Добірка наукової літератури з теми "6xxx series aluminium alloys"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "6xxx series aluminium alloys".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "6xxx series aluminium alloys"
Mrówka-Nowotnik, G., J. Sieniawski, S. Kotowski, A. Nowotnik, and M. Motyka. "Hot Deformation Of 6xxx Series Aluminium Alloys." Archives of Metallurgy and Materials 60, no. 2 (June 1, 2015): 1079–84. http://dx.doi.org/10.1515/amm-2015-0263.
Повний текст джерелаStrobel, Katharina, Elizabeth Sweet, Mark Easton, Jian Feng Nie, and Malcolm Couper. "Dispersoid Phases in 6xxx Series Aluminium Alloys." Materials Science Forum 654-656 (June 2010): 926–29. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.926.
Повний текст джерелаDaswa, Pfarelo, Heinrich Möller, Madeleine du Toit, and Gonasagren Govender. "The Solution Heat Treatment of Rheo-High Pressure Die Cast Al-Mg-Si-(Cu) 6xxx Series Alloys." Solid State Phenomena 217-218 (September 2014): 259–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.217-218.259.
Повний текст джерелаRometsch, Paul A., Zhou Xu, Hao Zhong, Huai Yang, Lin Ju, and Xin Hua Wu. "Strength and Electrical Conductivity Relationships in Al-Mg-Si and Al-Sc Alloys." Materials Science Forum 794-796 (June 2014): 827–32. http://dx.doi.org/10.4028/www.scientific.net/msf.794-796.827.
Повний текст джерелаBraun, Reinhold. "Investigation on Microstructure and Corrosion Behaviour of 6XXX Series Aluminium Alloys." Materials Science Forum 519-521 (July 2006): 735–40. http://dx.doi.org/10.4028/www.scientific.net/msf.519-521.735.
Повний текст джерелаHasting, Håkon S., John Walmsley, Calin D. Marioara, ATJ van Helvoort, Randi Holmestad, Frederic Danoix, and Williams Lefebvre. "Characterisation of early precipitation stages in 6xxx series aluminium alloys." Journal of Physics: Conference Series 26 (February 22, 2006): 99–102. http://dx.doi.org/10.1088/1742-6596/26/1/023.
Повний текст джерелаBaldoukas, A. K., G. A. Demosthenous, and D. E. Manolakos. "524 Experimental evaluation of the 6xxx series aluminium alloys extrudability." Proceedings of the JSME Materials and Processing Conference (M&P) 10.2 (2002): 168–73. http://dx.doi.org/10.1299/jsmeintmp.10.2.168.
Повний текст джерелаBhat, Kuruveri Udaya, Devadas Bhat Panemangalore, Spandana Bhat Kuruveri, Merbin John, and Pradeep L. Menezes. "Surface Modification of 6xxx Series Aluminum Alloys." Coatings 12, no. 2 (January 30, 2022): 180. http://dx.doi.org/10.3390/coatings12020180.
Повний текст джерелаBaruah, Monoj, and Anil Borah. "Processing and precipitation strengthening of 6xxx series aluminium alloys: A review." International Journal of Materials Science 1, no. 1 (January 1, 2020): 40–48. http://dx.doi.org/10.22271/27078221.2020.v1.i1a.10.
Повний текст джерелаBraun, Reinhold. "On the stress corrosion cracking behaviour of 6XXX series aluminium alloys." International Journal of Materials Research 101, no. 5 (May 2010): 657–68. http://dx.doi.org/10.3139/146.110314.
Повний текст джерелаДисертації з теми "6xxx series aluminium alloys"
Aastorp, Knut Iver. "Plastic Deformation at Moderate Temperatures of 6XXX-series Aluminium Alloys." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-118.
Повний текст джерелаThe present work has been carried out in order to investigate Al-Mg-Si alloys that are deformed at moderate temperatures. These temperatures are in the range between 200 C and 300 C. Also some experiments are performed at room temperatures. Two deformation models have been applied in the experiments: material deformation by compression testing and by forward extrusion.
The investigated alloys are AA6063, AA6082 and an alloy that is named “Alloy R” in this work. The latter alloy is the industrial alloy AA6082 without the Mn-addition (0.56wt%Mn in the AA6082). The “R” denotes the recrystallized microstructure in the material after hot forming operations.
