Дисертації з теми "Acid mine drainage"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Acid mine drainage".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Chan, Wai-sum Philip. "A study of acid mine drainage /." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19945127.
Повний текст джерелаChan, Wai-sum Philip, and 陳偉森. "A study of acid mine drainage." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31253957.
Повний текст джерелаGoetz, Elaine R. "Sustainable Treatments of Acid Mine Drainage." Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1449062616.
Повний текст джерелаGodwaldt, Roderick Cameron. "Acid mine drainage at sub-zero temperatures." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ60432.pdf.
Повний текст джерелаWoolfenden, Laura. "Integrons in the Acid Mine Drainage Enironment." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29882.
Повний текст джерелаKuhn, Eloise M. R. "Microbiology of fly ash-acid mine drainage co-disposal processes." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Повний текст джерелаFahringer, Peter E. "Geophysical investigations of near-surface mine sites in northern West Virginia." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1087.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains ix, 130 p. : ill. (some col.), maps (some col.). Includes abstract. Includes bibliographical references (p. 128-130).
Entsuah, Jojo. "Compatibility of grouted rock with acid mine drainage." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0005/MQ30665.pdf.
Повний текст джерелаKashir, Mansor A. "Performance of slurry walls under acid mine drainage." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0006/NQ32316.pdf.
Повний текст джерелаDey, Brian Matthew. "The origins and control of acid mine drainage." Thesis, Cardiff University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313136.
Повний текст джерелаMotsi, Tafadzwa. "Remediation of acid mine drainage using natural zeolite." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/683/.
Повний текст джерелаGouin, Marlena. "Acid Mine Drainage Remediation Utilizing Iron-Oxidizing Bacteria." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1303244416.
Повний текст джерелаRAO, PRASANNA. "TREATMENT OF ACID MINE DRAINAGE USING MEMBRANE BIOREACTOR." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1006887417.
Повний текст джерелаLyew, Darwin J. "The characterization of physical parameters of a gravel bed reactor used for the treatment of acid mine drainage (AMD) by sulfate reducing bacteria (SRB) /." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=42086.
Повний текст джерелаThe role of various physical parameters of a gravel bed in the biological treatment of AMD by SRB was examined. This was accomplished by using gravel of different sizes (0.25$ sp{ prime prime}$ vs. 0.5$ sp{ prime prime})$ and composition (granite vs limestone) to form 12$ sp{ prime prime}$ beds in a series of column reactors. The difference in size results in variations in the total surface area, the void volume and various volume ratios within the system. The effect of potential geological buffering by limestone was examined by using and comparing with beds composed of granite.
The gravel beds were inoculated with a mixed culture of SRB and overlaid with 6 L of AMD. After the SRB were established, a series of experiments were performed in which 16.7%, 25%, 75% and 100% of the water column was replaced with an equivalent quantity of fresh AMD. Changes in pH, ORP, electric conductivity, and concentrations of metal and sulfate were monitored for at least 28 days. Sulfate and metal removal at days 7 and 28 of each experiment were compared. The SRB can tolerate a wide range of disturbances, however, an increase in the load of fresh AMD decreased the performance of the system. The results indicated that the total surface area is of greater importance than the void volume in the overall treatment process by SRB.
A dimensionless number was constructed to describe the relationships between the physical parameters of the gravel bed. A plot of the proportion of sulfate removed and this dimensionless number could provide essential information for the sizing of a gravel bed for the purposes of sulfate reduction. This was done for each type of gravel and comparison of the two curves indicated that there was no significant difference between the two gravels.
The importance of the physical substrate for the SRB has been reported in the literature. However, no known attempt has been made to quantify the relationships between the physical parameters and the biological activity. Such information would be useful for the sizing of wetlands and other passive treatment system that uses SRB activity for the purposes of treating AMD. This study is a step towards filling this void.
Sun, Qingyun. "Iron and acid removal from acid mine drainage in open limestone systems." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1315.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains ix, 112 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 56-57).
Gagliano, Wendy Buell. "Biogeochemical characterization of a constructed wetland for acid mine drainage greatment." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1087445085.
Повний текст джерелаTitle from first page of PDF file. Document formatted into pages; contains xiii, 123 p. : ill. (some col.). Advisor: Jerry M. Bigham, Soil Science. Includes bibliographical references (p. 113-123).
McCauley, Craig. "Assessment of passive treatment and biogeochemical reactors for ameliorating acid mine drainage at Stockton coal mine." Thesis, University of Canterbury. Civil and Natural Resources Engineering, 2011. http://hdl.handle.net/10092/5378.
Повний текст джерелаYang, Chi. "Effects of acid mine drainage on nesting tree swallows." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433468.
Повний текст джерелаKhan, Amita. "Ion Exchange : - A Treatment Option for Acid Mine Drainage." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for vann- og miljøteknikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26103.
Повний текст джерелаBatty, Lesley Claire. "Metal removal processes in wetlands receiving acid mine drainage." Thesis, University of Sheffield, 2000. http://etheses.whiterose.ac.uk/15045/.
Повний текст джерелаKozhukhar, Nazariy, and Назарій Кожухар. "Microbial communities of soils and acid mine drainage bioremediation." Thesis, National Aviation University, 2021. https://er.nau.edu.ua/handle/NAU/50768.
Повний текст джерелаAs a result of restructuring in 1990-2000 and occupation in 2014 the coal-rich Donetsk Basin saw massive mine closures. Leaving behind acid mine drainage, dam failures, non-remediated areas and cases of direct discharges into waterways that could lead to serious and long-term environmental impacts. The elimination of mines leads to changes in natural conditions for the living organisms and the formation of unfavorable environmental situations, such as. Acidic mine drainage occurs naturally in some environments as part of rock weathering, but is enhanced by large-scale soil disturbances common in mining. Acid mine drainage neutralization depends on its chemistry, electron donors / receptors, temperature, and pH. Iron-reducing bacteria and sulfate-reducing bacteria form the root component of these bioreactors. Acidophilic heterotrophic bacteria promote the oxidation of ferrous to ferric iron in acidic waters.
В результаті реструктуризації в 1990-2000 рр. та окупації в 2014 р. багатого вугіллям Донецький басейн побачив масове закриття шахт. Залишаючи за собою дренаж кислотних шахт, аварії дамб, не відновлювані ділянки та випадки прямих скидів у водні шляхи, які можуть призвести до серйозних і довгострокових впливів на навколишнє середовище. Ліквідація шахт призводить до змін природних умов для живих організмів та формування несприятливих екологічних ситуацій. Кислотний дренаж шахт природним чином відбувається в деяких середовищах як частина вивітрювання гірських порід, але посилюється широкомасштабними ґрунтовими порушеннями, характерними для гірничодобувних робіт. Нейтралізація дренажу кислотних шахт залежить від його хімії, донорів / акцепторів електронів, температури та рН. Основним компонентом цих біореакторів є залізоредукуючі бактерії та сульфатредукуючі бактерії. Ацидофільні гетеротрофні бактерії сприяють окисленню заліза(ІІ) до заліза(ІІІ) в кислих водах.
Kritzinger, Louise. "Confronting gold mine acid drainage : art as counter-activity." Diss., University of Pretoria, 2012. http://hdl.handle.net/2263/27490.
Повний текст джерелаDissertation (MA)--University of Pretoria, 2012.
Visual Arts
unrestricted
Seshadri, Prashant. "Treatment of acid mine drainage with Weirton steel slags." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1730.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains vii, 38 p. : ill. Includes abstract. Includes bibliographical references (p. 29-30).
Kaur, Gurkiran. "Acid mine drainage treatment options using recycled Bayer liquor." Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/120572/1/_Gurkiran%20Kaur_Thesis.pdf.
Повний текст джерелаAuld, Ryan Richard. "RE-EXAMINING TEMPORAL AND SEASONAL MICROBIAL ACID MINE : DRAINAGE COMMUNITY VARIATION." Thesis, Laurentian University of Sudbury, 2014. https://zone.biblio.laurentian.ca/dspace/handle/10219/2153.
Повний текст джерелаSong, Meining. "Understanding the mechanisms of oxidation of pyritic shale in mining waste and the influence of shale properties on acid mine drainage in the Pilbara Basin." University of Western Australia. Centre for Petroleum, Fuels and Energy, 2010. http://theses.library.uwa.edu.au/adt-WU2010.0107.
Повний текст джерелаLozano, Letellier Alba. "Geochemistry of rare earth elements in acid mine drainage precipitates." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668458.
Повний текст джерелаLas tierras raras (en inglés rare earth elements, REE) son conocidas como el conjunto de la serie de los lantánidos (La-Lu), itrio (Y) y escandio(Sc). Las tierras raras son materiales indispensables para las industrias modernas y en especial para las tecnologías verdes (aerogeneradores, baterías, láseres, catalizadores, etc.). Sin embargo a pesar de su gran demanda mundial, su abastecimiento es limitado, por lo que han sido catalogadas por la UE como materias primas críticas (Critical Raw Materials). Con el objetivo de asegurar el abastecimiento de REE en el futuro, en los últimos años se ha promovido la búsqueda de fuentes alternativas de estos elementos en todo el mundo. El drenaje ácido de mina (en inglés acid mine drainage, AMD) producido por la meteorización de sulfuros de Fe, tiene un alto poder de lixiviación de las rocas, por lo que las aguas afectadas adquieren elevadas concentraciones en disolución de Fe, Al, SO4 y otros metales, como las REE. Así, las concentraciones de REE en AMD son entre dos y tres órdenes de magnitud superiores al resto de las aguas naturales y pueden suponer una fuente complementaria de recuperación de REE. El aumento de pH del AMD por mezcla con aguas neutras da lugar a la precipitación en los cauces de los ríos de oxy-hidroxisulfatos de hierro (schwertmannita), a partir de pH 3-3.5, y de aluminio (basaluminita), a partir de pH 4-4.5; acompañado de la eliminación de las tierras raras. Debido a su acidez y carga metálica, el drenaje ácido de mina presenta un problema medioambiental de primera magnitud, por lo que se han desarrollado diferentes sistemas de tratamiento para minimizar su impacto. El sistema de tratamiento pasivo Disperse Alkaline Substrate (DAS) produce la neutralización de las aguas ácidas por la disolución de la calcita presente en el sistema, permitiendo la precipitación secuencial, de schwertmannita y basaluminita. Las tierras raras quedan retenidas preferentemente en el residuo enriquecido en basaluminita. A pesar de ello, aún no existen estudios que describan la adsorción de tierras raras tanto en basaluminita como schwertmannita en estos ambientes. En esta tesis se estudia el mecanismo de retención de las tierras raras mediante adsorción en minerales sintéticos de basaluminita y schwertmannita, en función del pH y del contenido de sulfato disuelto. Con los resultados experimentales obtenidos, se propone un modelo termodinámico de adsorción para predecir y explicar la movilidad de las tierras raras observada en mezclas de AMD con aguas neutras y en un sistema de tratamiento pasivo. La basaluminita y la schwertmannita presentan un carácter nanocristalino. Es conocido que la schwertmannita se transforma en goethita en semanas, liberando sulfato. Sin embargo, nada se sabe de la basaluminita y su posible transformación a otros minerales de Al más cristalinos. De este modo, la caracterización del orden local de la basaluminita a diferentes valores de pH y sulfato se expone en primer lugar. Dependiendo del pH y el sulfato en disolución, la basaluminita se transforma en diferentes grados a nanoboehmita en semanas, pero tiende a estabilizarse con la presencia de sulfato en solución. Los experimentos de adsorción en basaluminita y schwertmannita con diferentes concentraciones de SO4 realizados para cada mineral y en rangos de 3-7 de pH han demostrado que la adsorción es fuertemente dependiente del pH, y en menor medida del sulfato. La adsorción de los lantánidos y del itrio es efectiva a pH 5, mientras que la del escandio comienza a pH 4. Debido a las altas concentraciones de sulfato en aguas ácidas, las especies acuosas predominantes de las tierras raras son los complejos con sulfato, MSO4+. Además del complejo sulfato, el Sc presenta importantes proporciones de Sc(OH)2+ en solución. En función de la dependencia del pH y de la importancia de la especiación acuosa, se propone un modelo de complejación superficial donde la especie acuosa predominante (Mz+) se adsorbe a la superficie libre el mineral, XOH, cumpliendo la siguiente reacción: La adsorción de los lantánidos y del itrio se produce a través del intercambio de uno o dos protones de la superficie de la basaluminita o de la schwertmannita, respectivamente, con los complejos sulfato acuoso, formando complejos superficiales monodentados con el mineral de aluminio y bidentados con el de hierro. En el caso del Sc, las especies acuosas ScSO4+ y Sc(OH)2+ forman complejos superficiales bidentados con ambos minerales. Complementando el modelo propuesto, el análisis de EXAFS del complejo YSO4+ adsorbido en la superficie basaluminita sugiere la formación de un complejo monodentado de esfera interna, coincidiendo con el modelo termodinámico propuesto. El modelo de complejación superficial, una vez validado, ha permitido evaluar y predecir la movilidad de REE en los sistemas de tratamiento pasivos y en zonas de mezcla de aguas ácidas con aportes alcalinos estudiados en el campo. La preferente retención de las tierras raras en la zona de la basaluminita precipitada en los sistemas de tratamiento pasivo ocurre por adsorción de las mismas a pH entre 5-6. La ausencia de tierras raras en la zona de schwertmannita se debe al bajo pH de su formación, inferior a 4, que impide la adsorción de las mismas. Sin embargo, debido a su menor pH de adsorción, una fracción de Sc puede quedar retenida en la schwertmannita. El modelo también predice correctamente la ausencia de REE en los precipitados de schwertmannita y el enriquecimiento de las tierras raras pesadas e intermedias respecto a las ligeras en los precipitados de basaluminita recogidos en el campo en las zonas de mezcla de aguas. Sin embargo, se ha observado una sistemática sobreestimación del fraccionamiento de las tierras raras en los precipitados de basaluminita. Este hecho se debe principalmente a que la precipitación del mineral no ocurre de forma síncrona con la adsorción, precipitando la basaluminita a partir de pH 4 y adsorbiendo tierras raras a pH más altos, entre 5 y 7, cuando las partículas sólidas han sido parcialmente dispersadas.
Olds, William. "Lignite Derived Humic Substances for Treatment of Acid Mine Drainage." Thesis, University of Canterbury. Civil and Natural Resources, 2011. http://hdl.handle.net/10092/6583.
Повний текст джерелаCutting, Jamie Paul. "Geochemical controls on trace metal behaviour in acid mine drainage." Thesis, University of Bristol, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446257.
Повний текст джерелаKocsis, Julie A. "Analysis of acid mine drainage in the black fork subwatershed." Ohio University / OhioLINK, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1172256436.
Повний текст джерелаKrinks, John K. "Microbial Assessment of a Bioremediation System Treating Acid Mine Drainage." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1181069690.
Повний текст джерелаFlege, Adam Eric. "SULFATE REDUCTION IN FIVE CONSTRUCTED WETLANDS RECEIVING ACID MINE DRAINAGE." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin991680380.
Повний текст джерелаLeitholf, Andrew M. "Iron Cycling In Microbially Mediated Acid Mine Drainage Derived Sediments." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1434976163.
Повний текст джерелаDrerup, Samuel A. "Functional Responses of Stream Communities to Acid Mine Drainage Remediation." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1458822356.
Повний текст джерелаKotelo, Lerato Olga. "Characterising the acid mine drainage potential of fine coal wastes." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/12574.
Повний текст джерелаAcid mine drainage (AMD) is one of the major environmental challenges facing the South African mining sector. Acid mine drainage has received significant public attention in recent years. South Africa's long mining history has led to a growing concern that coal-related AMD from these mines (both operational and defunct) will continue for centuries to come. Pyrite bearing fine waste, generated during coal preparation and beneficiation, is thought to carry a significant amount of AMD pollution risk. Coal-related AMD generation has not been afforded the same exposure as AMD generation from high sulphide minerals such as gold and copper ores. This is exacerbated by the growing concern over water quality degradation in the Mpumalanga region of South Africa. The development of integrated solutions to address the management of coal-related AMD requires an understanding of the principle causes behind coal-related AMD. To date, most of the prediction methods described in literature have been derived for the prediction of AMD in metal bearing ores. Furthermore, some of these methods are based on assumptions and do not take into consideration the various sulphur species present. Additionally, some of these methods have limited applicability to coal due to the high total organic carbon content (TOC) of the material. This research project attempts to address these short comings and uncertainties by developing a systematic and meaningful framework for the characterisation of South African coal and coal waste. The research project contributes to the knowledge of coal-related AMD with particular emphasis on the characterisation methods responsible for sulphur speciation and mineralogy for coal. The approach entails carrying out a case study assessment aimed at empirically assessing a coal tailings sample according to: particle size distribution, textural reference, mineralogical characteristics, and how the aforementioned factors influence the acid potential in coal. The approach intends to address key factors which include: identifying the sulphur bearing organic and inorganic constituents related AMD generation in coal, assessing how the mineralogy, texture and particle size distribution contribute to AMD potential in coal tailings, and then identifying suitable analytical techniques and test methods which can provide data. The combination of these key outcomes will seek to provide a systematic and meaningful framework for the characterisation of coal and coal waste streams. The characterisation methods used in this case study outlined a framework focusing on four main areas of acid mine drainage characterisation for coal wastes, these included: chemical characterisation, mineralogical characterisation, sulphur speciation and AMD prediction. This comprehensive approach employed a suite of techniques, including: petrography, quantitative x-ray diffraction (QXRD) and quantitative evaluation of minerals by scanning electron spectrometry (QEMSCAN).
Mgabhi, Senzo Mntukhona. "The hydrated lime dissolution kinetics in acid mine drainage neutralization." Master's thesis, Faculty of Engineering and the Built Environment, 2021. http://hdl.handle.net/11427/33804.
Повний текст джерелаMack, Ben M. "Water quality changes over time in Upper Freeport and Pittsburgh coal mines in West Virginia." Morgantown, W. Va. : [West Virginia University Libraries], 2008. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5623.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains x, 81 p. : ill. (some col.), col. map. Includes abstract. Includes bibliographical references.
Sherwood, Julia Merryn. "Modelling minewater flow and quality changes after coalfield closure." Thesis, University of Newcastle Upon Tyne, 1997. http://hdl.handle.net/10443/314.
Повний текст джерелаMcCament, Benny K. "Hydrologic controls on acidity and metals loading in an abandoned underground mine complex in southeast Ohio, Perry County." Ohio : Ohio University, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1088185432.
Повний текст джерелаMambo, Mutsa Prudence. "Towards a sustainable bioprocess for the remediation of acid mine drainage." Thesis, Rhodes University, 2011. http://hdl.handle.net/10962/d1006167.
Повний текст джерелаWalsworth, Nicholas A. "Geographic image modelling of environmental degradation associated with acid mine drainage, Kam-Kotia Mine tailings." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0015/MQ26972.pdf.
Повний текст джерелаQureshi, Asif. "Potential of fly ashes for neutralisation of acid mine drainage from coal mine waste rock." Licentiate thesis, Luleå tekniska universitet, Geovetenskap och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17607.
Повний текст джерелаGodkänd; 2014; 20141013 (asiqur); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Asif Qureshi Ämne: Tillämpad geologi/Applied Geology Uppsats: Potential of Fly Ashes for Neutralisation of Acid Mine Drainage from Coal Mine Waste Rock Examinator: Professor Björn Öhlander Institutionen för samhällsbyggnad och naturresurser Luleå tekniska universitet Diskutant: Dr Josef Mácsik Ecoloop AB Stockholm Tid: Torsdag den 18 december 2014 kl 13.00 Plats: E246, Luleå tekniska universitet
Asta, Andrés María Pilar. "Mobilization and natural attenuation of arsenic in acid mine drainage ( AMD )." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/22672.
Повний текст джерелаAcid mine drainage (AMD) generated by sulfide oxidative dissolution is a major cause of water contamination world-wide. Arsenic is one of the main AMD pollutants whose concentration can reach up to hundreds of mg L-1, i.e. 5-6 orders of magnitude higher than the limit of 10 μg L-1 for potable water established by the European Union in 1998. This thesis is concerned with the impact of arsenic mobilization along AMD discharges. Oxidation of As-bearing sulfides such as arsenopyrite (AsFeS), As-rich pyrite (FeS2) or marcasite (FeS2) is one of the main sources of arsenic release. The first part of this thesis is focused on the dissolution kinetics of arsenopyrite and marcasite at acidic to neutral pH using long term flow-through experiments. The effects of pH, dissolved oxygen and temperature on their dissolution were assessed. The respective dissolution rate laws were proposed on the basis of the steady-state rates, taking into consideration the slight pH effect and the strong dissolved oxygen effect on dissolution. The incorporation of these rate laws into the kinetic databases of geochemical and reactive transport codes allows us to obtain better realistic simulations. The environmental impact of released arsenic into waters depends on its natural attenuation. The arsenic oxidation state is considered given that the main process that controls the fate and mobility of aqueous arsenic is arsenate sorption onto precipitated Fe-phases. The second part of the thesis discusses arsenic oxidation and arsenic sorption. Oxidation was studied by means of batch experiments under abiotic and biotic conditions at typical AMD water pH and water composition. Simultaneous oxidation of Fe(II) to Fe(III) and arsenite to arsenate occurs under biotic conditions, the former mediated by bacteria, and the latter by the presence of Fe(III). Under abiotic conditions, oxidation of arsenite to arsenate in the presence of Fe(III) is slow, but is enhanced by increasing dissolved Fe(III) and chloride concentrations in the presence of light. Arsenic sorption at AMD sites, and hence arsenic attenuation, occurs via arsenate sorption on new iron-oxyhydroxide and iron-oxyhydroxide-sulphate precipitates (mainly, schwertmannite (Fe8O8(OH)5.5(SO4)1.25), jarosite (KFe3(SO4)2(OH)6) and goethite (FeOOH)). The sorption capacity of goethite and jarosite was studied and compared with the one reported for schwertmannite. To this end, batch experiments were conducted using synthetic powders of K-jarosite and goethite at highly acidic pH. In the absence of competitive effects of other anions, K-jarosite presented better removal efficiency for arsenate, and ionic strength and pH had little effect on the sorption capacity of the two minerals. In contrast, these sorption capacities diminished considerably in the presence of sulfate, which is the main anion in AMD waters. A deeper understanding of the dominant mechanisms controlling arsenic content in waters demands the study of the processes not only under laboratory but also under natural conditions. Accordingly, the third part of this thesis deals with the arsenic attenuation processes in a natural system. To this end, the acidic water and sediments of the abandoned Tinto Santa Rosa mine discharge, located in the Iberian Pyritic Belt, were studied. The most striking feature of the water was a pH decrease accompanied by a systematic decrease in ferrous iron, total iron, arsenite, arsenate and total arsenic concentration. Additionally, bed-stream sediments showed high arsenic contents. The main processes that control the fate and mobility of arsenic in waters in the field were iron and arsenic oxidation, precipitation of Fe(III)- minerals and sorption of As(V) onto them. A 1-D reactive transport model using the PHREEQC code was used to explain and quantify the aforementioned processes that had been studied previously under laboratory conditions.
Peralta, Genandrialine Laquian. "Characterization, leachability and acid mine drainage potential of geothermal solid residues." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ28036.pdf.
Повний текст джерелаSurender, Damini. "Active neutralisation and amelioration of acid mine drainage with fly ash." Thesis, University of the Western Cape, 2009. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_6989_1297416088.
Повний текст джерелаFly ash and AMD samples were characterised by standard analytical methods for selection of the test materials. Active treatment by means of mixing fly ash with AMD in beakers and a large tank at pre-determined ratios have shown that fly ash is capable of neutralising AMD and increasing the pH beyond neutral values, which optimises the removal of heavy metals and ions. The trend was: the more fly ash added the quicker was the reaction time and higher the pH values achieved. Iron was reduced by as much 99 % in beaker scale experiments via Fe(OH)3 precipitation at pH values >
4.0. A 99 % decrease in aluminium concentration was observed which was attributed to the precipitation of primarily gibbsite and various other mineral phases at pH values >
5.5. As the pH increases, sulphate is adsorbed via Fe(OH)3 and gypsum precipitation at elevated pH. Sulphate attenuation with fly ash was excellent, achieving 98 % attenuation with beaker scale experiments and 1:1 fly ash:AMD ratio. Sulphate attenuation with fly ash was comparable to membrane and ion exchange systems and exceeded the performance of limestone treatment. Except for the larger volumes of fly ash needed to neutralise the AMD, fly ash proved to be a feasible and cost efficient alternative to limestone treatment. Fly ash produced competing results to limestone concerning acidity removal and sulphate attenuation. The comparison highlighted the advantages of utilising fly ash in comparison to limestone and demonstrated its cost effectiveness. The results of this study have shown that fly ash could be successfully applied for the neutralisation of acid mine drainage (AMD) and effectively attenuate the sulphate load in the treated water. The critical parameters to this technology are the variations of chemical composition and mineralogy of fly ash, which could influence the pH, contact time of the neutralisation reaction, and the same is true if the AMD quality varies.
Hogsden, Kristy Lynn. "Structure and function of food webs in acid mine drainage streams." Thesis, University of Canterbury. School of Biological Sciences, 2013. http://hdl.handle.net/10092/10357.
Повний текст джерелаGUEVARA, LILIAN ROCIO ZEGARRA. "POTENTIAL PREDICTION OF ACID MINE DRAINAGE EMPLOYING LEACHING COLUMN KINETIC METHOD." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10536@1.
Повний текст джерелаA drenagem ácida de minas (DAM) é um problema ambiental capaz de comprometer a qualidade dos recursos hídricos, que decorre da oxidação de sulfetos. A adoção de medidas corretivas e/ou preventivas dependerá do programa de predição escolhido, este geralmente inclui testes do potencial de geração de acidez (método estático), e da velocidade com que ocorre o processo (método cinético). No presente trabalho avaliou-se o potencial de geração de DAM usando o teste de Balanço Ácido Base Modificada (BABM), e monitorou-se a qualidade da água da drenagem dos rejeitos, durante 23 semanas, usando o método das colunas de lixiviação segundo a Acid Drainage Technology Initiative, para amostras de rejeitos provenientes da Carbonífera Criciúma e da Carbonífera Metropolitana. As duas amostras da Carbonífera Criciúma (SRA e SRB) apresentaram potencial de geração de acidez e as amostras da Metropolitana apresentam um pequeno risco de gerar acidez, segundo os resultados do BABM. Porém os resultados do método cinético, para todos os casos, mostram valores de pH menores que 4 e valores crescentes para a concentração do SO4 -2, acidez e o Eh, que mostra que são geradoras de DAM. Deve se ter em conta que o teste de BABM não leva em consideração a cinética das reações para a produção de acidez e sua neutralização. Os valores de concentração para o Zn, Mn e Al excedem os padrões de qualidade de água (segundo a Resolução No 357, CONAMA). No caso do Pb, os resultados não foram conclusivos devido ao alto limite de detecção do equipamento. Utilizando o modelo do núcleo não reagido, a etapa controladora da taxa de oxidação para a pirita (de FeS2 a SO4 -2) para as amostras SRA e SRB foi transferência de massa através da camada limite, com tempos teóricos para conversão completa (t) de 2,7 e 1,6 anos respectivamente, para as condições ensaiadas. A outra amostra da Carbonífera Criciúma (VR) apresentou como etapa controladora nas semanas iniciais a transferência de massa através da camada cinza e nas semanas finais a reação química propriamente dita, sendo t estimado em 3,4 anos para as condições ensaiadas.
The acid rock mine drainage (ARD) arising from sulfides oxidation in mining areas is a serious environmental problem that markedly affects the quality of the surrounding water. Choosing the measure for remediation and/or preventing pollution effect depends on a suitable evaluation through a prediction program, it has principally tests of the acid generation potential (static method), and rate of the corresponding chemical reactions (kinetic methods). The present study aimed to evaluate the potential of ARD of wastes from two coal mines Criciúma and Metropolitana, using a Modified Acid Base Accounting (MABA) and evaluated the drainage water quality during 23 weeks using leaching columns test according Acid Drainage Technology Initiative protocol. According MABA results two coal mine Criciúma Samples (SRA e SRB) indicated an acid generation potential, and Metropolitana samples present a small risk to generate acidity. However the kinetic method results, for all the samples present pH < 4 and increasing concentrations values for SO4 -2, acidity and Eh that indicate acid generation potential. The MABA test does not consider the reaction rate of acid production and its neutralizations reactions. The concentrations values of Zn, Mn and Al exceeds water quality standard (Resolução No 357, CONAMA). In the case of Pb the results were inconclusives due to the equipment high detection limit for this element. Shrinking Core Model was used to determinate rate control to pyrite oxidation kinetic (de FeS2 a SO4 -2). SRA and SRB samples the layer diffusion control was the control rate, with complete conversion theoretical time (t) of 2.7 and 1.6 years, respectively, for the test conditions. The Criciúma Coal Mine sample (VR) presents product layer diffusion as control rate at the beginning weeks and then the chemical reaction was the control rate at the final weeks of the test and for this control the calculated t was 3.4 years for the test conditions.
Vellemu, Emmanuel Captain. "The ecological risk of acid mine drainage in a salinising landscape." Thesis, Rhodes University, 2018. http://hdl.handle.net/10962/60563.
Повний текст джерелаHuminicki, Danielle Marie Cecelia. "Effect of Coatings on Mineral Reaction Rates in Acid Mine Drainage." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/28519.
Повний текст джерелаPh. D.
Miller, Samuel A. "Treating Metals in Acid Mine Drainage Using Slow-Release Hydrogen Peroxide." Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1430918808.
Повний текст джерела