Дисертації з теми "6xxx series aluminium alloys"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-23 дисертацій для дослідження на тему "6xxx series aluminium alloys".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Aastorp, Knut Iver. "Plastic Deformation at Moderate Temperatures of 6XXX-series Aluminium Alloys." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-118.
Повний текст джерелаThe present work has been carried out in order to investigate Al-Mg-Si alloys that are deformed at moderate temperatures. These temperatures are in the range between 200 C and 300 C. Also some experiments are performed at room temperatures. Two deformation models have been applied in the experiments: material deformation by compression testing and by forward extrusion.
The investigated alloys are AA6063, AA6082 and an alloy that is named “Alloy R” in this work. The latter alloy is the industrial alloy AA6082 without the Mn-addition (0.56wt%Mn in the AA6082). The “R” denotes the recrystallized microstructure in the material after hot forming operations.
The investigations show the effect of changing the temperature in the given temperature interval on the stress-strain relationship for each alloy. From the compression testing, it is found that none of the alloys AA6063 or Alloy “R” reaches a steady state condition as true strain approaches 0.8 for deformation temperatures between 200 C and 250 C. At compression testing performance at 300 C, the alloy “R” reaches a steady state condition at a true strain equal to 0.4.
As true stress-true strain relationship has been investigated for the “Alloy R” and the AA6063 at comparable deformation parameters, it is shown that the alloy “R”, with the highest Si-content, requires the highest true stress for a given true strain value (AA6063: 0.45wt%Si, Alloy “R”: 0.87wt%Si).
From the compression testing, the effect of Mn on the material properties in the AA6082-alloy has been determined. For the Alloy “R” and the AA6082, the true stress reached the same value after a certain amount of deformation. As deformation temperature increases, this common value of true stress corresponds to a decrease in true strain.
The AA6082 and Alloy “R” are also compared in experiments performed in forward extrusion. One observes that for the same deformation temperature and at identical die diameters, the ram force is identical. It is worth noticing that these alloys did not show the same relationship during the compression testing at low values of true strain (<0.8). On a microscopic scale, one concludes that Mn has no significant effect on the stress-strain relationship for the applied deformation parameters in the forward extrusion equipment.
Hardness measurements indicate that the age hardening potential in the extruded test specimen decreases as the deformation temperature increases. The hardness data is similar for both the AA6082 and the Alloy R, thus indicating that the Mn content has no significant effect on the strength of the material.
The deformed material has been annealed in order to investigate the recrystallization process in the AA6082 and the Alloy “R”. The recrystallization grain size in the Alloy “R” is significantly larger than in the AA6082 at comparable deformation parameters after annealing at 530 C for 15 minutes. This result is due to the effect of Mn-containing dispersoids in the AA6082. The recrystallization grain size in the Alloy “R” seems to be unaffected by the deformation temperature after annealing for 15 minutes. The observation of the AA6082 is quite different. A small increase in grain size is observed for both reduction ratios as the deformation temperature is elevated from 20C to 200 C and further to 250 C. At extrusion temperatures of 300 C the recrystallization grains are significantly larger.
Annealing experiments performed at 430 C on the AA6082 indicates that a change in the deformation temperature from 200 C to 250 C does not affect the amount of stored energy in the material significantly.
The Forge2 programme has been used to perform numeric simulations of the forward extrusion experiment. From this the temperature distribution, strain rate variation and true strain development in the test piece had been investigated. As the simulated true strain values are compared to the grain size in the annealed material, the recrystallization grain size is related to the amount of stored energy in the material in a very convincing way. It is also shown that the recrystallization grain diameter is related to the amount stored energy as the grain diameter is investigated in the radial and the extrusion direction separately.
Neto, Simoes Vasco Manuel. "Influence of Aging in the Warm Forming of 6xxx series Aluminum Alloys." Thesis, Lorient, 2017. http://www.theses.fr/2017LORIS474/document.
Повний текст джерелаHeat treatable aluminum alloys present a high strength-to-weight ratio, which replies to the requirements of mass reduction and safety increase in the construction of new vehicles. However, in sheet metal forming operations, these alloys have lower formability and higher springback than traditionally mild steels used. In this context, forming in warm temperature appears as an attractive solution to solve these problems. Nevertheless, there is still a challenge since the temperature range used in warm forming is similar to one used in the heat treatment of these alloys. Thus increasing the temperature can lead to precipitation hardening, which modifies the thermo- mechanical behavior of the material. In addition, these alloys are prone to natural aging that causes variability in forming operations and increases the amount of scrap. The present study addresses the warm forming of two heat-treated Al-Mg-Si alloys (EN AW 6016-T4 and EN AW 6061-T6), in order to propose solutions that can contribute to the increase of robustness of sheet metal forming operations. The influence of natural aging, temperature and exposure time has been studied by using uniaxial tensile tests, cylindrical cup tests and the split ring tests. The main goal is to propose solutions to improve the robustness of the sheet metal forming process. Warm forming proves to be an effective solution for improving formability, reducing the springback and variability caused by natural aging. However, high forming speeds and fast heating are necessary to prevent precipitation hardening during forming operations
Markides, Christopher Andrew. "Two-hole extrusion and the effects of Mg₂Si, Si and Fe on the extrudability of 6xxx series aluminium alloys." Thesis, King's College London (University of London), 1999. https://kclpure.kcl.ac.uk/portal/en/theses/two-hole-extrusion-and-the-effects-of-msubscript-g2-si-si-and-fe-on-the-extrudability-of-6xxx-series-aluminium-alloys(cba73880-cd83-4268-801d-ddbbdd23ca0d).html.
Повний текст джерелаJones, Simon John. "Investigation into the contribution of the MC-DC process on microstructural evolution of direct chill cast round ingots of 6XXX series aluminium alloys with an aim to reduce homogenisation." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/14818.
Повний текст джерелаHsu, C. "Solidification of 6xxx series Al alloys." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298713.
Повний текст джерелаSha, Gang. "Intermetallic phase selection in 6xxx series A1 alloys." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393371.
Повний текст джерелаHepples, W. "Environment-sensitive cracking of 7000 series aluminium alloys." Thesis, University of Newcastle Upon Tyne, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375141.
Повний текст джерелаDavidson, Ian. "The effect of grain refiners on intermetallic phase selection in 6XXX series Al alloys." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432560.
Повний текст джерелаWang, Le-Min. "Microstructure and properties of certain 2000 series aluminium alloys." Thesis, Imperial College London, 1999. http://hdl.handle.net/10044/1/8801.
Повний текст джерелаRoeth, Frederic. "Influence of near-surface structure on performance of 6000 series aluminium alloys." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497887.
Повний текст джерелаMir, Arshad A. "The creep properties of a series of zinc-rich zinc-aluminium alloys." Thesis, Aston University, 1998. http://publications.aston.ac.uk/13277/.
Повний текст джерелаFarhadi, Cheshmeh Morvari Gholamali. "Les effets des éléments de trace sur les caractéristiques des alliages de type 6XXX pour les applications automobiles /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 1999. http://theses.uqac.ca.
Повний текст джерелаMcNaughtan, D. "Investigation into the sub-surface corrosion of high strength 7XXX series aluminium alloys." Thesis, Cranfield University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391578.
Повний текст джерелаNolan, Ross Andrew. "Microstructure formability relationships in new generation high strength aluminium automotive alloys." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/microstructure-formability-relationships-in-new-generation-high-strength-aluminium-automotive-alloys(726d2c33-f190-44b1-8ab8-854e69dc5ec4).html.
Повний текст джерелаAnwar, Muhammad. "The compressive creep and load relaxation properties of a series of high aluminium zinc-based alloys." Thesis, Aston University, 1997. http://publications.aston.ac.uk/13271/.
Повний текст джерелаQianchu, Liu. "An Effective life extension technology for 7xxx series aluminium alloys by laser shock peening (final report) /." Fishermans Bend, Victoria : Defence Science and Technology Organisation, 2008. http://hdl.handle.net/1947/9655.
Повний текст джерелаBigot, Annabelle. "Etude par sonde atomique tomographique de la précipitation durcissante d'alliages d'aluminium des séries 2XXX, 6XXX et 7XXX." Rouen, 1998. http://www.theses.fr/1998ROUES026.
Повний текст джерелаJaradeh, Majed. "The Effect of Processing Parameters and Alloy Composition on the Microstructure Formation and Quality of DC Cast Aluminium Alloys." Doctoral thesis, KTH, Materialvetenskap, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4205.
Повний текст джерелаQC 20100901
Wu, Hao-Chan, and 吳灝展. "Mechanical Properties and Microstructure Characteristics of 6XXX Series and 7XXX Series Wrought Aluminum Alloys." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/82340973890274690744.
Повний текст джерела國立臺灣大學
材料科學與工程學研究所
101
This research mainly discuss that, under different condition of heat treatment, using OM, SEM, TEM XRD, DSC,UTM and hardness tester… to observe and test the mechanical properties of 7075, 6066, 6061 aluminum alloy extruded bars’ microstructure and precipitations. The test result shows that after 120°C-72 hours of artificial aging, can get the best strength (over 680MPa). If after quenching, placed at room temperature for several days, and artificial aging, the precipitations are relatively small, the strength is decreased. Compare to T7 aging treatment, duplex aging treatment and RRA processing both make grain boundary precipitates bulky, too, but PFZ from it grow narrow which makes grain boundary strength increase. Within grain, still maintain and have more diffused organization and precipitation reinforcement. Containing higher Cu, 6066 can produce Q (Al-Mg-Si-Cu) phase after casting. Melting point of Q-phase is about 535°C. Because of such high solid solution temperature, Q-phase will melt with many micro-voids, thereby weakening its intensity. If given appropriate homogenizing treatment, the Q-phase can be eliminated, and the strength will increase to more than 500MPa, after rising its solid solution temperature to 560°C. Compare 6066 and 6061 after solid solution at 530°C and artificial aging. We can find that 6066 has more alloying elements, and dispersed particle. This can provide better solid solution and dispersion strengthening effect. According to DSC analysis, 6066 has higher Si, so under 90°C to 350°C, it will precipitate Si-cluster and silicon phase respectively. s’’ and s’ exothermic peak will lower than 6061. Therefore, 6066 has better precipitation effect. 6061 needs 24 hours to reach its peak aging, while 6066 needs only 8 hours. Using polarization measurement to test material stress corrosion resistance, we can find that 7075 will have current reversal phenomenon and intergranular corrosion phenomenon under T6 treatment. The current reversal phenomenon can be eliminated by T7 or RRA. However, After T6 treatment, 6066 and 6061 will not produce this phenomenon, too. Therefore, their ability to resist stress corrosion will be better than 7075. To explore the material properties of extruded bar after cold forging and heat treatment. In the experiment, bars are given different strains by rotary swaging, and then carry on the solution treatment, aging treatment. We can find that recrystallization occur, the original texture is destroyed and intensity is greatly reduced. When the strain getting higher, the recrystallized grains will become smaller , and the strength will increase. If changed to T8 treatment (solution treatment- quenching- cold forging- aging treatment ), the strength can be effectively improved, but ductile fracture will change to brittle-ductile coexistence mode, and the elongation will greatly decrease.
Simões, Vasco Manuel Neto. "Influence of Aging in the Warm Forming of 6xxx series Aluminum Alloys." Doctoral thesis, 2017. http://hdl.handle.net/10316/79762.
Повний текст джерелаThe transport industry faces sustainability challenges that demand vehicles’ weight reduction, while safety requirements impose the increase of their structural strength. One of the approaches adopted to address this goal is the continuous development of lightweight materials and their manufacturing technologies. Within lightweight materials, the aluminum alloys are characterized by presenting medium strength and good formability. However, when compared with the metallic alloys traditionally used in sheet metal forming operations, they present lower formability and higher springback. In this context, warm forming was proposed as a solution to solve these problems, with good acceptance, first, in the research community and, nowadays, in industry. However, the warm forming of heat treatable aluminum alloys is still a challenge, since the recommended range of temperature is similar to the one used for heat treatments. Thus, warm conditions can result in heat treatment changes during the forming operation, which need to be predicted during the process virtual try-out to avoid defects in the production line. Moreover, heat treatable alloys are prone to natural aging, which can lead to variability and defects in the production line. Thus, the main goal of this work is to analyze the warm forming conditions of heat treatment aluminum alloys, taking into account the natural aging, in order to propose solutions that can contribute to the increase of robustness of sheet metal forming operations. Two heat treatable Al-Mg-Si (6xxx series) alloys were selected for the study: the EN AW 6016-T4 (natural aging) and the EN AW 6061-T6 (artificial aging). Their thermo-mechanical behavior was characterized using uniaxial tensile tests between room temperature (RT) and 300 ºC at 0, 45 and 90 º to the rolling direction, in a strain rate range from 2x10-4 to 2x10-2s-1, with heating time of 20 seconds. This tests were performed in a Gleeble 3500 machine under monotonic load and with stress-relaxation stages. Additional uniaxial monotonic tensile tests were performed in an Instron 4505 machine coupled with a classical furnace, at RT and 200 ºC, enabling the analysis of heat-holding times of 10 and 30 minutes. The strain field was measured using optical 3D deformation analysis (gom-aramis 4M system). The cylindrical cup tests were performed in a Zwick/Roell Amsler BUP200 sheet metal testing equipment, adapted with specific tools for warm forming. The adoption of this geometry enabled the study springback using the split ring test. All warm forming tests were performed considering non-isothermal conditions, with the die and the blank-holder heated up to the desired temperature, while the punch is refrigerated to keep its temperature close to RT. The cylindrical cup tests were performed between RT and 250 ºC, for punch (ram) speeds between 0.1 and 10 mm/s and heat-holding times of 1, 10 and 30 minutes. During each test, the punch force and its displacement, the blank-holder force and the temperature were acquired, as a function of time. After the forming operation the cup thickness and the cup height were measured, as well as the springback. Finally, the influence of natural aging was evaluated for the period from 1 to 18 months, which required the duplication of some tests. Globally, it is possible to correlate the thermo-mechanical results with the ones obtained in the forming tests, validating the macroscopic approach adopted for the results analysis. The EN AW 6061-T6 mechanical behavior shows a small natural aging effect, while it has a strong effect for the EN AW 6016-T4 alloy, leading to an increase of the yield stress and tensile strength and, consequently, of the springback. In this context, warm forming tests considering a heat-holding time of 1 minute, at 200 and 250 ºC, prove to be an effective solution to reduce the variability caused by natural aging in: forming forces, formability and springback. The orthotropic behavior is not affected by the temperature increase or natural aging. Both alloys present a negligible strain rate sensitivity at RT, while it is positive for warm temperatures. The warm forming tests performed at 200 ºC (heat-holding time of 1 minute), show that high punch speeds are advantageous. Formability and springback remained stable or improved with the punch speed increased. In fact, low punch speeds lead to high exposure time and, consequently, to tools thermal equilibrium that counteract the effects of the non-isothermal conditions, and promotes dynamic precipitation hardening on the EN AW 6016-T4 alloy that leads to strength and springback increase. The tensile tests with stress-relaxation stages were extremely useful on understanding the dynamic precipitation phenomena at warm temperature. Moreover, whatever the punch speed adopted the variability caused by natural aging was negligible at warm forming, which validate the effectiveness of this solution. Concerning the analysis of heat-holding time at 200 ºC, globally the results show that for the EN AW 6061-T6, the increase of the heat-holding time up to 50 minutes has a negligible impact on the material behavior and, consequently, the formability and springback warm forming results are independent of this process variable. For the EN AW 6016-T4 the increase of the heat-holding time up to 30 minutes leads to an increase the yield stress and tensile strength, while the total elongation reduces, as a result of a heat treatment change from natural aged to artificial aging condition. Consequently, the warm forming test performed with similar conditions shows a reduced formability and a springback increase. Moreover, a heat-holding time of 30 minutes leads to the known negative-effect of natural aging in artificial aging, for a storage time of 18 months. Thus, the heating system selected for the warm forming must guarantee a high heating rate, which is also advantageous from the production point of view. Throughout this work the split-ring test was used to evaluate springback. In this context, a numerical study was performed, in order to improve knowledge concerning the impact of the ironing stage in the circumferential residual stresses in the ring. Globally, the results show that the introduction of an ironing stage changes the characteristic distribution of the residual stress component throughout the vertical wall, even for relatively small ironing strains. This change affects the trend observed for the opening value of the rings located at different heights. This study was important to the results analysis since it explained the lower sensitivity of the ring located in the top of the cup (ironed zone) to the changes in material and process conditions. The analysis of the other rings clearly shows that warm forming contributes to springback reduction, when performed under non-isothermal conditions, with high punch speeds and heating rates.
A indústria dos transportes enfrenta desafios de sustentabilidade que exigem a redução de peso dos veículos, ao mesmo tempo que os requisitos de segurança impõem o aumento da resistência estrutural. Uma das abordagens adotadas para atingir estes objetivos é o contínuo desenvolvimento de materiais de elevada resistência e das suas tecnologias de fabrico. As ligas de alumínio pertencem a este conjunto de materiais, onde se caracterizam por apresentarem uma resistência média e boa formabilidade. No entanto, quando comparadas com as ligas metálicas tradicionalmente utilizadas nas operações de conformação de chapas metálicas, apresentam menor formabilidade e maior retorno. A conformação a temperaturas moderadas foi proposta como alternativa para ultrapassar estes problemas, primeiro na comunidade científica e, atualmente, na indústria. No entanto, a utilização deste processo para ligas de alumínio tratáveis termicamente é ainda um desafio, uma vez que a gama de temperaturas recomendada é semelhante à utilizada nos seus tratamentos térmicos. Assim, a conformação nesta gama de temperaturas pode conduzir a alterações do tratamento térmico, que devem ser previstas na conceção virtual para evitar a ocorrência de defeitos na linha de produção. Além disso, as ligas tratáveis termicamente são propensas a envelhecimento natural, que pode introduzir variabilidade e defeitos na linha de produção. O principal objetivo deste trabalho é analisar as condições de conformação a temperaturas moderadas deste tipo de ligas de alumínio, incluindo o efeito de envelhecimento natural, a fim de propor soluções que possam contribuir para aumentar a robustez das operações de estampagem de chapas metálicas. Foram selecionadas duas ligas Al-Mg-Si (série 6xxx) tratáveis termicamente: a EN AW 6016-T4 (envelhecimento natural) e a EN AW 6061-T6 (envelhecimento artificial). O seu comportamento termo-mecânico foi caracterizado com recurso a ensaios de tração uniaxial, realizados entre a temperatura ambiente (TA) e 300 ºC, com provetes orientados a 0, 45 e 90 º, em relação à direção de laminagem, para uma gama de velocidades de deformação de 2x10-4 a 2x10-2s-1 e um tempo de aquecimento de 20 segundos. Estes ensaios fora realizados num equipamento Gleebe, em condições de carga monótona crescente e incluindo estágios de relaxação de tensão. Foram também realizados ensaios monótonos de tração uniaxial numa máquina Instron, equipada com um forno, a TA e a 200 ºC, o que permitiu estudar tempos de permanência a 200 ºC de 10 e 30 minutos. O campo de deformação foi medido com um sistema ótico de análise (gom-aramis 4M system). Foram ainda realizados ensaios de estampagem de taças cilíndricas, num equipamento Zwick/Roell Amsler BUP200, com recurso a ferramentas adaptadas para conformação a temperaturas moderadas. A adoção desta geometria permitiu o estudo do retorno elástico, com base no ensaio de corte de anel. Todos os ensaios foram realizados em condições não-isotérmicas, com a matriz e o cerra-chapas aquecidos, até à temperatura desejada, e o punção refrigerado para manter uma temperatura próxima da TA. Estes ensaios de estampagem foram realizados entre TA e 250 ºC, para velocidades de deslocamento do punção compreendidas entre 0.1 e 10 mm/s e tempos de manutenção à temperatura de aquecimento de 1, 10 e 30 minutos. Em cada ensaio, foram adquiridos os resultados correspondentes à evolução com o tempo, da força e do deslocamento do punção, da força do cerra-chapas e da temperatura. Após a operação de conformação, foi medida a evolução da espessura ao longo da parede da taça, bem como o perfil das orelhas e o retorno elástico. Finalmente, foi avaliada a influência do envelhecimento natural para o período de 1 a 18 meses, o que exigiu a duplicação de alguns ensaios. Globalmente, a abordagem macroscópica adotada para a análise de resultados foi validada pela correlação entre os resultados dos ensaios de caracterização termo-mecânica e os de conformação. O comportamento mecânico da liga 6061-T6 é pouco sensível ao envelhecimento natural, enquanto a liga 6061-T6 apresenta um aumento da tensão limite de elasticidade e máxima não desprezável, que resulta no aumento do retorno elástico. Neste contexto, a conformação a quente a 200 e 250 ºC, com um tempo de manutenção de 1 minuto, revela-se uma solução eficaz para reduzir a variabilidade induzida pelo envelhecimento natural na força de estampagem, na formabilidade e no retorno elástico. O comportamento ortotrópico não é afetado pelo aumento da temperatura nem pelo envelhecimento natural. As ligas apresentam uma sensibilidade à velocidade de deformação negligenciável à TA, que passa a ser positiva para 200 ºC. Os testes de conformação realizados a esta temperatura (tempo de manutenção de 1 minuto) mostram que a utilização de uma velocidade do punção elevada pode ser vantajosa, uma vez que a formabilidade e o retorno elástico permanecem estáveis ou melhoram. De facto, velocidades do punção reduzidas conduzem a tempos de exposição elevados que conduz ao equilíbrio térmico das ferramentas, o que neutraliza os efeitos pretendidos com as condições não-isotérmicas e promove o endurecimento por precipitação dinâmica da liga EN AW 6016-T4, i.e. a força e o retorno elástico aumentam. Os ensaios de tração com estágios de relaxação de tensão permitem uma melhor compreensão dos fenómenos de precipitação dinâmica em função da temperatura. Além disso, qualquer que seja a velocidade seccionada para o punção, a variabilidade causada pelo envelhecimento natural é negligenciável para 200 ºC, o que valida a eficácia desta solução. Em relação à influência do tempo de manutenção a 200 ºC, para a liga EN AW 6061-T6, o aumento deste tempo até 50 minutos tem um impacto negligenciável no comportamento mecânico do material e, consequentemente, a formabilidade e retorno elástico são independentes desta variável de processo. Para a liga EN AW 6016-T4, o aumento do tempo de manutenção até 30 minutos resulta num aumento da tensão limite de elasticidade e máxima, com a redução do alongamento total, como resultado da alteração do tratamento térmico de envelhecimento natural para artificial. Logo, o ensaio de conformação realizado em condições semelhantes apresenta uma formabilidade reduzida e um aumento de retorno elástico. Além disso, um tempo de manutenção de 30 minutos resulta no efeito negativo do envelhecimento natural no envelhecimento artificial, para a liga EN AW 6016-T4 com um tempo de armazenamento de 18 meses. Assim, o sistema de aquecimento selecionado para a conformação a temperaturas moderadas deve garantir uma velocidade de aquecimento elevada, o que também é vantajoso do ponto de vista industrial. Ao longo deste trabalho, o ensaio de corte de anel foi utilizado para avaliar o retorno elástico. Neste contexto, foi realizado um estudo numérico, para melhorar o conhecimento sobre o impacto da etapa de estiramento na distribuição das tensões residuais circunferenciais no anel. Os resultados mostram que a introdução da etapa de estiramento altera a distribuição característica das tensões residuais ao longo da parede vertical, mesmo para deformações reduzidas. Esta alteração afeta a tendência observada para o valor de abertura dos anéis cortados a diferentes alturas. Este estudo foi importante para a análise dos resultados, uma vez que justifica a menor sensibilidade do anel localizado no topo do copo (zona estirada) às mudanças nas condições de comportamento do material e de processo. A análise dos outros anéis mostra claramente que a conformação a temperaturas moderadas, em condições não isotérmicas, contribui para a redução do retorno elástico, se realizada com velocidades do punção e de aquecimento elevadas.
French Ministry of Higher Education
Abrantes, José Paulo Pinto. "Influence of temperature in the deep drawing of 6xxx aluminium alloys." Master's thesis, 2014. http://hdl.handle.net/10316/38905.
Повний текст джерелаNos dias de hoje os processos de estampagem são uma componente de grande importância para a indústria. As ligas de alumínio são dos materiais mais utilizados na indústria automóvel. No entanto, as da série 5xxx são apenas usadas para os painéis interiores, uma vez que apresentam defeitos de superfície, enquanto as da série 6xxx são utilizadas nos painéis exteriores das viaturas. O principal objectivo deste estudo é caracterizar mecanicamente ligas da série 6xxx e avaliar as potencialidades de recorrer à sua estampagem a quente, de modo a tentar dar resposta a um conceito de utilização de apenas uma liga de alumínio na indústria (6xxx), com consequentes impactos positivos do ponto de vista económico e de reciclagem. O estudo descrito neste trabalho resulta de uma parceria entre o CEMUC e o LIMATB, com o objectivo de estudar a influência da temperatura no processo de estampagem de taças cilíndricas da série 6016-T4 e 6061-T6, tendo sido estudadas duas temperaturas: ambiente e 200ºC. O estudo envolveu a realização de ensaios experimentais de estampagem de taças cilíndrica e a simulação do processo, admitindo condições isotérmicas. Os parâmetros analisados foram a evolução da força do punção com o seu deslocamento, a evolução da espessura ao longo da taça e o perfil das orelhas de estampagem. O retorno elástico foi estudado experimentalmente, com o auxílio do teste Demeri. Todas as simulações numéricas foram realizadas com o programa DD3IMP,e a caracterização dos materiais foi realizada com o programa DD3Mat. A análise experimental foi realizada no LIMATB. Os resultados permitem concluir que a realização da estampagem a 200ºC conduz a uma redução da força de estampagem e do retorno elástico, maioritariamente para o 6061-T6.
Nowadays the deep drawing processes are a component of huge importance to industry. The aluminium alloys are one of the most used materials in the automotive industry. However, the 5xxx alloys are only used in inner panels, since they present superficial defects, while the 6xxx alloys are used in the outer panels of cars. The main goal of this study is to characterize the mechanical behaviour of 6xxx alloys and evaluate the potential of using warm deep drawing, in order to respond to a single material use concept of aluminium alloys in industry (6xxx), with positive consequences regarding the economic and recyclability point of view. The study presented in this work results from a partnership between the CEMUC and the LIMATB, with the purpose of studying the influence of temperature in the deep drawing process of cylindrical cups for the 6016-T4 and 6061-T6 alloys, based on two different temperatures: room temperature and 200ºC. This work involved performing deep drawing of cylindrical cups experimental tests and the numerical simulation of the process, assuming isothermal conditions. The analysed parameters were the evolution of the punch force with the punch displacement, the evolution of thickness along the cup’s wall and the ears profile. The springback was study experimentally, with the help of the Demeri test. All the numerical simulations were performed using the in-house code DD3IMP, and the material characterization was performed using the DD3Mat. The experimental analysis was accomplished in LIMATB. The results allow us to conclude that performing the deep drawing at 200ºC leads to a punch force and springback reduction, mainly for the 6061-T6.
Richter-Trummer, Valentin Josef. "Characterization of different aluminium alloys of the series 6000 and of their joining processes." Master's thesis, 2008. http://hdl.handle.net/10216/57545.
Повний текст джерелаRichter-Trummer, Valentin Josef. "Characterization of different aluminium alloys of the series 6000 and of their joining processes." Dissertação, 2008. http://hdl.handle.net/10216/57545.
Повний текст джерела