The investigations show the effect of changing the temperature in the given temperature interval on the stress-strain relationship for each alloy. From the compression testing, it is found that none of the alloys AA6063 or Alloy “R” reaches a steady state condition as true strain approaches 0.8 for deformation temperatures between 200 C and 250 C. At compression testing performance at 300 C, the alloy “R” reaches a steady state condition at a true strain equal to 0.4.
As true stress-true strain relationship has been investigated for the “Alloy R” and the AA6063 at comparable deformation parameters, it is shown that the alloy “R”, with the highest Si-content, requires the highest true stress for a given true strain value (AA6063: 0.45wt%Si, Alloy “R”: 0.87wt%Si).
From the compression testing, the effect of Mn on the material properties in the AA6082-alloy has been determined. For the Alloy “R” and the AA6082, the true stress reached the same value after a certain amount of deformation. As deformation temperature increases, this common value of true stress corresponds to a decrease in true strain.
The AA6082 and Alloy “R” are also compared in experiments performed in forward extrusion. One observes that for the same deformation temperature and at identical die diameters, the ram force is identical. It is worth noticing that these alloys did not show the same relationship during the compression testing at low values of true strain (<0.8). On a microscopic scale, one concludes that Mn has no significant effect on the stress-strain relationship for the applied deformation parameters in the forward extrusion equipment.
Hardness measurements indicate that the age hardening potential in the extruded test specimen decreases as the deformation temperature increases. The hardness data is similar for both the AA6082 and the Alloy R, thus indicating that the Mn content has no significant effect on the strength of the material.
The deformed material has been annealed in order to investigate the recrystallization process in the AA6082 and the Alloy “R”. The recrystallization grain size in the Alloy “R” is significantly larger than in the AA6082 at comparable deformation parameters after annealing at 530 C for 15 minutes. This result is due to the effect of Mn-containing dispersoids in the AA6082. The recrystallization grain size in the Alloy “R” seems to be unaffected by the deformation temperature after annealing for 15 minutes. The observation of the AA6082 is quite different. A small increase in grain size is observed for both reduction ratios as the deformation temperature is elevated from 20C to 200 C and further to 250 C. At extrusion temperatures of 300 C the recrystallization grains are significantly larger.
Annealing experiments performed at 430 C on the AA6082 indicates that a change in the deformation temperature from 200 C to 250 C does not affect the amount of stored energy in the material significantly.
The Forge2 programme has been used to perform numeric simulations of the forward extrusion experiment. From this the temperature distribution, strain rate variation and true strain development in the test piece had been investigated. As the simulated true strain values are compared to the grain size in the annealed material, the recrystallization grain size is related to the amount of stored energy in the material in a very convincing way. It is also shown that the recrystallization grain diameter is related to the amount stored energy as the grain diameter is investigated in the radial and the extrusion direction separately.
Neto, Simoes Vasco Manuel. "Influence of Aging in the Warm Forming of 6xxx series Aluminum Alloys." Thesis, Lorient, 2017. http://www.theses.fr/2017LORIS474/document.
Повний текст джерелаHeat treatable aluminum alloys present a high strength-to-weight ratio, which replies to the requirements of mass reduction and safety increase in the construction of new vehicles. However, in sheet metal forming operations, these alloys have lower formability and higher springback than traditionally mild steels used. In this context, forming in warm temperature appears as an attractive solution to solve these problems. Nevertheless, there is still a challenge since the temperature range used in warm forming is similar to one used in the heat treatment of these alloys. Thus increasing the temperature can lead to precipitation hardening, which modifies the thermo- mechanical behavior of the material. In addition, these alloys are prone to natural aging that causes variability in forming operations and increases the amount of scrap. The present study addresses the warm forming of two heat-treated Al-Mg-Si alloys (EN AW 6016-T4 and EN AW 6061-T6), in order to propose solutions that can contribute to the increase of robustness of sheet metal forming operations. The influence of natural aging, temperature and exposure time has been studied by using uniaxial tensile tests, cylindrical cup tests and the split ring tests. The main goal is to propose solutions to improve the robustness of the sheet metal forming process. Warm forming proves to be an effective solution for improving formability, reducing the springback and variability caused by natural aging. However, high forming speeds and fast heating are necessary to prevent precipitation hardening during forming operations
Markides, Christopher Andrew. "Two-hole extrusion and the effects of Mg₂Si, Si and Fe on the extrudability of 6xxx series aluminium alloys." Thesis, King's College London (University of London), 1999. https://kclpure.kcl.ac.uk/portal/en/theses/two-hole-extrusion-and-the-effects-of-msubscript-g2-si-si-and-fe-on-the-extrudability-of-6xxx-series-aluminium-alloys(cba73880-cd83-4268-801d-ddbbdd23ca0d).html.
Повний текст джерелаJones, Simon John. "Investigation into the contribution of the MC-DC process on microstructural evolution of direct chill cast round ingots of 6XXX series aluminium alloys with an aim to reduce homogenisation." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/14818.
Повний текст джерелаHsu, C. "Solidification of 6xxx series Al alloys." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298713.
Повний текст джерелаSha, Gang. "Intermetallic phase selection in 6xxx series A1 alloys." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393371.
Повний текст джерелаHepples, W. "Environment-sensitive cracking of 7000 series aluminium alloys." Thesis, University of Newcastle Upon Tyne, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375141.
Повний текст джерелаDavidson, Ian. "The effect of grain refiners on intermetallic phase selection in 6XXX series Al alloys." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432560.
Повний текст джерелаWang, Le-Min. "Microstructure and properties of certain 2000 series aluminium alloys." Thesis, Imperial College London, 1999. http://hdl.handle.net/10044/1/8801.
Повний текст джерелаRoeth, Frederic. "Influence of near-surface structure on performance of 6000 series aluminium alloys." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497887.
Повний текст джерелаКниги з теми "6xxx series aluminium alloys"
Schra, L. Long-term outdoor stress corrosion testing of overaged 7000 series aluminium alloys. Amsterdam: National Aerospace Laboratory, 1988.
Знайти повний текст джерелаWanhill, R. J. H. Damage tolerance property comparisons for 2000 and 8000 series aluminium plate alloys. Amsterdam: National Aerospace Laboratory, 1995.
Знайти повний текст джерелаKing, F. Aluminium and Its Alloys (Ellis Horwood Series in Metals & Associated Materials). Ellis Horwood, 1987.
Знайти повний текст джерелаHenley, V. F. Anodic Oxidation of Aluminium and Its Alloys: The Pergamon Materials Engineering Practice Series. Elsevier Science & Technology Books, 2013.
Знайти повний текст джерелаЧастини книг з теми "6xxx series aluminium alloys"
Zervaki, A. D., and G. N. Haidenmenopoulos. "Laser Welding of 6xxx Series Aluminum Alloys." In Materials for Transportation Technology, 141–49. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606025.ch24.
Повний текст джерелаBraun, Reinhold. "Investigation on Microstructure and Corrosion Behaviour of 6XXX Series Aluminium Alloys." In Materials Science Forum, 735–40. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-408-1.735.
Повний текст джерелаFeister, Tom, Laura Zoller, Mehdi Shafiei, Paul Bosler, and Hyunok Kim. "Evaluating Lubricants for Warm Forming of Aluminum 6xxx Alloys." In The Minerals, Metals & Materials Series, 671–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06212-4_61.
Повний текст джерелаKonar, Murat, Salim Aslanlar, Erdinç İlhan, Melih Kekik, Görkem Özçelik, Mehmet Buğra Güner, Arif Fatih Yiğit, and Tolga Demirkıran. "Investigation of Weld Quality for Friction Stir Welding of Extrued 6XXX Series Aluminium Alloys." In The Minerals, Metals & Materials Series, 220–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65396-5_32.
Повний текст джерелаGüner, Mehmet Buğra, Murat Konar, Görkem Özçelik, Tolga Demirkıran, and Afife Binnaz Yoruç Hazar. "Effect of Extrusion Process on Mechanical, Welding, and Corrosion Behaviour of 6XXX Series of Aluminium Alloys." In The Minerals, Metals & Materials Series, 299–306. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65396-5_45.
Повний текст джерелаLech-Grega, Marzena, W. Szymañski, B. Płonka, S. Boczkal, M. Gawlik, M. Bigaj, and P. Korczak. "The Structure and Properties of Wrought Aluminium Alloys Series 6xxx with Vanadium for Automotive Industry." In Light Metals 2013, 527–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118663189.ch90.
Повний текст джерелаLech-Grega, Marzena, W. Szymański, B. Płonka, S. Boczkal, M. Gawlik, M. Bigaj, and P. Korczak. "The Structure and Properties of Wrought Aluminium Alloys Series 6xxx with Vanadium for Automotive Industry”." In Light Metals 2013, 527–32. Cham: Springer International Publishing, 2003. http://dx.doi.org/10.1007/978-3-319-65136-1_90.
Повний текст джерелаSingh, S., S. Kumar, and B. Pesic. "The Corrosion Behavior of 5xxx and 6xxx Aluminum Alloys with Trace Calcium." In The Minerals, Metals & Materials Series, 198–205. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65396-5_29.
Повний текст джерелаLech-Grega, Marzena, Wojciech Szymatiski, Sonia Boczkal, Maciej Gawlik, and Mariusz Bigaj. "The Effect of Vanadium Addition on Structure and Material Properties of Heat Treated 6XXX Series Aluminium Alloys." In Light Metals 2015, 173–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093435.ch31.
Повний текст джерелаBaruah, Monoj, Anjali Ladha, Manish Baruah, Arnav Kar, Agradeep Deb, and Anil Borah. "A Study of Effect of Micro-alloying of Tin on Ageing Behaviour of 6xxx Series Aluminium Alloys." In Advances in Mechanical Engineering, 397–405. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0124-1_35.
Повний текст джерелаТези доповідей конференцій з теми "6xxx series aluminium alloys"
Vasilyev, Alexander A., Alexander S. Gruzdev, and Nikolay L. Kuzmin. "Model for commercial 6XXX series aluminium alloys age-hardening simulation." In SPIE Proceedings, edited by Alexander I. Melker. SPIE, 2006. http://dx.doi.org/10.1117/12.676307.
Повний текст джерелаHenn, Philipp, Mathias Liewald, and Manfred Sindel. "Characterising ductility of 6xxx-series aluminium sheet alloys at combined loading conditions." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience. Author(s), 2017. http://dx.doi.org/10.1063/1.5007965.
Повний текст джерела"FRICTION STIR WELDING OF ALUMINUM ALLOYS 6XXX SERIES: A REVIEW." In International Conference on Advancements and Recent Innovations in Mechanical, Production and Industrial Engineering. ELK Asia Pacific Journals, 2015. http://dx.doi.org/10.16962/elkapj/si.arimpie-2015.46.
Повний текст джерелаTavares, S. M. O., P. C. M. Azevedo, B. Emi´lio, V. Richter-Trummer, M. A. V. Figueiredo, P. Vilac¸a, and P. M. S. T. de Castro. "Friction Stir Welding of T-Joints in Dissimilar Aluminium Alloys." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67522.
Повний текст джерелаHenn, Philipp, Mathias Liewald, and Manfred Sindel. "Investigation on bending failure to characterize crashworthiness of 6xxx-series aluminium sheet alloys with bending-tension test procedure." In PROCEEDINGS OF THE 21ST INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5035011.
Повний текст джерелаMahmood, Hikmat F., Mohamed R. Baccouche, and Bruno Barthelemy. "Design of Extruded Aluminum Space Frame Front End Structures for Crash Energy Management: Part I." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1186.
Повний текст джерелаParasumanna, Ajeet Babu, Vishwanath Ammu, Shwetabh Suman, and M. Saraf. "Method for Prediction of Coffin Manson Parameters from Monotonic Tensile Property for Aluminium 6XXX Series Alloy to Predict Fatigue Life." In Symposium on International Automotive Technology 2019. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2019. http://dx.doi.org/10.4271/2019-26-0314.
Повний текст джерелаKoganti, R., C. Karas, A. Joaquin, D. Henderson, M. Zaluzec, and A. Caliskan. "Metal Inert Gas (MIG) Welding Process Optimization for Joining Aluminum 5754 Sheet Material Using OTC/Daihen Equipment." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42473.
Повний текст джерелаKoganti, Ramakrishna, Armando Joaquin, Matthew Zaluzec, and Chris Karas. "Gas Metal Arc Welded (GMAW) Joint Strength Comparison of Aluminum Sheet (5754) and Exturded (6063) Alloys." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43423.
Повний текст джерелаBaccouche, Mohamed Ridha, and Hikmat F. Mahmood. "Design of Extruded Aluminum Space Frame Front End Structures for Crash Energy Management: Part II." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0964.
Повний текст джерела