Добірка наукової літератури з теми "Absorption du CO2"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Absorption du CO2".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Absorption du CO2"

1

Pongayi Ponnusamy Selvi and Rajoo Baskar, Pongayi Ponnusamy Selvi and Rajoo Baskar. "Mass Transfer Enhancement for CO2 Absorption in Structured Packed Absorption Column." Journal of the chemical society of pakistan 41, no. 5 (2019): 820. http://dx.doi.org/10.52568/000803/jcsp/41.05.2019.

Повний текст джерела
Анотація:
The acidic gas, Carbon dioxide (CO2) absorption in aqueous ammonia solvent was carried as an example for industrial gaseous treatment. The packed column was provided with a novel structured BX-DX packing material. The overall mass transfer coefficient was calculated from the absorption efficiency of the various runs. Due to the high solubility of CO2, mass transfer was shown to be mainly controlled by gas side transfer rates. The effects of different operating parameters on KGav including CO2 partial pressure, total gas flow rates, volume flow rate of aqueous ammonia solution, aqueous ammonia concentration, and reaction temperature were investigated. For a particular system and operating conditions structured packing provides higher mass transfer coefficient than that of commercial random packing.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

YANASE, Ikuo, Hirofumi OTSUKA та Hidehiko KOBAYASHI. "CO2 absorption of CeO2-coated α-LiFeO2". Journal of the Ceramic Society of Japan 119, № 1396 (2011): 933–38. http://dx.doi.org/10.2109/jcersj2.119.933.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yan, Shuiping, Qingyao He, Wenchao Wang, and Shefeng Li. "CO2 Absorption Using Biogas Slurry: CO2 Absorption Enhancement Induced by Biomass Ash." Energy Procedia 114 (July 2017): 890–97. http://dx.doi.org/10.1016/j.egypro.2017.03.1232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Christiani, Natalia, Yayat Hidayat, and Sutrisno Trisno. "CO2 Emission and Absorption Estimation in Bandung City by Implementing CO2 Emission Rate Reduction Simulation Using the Stella Program." 3BIO: Journal of Biological Science, Technology and Management 3, no. 1 (July 13, 2021): 28–41. http://dx.doi.org/10.5614/3bio.2021.3.1.4.

Повний текст джерела
Анотація:
Bandung CO2 emissions continue to increase in line with its population. The emissions source comes from the industrial, transportation, Liquefied Petroleum Gas (LPG), household, and livestock sectors, whereas CO2 absorption only comes from vegetation through photosynthesis. High CO2 emissions could decrease air quality and reduce environmental health. This study aims to estimate the amount of CO2 emissions and their absorption in Bandung by implementing CO2 Emission Rate Reduction Simulation (CERRS). The simulation comprises four scenarios, namely substitution of vehicle fuel and the application of smart driving techniques, optimization of waste processing in IWPS, processing 90% of livestock waste into biogas, and green space development of 30% of Bandung City area. Estimated CO2 emission and absorption rates were calculated for the next 10 years (2021-2030) using the Stella program version 9.0.2. The results showed that without implementing the CERRS, the amount of CO2 emissions in Bandung in 2030 was estimated to reach 10,983,666.82 tons while implementing the CERRS was 2,361,721.30 tons. Without implementing the CERRS, the estimated amount of CO2 absorptions in 2030 was 214,235.11 tons, while implementing the CERRS was 2,785,703.11 tons. It is expected that the application of the CERRS could reduce the level of CO2 emissions in Bandung by 78.5% and increase CO2 absorptions by 1,200.3%.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lívanský, Karel, and Jiří Doucha. "Additional CO2 saturation of thin-layer outdoor micro algal cultures : CO2 mass transfer and absorption efficiency." Algological Studies/Archiv für Hydrobiologie, Supplement Volumes 87 (December 2, 1997): 145–54. http://dx.doi.org/10.1127/algol_stud/87/1997/145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nagano, Yatsuhisa, Tetsu Kiyobayashi, and Tomoshige Nitta. "CO2 absorption in C60 solid." Chemical Physics Letters 217, no. 3 (January 1994): 186–90. http://dx.doi.org/10.1016/0009-2614(94)80005-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Villeret, Murielle. "Optical-absorption spectrum ofCdGa2Se4:Co2+." Physical Review B 39, no. 14 (May 15, 1989): 10236–38. http://dx.doi.org/10.1103/physrevb.39.10236.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kim, Hyung-Gon, and Wha-Tek Kim. "Optical absorption ofZnGa2S4andZnGa2S4:Co2+crystals." Physical Review B 41, no. 12 (April 15, 1990): 8541–44. http://dx.doi.org/10.1103/physrevb.41.8541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Lili, Yongsheng Ji, Zhanguo Ma, Furong Gao, and Zhishan Xu. "Study on the Effects of Ultrasonic Agitation on CO2 Adsorption Efficiency Improvement of Cement Paste." Applied Sciences 11, no. 15 (July 26, 2021): 6877. http://dx.doi.org/10.3390/app11156877.

Повний текст джерела
Анотація:
To realize high-efficiency CO2 absorption by fresh cement paste, ultrasonic vibration technology is introduced into the CO2 absorption test device used in this study. Influences of ultrasonic frequency on the CO2 absorption rate (CO2 AR) and the ultimate absorption amount of fresh cement paste are analyzed. Furthermore, the influencing laws of the CO2 absorption amount (CO2 AA) on the fluidity, pore distribution, and mechanical properties of cement paste under ultrasonic vibrating agitation are analyzed by measuring the variations of the CO2 AA of cement paste. Results demonstrate that ultrasonic vibrating agitation not only can increase the CO2 AR and ultimate absorption amount of fresh cement paste, but also can optimize the internal pore structure of materials and compressive strength of cement-based materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jin, Mei, Li Yan Zhou, Ping Lu, Jin Huang Wang, and Guo Xian Yu. "Performance of MDEA-PZ-TETA for Absorption and Desorption of CO2." Advanced Materials Research 864-867 (December 2013): 1721–24. http://dx.doi.org/10.4028/www.scientific.net/amr.864-867.1721.

Повний текст джерела
Анотація:
The absorption performance of CO2 from the simulated flue gas using fresh MDEA-PZ-TETA absorbent and the desorption behavior of CO2 from the CO2-saturated absorbent were investigated. In the process of CO2 absorption, the absorption temperature and the inlet flow rate of CO2 played important effects on the absorption performance. The experimental results showed that the suitable absorption condition of CO2 using fresh absorbent was the absorption temperature of 20 oC for 18 min and the inlet flow rate of CO2 of 50 mL/min. In the process of CO2 desorption from the used absorbent, the desorption temperature played an important role and the regeneration time had little effect on the desorption behavior. The suitable desorption condition was the desorption temperature of 105 oC for 1.0 h and the regeneration time of 1.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Absorption du CO2"

1

Kouneli, Athina. "CO2 absorption in power plants : Emphasizing on CO2 absorption in biphasic solvent." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-21842.

Повний текст джерела
Анотація:
Carbon dioxide, the famous and vital to life gas, is also an important greenhouse gas. Since the combustion of fuels leads to the production of carbon dioxide it had to be expected that since the industrial revolution the concentration of carbon dioxide in the atmosphere was to be rapidly increased. When the consequences and the causes of the greenhouse effect were understood, serious efforts were made by the global community to reduce the greenhouse gases production and CO2 among them. The Kyoto Protocol, an international agreement linked to the United Nations Framework Convention on Climate Change, commits State Parties, also EU among them, to reduce the greenhouse gases by setting internationally binding emission reduction targets. The first commitment period started in 2008 and ended in 2012 and had as goal an average 5% reduction of carbon dioxide and other greenhouse gases, whereas during the second commitment period (2013-2020) the parties committed to reduce greenhouse gas emissions at least 18% below the 1990 levels. Greenhouse gas emissions in the EU-28 in 2013 stood at 4611 million tones of CO2 and the fuel combustion and the fugitive emissions were responsible for the 57.2% of the carbon dioxide production. The electricity, gas, steam and air conditioning supply activities account for the 26.6% of the emissions. Therefore it can be easily understood that the power plants is an important sector in CO2 production and therefore their carbon dioxide emissions need to be reduced. Carbon capture and storage (CCS) process is one of the available solutions to reduce the greenhouse gases. With CCS it is possible to capture the CO2 waste from large point sources and to transport it and deposit to a storage site, usually to a geological formation. This way the carbon dioxide can be prevented from getting released into the atmosphere. Within the framework of this thesis only the capture process of this method is to be examined. More specifically this thesis project involves research over a mature technology for CO2 capture, able to be adapted at plants exhaust gases. This technology is carbon dioxide absorption. The research on CO2 absorption today appears to focus mostly on power plants gases as the gases production of power plants are increased in comparison to other plants. It is indicated that using the classic solvents - amines for the CO2 absorption system results to a significant amount of energy consumption for the solvents regeneration. The purpose of this thesis is to search over the biphasic solvents as an alternative option to amines for the CO2 capture system and state the pros and cons mainly from the energy aspect. It is expected that the biphasic solvents contribute to energy reduction of the system as the solvents are separated into two phases after the absorption, giving the capability to remove the water phase from the absorption column and as a result use less energy in the regeneration column.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sjöstrand, Filip, and Reza Yazdi. "Absorption of CO2 : - by Ammonia." Thesis, Växjö universitet, Institutionen för teknik och design, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-5256.

Повний текст джерела
Анотація:
In this diploma work, the absorption of CO2 in different liquid solutions was studied by gas absorption in a randomly packed column. To characterize the absorption a few experiments with SO2 absorption were made.The report has resulted due to the large amounts of carbon dioxide released into the atmosphere, mainly from fossil-fired power plants. To reduce these emissions, carbon dioxide can be separated from flue gas by different techniques such as CO2 absorption with ammonia. The work consists of a theoretical and a laboratory part of measurements and calculations. In the experimental part a system of absorption and associated test equipment was constructed. Different liquid solutions of pure water, potassium carbonate solution and ammonia in various concentrations were used to catch carbon dioxide by countercurrent absorption. Also SO2 was absorbed in the potassium carbonate solution to determine the gas film constant. The absorption efficiency of CO2 ranged from a few percent in the experiment with water to up to 7% with potassium carbonate solution. The CO2 absorption of ammonia varied with concentration and gave a separation of between 12 and 94%. Ammonia tests were made at both 10 and 20 °C. In general, a higher CO2-capture at 20 °C was obtained as confirmed by theory.
I detta examensarbete har absorptionseffektivitet av CO2 hos olika vätskelösningar undersökts genom gasabsorption i en slumpmässigt packad kolonn. För att karakterisera absorptionen absorberades även SO2 i några experiment. Rapporten är utförd med anledning av de stora mängder koldioxid som släpps ut i atmosfären, främst från fossileldade kraftverk. För att minska dessa utsläpp kan koldioxiden avskiljas från rökgaserna genom olika tekniker t.ex. genom CO2-absorption med ammoniak. Arbetet består av en teoridel och en laborativ del med mätningar och beräkningar. I den experimentella delen konstruerades ett system med en absorptionskolonn och tillhörande mätutrustning. Olika vätskelösningar bestående av rent vatten, kaliumkarbonatlösning och ammoniak i olika koncentrationer användes till att ta upp koldioxid genom motströms absorption. Även SO2 absorberades i kaliumkarbonatlösning för att bestämma gasfilmkonstanten. Absorptionsgraden av CO2 varierade från några få procent i försöket med vatten upp till 7 % med kaliumkarbonatlösningen. CO2-absorptionen av ammoniak varierade med koncentrationen och gav en avskiljning på mellan 12 och 94 %. Ammoniakförsöken gjordes med både vid 10 och 20 °C. Generellt erhölls en bättre CO2-avskiljning vid 20°C, vilket bekräftas av teorin.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Joakim, Gustavsson, and Lager Niclas. "Absorption av CO2 i ammoniaklösning." Thesis, KTH, Industriell ekologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211844.

Повний текст джерела
Анотація:
I detta arbete studeras absorption av växthusgasen koldioxid (CO2) i ammoniaklösning. Målet med arbetet är att undersöka hur väl teknik med vegetabilisk olja kan förhindra avdunstning av ammoniaklösning vid absorptionen och på så vis främja grön kemi. En jämförelse görs sedan med en mer beprövad teknik med nedkylning. Därefter undersöks vilka salter som fälls ut vid absorptionen vid de båda teknikerna samt olika koncentration ammoniak (NH3). Genom att blanda ammoniak, etanol (C2H5OH) och vatten (H2O) i olika förhållanden i ett absorptionstorn erhölls den absorberande lösningen. CO2 i gasform fördes sedan in i reaktorn. I genomförda experiment gav teknik med vegetabiliskt oljemembran samma eller lägre materialförlust av ammoniaklösning som teknik med nedkylning. Högre halt av etanol innebar sänkt löslighet av ammoniumsalter vilket gav större utfällning av salter i utförda experiment. Detta kan observeras genom att jämföra kristallvikten i utförda experiment. Kristallerna analyserades med röntgendiffraktion (XRD). Salterna kunde identifieras genomatt jämföra erhållet resultat med standardprov från litteratur. Dock fanns avvikelser mellanresultatet och standardprov, vilket gjorde analysen svårtolkad.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Constantinou, A. "CO2 absorption in microstructured membrane reactors." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1348316/.

Повний текст джерела
Анотація:
The objective of this work is to study experimentally and theoretically novel multiphase microreactors and characterize them in relation to hydrodynamics and mass transfer, in order to evaluate, understand and improve their performance. In order to achieve this CO2 absorption in sodium hydroxide and amine solutions an example of a fast gas-liquid reaction has been investigated in a single microstructured metallic mesh reactor, CRL reactor, PTFE single channel membrane reactor and the silicon nitride mesh reactor. CO2 absorption in sodium hydroxide solution was initially studied experimentally and theoretically in a metal microstructured mesh reactor. The differential mass balances to describe the concentration profiles of components in the three domains (gas/membrane/liquid), were solved with Comsol Multiphysics (modeling software for finite element analysis of partial differential equations). The model indicated that the carbon dioxide is consumed within few microns from the gas – liquid interface, and the dominant resistance for mass transfer is located in the mesh because it is wetted by the liquid reactant. In order to overcome the limitation of the extra resistance to the mass transfer in the metallic mesh, PTFE membranes were used in the single channel reactor, which are considered as hydrophobic to aqueous solutions of NaOH and amines. Monoethanolamine solution (MEA) absorbed more CO2 than diethanolamine (DEA) since the reaction rate constant for MEA is higher than DEA. 8 channel (PTFE) microreactor showed much higher CO2 removal efficiency than the metallic mesh microreactor. Furthermore the model indicated partial-wetting of the PTFE membrane when NaOH solution was used as an absorbent. In order to enhance mass transfer staggered herringbones were used on the floor of the liquid side of the single channel PTFE microreactor. No enhancement of mass transfer was observed with the use of staggered herringbones. A possible reason for that is that a limit for the fast second-order reaction is reached for enhancement and that the apparent reaction rate is independent from mass transfer for our case, or that the herringbones are far away from the reaction zone and cannot create the appropriate stirring for enhancement. In order to increase throughput, carbon dioxide absorption in sodium hydroxide solution was performed in the metallic mesh ‘scale-out’ reactor (with 4 meshes). CO2 removal efficiency for the ‘scale-out’ reactor was significantly lower than the single mesh reactor, which is probably due to breakthrough of liquid in the gas phase (stagnant liquid) or uneven flow distribution in each plate of the ‘scale-out’ reactor. Finally a silicon nitride mesh reactor developed by Bayer Technology Services and FluXXion was used for CO2 absorption in aqueous solutions of NaOH and DEA. The silicon nitride mesh reactor showed better performance than the PTFE single channel reactor, the metallic 8 channel reactor and the CRL mesh reactor when NaOH was used, due to the very thin membrane of 1 μm thickness, which makes the resistance to mass transfer very small.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zoannou, Kali-Stella. "Aspects of degradation of monoethanolamine solutions during Co2 absorption." Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/18346/.

Повний текст джерела
Анотація:
The most common technique for carbon dioxide removal from gaseous streams is amine scrubbing, a proven technology in the oil and gas industries. The use of this route in coal fired power plants is not fully understood and the likelihood of solvent degradation is high. Decreased absorption efficiency, undesirable byproducts, the environmental impact of their disposal and increased process costs are the main consequences. In this study, two experimental rigs were designed and commissioned to explore the effects of gas composition and temperature on monoethanolamine degradation. Analytical procedures to detect and quantify its major thermal and oxidative degradation products were also developed. It became apparent early on that solvent degradation, under actual plant conditions, is a slow phenomenon, thus, it was decided to focus on thermal degradation. The present study uniquely enabled the absorption/desorption behaviour of thermally degraded solvents to be evaluated. The major thermal degradation products were quantified. After 14 full absorption/stripping cycles at the presence of 16% oxygen and 15% carbon dioxide, significant concentrations of nitrites and nitrates were detected in the samples. Thermal degradation at 160 oC for 8 weeks reduced monoethanolamine concentration by almost 95%, as evidenced by the chemical analysis, but the remaining solvent retained 22% of its capacity to remove carbon dioxide. Therefore, although not fully quantified, the requirement for monoethanolamine make-up may not be quite as serious as initially believed. There is some evidence to support that the rate of thermal degradation was enhanced as carbon dioxide loading increased and a 20% higher MEA loss was determined in the samples with the rich initial molar loading. A range of degradation products were quantified that correspond to those cited in the literature. 1-(2-hydroxyethyl)-2-imidazolidinone was indicated as the most stable MEA degradation product in the degraded samples at concentrations of up to 17% v/v.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ohle, Andrea. "CO2-Abtrennung aus Gasströmen durch Absorption in Poly(methyldiglykol)amin." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-23497.

Повний текст джерела
Анотація:
In dieser Dissertation wird ein Prozess für die absorptive CO2-Abtrennung aus Gasströmen vorgestellt, der durch die Nutzung des neu entwickelten Waschmittels GenosorbN in einem Postcombustion-Prozess einen geringeren Energiebedarf als bisher bekannte Verfahren aufweist. Für die Nachrüstung bereits vorhandener Kraftwerke ist der Postcombustion-Prozess vorteilhaft, da er im Vergleich zum IGCC- oder dem Oxyfuel-Verfahren die geringsten Änderungen im Kraftwerksprozess selbst erfordert. Die bisher für die CO2-Abtrennung diskutierten Absorptionsmittel, wie z. B. MEA (Mono-Ethanol-Amin), haben allerdings vor allem in der Regeneration einen sehr hohen Energiebedarf, der vom Kraftwerk zusätzlich zur Verfügung gestellt werden muss. In Zusammenarbeit zwischen dem Institut für Verfahrenstechnik und Umwelttechnik der TU Dresden und der Clariant GmbH wurde das Absorptionsmittel GenosorbN (chemische Bezeichnung: Poly(methyldiglykol)amin) entwickelt. GenosorbN weist als Hybrid-Waschmittel gegenüber CO2 sowohl physikalische als auch chemische Bindungseigenschaften auf. Ausgehend von der Löslichkeitscharakteristik dieses Absorptionsmittels für CO2 und wichtigen Stoffwerten (z. B. Wärmekapazität und Lösungswärme von CO2) wurden mit Hilfe eines umfangreichen Versuchsprogramms an einer Technikumsanlage Betriebsparameter für einen energetisch günstigen technischen Einsatz ermittelt. Dabei hat sich herausgestellt, dass der Absorptionsprozess mit unverdünntem GenosorbN gegenüber einer MEA-Wäsche bei einem CO2-Abscheidegrad von ca. 90 % einen um ca. 20 - 27 % geringeren Energiebedarf in der Waschmittelregeneration aufweisen kann. Außerdem ist für die Desorption ein energetisch minderwertiger Heizdampf mit geringerem Temperatur- bzw. Druckniveau als bei dem MEA-Prozess ausreichend, da die Regenerationstemperatur um 40 - 50 K niedriger ist. Eine zusätzliche Druckabsenkung auf 400 mbar Absolutdruck im Desorber begünstigt die Regeneration deutlich
This dissertation presents a process for the absorptive CO2-separation from gas streams, which shows a lower energy requirement than established methods by using the newly developed absorption liquid GenosorbN in a postcombustion-process. To retrofit an already existing power plant, the postcombustion-process is advantageous, because it needs the least changes in the power plant-process itself compared to the IGCC- or the Oxyfuel-process. The absorbents discussed for the CO2-separation up to now, for example MEA (mono-ethanol-amine), cause a high energy requirement mainly in the solvent regeneration, which has to be provided additionally from the power plant. The solvent GenosorbN (chemical notation: poly(methyldiglycol)amine) was developed in cooperation between the Institute of Process Engineering and Environmental Engineering of the Technical University of Dresden and the Clariant GmbH. GenosorbN is a hybrid-absorbent and therefore it shows both physical and chemical bonding forces. Based on the solvents characteristic of solubility for CO2 and important data on chemical media (for example heat capacity and enthalpy of solution) operating parameters for an energetic advantageous technical application were identified by a lot of test series at a pilot plant. The measurements show that the absorption process with the undiluted GenosorbN has a circa 20 - 27 % lower energy demand for the solvent regeneration compared to the MEA-process to reach a degree of separation of 90 %. Furthermore a low-value heating steam with lower temperature and therefore lower pressure level suffices because of the significant lower (40 - 50 K) regeneration temperature. An additional pressure reduction to 400 mbar absolute pressure in the regeneration column favours the solvent regeneration considerably
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ystad, Paul Andreas Marchioro. "Power Plant with CO2 Capture based on Absorption : Integration Study." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11057.

Повний текст джерела
Анотація:
This thesis gives a detailed evaluation of the integration of power plants and post-combustion CO2 capture based on absorption. The study looks at natural gas combined cycles and pulverized coal power plants. Also the absorption process has been evaluated separately, aiming at reducing energy requirements in the capture process. In the first part of the thesis a theoretical part was given on fundamentals of CO2 capture by absorption, power generation, and process integration. Based on this theory, several case studies were defined for each of the three main processes. Simulation models were built accordingly and investigated. Simulation results from the capture process showed that there was a reboiler energy saving potential of 29% and 27% for NGCC and PC plant, respectively, when including vapor compression and absorption intercooling in the capture process. Another interesting observation made was reduced cooling duty in the overhead condenser of the stripper when applying vapor compression.Analysis of steam extraction from the NGCC plant showed it was possible to cover 1 MJ/kg CO2 directly from the HRSG. This steam can be provided directly from the LPB. For duties above 1 MJ/kg CO2 a secondary extraction point was required. In this study the IP/LP crossover was considered the most appropriate point to extract the remaining steam. The efficiency penalty when integrated with the different CO2 capture cases ranged from 7-8%, giving a net plant efficiency of 49.6-50.5%. At part load it was shown that the LPT should be throttled in order to secure constant pressure at the extraction point.For the PC plant the feedwater heat system showed potential in terms heat recovery in the return stream from the capture process. By integrating the return stream with FWH2, energy savings of 11.9% compared to the base case plant were found. Also it was found that the IP/LP crossover pressure should be set to 4.5 bar, since the IPT has the highest efficiency and therefore power production in this unit should be maximized. The final results for the PC plant efficiency range from 30-31.7% and the percentual efficiency penalty was 10-11.7% for the four capture case studies. As was the case for the NGCC plant, the LPT should be throttled when operating at part load.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Leifsen, Henning. "Post-Combustion CO2 Capture Using Chemical Absorption : Minimizing Energy Requirement." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12865.

Повний текст джерела
Анотація:
Capture and storage from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process of the flue gas of a commercial gas power plant, based on absorption/desorption process with MEA solutions, using HYSYS with the Amine Property Package fluid package, has been performed. The optimization has aimed to reduce the energy requirement for solvent regeneration, by investigating the effects of circulation rate, cross-flow heat exchanger minimum approach, desorber operating pressure and the absorber diameter. In addition, an economic evaluation including investment cost has been performed for the first three parameters.Major energy savings can be realized by optimizing the desorber pressure and the solvent circulation rate. The circulation rate will have a clearly defined optimal point, while for the desorber pressure the temperature will be a limiting factor. A too high temperature may lead to amine degradation and corrosion problems. The cross-flow heat exchanger minimum temperature approach will not affect the energy consumption significantly. An optimum absorber column diameter was not found, but the column should be designed with a diameter large enough to prevent flooding through the column. A too large diameter will not favour the energy consumption very much, and other factors will be more decisive when the column diameter is chosen.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Majeed, Hammad. "Reactive Absorption of CO2 in Single and Blended Amine Systems." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for kjemisk prosessteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22792.

Повний текст джерела
Анотація:
Global warming scenario is pretty grim and is a well-known worldwide concern, most likely caused by increasing concentrations of CO2 and other greenhouse gases in the earth?s atmosphere due to human activities. CO2 absorption in amine-based absorbents is an established and proven technology. Unfortunately, this process is still very energy intensive and has high capital costs. The main theme of this work is to characterize new generation solvents; kinetics of CO2 absorption in single and blended amine system is a part of this mission.Kinetics of CO2 in aqueous MAPA system with concentration of 1/2/3/4/5 M and aqueous blended system of MAPA+DEEA with variant concentrations were measured at a temperature range of 298.15-338.15 K. The kinetic experiments for both systems were performed in string of disc contactor. Results for rate constants were interpreted in terms of single step termolecular mechanism proposed by ?Crooks et al., 1989? for the reaction of CO2 with amine because of its less number of parameters.In addition to this work, the physical properties like density from 293.15-353.15 K and viscosity with in span of 293.15-333.15 K were also measured to determine the physio chemical parameters. The solubility of N2O in aqueous MAPA system and aqueous blended systems were performed to estimate the solubility of CO2 in MAPA and blended (MAPA+DEEA) solutions at temperature range of 298.15-338.15K.Densities of systems were measured in Anton Paar DMA 4500M density meter while viscosities were estimated in Physica MCR 100 rheometer and solubility experiments were done in stirred jacketed glass vessel.Simple model based on temperature and concentration was applied on excel sheet in order to calculate the density, solubility and viscosity. The absorption flux of CO2 in MAPA and blended systems, Henry?s constants, over all mass transfer coefficients and second order rate constants were determined for each case and compared these with the citied data available in order to judge the behavior and performance of current systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lu, Yuexia. "Experimental Studies on CO2 Absorption in Hollow Fiber Membrane Contactor." Licentiate thesis, Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-9617.

Повний текст джерела
Анотація:
Membrane gas absorption technology is considered as one of the promising alternatives to conventional techniques for CO2 separation from the flue gas of fossil fuels combustion. As a hybrid approach of chemical absorption and membrane separation, it may offer a number of important features, including operational flexibility, compact structure, linear scale up and predictable performance. The main challenge is the additional membrane mass transfer resistance, especially when this resistance increases due to the absorbent intruding into the membrane pores. In this thesis, the experimental was set up to investigate how the operating parameters affect the absorption performance when using absorbent in hollow fiber contactor, and to obtain the optimal range of operation parameters for the designated membrane gas absorption system . During 20 days’ continuous experiment, we observed that the CO2 mass transfer rate decreases significantly following the operating time, which is attributed to the increase of membrane mass transfer resistance resulting from partial membrane wetting. To better understand the wetting evolution mechanism, the immersion experiments were carried out to assume that the membrane fibers immersed in the absorbents would undergo similar exposure as those used in the membrane contactor. Various membrane characterization methods were used to illustrate the wetting process before and after the membrane fibers were exposed to the absorbents. The characterization results showed that the absorbent molecules diffuse into the polypropylene (PP) polymer during the contact with the membrane, resulting in the swelling of the membrane. In addition, the effects of operating parameters such as immersion time, CO2 loading, as well as absorbent type on the membrane wetting were investigated in detail. Finally, based on the analysis results, methods to smooth the membrane wetting were discussed. It was suggested that improving the hydrophobicity of PP membrane by surface modification may be an effective way to improve the membrane long-term performance. Modification of the polypropylene membrane by depositing a rough layer of PP was carried out in order to improve the non-wettability of membrane. The comparison of long-term CO2 absorption performance by PP membranes before and after modification proves that the modified polypropylene membranes retained higher hydrophobicity than the untreated polypropylene membrane. Therefore modification is likely to be more suitable for use in membrane gas absorption contactors for CO2 separation, particularly over long operation time.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Absorption du CO2"

1

Madeddu, Claudio, Massimiliano Errico, and Roberto Baratti. CO2 Capture by Reactive Absorption-Stripping. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04579-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Budzianowski, Wojciech M., ed. Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47262-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Madeddu, Claudio, Massimiliano Errico, and Roberto Baratti. CO2 Capture by Reactive Absorption-Stripping: Modeling, Analysis and Design. Springer, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nakao, Shin-ichi, Katsunori Yogo, Kazuya Goto, Teruhiko Kai, and Hidetaka Yamada. Advanced CO2 Capture Technologies: Absorption, Adsorption, and Membrane Separation Methods. Springer, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Budzianowski, Wojciech M. Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption: Compounds, Blends and Advanced Solvent Systems. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Budzianowski, Wojciech M. Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption: Compounds, Blends and Advanced Solvent Systems. Springer, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nasimudeen, Abdul. Normal respiratory function. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0125.

Повний текст джерела
Анотація:
Respiration has two components: external respiration, which enables the absorption of O2 and the removal of CO2, and internal respiration, which enables the utilization of O2 and production of CO2 and mediates gas exchange between the cells and their fluid medium. This chapter addresses the mechanics of respiration; gas exchange in the lungs; the pulmonary circulation; lung defence mechanisms; and the metabolic and endocrine functions of the lungs.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Alexandrowicz, C. H. The Role of German Treaty Making in the Partition of Africa (1980). Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198766070.003.0022.

Повний текст джерела
Анотація:
This chapter examines Germany’s participation in the scramble for African territory, in particular the history of treaty making. It compares pre-nineteenth-century African treaties with treaties concluded subsequently. It draws attention to the undisputed legal character of African treaties concluded under the regime of the classic law of nations which, according to its natural law premises, was a universal and non-discriminatory law operating irrespective of civilisation, religion, race, or continent. It discusses protracted co-existence in South-West Africa under German protection; a mixture of protection and sovereignty in Togo and the Cameroons; and the situation in East Africa where absorption followed soon after the conclusion of treaties.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Puntis, John. Iron deficiency. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198759928.003.0009.

Повний текст джерела
Анотація:
Iron deficiency is the most common nutritional deficiency in the world, affecting around 5 billion people mostly in developing countries. Risk factors in infants include low birthweight, high cow milk consumption, low intake of iron containing complementary foods, low socioeconomic status, and immigrant status. Developmental delay and poor educational achievement are among the long-term complications. Preventative strategies include promotion of breastfeeding, use of iron-fortified formula if breast milk not available, encouraging intake of iron-rich foods, vitamin C-rich drinks with meals to promote iron absorption, and avoiding whole cow’s milk in the first year of life. Poor response to oral iron treatment is most likely due to poor compliance (iron ingestion may cause abdominal pain diarrhoea or constipation) but should also raise the possibility of underlying disease causing inflammation, malabsorption, or blood loss.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gutiérrez, Orlando M. Fibroblast growth factor 23, Klotho, and phosphorus metabolism in chronic kidney disease. Edited by David J. Goldsmith. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0119.

Повний текст джерела
Анотація:
Fibroblast growth factor 23 (FGF23) and Klotho have emerged as major hormonal regulators of phosphorus (P) and vitamin D metabolism. FGF23 is secreted by bone cells and acts in the kidneys to increase urinary P excretion and inhibit the synthesis of 1,25 dihydroxyvitamin D (1,25(OH)2D) and in the parathyroid glands to inhibit the synthesis and secretion of parathyroid hormone. Phosphorus excess stimulates FGF23 secretion, likely as an appropriate physiological adaptation to maintain normal P homeostasis by enhancing urinary P excretion and diminishing intestinal P absorption via lower 1,25(OH)2D. The FGF23 concentrations are elevated early in the course of chronic kidney disease (CKD) and may be a primary initiating factor for the development of secondary hyperparathyroidism in this setting. Klotho exists in two forms: a transmembrane form and a secreted form, each with distinct functions. The transmembrane form acts as the key co-factor needed for FGF23 to bind to and activate its cognate receptor in the kidneys and the parathyroid glands. The secreted form of Klotho has FGF23-independent effects on renal P and calcium handling, insulin sensitivity, and endothelial function. Disturbances in the expression of Klotho may play a role in the development of altered bone and mineral metabolism in early CKD. In addition, abnormal circulating concentrations of both FGF23 and Klotho have been linked to excess cardiovascular disease, suggesting that both play an important role in maintaining cardiovascular health.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Absorption du CO2"

1

Yu, W., T. Wang, M. X. Fang, H. Hei, and Z. Y. Luo. "CO2 Absorption/Desorption Enhanced by Nanoparticles in Post-combustion CO2 Capture." In Clean Coal Technology and Sustainable Development, 591–96. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2023-0_80.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pantoleontos, G., S. P. Kaldis, D. Koutsonikolas, P. Grammelis, and G. P. Sakellaropoulos. "CO2 Absorption in a Mini-module Membrane Contactor." In Global Warming, 307–13. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-1017-2_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Puxty, Graeme, Marcel Maeder, and Robert Bennett. "Reactive Chemical Absorption of CO2 by Organic Molecules." In Sustainable Carbon Capture, 29–71. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003162780-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Orhan, Ozge Yuksel, Cyril Sunday Ume, and Erdogan Alper. "The Absorption Kinetics of CO2 into Ionic Liquid—CO2 Binding Organic Liquid and Hybrid Solvents." In Green Energy and Technology, 241–61. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47262-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Noroozi, Javad, William R. Smith, William R. Smith, William R. Smith, and William R. Smith. "Molecular Simulation of pK Values and CO2 Reactive Absorption Prediction." In The Three Sisters, 185–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119510079.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Isa, Faezah, Haslinda Zabiri, Salvinder Kaur Marik Singh, and Azmi M. Shariff. "Dynamic Modelling for High Pressure CO2 Absorption from Natural Gas." In Communications in Computer and Information Science, 261–71. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6502-6_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Srinivasan, K., and M. C. Sashikkumar. "Behavioural Study on Concrete with Organic Materials for CO2 Absorption." In Proceedings of International Conference on Innovative Technologies for Clean and Sustainable Development (ICITCSD – 2021), 201–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93936-6_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Qi, Weikai, and William R. Smith. "Molecular Simulation of Reactive Absorption of CO2 in Aqueous Alkanolamine Solutions." In Cutting-Edge Technology for Carbon Capture, Utilization, and Storage, 277–79. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119363804.ch19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fox, M. J., N. S. Higdon, D. R. Dean, C. M. Hamilton, D. C. Senft, J. A. Dowling, D. F. Pierrottet, S. Ghoshroy, and S. B. Alejandro. "CO2 Differential Absorption Lidar (DIAL) Research at the Air Force Phillips Laboratory." In Advances in Atmospheric Remote Sensing with Lidar, 471–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60612-0_114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

He, Hui, Mengxiang Fang, Wei Yu, Qunyang Xiang, Tao Wang, and Zhongyang Luo. "A Low-Cost Chemical Absorption Scheme for 500,000 t/y CO2 Capture Project." In Clean Coal Technology and Sustainable Development, 373–78. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2023-0_50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Absorption du CO2"

1

Eckel, Hans-Albert. "CO2 Laser Absorption in Ablation Plasmas." In BEAMED ENERGY PROPULSION: Fourth International Symposium on Beamed Energy Propulsion. AIP, 2006. http://dx.doi.org/10.1063/1.2203270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jiang, Lan, and Hai-Lung Tsai. "Modeling of CO2 Gas Excitation Under CO2 Laser Irradiation." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15625.

Повний текст джерела
Анотація:
Lasers especially multiple laser beams demonstrate unique advantages as energy sources in diamond synthesis. However, the fundamental mechanisms involved in the laser-assisted processes are not Well understood. In a reported amazingly-fast multiple laser coating technique, CO2 gas is claimed as the sole precursor or secondary precursor, which remains poorly understood and unverified. The absorption coefficient changes under the irradiation of the multiple lasers are one of the keys to resolve the mysteries of multiple laser beam coating processes. This study investigates the optical absorption in CO2 gas at the CO2 laser wavelength. This resonance absorption process is modeled as an inverse process of the lasing transitions of CO2 lasers. The well-established CO2 vibrational-rotational energy structures are used as the basis for the calculations with the Boltzmann distribution for equilibrium states and the three-temperature model for non-equilibrium states. Based on the population distribution, our predictions of CO2 absorption coefficient changes as the function of temperature are in agreement with the published data.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hao Zhiwu, Li Fangqin, Li Henan, and Li Yanchao. "Progress of absorption CO2 by membrane contactor." In Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vasil'ev, B. I., and O. M. Mannoun. "Differential absorption lidar using NH3-CO2 laser." In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kang, Yong Tae, and Seonggon Kim. "CO2 ABSORPTION/REGENERATION PERFORMANCE ENHANCEMENT BY NANOABSORBENTS." In International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.kn.000019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yun, Soung Hee, Young Eun Kim, Yo Han Seong, Sung Chan Nam, Il Soo Chu, and Yeo Il Yoon. "CO2 Absorption of Chemical Phase Transitional Absorbents: Absorption Capacity and Reaction Mechanism." In Games and Graphics 2014. Science & Engineering Research Support soCiety, 2014. http://dx.doi.org/10.14257/astl.2014.65.02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang Yinjie, Liu Jiping, Kan Meixiu, Lu Xiaobing, and Liu Zequan. "The Performance of the CO2 absorption on Li2ZrO3." In Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nomura, S., K. Fujita, and U. Dubuet. "Absorption Spectroscopy of CO2 Flows in Expansion Tube." In Proceedings of the 32nd International Symposium on Shock Waves (ISSW32 2019). Singapore: Research Publishing Services, 2019. http://dx.doi.org/10.3850/978-981-11-2730-4_0350-cd.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Aforkoghene Aromada, Solomon, and Lars Øi. "Simulation of improved absorption configurations for CO2 capture." In The 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden. Linköping University Electronic Press, 2015. http://dx.doi.org/10.3384/ecp1511921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jacobs, P., P. G. Paul, P. H. M. Feron, C. J. Savage, and J. Witt. "Integrated CO2 and Humidity Control by Membrane Gas Absorption." In International Conference on Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/972560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Absorption du CO2"

1

Gary T. Rochelle, Andrew Sexton, Jason Davis, Marcus Hilliard, Qing Xu, David Van Wagener, and Jorge M. Plaza. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), March 2007. http://dx.doi.org/10.2172/907880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gary T. Rochelle, Eric Chen, Babatunde Oyenekan, Andrew Sexton, Jason Davis, Marcus Hilliard, and Amornvadee Veawab. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/895539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gary T. Rochelle, Eric Chen, Babatunde Oyenekan, Andrew Sexton, Jason Davis, Marus Hiilliard, Qing Xu, David Van Wagener, and Jorge M. Plaza. CO2 Capture by Absorption with Potassium Carbonate. US: University Of Texas At Austin, December 2006. http://dx.doi.org/10.2172/899120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gary T. Rochelle, Eric Chen, Babatunde Oyenekan, Andrew Sexton, Jason Davis, Marcus Hilliard, and Amorvadee Veawab. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), July 2006. http://dx.doi.org/10.2172/889472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gary T. Rochelle, Eric Chen, Babatunde Oyenekan, Andrew Sexton, and Amorvadee Veawab. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/882401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rochelle, Gary T., Frank Seibert, Fred Closmann, Tim Cullinane, Jason Davis, George Goff, Marcus Hilliard, et al. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/922797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gary T. Rochelle, Eric Chen, J.Tim Cullinane, Marcus Hilliard, Jennifer Lu, Babatunde Oyenekan, and Ross Dugas. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/829575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gary T. Rochelle, Eric Chen, Jennifer Lu, Babatunde Oyenekan, and Ross Dugas. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/835452.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gary T. Rochelle, Marcus Hilliard, Eric Chen, Babatunde Oyenekan, Ross Dugas, John McLees, Andrew Sexton, and Amorvadee Veawab. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/876056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gary T. Rochelle, Eric Chen, Jennifer Lu, Babatunde Oyenekan, and Ross Dugas. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/840473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії