Добірка наукової літератури з теми "Absolute Navigation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Absolute Navigation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Absolute Navigation"

1

Martín Mur, T., J. M. Dow, and C. García Martínez. "Relative and absolute navigation in earth orbit." Advances in Space Research 23, no. 4 (January 1999): 667–72. http://dx.doi.org/10.1016/s0273-1177(99)00141-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Jinshan, Jinkui Chu, Ran Zhang, and Kun Tong. "Brain-Inspired Navigation Model Based on the Distribution of Polarized Sky-Light." Machines 10, no. 11 (November 4, 2022): 1028. http://dx.doi.org/10.3390/machines10111028.

Повний текст джерела
Анотація:
This paper proposes a brain-inspired navigation model based on absolute heading for the autonomous navigation of unmanned platforms. The proposed model combined the sand ant’s strategy of acquiring absolute heading from the sky environment and the brain-inspired navigation system, which is closer to the navigation mechanism of migratory animals. Firstly, a brain-inspired grid cell network model and an absolute heading-based head-direction cell network model were constructed based on the continuous attractor network (CAN). Then, an absolute heading-based environmental vision template was constructed using the line scan intensity distribution curve, and the path integration error was corrected using the environmental vision template. Finally, a topological cognitive node was constructed according to the grid cell, the head direction cell, the environmental visual template, the absolute heading information, and the position information. Numerous topological nodes formed the absolute heading-based topological map. The model is a topological navigation method not limited to strict geometric space scale, and its position and absolute heading are decoupled. The experimental results showed that the proposed model is superior to the other methods in terms of the accuracy of visual template recognition, as well as the accuracy and topology consistency of the constructed environment topology map.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ashkenazi, V., and T. Moore. "The Navigation of Navigation Satellites." Journal of Navigation 39, no. 3 (September 1986): 377–93. http://dx.doi.org/10.1017/s0373463300000850.

Повний текст джерела
Анотація:
The orbits of navigation satellites have to be determined very precisely. The Transit broadcast (predicted) ephemeris, which is computed by the US Navy Astronautics Group, has an estimated orbital positional accuracy of the order of 25 m in each direction. By contrast, the precise (post-mission) ephemeris, which is determined by the US Defense Mapping Agency, from tracking data collected by the global TRANET network, reaches accuracies of the order of 10 m. These orbital precisions affect the navigation and (static) positioning accuracies which can be achieved by users of the system. The same is true of the GPS system which will become fully operational some time during 1988—89. However, unlike Transit, GPS will allow quasi-instantaneous absolute positioning (i.e. real-time navigation) as well as very high relative positioning accuracies. The latter will be obtained by using special operational and processing techniques (e.g. ‘differential GPS’ and ‘GPS interferometry’).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Devyatisilny, A. S. "Inertial navigation method based on absolute acceleration measurements." Technical Physics 48, no. 12 (December 2003): 1598–99. http://dx.doi.org/10.1134/1.1634685.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ilyas, Muhammad, Kuk Cho, Sangdeok Park, and Seung-Ho Baeg. "Absolute Navigation Information Estimation for Micro Planetary Rovers." International Journal of Advanced Robotic Systems 13, no. 2 (January 2016): 42. http://dx.doi.org/10.5772/62250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Van Pham, Bach, Simon Lacroix, and Michel Devy. "Vision-based absolute navigation for descent and landing." Journal of Field Robotics 29, no. 4 (January 12, 2012): 627–47. http://dx.doi.org/10.1002/rob.21406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Knuuttila, O., A. Kestilä, and E. Kallio. "Synthetic photometric landmarks used for absolute navigation near an asteroid." Aeronautical Journal 124, no. 1279 (May 13, 2020): 1281–300. http://dx.doi.org/10.1017/aer.2020.41.

Повний текст джерела
Анотація:
AbstractThe need for autonomous location estimation in the form of optical navigation is an essential requirement for forthcoming deep space missions. While crater-based navigation might work well with larger bodies littered with craters, small sub-kilometer bodies do not necessarily have them. We have developed a new pose estimation method for absolute navigation based on photometric local feature extraction techniques thus making it suitable for missions that cannot rely on craters. The algorithm can be used by a navigation filter in conjunction with relative pose estimation such as visual odometry for additional robustness and accuracy. To estimate the position and orientation of the spacecraft in the asteroid-fixed coordinate frame, it uses navigation camera images in combination with other readily available information, such as orientation relative to the stars and the current time for an initial estimate of the asteroid rotation state. Evaluation of the algorithm when using different feature extractors is performed, on one hand, using Monte Carlo simulations and, on the other hand, using actual images taken by the Rosetta spacecraft orbiting the comet 67P/Churyumov–Gerasimenko. Our analysis, where four different feature extraction methods (AKAZE, ORB, SIFT, SURF) were compared, showed that AKAZE is most promising in terms of stability and accuracy.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Huang, Lan, Jianmei Song, Chunyan Zhang, and Gaohua Cai. "Observable modes and absolute navigation capability for landmark-based IMU/Vision Navigation System of UAV." Optik 202 (February 2020): 163725. http://dx.doi.org/10.1016/j.ijleo.2019.163725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kuo, C. T., Y. T. Tien, and K. W. Chiang. "VISUAL-BASED INTEGRATED NAVIGATION SYSTEM APPLIED TO A SIMULATION OF LUNAR MODULE LANDING." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B1-2020 (August 6, 2020): 305–13. http://dx.doi.org/10.5194/isprs-archives-xliii-b1-2020-305-2020.

Повний текст джерела
Анотація:
Abstract. With the development of space technology, more and more lunar researches are performed by different countries. For the lunar landing mission success, the lunar landing module should equip with advanced Positioning and Orientation System (POS) for the navigation requirements. For the pinpoint landing mission formulated by NASA, a good POS with error less than 100 meters is needed in order to make the lunar module land safely at the exact destination on lunar surface. However, the existing technologies for lunar navigation, such as satellite positioning and star tracker, have poor performance for the navigation requirements. The visual-based positioning technology is an alternative way to make sure a lunar landing module reaches the destination. There are two types of visual-based positioning technology, absolute and relative navigation. The relative navigation system can provide the solution at a higher rate, but the error would accumulate over time. On the contrary, the absolute navigation could provide an initial position or updates of position and attitude for relative navigation. Thus, the integrated navigation system from those two methods can take advantage of both stand-alone systems. On the other hand, the Inertial Navigation System (INS) can help it overcome the disadvantage that the images much closer to the lunar surface are not available. This study shows an integrated navigation system that integrates a visual-based navigation system and an INS, which is implemented in a simulated lunar surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ou, Yangwei, and Hongbo Zhang. "Observability-based Mars Autonomous Navigation Using Formation Flying Spacecraft." Journal of Navigation 71, no. 1 (August 1, 2017): 21–43. http://dx.doi.org/10.1017/s0373463317000510.

Повний текст джерела
Анотація:
This paper concentrates on designing an autonomous navigation scheme for Mars exploration. In this scheme, formation flying spacecraft are used to realise absolute orbit determination when orbiting around Mars. Inertial Line-Of-Sight (LOS) vectors from “deputy” spacecraft to the “chief” are measured using radio cross-link, optical devices and attitude sensors. Since the system's observability is closely related to the navigation performance, an analytical approach is proposed to optimise the observability. In this method, the gravity gradient tensor difference is chosen as the performance index to optimise two navigation scenarios. When there is one deputy flying around the chief, optimal parameters are obtained by solving the constrained optimisation problem. When a second deputy is added into the formation, the optimal configuration is also obtained. These results reveal that the observability is mainly determined by the magnitude of the in-track and cross-track distances in the configuration. An Extended Kalman Filter (EKF) is used to estimate the position and velocity of the chief. The results of a navigation simulation confirms that adding more deputies can significantly improve the navigational performance.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Absolute Navigation"

1

Bedada, Tullu Besha. "Absolute geopotential height system for Ethiopia." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4726.

Повний текст джерела
Анотація:
This study used airborne gravity data, the 2008 Earth Gravity Model (EGM08) and Shuttle Radar Topographic Mission (SRTM) digital elevation data in a ‘Remove-Compute-Restore’ process to determine absolute vertical reference system for Ethiopia. This gives a geopotential height at any isolated field point where there is a Global Navigation Satellite System (GNSS) measurement without reference to a vertical network or a regional datum point. Previously, height was determined conventionally by connecting the desired field point physically to a nearby bench mark of a vertical network using co-located measurements of gravity and spirit levelling. With the use of precise GNSS positioning and a gravity model this method becomes obsolesce. The new approach uses the ‘Remove-Restore’ process to eliminate longer to shorter wavelengths from the measured gravity data using EGM08 and geometrical and condensed gravity models of the SRTM data. This provides small, smooth and localised residuals so that the interpolation and integration involved is reliable and the Stokes-like integral can be legitimately restricted to a spherical cap. A very fast, stable and accurate computational algorithm has been formulated by combining ‘hedgehog’ and ‘multipoint’ models in order to make tractable an unavoidably huge computational task required to remove the effects of about 1.5 billion! SRTM topographic mass elements representing Ethiopia and its immediate surroundings at 92433 point airborne gravity observations. The compute stage first uses an iterative Fast Fourier Transform (FFT) to predict residual gravity at aircraft height as a regular grid on to the surface of the ellipsoidal Earth and then it used a Fourier operation equivalent to Stokes’ integral to transform the localised gravity disturbance to residual potential. The restore process determines the geopotential number on or above the Earth’s surface where practitioners need it by restoring the potential effects of the removed masses. The accuracy of the geopotential number computed from gravity and topography was evaluated by comparing it with the one derived directly from EGM08 and precise geodetic levelling. The new model is in a good agreement across 100 km baseline with a standard deviation of 56 10−2 2 −2 × m s and 39 10−2 2 −2 × m s relative to EGM08 and levelling, respectively ( 10−2 2 −2 m s is approximately equivalent to 1mm of height). The new method provides an absolute geopotential height of a point on or above the Earth’s surface in a global sense by interpolating from geopotential models prepared as the digital grids carried in a chip for use with the GNSS receiver in the field.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hasnain, Syed Saad. "Navigation of Unmanned Aerial Vehicles Using Image Processing." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105628.

Повний текст джерела
Анотація:
The purpose of this thesis is to investigate the possibility of using aerial or satellite images or eventually digital elevation models in order to localize the UAV helicopter in the environment. Matching techniques are investigated in order to match the available on-board image of the area with the live images acquired by the on-board video camera. The problem is interesting because it can provide a redundancy for the UAV navigation system which is based only on GPS. The thesis is in the context of the development of an integrated system for navigation using image sequences from an aircraft. The system is composed of relative position estimation, which computes the current position of the helicopter by accumulating relative displacement extracted from successive aerial images. These successive aerial images are then matched using certain image matching techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Huff, Joel E. "Absolute and Relative Navigation of an sUAS Swarm Using Integrated GNSS, Inertial and Range Radios." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1535040500005309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kopfinger, André, and Daniel Ahlsén. "Identification of absolute orientation using inertial measurement unit." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-39713.

Повний текст джерела
Анотація:
Because of the limitation of GPS indoors there is a demand for alternative methods to accurately determine both position and orientation. Previous attempts at positional tracking has required an infrastructure of hardware and sensors to provide the path of an object or person. This is not a mobile solution to a mobile problem. This project aims to answer the question if it is possible to use an Inertial measurement unit sensor for this application. It will also create a prototype device that will demonstrate the capabilities of the proposed method. The goal of the project is to reach an accuracy of ±20 cm for position and ±5 degrees for rotation. A Kalman filter will be used to filter the output from the sensor in order to get more stable and accurate readings. The results show that it is possible to determine position of ±20 cm up to 100 cm with the proposed method. An inertial measurement unit is capable of measuring rotation accuracy of ±5 degrees and a prototype has been designed and manufactured to demonstrate the method.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Simard, Bilodeau Vincent. "Navigation autonome par imagerie de terrain pour l'exploration planétaire." Thèse, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/7964.

Повний текст джерела
Анотація:
Abstract: The interest of major space agencies in the world for vision sensors in their mission designs has been increasing over the years. Indeed, cameras offer an efficient solution to address the ever-increasing requirements in performance. In addition, these sensors are multipurpose, lightweight, proven and a low-cost technology. Several researchers in vision sensing for space application currently focuse on the navigation system for autonomous pin-point planetary landing and for sample and return missions to small bodies. In fact, without a Global Positioning System (GPS) or radio beacon around celestial bodies, high-accuracy navigation around them is a complex task. Most of the navigation systems are based only on accurate initialization of the states and on the integration of the acceleration and the angular rate measurements from an Inertial Measurement Unit (IMU). This strategy can track very accurately sudden motions of short duration, but their estimate diverges in time and leads normally to high landing error. In order to improve navigation accuracy, many authors have proposed to fuse those IMU measurements with vision measurements using state estimators, such as Kalman filters. The first proposed vision-based navigation approach relies on feature tracking between sequences of images taken in real time during orbiting and/or landing operations. In that case, image features are image pixels that have a high probability of being recognized between images taken from different camera locations. By detecting and tracking these features through a sequence of images, the relative motion of the spacecraft can be determined. This technique, referred to as Terrain-Relative Relative Navigation (TRRN), relies on relatively simple, robust and well-developed image processing techniques. It allows the determination of the relative motion (velocity) of the spacecraft. Despite the fact that this technology has been demonstrated with space qualified hardware, its gain in accuracy remains limited since the spacecraft absolute position is not observable from the vision measurements. The vision-based navigation techniques currently studied consist in identifying features and in mapping them into an on-board cartographic database indexed by an absolute coordinate system, thereby providing absolute position determination. This technique, referred to as Terrain-Relative Absolute Navigation (TRAN), relies on very complex Image Processing Software (IPS) having an obvious lack of robustness. In fact, these software depend often on the spacecraft attitude and position, they are sensitive to illumination conditions (the elevation and azimuth of the Sun when the geo-referenced database is built must be similar to the ones present during mission), they are greatly influenced by the image noise and finally they hardly manage multiple varieties of terrain seen during the same mission (the spacecraft can fly over plain zone as well as mountainous regions, the images may contain old craters with noisy rims as well as young crater with clean rims and so on). At this moment, no real-time hardware-in-the-loop experiment has been conducted to demonstrate the applicability of this technology to space mission. The main objective of the current study is to develop autonomous vision-based navigation algorithms that provide absolute position and surface-relative velocity during the proximity operations of a planetary mission (orbiting phase and landing phase) using a combined approach of TRRN and TRAN technologies. The contributions of the study are: (1) reference mission definition, (2) advancements in the TRAN theory (image processing as well as state estimation) and (3) practical implementation of vision-based navigation.
Résumé: L’intérêt des principales agences spatiales envers les technologies basées sur la vision artificielle ne cesse de croître. En effet, les caméras offrent une solution efficace pour répondre aux exigences de performance, toujours plus élevées, des missions spatiales. De surcroît, ces capteurs sont multi-usages, légers, éprouvés et peu coûteux. Plusieurs chercheurs dans le domaine de la vision artificielle se concentrent actuellement sur les systèmes autonomes pour l’atterrissage de précision sur des planètes et sur les missions d’échantillonnage sur des astéroïdes. En effet, sans système de positionnement global « Global Positioning System (GPS) » ou de balises radio autour de ces corps célestes, la navigation de précision est une tâche très complexe. La plupart des systèmes de navigation sont basés seulement sur l’intégration des mesures provenant d’une centrale inertielle. Cette stratégie peut être utilisée pour suivre les mouvements du véhicule spatial seulement sur une courte durée, car les données estimées divergent rapidement. Dans le but d’améliorer la précision de la navigation, plusieurs auteurs ont proposé de fusionner les mesures provenant de la centrale inertielle avec des mesures d’images du terrain. Les premiers algorithmes de navigation utilisant l’imagerie du terrain qui ont été proposés reposent sur l’extraction et le suivi de traits caractéristiques dans une séquence d’images prises en temps réel pendant les phases d’orbite et/ou d’atterrissage de la mission. Dans ce cas, les traits caractéristiques de l’image correspondent à des pixels ayant une forte probabilité d’être reconnus entre des images prises avec différentes positions de caméra. En détectant et en suivant ces traits caractéristiques, le déplacement relatif du véhicule (la vitesse) peut être déterminé. Ces techniques, nommées navigation relative, utilisent des algorithmes de traitement d’images robustes, faciles à implémenter et bien développés. Bien que cette technologie a été éprouvée sur du matériel de qualité spatiale, le gain en précision demeure limité étant donné que la position absolue du véhicule n’est pas observable dans les mesures extraites de l’image. Les techniques de navigation basées sur la vision artificielle actuellement étudiées consistent à identifier des traits caractéristiques dans l’image pour les apparier avec ceux contenus dans une base de données géo-référencées de manière à fournir une mesure de position absolue au filtre de navigation. Cependant, cette technique, nommée navigation absolue, implique l’utilisation d’algorithmes de traitement d’images très complexes souffrant pour le moment des problèmes de robustesse. En effet, ces algorithmes dépendent souvent de la position et de l’attitude du véhicule. Ils sont très sensibles aux conditions d’illuminations (l’élévation et l’azimut du Soleil présents lorsque la base de données géo-référencée est construite doit être similaire à ceux observés pendant la mission). Ils sont grandement influencés par le bruit dans l’image et enfin ils supportent mal les multiples variétés de terrain rencontrées pendant la même mission (le véhicule peut survoler autant des zones de plaine que des régions montagneuses, les images peuvent contenir des vieux cratères avec des contours flous aussi bien que des cratères jeunes avec des contours bien définis, etc.). De plus, actuellement, aucune expérimentation en temps réel et sur du matériel de qualité spatiale n’a été réalisée pour démontrer l’applicabilité de cette technologie pour les missions spatiales. Par conséquent, l’objectif principal de ce projet de recherche est de développer un système de navigation autonome par imagerie du terrain qui fournit la position absolue et la vitesse relative au terrain d’un véhicule spatial pendant les opérations à basse altitude sur une planète. Les contributions de ce travail sont : (1) la définition d’une mission de référence, (2) l’avancement de la théorie de la navigation par imagerie du terrain (algorithmes de traitement d’images et estimation d’états) et (3) implémentation pratique de cette technologie.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Komárek, Josef. "Vývoj a testování zařízení pro absolutní kalibraci GNSS antén." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-390185.

Повний текст джерела
Анотація:
The purpose of this diploma thesis is testing motion of the device for GNSS antenna calibration according to added weight to the device’s transom. First part of this thesis is devoted to introduction into GNSS antenna calibration problematics. The thesis deals further with development of the software used to process photogrammetric images that have been taken during testing measurement. The rest of the thesis is focused to process and evaluate the measurement. The result will be implemented into observation model used during calibration measurement. The period, during the device is still, will be corrected according to the result that has been obtained from the measurement.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Harant, Josef. "Elektronický snímač letových parametrů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217797.

Повний текст джерела
Анотація:
This diploma thesis deals with theoretical analysis, design and practical solution of flight statements electronic sensor. This device is primarily intended for measuring telemetry data during aerobatic flights. Theoretical part contains fundamentals of GPS and inertial navigation systems. Design of the device is divided into three parts - design of block structure, construction and software for the measuring device. The final realization is made with respect to minimal system requirements and to possible future extensibility for wider usage spectrum.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pham, Bach Van. "Système de navigation absolue pour l'atterrissage d'une sonde interplanétaire." Toulouse, ISAE, 2010. https://tel.archives-ouvertes.fr/tel-00559626.

Повний текст джерела
Анотація:
Les missions d'exploration planétaires dans l'avenir demandent une grande précision sur la position de l'atterrissage à la surface de Mars, de la Lune ou d'astéroïdes. Les technologies utilisées dans les sondes interplanétaires récentes ou dans le futur proche sont encore loin de cette capacité : par exemple, le robot Mars Science Laboratory, qui sera lancé en 2011, se posera en un endroit qui n'est connu qu'avec une précision de l'ordre de 10 km. Le premier objectif de cette thèse est de proposer un système de navigation absolue pour les sondes interplanétaires lunaires ou martiennes qui se base sur la vision, nommé "Landstel". Contrairement aux systèmes de navigation absolue qui se basent sur la détection et l'appariement des cratères ou directement sur l'intensité des images perçues, Landstel exploite la topologie des amers détectés dans les images. Par conséquent, il n'est pas restreint à aucune surface particulière. Landstel montre aussi une grande robustesse par rapport aux variations de condition d'illumination et au bruit des capteurs embarqués, et ne requiert que très peu de mémoire. Le deuxième objectif de la thèse est de proposer un cadre pour intégrer Landstel dans un système de navigation complète, appelé VIBAN, qui comprend des capteurs inertiels et/ou un système d'odométrie visuelle. La position absolue estimée par Landstel est d'abord validée avec les appariements de l'odomètre visuel, puis elle est combinée avec l'estimation de l'odomètre visuel avec un filtre de Kalman pour améliorer sa précision. La position mise à jour est ensuite retournée à Landstel pour accélérer le système de navigation en réduisant la zone de recherche des appariements et aussi le taux de fausses estimations. Finalement, les amers suivis par l'odomètre visuel sont fournis à Landstel pour augmenter le nombre des appariements. De très nombreuses expériences avec PANGU, un simulateur de terrain, et avec des images réelles, valident le système proposé.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pham, Bach Van. "Vision-based absolute navigation for interplanetary spacecraft descent and landing. Système de navigation absolue pour l'atterissage d'une sonde interplanétaire." Phd thesis, 2010. http://tel.archives-ouvertes.fr/tel-00559626.

Повний текст джерела
Анотація:
Future space exploration missions aim at landing and returning samples from moon, planets and asteroids. Autonomous precision landing capabilities will have to reach pre-selected landing sites which may lie near hazardous terrain features such as craters, rocks. However, past and current robotic landers are still far from this ability. For example, the rover Mars Science Laboratory, to be launched in 2011, is programmed to land on a position with an error of several kilometers. The first goal of thesis is to propose a vision-based absolute navigation system, named "Landstel", for interplanetary landers, especially for missions on Mars or on Moon. Contrary to current absolute navigation systems proposed in the literature which rely either on the usage of image intensity or on specific surface landmarks like craters, Landstel employs the topological property of generic surface landmarks. As a result, Landstel is not restricted to any particular terrain. Landstel also exhibits a high robustness with respect to illumination variations and sensor noise. In addition, the use of surface landmarks allows Landstel to drastically reduce the required onboard memory. Besides Landstel, the second goal of the thesis is to propose a framework to integrate Landstel inside a complete navigation system called VIBAN, including absolute localization, inertial navigation and/or visual odometry. The absolute position estimate returned by Landstel is firstly verified using the visual odometry tracked points. Then, the verified position estimate is fused with the velocity estimate of the visual odometry in a Kalman filter to improve the estimated position. The updated position is later returned back to Landstel which increases the speed of Landstel by focusing the search for matches and reduces the probability of false estimations. Finally, the points tracked by visual odometry are fed to Landstel to augment the number of matches returned by Landstel. Besides these interests, the integrat ion scheme does not impose any constraints on the spacecraft velocity or angular rate. Extensive experiments with PANGU, a surface simulator, and with Earth images validate the proposed system.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Absolute Navigation"

1

Performance Evaluation of Precise Absolute Navigation (PAN) Solutions Over Four Test Courses. Storming Media, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gander, Joseph. Glory of Her Sacred Majesty Queen Anne, in the Royal Navy, and Her Absolute Sovereignty As Empress of the Sea, Asserted and Vindicated. Also a Treatise of Navigation and Commerce: With Remarks on the Royal Hospital at Greenwich. Creative Media Partners, LLC, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Spence, John C. H. Lightspeed. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198841968.001.0001.

Повний текст джерела
Анотація:
This book tells the human story of one of mankind’s greatest intellectual adventures—how we understood that light travels at a finite speed, so that when we look up at the stars we are looking back in time. And how the search for an absolute frame of reference in the universe led inexorably to Einstein’s famous equation E = mc2 for the energy released by nuclear weapons which also powers our sun and the stars. From the ancient Greeks measuring the distance to the Sun, to today’s satellite navigation and Einstein’s theories, the book takes the reader on a gripping historical journey. How Galileo with his telescope discovered the moons of Jupiter and used their eclipses as a global clock, allowing travellers to find their longitude. How Roemer, noticing that the eclipses were sometimes late, used this delay to obtain the first measurement of the speed of light, which takes eight minutes to get to us from the Sun. From the international collaborations to observe the transits of Venus, including Cook’s voyage to Australia, to the extraordinary achievements of Young and Fresnel, whose discoveries eventually taught us that light travels as a wave but arrives as a particle, and the quantum weirdness which follows. In the nineteenth century we find Faraday and Maxwell, struggling to understand how light can propagate through the vacuum of space unless it is filled with a ghostly vortex Aether foam. We follow the brilliantly gifted experimentalists Hertz, discoverer of radio, Michelson with his search for the Aether wind, and Foucault and Fizeau with their spinning mirrors and lightbeams across the rooftops of Paris. The difficulties of sending messages faster than light, using quantum entanglement, and the reality of the quantum world conclude this saga.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Absolute Navigation"

1

Blackman, Sue. "Scene Navigation and Physics." In Unity for Absolute Beginners, 103–52. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6778-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lewis, Rory. "Table Views, Navigation, and Arrays." In iPhone and iPad Apps for Absolute Beginners, 235–59. Berkeley, CA: Apress, 2010. http://dx.doi.org/10.1007/978-1-4302-2701-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sirish Kumar, P., and V. B. S. Srilatha Indira Dutt. "Absolute Point Positioning Algorithm for Navigation Applications." In Lecture Notes in Electrical Engineering, 447–61. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4971-5_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mammarella, Marco, Marcos Avilés Rodrigálvarez, Andrea Pizzichini, and Ana María Sánchez Montero. "Advanced Optical Terrain Absolute Navigation for Pinpoint Lunar Landing." In Advances in Aerospace Guidance, Navigation and Control, 419–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19817-5_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yun, JaeMu, EunTae Lyu, and JangMyung Lee. "Image-Based Absolute Positioning System for Mobile Robot Navigation." In Lecture Notes in Computer Science, 261–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11815921_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lutz, Alexander, and Axel Lachmeyer. "SciPPPer: Automatic Lock-Passage for Inland Vessels – Practical Results Focusing on Control Performance." In Lecture Notes in Civil Engineering, 959–68. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_85.

Повний текст джерела
Анотація:
AbstractNavigating through locks is one of the most challenging tasks that skippers have to perform in inland navigation. Typical dimensions of a ship (width = 11.45 m) and a lock (width = 12 m) result in an error margin of less than 30 cm to the left and to the right of the ship when navigating within a lock chamber. Typical inland vessels on European waters have a length of 82 to 186 m. The wheel house on cargo vessels is located close to the stern of the vessel. This leads to low visibility of the bow in the lock chamber. In order to cope with this issue, a deck hand monitors the bow and announces distances to the skipper via radio. The quality of this information depends on the deck hand’s ability to judge distances correctly and is prone to error. This highly demanding maneuver needs to be performed up to 15 times per day. Each lock passage can take up to 30 minutes. The research project SciPPPer aims at automating this complex navigational task.The German acronym SciPPPer stands for Schleusenassistenzsystem basierend auf PPP und VDES für die Binnenschifffahrt – lock assistant system based on PPP and VDES for inland navigation. The idea is to fully automate the navigation into and out of a lock using high-precision GNSS (Global Navigation Satellite System) with PPP (precise point positioning) correction data which is transmitted from shore to ship using VDES (VHF Data Exchange System), an extension to AIS (Automatic Identification System). This absolute measurement data is complemented by relative measurement data using LiDAR and automotive RADAR and fused with inertial measurement data delivered by a mechanical gyro system. Apart from the challenge of precisely measuring the position and orientation of the vessel within the lock chamber, the control task poses an interesting problem as well. This contribution introduces both, the measuring and the control problem. However, the focus lies on the results of the control performance that was achieved on a full-bridge simulator as well as during real-world trials. A full-bridge simulator was used in order to test the control strategy and its algorithms safely. A number of different actuator configurations were investigated. Typical inland cargo vessels use one or two propellers with Kort nozzle and a twin rudder behind each propeller and a 360° turnable bow thruster. Typical inland passenger vessels use several (2–4) 360° turnable rudder propellers as main propulsion as well as a 360° turnable bow thruster or a classical tunnel thruster which can only apply forces to starboard or portside. These typical configurations were examined by simulation. The real-world trials were performed on a passenger vessel with three rudder propellers as main propulsion as well as a classical tunnel bow thruster acting left and right.This contribution presents the results of the simulator study as well as the real-world trials in terms of control performance. It explains specific challenges due to the navigation within an extremely confined space. The contribution concludes with lessons learned as well as an outlook focusing on the potential of the introduction of such a system to the inland navigation market.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cui, Xiaozhun, Hong Mi, Qingjun Liu, and Yi Li. "Absolute Calibration Algorithm of RNSS Signal Transmission Channel of Navigation Satellite Based Multi-rate Digital Signal Processing." In Lecture Notes in Electrical Engineering, 263–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29193-7_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wright-Costello, Beth. "The “Absolute Model” or “Disposable Commodities”? Navigating Charter School Teachers' Roles under Neoliberal Policy Regimes." In Belonging in Changing Educational Spaces, 17–35. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003219033-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Howard, Penny McCall. "From ‘where am I?’ to ‘where is that?’ Rethinking navigation." In Environment, Labour and Capitalism at Sea. Manchester University Press, 2017. http://dx.doi.org/10.7228/manchester/9781784994143.003.0005.

Повний текст джерела
Анотація:
Chapter Four continues the discussion of techniques and technologies with a focus on orientation and navigation. The chapter draws on Tim Ingold’s and James Gibson’s descriptions of orientation as a process of movement through the landscape to find affordances. The chapter describes the techniques used locally for finding position from the 1960s onwards: dead-reckoning, and the use of radar, depth sounders, Decca, and GPS. Challenging anthropological accounts of ‘Western’ navigation that assume Westerners always rely on charts and instruments and that these alienate people from direct relations with their environment, the GPS chartplotter shows the perpetual importance of the subjective and experiential aspects of orientation in a digital age. The chapter argues that alienation is instead produced by relations of ownership and exploitation, and that the chartplotter facilitates the centralisation of fishing knowledge with the skipper and the employment of low-waged migrant workers as crew. While authors such as Edwin Hutchins describe navigation as answering the absolute question ‘where am I?’, the chapter proposes that the aim of navigation is usually to answer the relational question ‘where is that?’
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Murphy, Caitlin C., and Sally W. Vernon. "Colorectal Cancer Screening." In Psycho-Oncology, edited by Wendy W. T. Lam, 53–60. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780190097653.003.0008.

Повний текст джерела
Анотація:
Colorectal cancer (CRC) screening is endorsed as an effective preventive health service because it reduces morbidity and mortality from CRC. Regular screening with stool blood tests or sigmoidoscopy facilitates earlier detection of CRC and lowers mortality; screening colonoscopy may also decrease CRC incidence through early detection and removal of precancerous polyps. Most professional organizations recommend that screening begin at age 50 years for those at average risk, and in the United States, about 60% of age-eligible adults are up-to-date with screening. Importantly, prevalence of CRC screening differs by race/ethnicity, educational attainment, and insurance status, with marked disparities in screening among racial/ethnicity minorities and the uninsured. Recent CRC screening interventions have focused on mailed outreach, patient navigation, and offering a choice of screening test, and many studies have been conducted in large, integrated healthcare systems or federally qualified health centers. In these settings, mailed outreach and patient navigation, particularly in the context of multicomponent interventions, increased CRC screening (e.g., absolute increase of 28% across trials of mailed outreach). Moving forward, CRC screening interventions must include more than one-time screening and involve a series of coordinated steps, from initial screening to diagnostic evaluation to treatment of any detected lesions. Patient navigation and mailed outreach have been the most extensively tested interventions for increasing screening. Patient navigation appears to have a similar impact on follow-up of abnormal test results. Broad implementation of either of these strategies may bring the current screening prevalence of 60% closer to the national goal of 80%.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Absolute Navigation"

1

Musso, Christian, Alexandre Bresson, Yannick Bidel, Nassim Zahzam, Karim Dahia, Jean-Michel Allard, and Bernard Sacleux. "Absolute gravimeter for terrain-aided navigation." In 2017 20th International Conference on Information Fusion (Fusion). IEEE, 2017. http://dx.doi.org/10.23919/icif.2017.8009805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Holt, Greg, and Christopher D'Souza. "Orion Absolute Navigation System Progress and Challenges." In AIAA Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-4995.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ursu, Ioan, Felicia Ursu, and Tudor Sireteanu. "About absolute stable synthesis of electrohydraulic servo." In Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-4090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Van Dalen, Gerald J., Daniel P. Magree, and Eric N. Johnson. "Absolute Localization using Image Alignment and Particle Filtering." In AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xiaozhun, Cui, Mi Hong, Li Yi, and Liu Qingjun. "Absolute Calibration of BOC Navigation Signal Transmission Channel." In 2012 Third International Conference on Digital Manufacturing and Automation (ICDMA). IEEE, 2012. http://dx.doi.org/10.1109/icdma.2012.37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ashkanazy, Julia R., and James Humbert. "Bio-Inspired Absolute Heading Sensing Based on Atmospheric Scattering." In AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Puig, Javier, Enric Xargay, Ronald Choe, and Naira Hovakimyan. "Time-Critical Coordination of Multiple UAVs with Absolute Temporal Constraints." In AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Holt, Greg N., Renato Zanetti, and Christopher N. D'Souza. "Tuning and Robustness Analysis for the Orion Absolute Navigation System." In AIAA Guidance, Navigation, and Control (GNC) Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-4876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhan, Yinhu, Chao Zhang, and Chunlin Shi. "Absolute Positioning Based on the Sun for Mars Rover." In 2018 IEEE CSAA Guidance, Navigation and Control Conference (GNCC). IEEE, 2018. http://dx.doi.org/10.1109/gncc42960.2018.9019054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Magree, Daniel P., Gerald J. J. van Dalen, Stephen Haviland, and Eric N. Johnson. "Light-weight quadrotor with on-board absolute vision-aided navigation." In 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2015. http://dx.doi.org/10.1109/icuas.2015.7152408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Absolute Navigation"

1

Hermann, Bruce R. An Evaluation of Precise Absolute Navigation (PAN) Performance Under Dynamic Conditions. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada362733.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Open configuration options 2021 Partnership Report: Partnerships with a Vision. Inter-American Development Bank, April 2022. http://dx.doi.org/10.18235/0004186.

Повний текст джерела
Анотація:
In 2021, the region continued navigating the impacts of the COVID-19 pandemic while also laying the groundwork for recovery. In both of these areas, partnerships were absolutely essential and have helped accelerate efforts by the IDB, IDB Invest, and IDB Lab to reignite growth and get the region's development story back on track. Specifically, throughout the year, partnership efforts were guided by Vision 2025 -- the IDB's blueprint for recovery and economic growth -- with a focus on channeling partner financing, knowledge, and innovation to those sectors and opportunities that are best positioned to unlock development progress. In the pages of this report, read about how the IDB joined forces with governments, companies, investors, philanthropic entities, civil society, and academic institutions in 2021 and worked with these partners to improve lives in Latin America and the Caribbean.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії