Добірка наукової літератури з теми "Absorbing games with vector payoffs"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Absorbing games with vector payoffs".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Absorbing games with vector payoffs"

1

Corley, H. W. "Games with vector payoffs." Journal of Optimization Theory and Applications 47, no. 4 (December 1985): 491–98. http://dx.doi.org/10.1007/bf00942194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Solan, Eilon, and Rakesh V. Vohra. "Correlated equilibrium payoffs and public signalling in absorbing games." International Journal of Game Theory 31, no. 1 (September 1, 2002): 91–121. http://dx.doi.org/10.1007/s001820200109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

N. Beltadze, Guram. "Differential Antagonistic Games with Lexicographic Vector-Payoffs." International Journal of Modern Education and Computer Science 11, no. 3 (March 8, 2019): 23–30. http://dx.doi.org/10.5815/ijmecs.2019.03.04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bauso, Dario, Ehud Lehrer, Eilon Solan, and Xavier Venel. "Attainability in Repeated Games with Vector Payoffs." Mathematics of Operations Research 40, no. 3 (August 2015): 739–55. http://dx.doi.org/10.1287/moor.2014.0693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

SALUKVADZE, MINDIA E., GURAM BELTADZE, and FRANCISCO CRIADO. "DYADIC THEORETICAL GAMES MODELS OF DECISION-MAKING FOR THE LEXICOGRAPHIC VECTOR PAYOFFS." International Journal of Information Technology & Decision Making 08, no. 02 (June 2009): 193–216. http://dx.doi.org/10.1142/s0219622009003430.

Повний текст джерела
Анотація:
This article is about the full analysis of one concrete class of general non-cooperative lexicographic games and its computer programming. In such game, the payoffs of players are lexicographic vector payoffs — m scalar criteria vectors. At the same time, these criteria are strictly ranked on the set of the situations with lexicographic preference. In some such kind of game a Nash's equilibrium may not exist. In the given article the full analysis of one class of dyadic lexicographic games is worked out. Such kind of class is the non-cooperative lexicographic games, where each player has got two pure strategies and the payoff of each player solely depends on the strategies of two players in each situation. Therefore, the player's payoffs are given by 2 × 2 matrices, the elements of which are lexicographic utilities.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Allevi, E., A. Gnudi, I. V. Konnov, and S. Schaible. "Noncooperative Games with Vector Payoffs Under Relative Pseudomonotonicity." Journal of Optimization Theory and Applications 118, no. 2 (August 2003): 245–54. http://dx.doi.org/10.1023/a:1025491103925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Milman, Emanuel. "Approachable sets of vector payoffs in stochastic games." Games and Economic Behavior 56, no. 1 (July 2006): 135–47. http://dx.doi.org/10.1016/j.geb.2005.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Гусев, Василий, Vasily Gusev, Владимир Мазалов, and Vladimir Mazalov. "Owen-stable coalition partitions in games with vector payoffs." Mathematical Game Theory and Applications 10, no. 3 (January 28, 2019): 3–23. http://dx.doi.org/10.17076/mgta3_6.

Повний текст джерела
Анотація:
The paper is devoted to the study of multicriteria cooperative games with vector payoffs and coalition partition. The imputation which is based on the concept of the Owen value is proposed. We use it for the definition of stable coalition partition for bicriteria games. In three person cooperative game with 0-1 characteristic function the conditions under which the coalition partition is stable are found.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gusev, V. V., and V. V. Mazalov. "Owen-Stable Coalition Partitions in Games with Vector Payoffs." Automation and Remote Control 82, no. 3 (March 2021): 537–48. http://dx.doi.org/10.1134/s0005117921030139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Мазалов, Владимир Викторович, Vladimir Mazalov, Анна Николаевна Реттиева, and Anna Rettieva. "Application of bargaining schemes for equilibrium determination in dynamic games." Mathematical Game Theory and Applications 15, no. 2 (February 2, 2024): 75–88. http://dx.doi.org/10.17076/mgta_2023_2_76.

Повний текст джерела
Анотація:
Cooperation plays an important role in dynamic games related to resource management problems. To construct the cooperative behavior in asymmetric (when players possess different discount factors) and multicriteria (when players have vector payoff functions) dynamic games the standard approaches are not applicable. The paper presents the methods based on bargaining schemes to determine the cooperative equilibria in such games. The cooperative strategies and payoffs in asymmetric dynamic games are obtained via the Nash bargaining scheme, while for the multicriteria dynamic games the modified bargaining schemes are applied. To illustrated the presented approaches, dynamic bioresource management problems (fish wars problem) with asymmetric players and vector payoff functions is investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Absorbing games with vector payoffs"

1

Ragel, Thomas. "Approchabilité et paiement constant dans les jeux stochastiques." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD017.

Повний текст джерела
Анотація:
Cette thèse explore deux sujets distincts de la théorie des jeux.Premièrement, elle examine la propriété du paiement constant dans le contexte des jeux stochastiques finis à somme nulle, un sujet précédemment étudié dans le cadre des jeux absorbants et des jeux stochastiques à paiement escompté. Cette thèse se concentre sur le cas de l'horizon fini et valide une conjecture énoncée par Sorin, Venel et Vigeral : elle démontre que lorsque la durée du jeu est suffisamment longue, il existe une paire de stratégies approximativement optimales telles que le paiement moyen attendu à tout instant du jeu est proche de la valeur.Deuxièmement, cette thèse examine l'approchabilité des ensembles convexes dans les jeux absorbants avec des paiements vectoriels. Plus précisément, nous montrons qu'une condition nécessaire et une autre condition suffisante pour l'approchabilité faible d'un ensemble convexe, établies par Flesch, Laraki et Perchet, restent valides dans le cas général. Pour ce faire, nous étendons les résultats sur l'approchabilité de Blackwell à une configuration dans laquelle les poids de l'étape dépendent des actions passées ainsi que de l'action actuelle du joueur 1 (le joueur s'approchant). De plus, nous prouvons que la stratégie utilisée pour approcher l'ensemble convexe peut être définie en blocs de longueur fixe, ce qui lui confère une mémoire bornée et peut être mise en œuvre par un automate fini
This thesis explores two distinct topics within game theory.Firstly, it investigates the constant payoff property in the context of zero-sum finite stochastic games, a topic previously explored in the context of absorbing games and discounted stochastic games. This thesis focuses on the finite-horizon case and validates a conjecture stated by Sorin, Venel and Vigeral: it proves that when the duration of the game is large enough, there exists a pair of approximately optimal strategies such that the expected average payoff at any instant of the game is close to the value.Secondly, this thesis examines the approachability of convex sets in absorbing games with vector payoffs. Specifically, we show that a necessary condition and a different sufficient condition for weak approachability of a convex set, established by Flesch, Laraki, and Perchet, remain valid in the general case. To do so, we extend results on Blackwell approachability to a setup in which stage weights depend on past actions as well as the current action of Player 1 (the approaching player). Additionally, we prove that the strategy used to approach the convex set can be defined in blocks of fixed length, and so it has bounded memory and can be implemented by a finite automata
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Piskuric, Mojca. "Vector-Valued Markov Games." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2001. http://nbn-resolving.de/urn:nbn:de:swb:14-996482849703-81901.

Повний текст джерела
Анотація:
The subject of the thesis are vector-valued Markov Games. Chapter 1 presents the idea, that has led to the development of the theory of general stochastic games. The work of Lloyd S. Shapley is outlined, and the most important authors and bibliography are stated. Also, the motivation behind the research of vector-valued game-theoretic problems is presented. Chapter 2 develops a rigorous mathematical model of vector-valued N-person Markov games. The corresponding definitions are stated, and the notations, as well as the notion of a strategy are explained in detail. On the basis of these definitions a probability measure is constructed, in an appropriate probability space, which controls the stochastic game process. Furthermore, as in all models of stochastic control, a payoff is specified, in our case the expected discounted payoff. The principles of vector optimization are stated in Chapter 3, and the concept of optimality with recpect to some convex cone is developed. This leads to the generalization of Nash-equilibria from scalar- to vector-valued games, the so-called D-equilibria. Examples are provided to show, that this definition really is a generalization of the existing definitions for scalar-valued games. For a given convex cone D, necessary and sufficient conditions are found to show, when a strategy is also a D-equilibrium. Furthermore it is shown that a D-equilibrium in stationary strategies exists, as one could expect from the known results from the theory of scalar-valued stochastic games. The main result of this chapter is a generalization of an existing result for 2-person vector-valued Markov games to N-person Markov Games, namely that a D-equilibrium of an N-person Markov game is a subgradient of specially constructed support functions of the original payoff functions. To be able to develop solution procedures in the simplest case, that is, the 2-person zero-sum case, Chapter 4 introduces the Denardo dynamic programming formalism. In the space of all p-dimensional functions we define a dynamic programming operator H? to describe the solutions of Markov games. The first of the two main results in this chapter is the following: the expected overall payoff to player 1, f(??), for a fixed stationary strategy ??, is the fixed point of the operator H?. The second theorem then shows, that the latter result is exactly the vector-valued generalization of the famous Shapley result. These theorems are fundamental for the subsequent development of two algorithms, the successive approximations and the Hoffman-Karp algorithm. A numerical example for both algorithms is presented. Chapter 4 finishes with a discussion on other significant results, and the outline of the further research. The Appendix finally presents the main results from general Game Theory, most of which were used for developing both theoretic and algorithmic parts of this thesis
Das Thema der vorliegenden Arbeit sind vektorwertige Markov-Spiele. Im Kapitel 1 wird die Idee vorgestellt, die zur Entwicklung genereller stochastischer Spiele geführt hat. Die Arbeit von Lloyd S. Shapley wird kurz dargestellt, und die wichtigsten Autoren und Literaturquellen werden genannt. Es wird weiter die Motivation für das Studium der vektorwertigen Spiele erklärt. Kapitel 2 entwickelt ein allgemeines mathematisches Modell vektorwertiger N-Personen Markov-Spiele. Die entsprechenden Definitionen werden angegeben, und es wird auf die Bezeichnungen, sowie den Begriff einer Strategie eingegangen. Weiter wird im entsprechenden Wahrscheinlichkeitsraum ein Wahrscheinlichkeitsmaß konstruiert, das den zugrunde liegenden stochastischen Prozeß steuert. Wie bei allen Modellen gesteuerter stochastischen Prozesse wird eine Auszahlung spezifiziert, konkret der erwartete diskontierte Gesamtertrag. Im Kapitel 3 werden die Prinzipien der Vektoroptimierung erläutert. Es wird der Begriff der Optimalität bezüglich gegebener konvexer Kegel entwickelt. Dieser Begriff wird weiter benutzt, um die Definition der Nash-Gleichgewichte für skalarwertige Spiele auf unser vektorwertiges Modell, die sogenannten D-Gleichgewichte, zu erweitern. Anhand mehrerer Beispiele wird gezeigt, dass diese Definition eine Verallgemeinerung der existierenden Definitionen für skalarwertige Spiele ist. Weiter werden notwendige und hinreichende Bedingungen hinsichtlich des Optimierungskegels D angegeben, wann eine Strategie ein D-Gleichgewicht ist. Anschließend wird gezeigt, dass man sich ? wie bei Markov'schen Entscheidungsprozessen und skalarwertigen stochastischen Spielen - beim Suchen der D-Gleichgewichte auf stationäre Strategien beschränken kann. Das Hauptresultat dieses Kapitels ist die Verallgemeinerung einer schon bekannten Aussage für 2-Personen Markov-Spiele auf N-Personen Markov-Spiele: Ein D-Gleichgewicht im N-Personen Markov-Spiel ist ein Subgradient speziell konstruierter Trägerfunktionen des Gesamtertrags der Spieler. Um im einfachsten Fall der Markov-Spiele, den Zwei-Personen Nullsummenspielen, ein Lösungskonzept entwickeln zu können, wird im Kapitel 4 die Methode des Dynamischen Programmierens benutzt. Es wird der Denardo-Formalismus übernommen, um einen Operator H? im Raum aller p-dimensionalen vektorwertigen Funktionen zu entwickeln. Die Haputresultate dieses Kapitels sind zwei Sätze über optimale Lösungen, bzw. D-Gleichgewichte. Der erste Satz zeigt, dass für eine fixierte stationäre Strategie ?? der erwartete diskontierte Gesamtertrag f(??) der Fixpunkt des Operators H? ist. Anschließend zeigt der zweite Satz, dass diese Lösung genau der vektorwertigen Erweiterung des Resultats von Shapley entspricht. Anhand dieser Resultate werden nun zwei Algorithmen entwickelt: sukzessive Approximationen und Hoffman-Karp-Algorithmus. Es wird ein numerisches Beispiel für beide Algorithmen berechnet. Kapitel 4 schließt mit dem Abschnitt über weitere Resultate und Ansätze für weitere Forschung. Im Anhang werden die Hauptresultate der statischen Spieltheorie vorgestellt, viele von denen werden in der vorliegenden Arbeit benutzt
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Piskuric, Mojca. "Vector-Valued Markov Games." Doctoral thesis, Technische Universität Dresden, 2000. https://tud.qucosa.de/id/qucosa%3A24773.

Повний текст джерела
Анотація:
The subject of the thesis are vector-valued Markov Games. Chapter 1 presents the idea, that has led to the development of the theory of general stochastic games. The work of Lloyd S. Shapley is outlined, and the most important authors and bibliography are stated. Also, the motivation behind the research of vector-valued game-theoretic problems is presented. Chapter 2 develops a rigorous mathematical model of vector-valued N-person Markov games. The corresponding definitions are stated, and the notations, as well as the notion of a strategy are explained in detail. On the basis of these definitions a probability measure is constructed, in an appropriate probability space, which controls the stochastic game process. Furthermore, as in all models of stochastic control, a payoff is specified, in our case the expected discounted payoff. The principles of vector optimization are stated in Chapter 3, and the concept of optimality with recpect to some convex cone is developed. This leads to the generalization of Nash-equilibria from scalar- to vector-valued games, the so-called D-equilibria. Examples are provided to show, that this definition really is a generalization of the existing definitions for scalar-valued games. For a given convex cone D, necessary and sufficient conditions are found to show, when a strategy is also a D-equilibrium. Furthermore it is shown that a D-equilibrium in stationary strategies exists, as one could expect from the known results from the theory of scalar-valued stochastic games. The main result of this chapter is a generalization of an existing result for 2-person vector-valued Markov games to N-person Markov Games, namely that a D-equilibrium of an N-person Markov game is a subgradient of specially constructed support functions of the original payoff functions. To be able to develop solution procedures in the simplest case, that is, the 2-person zero-sum case, Chapter 4 introduces the Denardo dynamic programming formalism. In the space of all p-dimensional functions we define a dynamic programming operator H? to describe the solutions of Markov games. The first of the two main results in this chapter is the following: the expected overall payoff to player 1, f(??), for a fixed stationary strategy ??, is the fixed point of the operator H?. The second theorem then shows, that the latter result is exactly the vector-valued generalization of the famous Shapley result. These theorems are fundamental for the subsequent development of two algorithms, the successive approximations and the Hoffman-Karp algorithm. A numerical example for both algorithms is presented. Chapter 4 finishes with a discussion on other significant results, and the outline of the further research. The Appendix finally presents the main results from general Game Theory, most of which were used for developing both theoretic and algorithmic parts of this thesis.
Das Thema der vorliegenden Arbeit sind vektorwertige Markov-Spiele. Im Kapitel 1 wird die Idee vorgestellt, die zur Entwicklung genereller stochastischer Spiele geführt hat. Die Arbeit von Lloyd S. Shapley wird kurz dargestellt, und die wichtigsten Autoren und Literaturquellen werden genannt. Es wird weiter die Motivation für das Studium der vektorwertigen Spiele erklärt. Kapitel 2 entwickelt ein allgemeines mathematisches Modell vektorwertiger N-Personen Markov-Spiele. Die entsprechenden Definitionen werden angegeben, und es wird auf die Bezeichnungen, sowie den Begriff einer Strategie eingegangen. Weiter wird im entsprechenden Wahrscheinlichkeitsraum ein Wahrscheinlichkeitsmaß konstruiert, das den zugrunde liegenden stochastischen Prozeß steuert. Wie bei allen Modellen gesteuerter stochastischen Prozesse wird eine Auszahlung spezifiziert, konkret der erwartete diskontierte Gesamtertrag. Im Kapitel 3 werden die Prinzipien der Vektoroptimierung erläutert. Es wird der Begriff der Optimalität bezüglich gegebener konvexer Kegel entwickelt. Dieser Begriff wird weiter benutzt, um die Definition der Nash-Gleichgewichte für skalarwertige Spiele auf unser vektorwertiges Modell, die sogenannten D-Gleichgewichte, zu erweitern. Anhand mehrerer Beispiele wird gezeigt, dass diese Definition eine Verallgemeinerung der existierenden Definitionen für skalarwertige Spiele ist. Weiter werden notwendige und hinreichende Bedingungen hinsichtlich des Optimierungskegels D angegeben, wann eine Strategie ein D-Gleichgewicht ist. Anschließend wird gezeigt, dass man sich ? wie bei Markov'schen Entscheidungsprozessen und skalarwertigen stochastischen Spielen - beim Suchen der D-Gleichgewichte auf stationäre Strategien beschränken kann. Das Hauptresultat dieses Kapitels ist die Verallgemeinerung einer schon bekannten Aussage für 2-Personen Markov-Spiele auf N-Personen Markov-Spiele: Ein D-Gleichgewicht im N-Personen Markov-Spiel ist ein Subgradient speziell konstruierter Trägerfunktionen des Gesamtertrags der Spieler. Um im einfachsten Fall der Markov-Spiele, den Zwei-Personen Nullsummenspielen, ein Lösungskonzept entwickeln zu können, wird im Kapitel 4 die Methode des Dynamischen Programmierens benutzt. Es wird der Denardo-Formalismus übernommen, um einen Operator H? im Raum aller p-dimensionalen vektorwertigen Funktionen zu entwickeln. Die Haputresultate dieses Kapitels sind zwei Sätze über optimale Lösungen, bzw. D-Gleichgewichte. Der erste Satz zeigt, dass für eine fixierte stationäre Strategie ?? der erwartete diskontierte Gesamtertrag f(??) der Fixpunkt des Operators H? ist. Anschließend zeigt der zweite Satz, dass diese Lösung genau der vektorwertigen Erweiterung des Resultats von Shapley entspricht. Anhand dieser Resultate werden nun zwei Algorithmen entwickelt: sukzessive Approximationen und Hoffman-Karp-Algorithmus. Es wird ein numerisches Beispiel für beide Algorithmen berechnet. Kapitel 4 schließt mit dem Abschnitt über weitere Resultate und Ansätze für weitere Forschung. Im Anhang werden die Hauptresultate der statischen Spieltheorie vorgestellt, viele von denen werden in der vorliegenden Arbeit benutzt.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tichá, Michaela. "Vícekriteriální hry." Doctoral thesis, Vysoká škola ekonomická v Praze, 2015. http://www.nusl.cz/ntk/nusl-261930.

Повний текст джерела
Анотація:
Theory of multicriteria games is a special field of game theory, when one or more players have at least two payoff functions and want to maximize simultaneously. The work introduces a number of new findings. It examined the concept of finding equilibria in pure strategies in noncooperative multicriteria game. It is possible to find all the equilibria in pure strategies by full search and solving two linear programs for each point. Furthermore, two linear programs are formulated for verifying that a selected point is the equilibrium of the game or not. In the noncooperative games is also introduced the concept that with knowledge of the equilibrium of bimatrix game determines preferences of the players. Although finding the equilibrium point of the bimatrix game is nonlinear problem, finding the preferences is linear problem. The latest findings in the noncooperative games is a generalization of the concept that solves multicriteria game by assigning weights to each criterion of each player. The work demonstrates that it may not be necessarily linear weights, but it can be more general function that describes the player's preference. The remaining part is devoted to knowledge in cooperative games. There is considered that the players know their preferences and are able to express them by weights. The game with known preferences is defined and solved with the use of bargaining theory. Then it is generalized to a case where players have more payoff functions, from which they can choose. Finally, the multicriteria case of voting game is defined. It is designed completely new concept, which selects the winning coalition in the voting game. This concept is then applied to the real situation after the elections to the Chamber of Deputies in 2013.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tichá, Michaela. "Aplikace teorie her dvou hráčů v ekonomii." Master's thesis, Vysoká škola ekonomická v Praze, 2011. http://www.nusl.cz/ntk/nusl-165050.

Повний текст джерела
Анотація:
The concern of this thesis is to discuss different applications of two-player game theory in economics. It is divided into two main chapters - the theoretical part and the practical part. The theoretical part is composed of the classical game theory and the game theory with vector payoffs. In the first instance basic ideas of the classical game theory is introduced. Elaboration of the duopoly model follows. Subsequently basic ideas of the theory with vector payoffs and one of the solution concepts of game theory with vector payo s are included. The practical part follows. This part contains two examples which are the real application of the concept described in the theoretical part.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Absorbing games with vector payoffs"

1

Kuzyutin, Denis, Yaroslavna Pankratova, and Roman Svetlov. "A-Subgame Concept and the Solutions Properties for Multistage Games with Vector Payoffs." In Static & Dynamic Game Theory: Foundations & Applications, 85–102. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23699-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"Repeated games with vector payoffs." In Game Theory, 578–630. 2nd ed. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108636049.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"Chapter 11: Games with Vector Payoffs: Approachability and Attainability." In Game Theory with Engineering Applications, 107–20. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2016. http://dx.doi.org/10.1137/1.9781611974287.ch11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Absorbing games with vector payoffs"

1

Hawthorne, Bryant D., and Jitesh H. Panchal. "Policy Design for Sustainable Energy Systems Considering Multiple Objectives and Incomplete Preferences." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70426.

Повний текст джерела
Анотація:
The focus of this paper is on policy design problems related to large scale complex systems such as the decentralized energy infrastructure. In such systems, the policy affects the technical decisions made by stakeholders (e.g., energy producers), and the stakeholders are coordinated by market mechanisms. The decentralized decisions of the stakeholders affect the sustainability of the overall system. Hence, appropriate design of policies is an important aspect of achieving sustainability. The state-of-the-art computational approach to policy design problem is to model them as bilevel programs, specifically mathematical programs with equilibrium constraints. However, this approach is limited to single-objective policy design problems and is based on the assumption that the policy designer has complete information of the stakeholders’ preferences. In this paper, we take a step towards addressing these two limitations. We present a formulation based on the integration of multi-objective mathematical programs with equilibrium constraints with games with vector payoffs, and Nash equilibra of games with incomplete preferences. The formulation, along with a simple solution approach, is presented using an illustrative example from the design of feed-in-tariff (FIT) policy with two stakeholders. The contributions of this paper include a mathematical formulation of the FIT policy, the extension of computational policy design problems to multiple objectives, and the consideration of incomplete preferences of stakeholders.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії