Зміст
Добірка наукової літератури з теми "Aciers Ferrito-perlitiques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Aciers Ferrito-perlitiques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Aciers Ferrito-perlitiques"
Auclair, G. "Quantification de la structure en bandes dans les aciers ferrito-perlitiques." Revue de Métallurgie 90, no. 9 (September 1993): 1139. http://dx.doi.org/10.1051/metal/199390091139.
Повний текст джерелаAuclair, G., M. Lamotte, and C. Pichard. "Quantification de la structure en bandes dans les aciers ferrito-perlitiques." Revue de Métallurgie 93, no. 2 (February 1996): 197–206. http://dx.doi.org/10.1051/metal/199693020197.
Повний текст джерелаДисертації з теми "Aciers Ferrito-perlitiques"
Faham, Mohamed amine. "Influence d’un gradient de microstructure sur la fatigue d’un matériau métallique." Electronic Thesis or Diss., Centrale Lille Institut, 2024. http://www.theses.fr/2024CLIL0008.
Повний текст джерелаThe study of crack propagation in railway components, especially axles, is of great importance. The ferrite-perlite steels used for the fabrication of these railway components may have a different microstructure from the surface to the bulk of the component, which leads us to investigate the influence of a microstructure gradient on crack propagation. Specifically, understanding the influence of a microstructure gradient (constituent size, constituent fraction) on crack propagation near the threshold of non-propagation, as well as in the Paris regime, and also understanding the local interaction of a crack with the ferrite-perlite microstructure by coupling tests with field measurements relying on digital image correlation. Overall, the aim is to identify the most beneficial gradient regarding the slowing down of fatigue crack propagation. Several experimental protocols and methodologies have been developed to achieve the set objectives, including the development of microstructure through heat treatments, the realization of cyclic R-curve based on compression pre-cracking, and the conduct of crack growth test at constant stress intensity factor amplitude
Moreno, Marc. "Mécanismes métallurgiques et leurs interactions au recuit d’aciers ferrito-perlitiques laminés : caractérisation et modélisation." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0068.
Повний текст джерелаFerrite/Martensite Dual-Phase steels are largely used in the form of thin sheets in the automotive industry for their excellent balance between resistance and strength and thus for their lightening potential. They are elaborated by continuous casting, hot- and cold- rolling, followed by a continuous annealing. During the heating and the soaking stages of this latter process, the deformed ferrite/pearlite microstructure obtained after rolling evolves is transformed into a recrystallized ferrite-austenite microstructure. The experiments show that recrystallization and austenite transformation kinetics as well as the resulting spatial and morphological distribution of the phases are highly sensitive to the heating rate. This PhD thesis aims at understanding the different metallurgical mechanisms explaining this particular sensitivity as carbides ripening, recovery, recrystallization and austenite transformation and all their possible interactions. The mechanisms were characterized at different scales and by in situ technics on an industrial steel and model by physical based approaches in order to drive future production lines. After a first chapter dedicated to the experimental and modeling methods, the second chapter deals with the characterization of the morphogenesis of ferrite-austenite microstructures by Scanning Electron Microscopy (SEM). Chapter 3 is a study by Transmission Electron Microscopy (TEM) and by thermokinetic modeling (ThermoCalc, DICTRA) of the chemical composition of carbides along with manufacturing, from hot-rolling to annealing. Recovery and recrystallization are studied in chapter 4 by the means of in situ High Energy X-Ray Diffraction (HEXRD) experiments conducted on a synchrotron beamline and modeled by an original mean-field approach. Finally, chapter 5 proposes an analysis with DICTRA to understand austenite transformation kinetics as function of heating rates. The proposed approach is innovative as it accounts for intergranular carbides in the ferrite matrix, is conducted in non-isothermal conditions and propose a fine analysis of growth modes of austenite associated to manganese, a key alloying element of the studied steels
Moreno, Marc. "Mécanismes métallurgiques et leurs interactions au recuit d’aciers ferrito-perlitiques laminés : caractérisation et modélisation." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0068.
Повний текст джерелаFerrite/Martensite Dual-Phase steels are largely used in the form of thin sheets in the automotive industry for their excellent balance between resistance and strength and thus for their lightening potential. They are elaborated by continuous casting, hot- and cold- rolling, followed by a continuous annealing. During the heating and the soaking stages of this latter process, the deformed ferrite/pearlite microstructure obtained after rolling evolves is transformed into a recrystallized ferrite-austenite microstructure. The experiments show that recrystallization and austenite transformation kinetics as well as the resulting spatial and morphological distribution of the phases are highly sensitive to the heating rate. This PhD thesis aims at understanding the different metallurgical mechanisms explaining this particular sensitivity as carbides ripening, recovery, recrystallization and austenite transformation and all their possible interactions. The mechanisms were characterized at different scales and by in situ technics on an industrial steel and model by physical based approaches in order to drive future production lines. After a first chapter dedicated to the experimental and modeling methods, the second chapter deals with the characterization of the morphogenesis of ferrite-austenite microstructures by Scanning Electron Microscopy (SEM). Chapter 3 is a study by Transmission Electron Microscopy (TEM) and by thermokinetic modeling (ThermoCalc, DICTRA) of the chemical composition of carbides along with manufacturing, from hot-rolling to annealing. Recovery and recrystallization are studied in chapter 4 by the means of in situ High Energy X-Ray Diffraction (HEXRD) experiments conducted on a synchrotron beamline and modeled by an original mean-field approach. Finally, chapter 5 proposes an analysis with DICTRA to understand austenite transformation kinetics as function of heating rates. The proposed approach is innovative as it accounts for intergranular carbides in the ferrite matrix, is conducted in non-isothermal conditions and propose a fine analysis of growth modes of austenite associated to manganese, a key alloying element of the studied steels
Vancostenoble, Alix. "Etude des mécanismes de corrosion sous contrainte d'aciers ferrito-perlitiques en milieu aqueux confiné contenant du CO2 dissous." Thesis, Saint-Etienne, EMSE, 2015. http://www.theses.fr/2015EMSE0772.
Повний текст джерелаIn confined solutions containing dissolved CO2, ferrito-pearlitic steels can suffer Stress Corrosion Cracking (SCC). We could find such situations in the annulus of flexible pipes. In these conditions, a protective corrosion product, the siderite FeCO3, is formed on the steel surface decreasing the corrosion rate. In service, environment fluctuation (such as pH, potential…) and/or an addition of applied stress can disturb the balance between the steel and this protective film, causing the fracture of the latter and leading to SCC.The objective is to understand the mechanism of SCC in such environments and to identify the parameters controlling the initiation and the propagation of cracks. Slow strain rate tensile tests in confined solution are carried out on smooth and notched specimens to study crack initiation and propagation. Crack initiation is controlled by synergistic effects between localized plasticity and the dissolution processes. However, hydrogen effects must be considered to explain crack propagation. Through hydrogen/plasticity interactions, hydrogen ingress leads to crack propagation. It is also demonstrated that the design and use of specific microstructures may promote or delay hydrogen effects, without affecting the yield strength in the same manner. Finally, the influence of a torsional pre-strain on the susceptibility to Environmentally-Assisted Cracking of a cold-worked ferrito-pearlitic steel is studied