. The inverse MES formulation (IMES) is numerically validated for continuous coupling-based systems such as the case of a system composed with several coupled plates and the case of a system composed of an acoustic cavity coupled with a plate. In addition, a new numerical methodology is proposed to extend this IMES identification tool for the detection of defects. A parametric analysis is performed in the case of plate with defects in order to test the robustness and the efficiency of this approach. Finally, an experimental study is carried out to validate the IMES technique to identify and locate the input loads for several scenarios, and detecting the defects
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cabell, Randolph H. "The automatic identification of aerospace acoustic sources." Thesis, Virginia Tech, 1989. http://hdl.handle.net/10919/45932.

Повний текст джерела
Анотація:

This work describes the design of an intelligent recognition system used to distinguish noise signatures of five different acoustic sources. The system uses pattern recognition techniques to identify the information obtained from a single microphone. A training phase is used in which the system learns to distinguish the sources and automatically selects features for optimal performance. Results were obtained by training the system to distinguish jet planes, propeller planes, a helicopter, train, and wind turbine from one another, then presenting similar sources to the system and recording the number of errors. These results indicate the system can successfully identify the trained sources based on acoustic information. Classification errors highlight the impact of the training sources on the system's ability to recognize different sources.


Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Acoustic source identification"

1

Fuller, C. R. Application of pattern recognition techniques to the identification of aerospace acoustic sources: Annual report, year one. [Washington, DC: National Aeronautics and Space Administration, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Recasens, Daniel. Phonetic Causes of Sound Change. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198845010.001.0001.

Повний текст джерела
Анотація:
The present study sheds light on the phonetic causes of sound change and the intermediate stages of the diachronic pathways by studying the palatalization and assibilation of velar stops (referred to commonly as ‘velar softening’, as exemplified by the replacement of Latin /ˈkɛntʊ/ by Tuscan Italian [ˈtʃɛnto] ‘one hundred’), and of labial stops and labiodental fricatives (also known as’ labial softening’, as in the case of the dialectal variant [ˈtʃatɾə] of /ˈpjatɾə/ ‘stone’ in Romanian dialects). To a lesser extent, it also deals with the palatalization and affrication of dentoalveolar stops. The book supports an articulation-based account of those sound-change processes, and holds that, for the most part, the corresponding affricate and fricative outcomes have been issued from intermediate (alveolo)palatal-stop realizations differing in closure fronting degree. Special attention is given to the one-to-many relationship between the input and output consonantal realizations, to the acoustic cues which contribute to the implementation of these sound changes, and to those positional and contextual conditions in which those changes are prone to operate most feasibly. Different sources of evidence are taken into consideration: descriptive data from, for example, Bantu studies and linguistic atlases of Romanian dialects in the case of labial softening; articulatory and acoustic data for velar and (alveolo)palatal stops and front lingual affricates; perceptual results from phoneme identification tests. The universal character of the claims being made derives from the fact that the dialectal material, and to some extent the experimental material as well, belong to a wide range of languages from not only Europe but also all the other continents.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Acoustic source identification"

1

Castagnède, Bernard. "Acoustic Emission Source Location in Anisotropic Composite Plates." In Mechanical Identification of Composites, 433–41. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3658-7_49.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ziola, Steve, and Ian Searle. "Automated Source Identification Using Modal Acoustic Emission." In Review of Progress in Quantitative Nondestructive Evaluation, 413–19. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5947-4_55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Boone, Marinus M. "Design and Development of an Acoustic Antenna System for Industrial Noise Source Identification." In Underwater Acoustic Data Processing, 379–84. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2289-1_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yamamoto, Masahiro, and Barbara Kaltenbacher. "An Inverse Source Problem Related to Acoustic Nonlinearity Parameter Imaging." In Time-dependent Problems in Imaging and Parameter Identification, 413–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57784-1_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kim, Byung Hyun, Tae Jin Shin, and Sang Kwon Lee. "Sound Source Identification Based on Acoustic Source Quantification by Measuring the Particle Velocity Directly." In Lecture Notes in Electrical Engineering, 279–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33832-8_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huang, Yiteng, and Jacob Benesty. "Adaptive Multichannel Time Delay Estimation Based on Blind System Identification for Acoustic Source Localization." In Adaptive Signal Processing, 227–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-11028-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Khon, Han H., Oleg V. Bashkov, Tatiana I. Bashkova, and Anton A. Bryansky. "Experimental Validation of Identification Crack Propagation in Plates as a Source of Acoustic Emission." In Current Problems and Ways of Industry Development: Equipment and Technologies, 77–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69421-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Traore, Oumar I., Paul Cristini, Nathalie Favretto-Cristini, Laurent Pantera, Philippe Vieu, and Sylvie Viguier-Pla. "Contribution of Functional Approach to the Classification and the Identification of Acoustic Emission Source Mechanisms." In Contributions to Statistics, 251–59. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55846-2_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Richarz, W. G. "Source Identification Techniques — A Critical Evaluation." In Aero- and Hydro-Acoustics, 95–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Agus, Trevor R., Clara Suied, and Daniel Pressnitzer. "Timbre Recognition and Sound Source Identification." In Timbre: Acoustics, Perception, and Cognition, 59–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14832-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Acoustic source identification"

1

Calkins, Luke, Reza Khodayi-mehr, Wilkins Aquino, and Michael M. Zavlanos. "Physics-Based Acoustic Source Identification." In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619483.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dumbacher, Susan, Jason Blough, Darren Hallman, and Percy Wang. "Source Identification Using Acoustic Array Techniques." In SAE Noise and Vibration Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Raveendra, S. T., and S. Sureshkumar. "Identification of Incoherent Noise Sources." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/nca-23512.

Повний текст джерела
Анотація:
Abstract A Nearfield Acoustical Holography (NAH) technique that is applicable to the identification of multiple, incoherent noise sources from measured sound pressure fields are described. Initially, a partial coherence approach is adopted to decouple an incoherent acoustic field into a set of fully coherent, mutually incoherent partial fields. Subsequently, NAH is applied individually to each coherent partial field to reconstruct the corresponding source field. A boundary element based NAH reconstruction procedure is utilized so that the technique is valid for arbitrary source geometry. The process is validated by identifying the sources in a two-speaker system that was driven by independent signal generators.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khan, Tariq, Pradeep Ramuhalli, Ravi Raveendra, and W. Zhang. "Near-field acoustic holography for acoustic noise source identification in turbomachinery." In 2009 IEEE Sensors Applications Symposium (SAS). IEEE, 2009. http://dx.doi.org/10.1109/sas.2009.4801802.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

de Melo Filho, Noe Geraldo Rocha, Marcus Vinicius Girao de Morais, Alvaro Campos Ferreira, and Mario Olavo Magno de Carvalho. "Experimental Modal Identification of Vibro-Acoustic Cavities with Calibrated Acoustic Source." In SAE Brasil International Noise and Vibration Colloquium 2012. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2012. http://dx.doi.org/10.4271/2012-36-0619.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Calkins, Luke, Reza Khodayi-mehr, Wilkins Aquino, and Michael M. Zavlanos. "Sensor Planning for Model-Based Acoustic Source Identification." In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147971.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jin Yang, Yumei Wen, and Ping Li. "Application of blind system identification in acoustic source location." In 2008 10th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, 2008. http://dx.doi.org/10.1109/icarcv.2008.4795794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Golliard, Joachim, Ne´stor Gonza´lez Di´ez, Gu¨nes¸ Nakibog˘lu, Avraham Hirschberg, and Stefan Belfroid. "Aeroacoustic Source Identification in Gas Transport Pipe System." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57309.

Повний текст джерела
Анотація:
Whistling due to Flow-Induced Pulsations can occur in gas transport and gas export pipe systems with low Mach number flow. These flow-induced pulsations can lead to piping vibration or acoustic fatigue of piping elements. The study presents a simple numerical pulsation source identification method applied to restriction orifices. In case of whistling, small acoustic perturbations incident on some pipe elements such as restriction orifices and T-junctions are amplified by the shear layer flow at certain frequencies, propagate downstream and upstream of the elements, and are reflected by the ends of the piping or by large section changes. The element acts as an acoustic amplifier for the incident acoustic energy at certain frequencies. The source identification method, earlier presented by Martinez-Lera et al [1] for the aeroacoustic source identification of T-junctions and improved by Nakiboglu et al [2] for circumferential cavities in corrugated pipes, combines incompressible numerical simulations with vortex sound theory. It is applied here to restriction orifices, commonly used in industrial pipe systems as measuring devices, to induce a pressure drop, or to reduce low frequency pulsations. Incompressible, laminar CFD simulations are used for the source identification instead of fully compressible LES. These simplifications enable much less CPU intensive computations, but require extra post processing. A particularly sensitive point is the estimation of the pressure drop due to the potential flow. This is estimated with a simulation made on a straight, empty pipe of same characteristics. This method is applied to restriction orifices in this paper, and the specific points for this particular geometry are reviewed. The results are compared to the experimental and numerical results of Testud et al [3] and Lacombe et al [4]. The application of the method to the source identification of whistling restriction orifices predicts whistling at Strouhal numbers similar to earlier experimental and numerical studies, with limited computational effort.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Trethewey, Martin W., and Costas C. Christofi. "Source Identification and Acoustic Modeling of Enclosures from Experimental Data." In SAE Noise and Vibration Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/870972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hugo, Ronald, Scott Nowlin, Kim McCrae, Frank Eaton, and Ila Hahn. "Acoustic noise-source identification in aircraft-based atmospheric temperature measurements." In 30th Plasmadynamic and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Acoustic source identification"

1

Walsh, Timothy, Wilkins Aquino, and Michael Ross. Source identification in acoustics and structural mechanics using Sierra/SD. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1095940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії