Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: 6 degrees of freedom.

Статті в журналах з теми "6 degrees of freedom"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "6 degrees of freedom".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Knapp, W., and S. Weikert. "Testing the Contouring Performance in 6 Degrees of Freedom." CIRP Annals 48, no. 1 (1999): 433–36. http://dx.doi.org/10.1016/s0007-8506(07)63220-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fossen, Thor I., and Ola-Erik Fjellstad. "Nonlinear modelling of marine vehicles in 6 degrees of freedom." Mathematical Modelling of Systems 1, no. 1 (January 1995): 17–27. http://dx.doi.org/10.1080/13873959508837004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Reddy, B. Nithin. "Mechanical Design and Analysis of Six-Degree-of-Freedom (6-DOF) SCARA Robot for Industrial Applications." International Journal for Research in Applied Science and Engineering Technology 12, no. 4 (April 30, 2024): 6080–87. http://dx.doi.org/10.22214/ijraset.2024.59008.

Повний текст джерела
Анотація:
Abstract: A six-degree-of-freedom (6-DOF) SCARA robot is an advanced robotic system capable of moving and manipulating objects in a three-dimensional space with a high degree of precision and flexibility. The term "SCARA" stands for "Selective Compliance Articulated Robot Arm," indicating its design that allows a combination of rigidity and compliance along specific axes. This unique combination of features makes 6-DOF SCARA robots highly versatile and suitable for a wide range of industrial applications. Unlike traditional SCARA robots that typically have four degrees of freedom, the addition of two extra degrees of freedom enhances the 6-DOF SCARA robot's spatial reach and manipulation capabilities. This enables the robot to perform tasks that require complex orientations, intricate movements, and precise positioning within a 3D workspace. The mechanical design, kinematics, and control strategies of these robots are carefully developed to ensure accurate and efficient performance, making them valuable tools in various industries. 6-DOF SCARA robots find applications in numerous industries where precise manipulation, efficient automation, and versatile positioning are crucial.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Babarit, Aurélien, and Moran Charlou. "A Method for Forcing a Number of Motions or Rotations in 6 Degrees of Freedom Ship Simulators." Journal of Sailing Technology 8, no. 01 (December 31, 2023): 255–75. http://dx.doi.org/10.5957/jst/2023.8.13.255.

Повний текст джерела
Анотація:
In this paper, a method is introduced which enables the forcing of any degrees of freedom in 6 DoFs ship simulator. It is based on the introduction of an extra force in the equation of motion of the ship and on the forcing of the second derivatives of the forced degrees of freedom rather than the forced degrees of freedom themselves. The method is explicit which makes it easy to implement in existing software. Examples of its application to oblique towing tests and forced heading in wind and waves are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

von Clarmann, T., and U. Grabowski. "Elimination of hidden a priori information from remotely sensed profile data." Atmospheric Chemistry and Physics Discussions 6, no. 4 (July 18, 2006): 6723–51. http://dx.doi.org/10.5194/acpd-6-6723-2006.

Повний текст джерела
Анотація:
Abstract. Profiles of atmospheric state parameters retrieved from remote measurements often contain a priori information which causes complication in the use of data for validation, comparison with models, or data assimilation. For such applications it often is desirable to remove the a priori information from the data product. If the retrieval involves an ill-posed inversion problem, formal removal of the a priori information requires resampling of the data on a coarser grid, which, however, is a prior constraint in itself. The fact that the trace of the averaging kernel matrix of a retrieval is equivalent to the number of degrees of freedom of the retrieval is used to define an appropriate information-centered representation of the data where each data point represents one degree of freedom. Since regridding implies further degradation of the data and thus causes additional loss of information, a re-regularization scheme has been developed which allows resampling without additional loss of information. For a typical ClONO2 profile retrieved from spectra as measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the constrained retrieval has 9.7 degrees of freedom. After application of the proposed transformation to a coarser information-centered altitude grid, there are exactly 9 degrees of freedom left, and the averaging kernel on the coarse grid is unity. Pure resampling on the information-centered grid without re-regularization would reduce the degrees of freedom to 7.1.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Khurtasenko, A. V., K. V. Chuev, and L. A. Rybak. "Dynamic model of a robotic platform with 6 degrees of freedom." Journal of Physics: Conference Series 2176, no. 1 (June 1, 2022): 012024. http://dx.doi.org/10.1088/1742-6596/2176/1/012024.

Повний текст джерела
Анотація:
Abstract The paper presents the study of kinematic and dynamic characteristics of the robotic mobility platform (RMP) to determine inertia-force parameters depending on the nature of the implemented motion path. The method is implemented on the basis of parameterized digital simulation models with parallel kinematics, which allow determining acceleration and force response in the joints of structural components at given geometric parameters of the platform design.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Csiszar, Akos, and Cornel Brisan. "Workspace Analysis of the 6 Degrees of Freedom PARTNER Parallel Robot." Solid State Phenomena 166-167 (September 2010): 155–60. http://dx.doi.org/10.4028/www.scientific.net/ssp.166-167.155.

Повний текст джерела
Анотація:
This paper presents a modular method to compute the workspace of parallel robot with 6 degrees of freedom. For the generation of the workspace also the mechanical constrains of both the active and passive joints are taken into consideration.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jeong, Sang-Ki, Hyeung-Sik Choi, Jung-Min Seo, Ngoc Huy Tran, and Joon-Young Kim. "Design and Control of 6 D.O.F(Degrees of Freedom) Hovering AUV." Journal of Institute of Control, Robotics and Systems 19, no. 9 (September 1, 2013): 797–804. http://dx.doi.org/10.5302/j.icros.2013.13.9025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhu, Dequan, Tao Mei, and Lei Sun. "Fuzzy Immune PID Control for 6-Degrees of Freedom Parallel Platform." Advanced Science Letters 6, no. 1 (March 15, 2012): 836–40. http://dx.doi.org/10.1166/asl.2012.2293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sindersberger, Dirk, Andreas Diermeier, Nina Prem, and Gareth J. Monkman. "Printing of hybrid magneto active polymers with 6 degrees of freedom." Materials Today Communications 15 (June 2018): 269–74. http://dx.doi.org/10.1016/j.mtcomm.2018.02.032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Oka, Makoto. "Roles of quark degrees of freedom in hypernuclei." Nuclear Physics A 629, no. 1-2 (February 1998): 379–87. http://dx.doi.org/10.1016/s0375-9474(97)00713-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Grewe, N. "The Anderson lattice with elastic degrees of freedom." Journal of Magnetism and Magnetic Materials 47-48 (February 1985): 20–22. http://dx.doi.org/10.1016/0304-8853(85)90347-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Yan, Hao, Hsien-Chi Yeh, and Qiuli Mao. "High precision six-degree-of-freedom interferometer for test mass readout." Classical and Quantum Gravity 39, no. 7 (March 17, 2022): 075024. http://dx.doi.org/10.1088/1361-6382/ac5923.

Повний текст джерела
Анотація:
Abstract High precision six-degree-of-freedom sensing plays an important role in future gravitational space missions. In gravitational or geodesy missions, measurements of all six degrees of freedom of freely floating test mass are required for reducing the cross-coupling noise, which is frequently an important limiting factor in the performance. Interferometry and capacitive sensing have been successfully combined in LISA pathfinder to achieve six degrees of freedom measurements. In this paper, we report a six-degree-of-freedom interferometer system based on multiplex differential wavefront sensing and longitudinal pathlength sensing. Compared to conventional capacitive sensing or optical levers, it has a higher measurement accuracy. The results of our table-top experiment show motion in all six degrees of freedom of a cubic test mass are simultaneously measured with a translational and tilt sensitivity of 100 pm/Hz1/2 and 10 nrad Hz−1/2 above 1 Hz, respectively. The translational dynamic range is greater than ±10 mm with nonlinear residuals less than 6 μm, and the tilt dynamic range is approximately ±500 μrad with nonlinear residuals less than 60 μrad. The coupling errors between multiple degrees of freedom are dominated by tilt-to-translation and tilt-to-tilt coupling, which are roughly 2–4 μm and 15–25 μrad, respectively, within a range of [−500 μrad, +500 μrad].
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ricken, Annieck X. C., Geert J. P. Savelsbergh, and Simon J. Bennett. "Coordinating degrees of freedom during interceptive actions in children." Experimental Brain Research 156, no. 4 (June 1, 2004): 415–21. http://dx.doi.org/10.1007/s00221-003-1797-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Karger, A. "Classification of Serial Robot-Manipulators with Nonremovable Singularities." Journal of Mechanical Design 118, no. 2 (June 1, 1996): 202–8. http://dx.doi.org/10.1115/1.2826870.

Повний текст джерела
Анотація:
In this paper we discuss singular configurations of serial robot-manipulators with respect to their removability. A removable singularity is a singularity which can be removed from a motion of the end-effector by a small change of the motion. The most interesting situation appears for robot-manipulators with 5 degrees of freedom, because the case of 4 degrees of freedom is easy and singular configurations of robot-manipulators with 6 degrees of freedom are nonremovable. In the paper we give the complete list of all 5R robot-manipulators which have nonremovable singularities. The image of the singular set in the parameter space for such manipulators can be a plane, a quadric, a cylinder or an algebraic surface of degree 3 or 7. All of them are explicitly given.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ogbobe, P. O., C. N. Okoye, and N. S. Akonyi. "Cross coupling effects of modal space decoupling control for six degree of freedom 6-DOF parallel mechanism (6 DOF PM)." Nigerian Journal of Technology 41, no. 2 (June 2, 2022): 229–35. http://dx.doi.org/10.4314/njt.v41i2.4.

Повний текст джерела
Анотація:
This study presented the performance of an alternative and effective control strategy through a decoupled controller by an input and an output transformation matrix, such that each Degrees of Freedom can be tuned independently with their bandwidth raised near to the eigenfrequencies. The simulation results of the Modal Space Decoupled Controller were analyzed in Matlab/Simulink environment and comparison made between the conventional PID controllers based on cross coupling effects. The results indicate that the conventional joint space conforms to the theoretical analysis when the compensation for the coupling effects was not considered. The results further showed that the Modal Space Decoupled Controller modified the dynamics characteristics, which can be attributed to reduction in the coupling effects between degrees of freedom motions.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Chan, Maria F., Seng-Boh Lim, Xiang Li, Xiaoli Tang, Peng Zhang, and Chengyu Shi. "Commissioning and Evaluation of a Third-Party 6 Degrees-of-Freedom Couch Used in Radiotherapy." Technology in Cancer Research & Treatment 18 (January 1, 2019): 153303381987077. http://dx.doi.org/10.1177/1533033819870778.

Повний текст джерела
Анотація:
Purposes: The newly released Protura 6 degrees-of-freedom couch (CIVCO) has limited quality assurance protocols and pertinent publications. Herein, we report our experiences of the Protura system acceptance, commissioning, and quality assurance. Methods: The Protura system integration was tested with peripheral equipment on the following items: couch movement range limit, 6 degrees-of-freedom movement accuracy, weight test and couch sagging, system connection with Linac, isocentricity of couch and rotation alignment, kV and cone-beam computed tomography imaging of HexaCHECK with MIMI phantom (Standard Imaging), and an in-house custom 6 degrees-of-freedom quality assurance phantom. A couch transmission measurement was also performed. Results: The vertical, longitudinal, and lateral ranges of the 6 degrees-of-freedom couch pedestal are 43.9 to 0.0 cm, 24.6 to 149.5 cm, −20.6 to 20.7 cm, respectively. The couch movement accuracy was within 1 mm in all directions. The couch sagging with a 200 lbs (∼91 kg) evenly distributed object is 1.0 cm and 0.4° pitch in the distal end of the couch. The isocentricity of the couch was about 0.5 mm in diameter of all crosshair projections on the couch isocenter level, and the largest couch rotation alignment observed was (0.3°) at the couch angle of 90°. The deviation from the reference position (zero position) of the HexaCHECK phantom, measured by matching the cone-beam computed tomography with the reference planning computed tomography, was found to be below 0.2 mm in the anterior–posterior and right–left dimensions, 0.4 mm in superior–inferior dimension, and 0.1° in roll, pitch, and yaw directions. Conclusions: A 6 degrees-of-freedom quality assurance phantom is helpful for the commissioning and routine quality assurance tests. Due to the third-party integration with Linac, the system is prone to “double-correction” errors. A rigorous quality assurance program is the key to a successful clinical implementation of the Protura system.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Liu, Xiang Ming, and Hong Yi Yan. "Dynamic Analysis of 6-DOF Large Displacement Composite Simulation Platform." Applied Mechanics and Materials 233 (November 2012): 181–85. http://dx.doi.org/10.4028/www.scientific.net/amm.233.181.

Повний текст джерела
Анотація:
For the problem of Typical Stewart Platform with small workspace and poor flexibility, the paper proposed a new 6-DOF simulator platform. The simulator platform compounds the three-bar parallel mechanism with moving degrees of freedom and the three-axis turntable with rotating degrees of freedom, it can repeat any attitude of 6-DOF in space. Effectively solve the problem of Typical Stewart Platform with small workspace and poor flexibility. Using Lagrange equation establish dynamic equation of the simulator platform, and using MATLAB in-depth analysis its dynamics. It can provide a reference for the optimal design of structural dynamic of the simulation platform.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Yoneda, Kan. "Reduced Degrees of Freedom Configuration of Six-legged Robot." Journal of the Robotics Society of Japan 33, no. 2 (2015): 124–32. http://dx.doi.org/10.7210/jrsj.33.124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Cruz-Barrios, S., and J. Gómez-Camacho. "Semiclassical description of scattering with internal degrees of freedom." Nuclear Physics A 636, no. 1 (June 1998): 70–84. http://dx.doi.org/10.1016/s0375-9474(98)00176-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Bergan, P. G., and C. A. Felippa. "A triangular membrane element with rotational degrees of freedom." Computer Methods in Applied Mechanics and Engineering 50, no. 1 (July 1985): 25–69. http://dx.doi.org/10.1016/0045-7825(85)90113-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Shay, Byron, Ted Hubbard, and Marek Kujath. "Planar frictional micro-conveyors with two degrees of freedom." Journal of Micromechanics and Microengineering 18, no. 6 (May 2, 2008): 065009. http://dx.doi.org/10.1088/0960-1317/18/6/065009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Nagle, M. G., M. V. Srinivasan, and D. L. Wilson. "Image interpolation technique for measurement of egomotion in 6 degrees of freedom." Journal of the Optical Society of America A 14, no. 12 (December 1, 1997): 3233. http://dx.doi.org/10.1364/josaa.14.003233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Guan, Guang-feng, and AR Plummer. "Acceleration decoupling control of 6 degrees of freedom electro-hydraulic shaking table." Journal of Vibration and Control 25, no. 21-22 (August 12, 2019): 2758–68. http://dx.doi.org/10.1177/1077546319870620.

Повний текст джерела
Анотація:
Electro-hydraulic shaking tables are widely used for vibration testing where high force and displacement amplitudes are required. In particular, they are a vital tool in seismic testing, enabling the development of buildings and other structures which are earthquake resistant. Three-variable-control (TVC) is commonly used for the control of multi-degrees of freedom (DOFs) electro-hydraulic shaking tables. However, the coupling between the DOFs is often significant and is not compensated by TVC. In this paper, an acceleration decoupling control (ADC) method is presented for a 6 DOFs electro-hydraulic shaking table system to improve the acceleration tracking performance and decouple the motion in task space. The gravitational, Coriolis, and centripetal forces are compensated for in joint space based on a dynamic model of the shaking table. Modal control is used to transform the coupled dynamics into six independent systems. Inverse dynamics models are used to cancel the differences in actuator dynamics. The proportional gains in modal space are tuned heuristically to give sufficient stability margins to provide robustness in the presence of modeling errors. The input filter and feedforward controller in TVC are added to improve the acceleration tracking performance of each independent system. Experimental acceleration frequency responses are used to demonstrate the effectiveness of ADC, and in particular these show a consistent reduction in cross-axis coupling compared to TVC. Moreover, only four parameters need to be tuned, as opposed to 36 for TVC, and the method provides a viable route to improving the accuracy of seismic testing in the future.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Lassila, D. H., M. M. LeBlanc, and J. N. Florando. "Zinc Single-Crystal Deformation Experiments Using a “6 Degrees of Freedom” Apparatus." Metallurgical and Materials Transactions A 38, no. 9 (July 21, 2007): 2024–32. http://dx.doi.org/10.1007/s11661-007-9202-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Jha, Sachchidanand. "Modelling and Control of 6- Degrees of Freedom movement Using Fuzzy Logic." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 07 (July 6, 2024): 1–6. http://dx.doi.org/10.55041/ijsrem36298.

Повний текст джерела
Анотація:
After the 20 th century, the automotive industry is experiencing significant growth. This paper presents the design of a robotic arm capable of emulating the dexterity of the human hand, facilitating object manipulation in laboratory, industrial, or hazardous environments with 6 degrees of freedom (6-DOF). To analyse torque characteristics, a humanoid robot arm model is employed, simulating tasks such as lifting and transferring the objects. Current robotic hands often lack full hand functionality, limiting their use in environments tailored for human interaction. Acquiring high reliability trajectory tracking remains a formidable obitual in the field of industrial robot control, primarily due to nonlinearities and input couplings inherent in robot arm dynamics. In this we are focuses on the modelling and control of a 6-degree of freedom (DOF) robot arm, progressing through five key developmental stages. Initially, a comprehensive computer-aided design (CAD) model of the 6-DOF robot arm is developed. Subsequently, the CAD model is translated into a physical model using Sim Mechanics Link. The core of the paper involves applying a Neuro-Fuzzy Controller to the robot arm, known for its adaptability in handling complex and nonlinear systems. The controller implementation, simulations are conducted using MATLAB/Simulink, a robust platform for dynamic system analysis. The performance evaluation compares the Neuro-Fuzzy controller against a linear controller across key metrics: rise time, percentage overshoot, settling time, and steady-state errors. The findings indicate that the Neuro-Fuzzy controller outperforms the linear controller significantly in all measured characteristics. This underscores its suitability for enhancing trajectory tracking precision in industrial robotic applications. Keywords: MATLAB, CAD Model, SolidWorks software
Стилі APA, Harvard, Vancouver, ISO та ін.
27

SASAKI, Yuji, and Kan YONEDA. "2A2-O07 Development of nine degrees of freedom Hexapod." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2015 (2015): _2A2—O07_1—_2A2—O07_2. http://dx.doi.org/10.1299/jsmermd.2015._2a2-o07_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

P. O. Ogbobe and C. N. Okoye. "Analysis of coupling effects on hydraulic controlled 6 degrees of freedom parallel manipulator." Global Journal of Engineering and Technology Advances 10, no. 3 (March 30, 2022): 026–31. http://dx.doi.org/10.30574/gjeta.2022.10.3.0051.

Повний текст джерела
Анотація:
This paper presents an analysis of the coupling effects between degrees of freedom of a hydraulic controlled six DOF parallel manipulator. Based on the singular value decomposition to the properties of its joint space inverse mass matrix, the method is put forward to analyze coupling effects between degrees of freedom using a transformation matrix, the product of transposed Jabobian matrix and an orthogonal unitary matrix, of which each element represents decoupled modal space coordinates with respect to physical task space frame. The simulation results in frequency domain prove the theoretical analysis right. The analysis will provide useful information to mechanism and controller designer, to asses from concept the coupling effects between DOF in respect of the requirement for a particular application and also for the study on decoupling control strategies.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Gupta, Arjun K., Solomon W. Harrar, and Yasunori Fujikoshi. "MANOVA for large hypothesis degrees of freedom under non-normality." TEST 17, no. 1 (March 1, 2007): 120–37. http://dx.doi.org/10.1007/s11749-006-0026-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Uchiyama, Masaru. "A Compact Six Degrees-of-Freedom Haptic Interface." Reference Collection of Annual Meeting 2004.8 (2004): 417–18. http://dx.doi.org/10.1299/jsmemecjsm.2004.8.0_417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Vaida, Calin, Nicolae Plitea, Dorin Lese, and Doina Liana Pisla. "A Parallel Reconfigurable Robot with Six Degrees of Freedom." Applied Mechanics and Materials 162 (March 2012): 204–13. http://dx.doi.org/10.4028/www.scientific.net/amm.162.204.

Повний текст джерела
Анотація:
Shorter development times, wide variety of products and manufacturing costs optimization lead towards the development of a new type of robots that are more flexible and adaptable to all these changes. The idea of reconfiguration is thus born, many studies being focused on enlarging and improving this concept. Reconfigurable robotic systems are those that can change their geometry, their mobility degree and be default, their workspace and their applicability. This paper presents a 6 degrees of freedom (DOF) reconfigurable robot, entitled RECROB, its kinematics and possible reconfigurations with different DOFs. Based on the analysis of structure two possible configurations are identified, one of them being modeled and simulated. The paper ends with the reachable workspace representation, conclusions and applicability of such a robot.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Cannata, F., and M. Ioffe. "Exactly solvable three-body systems with internal degrees of freedom." Journal of Physics A: Mathematical and General 34, no. 6 (February 2, 2001): 1129–39. http://dx.doi.org/10.1088/0305-4470/34/6/305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Providencia, J. da, C. Fiolhais, and M. Brajczewska. "Collective and intrinsic degrees of freedom in the Heisenberg ferromagnet." Journal of Physics A: Mathematical and General 22, no. 6 (March 21, 1989): 703–15. http://dx.doi.org/10.1088/0305-4470/22/6/021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Simon, David S., and Alexander V. Sergienko. "High-capacity quantum key distribution via hyperentangled degrees of freedom." New Journal of Physics 16, no. 6 (June 24, 2014): 063052. http://dx.doi.org/10.1088/1367-2630/16/6/063052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Takeuchi, S., K. Shimizu, and K. Yazaki. "The effect of quark degrees of freedom on nuclear properties." Nuclear Physics A 449, no. 4 (March 1986): 617–34. http://dx.doi.org/10.1016/0375-9474(86)90324-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Joshi, Sameer A., and Lung-Wen Tsai. "Jacobian Analysis of Limited-DOF Parallel Manipulators." Journal of Mechanical Design 124, no. 2 (May 16, 2002): 254–58. http://dx.doi.org/10.1115/1.1469549.

Повний текст джерела
Анотація:
This paper presents a methodology for the Jacobian analysis of limited degrees-of-freedom (DOF) parallel manipulators. A limited-DOF parallel manipulator is a spatial parallel manipulator which has less than six degrees-of-freedom. It is shown that a 6×6 Jacobian matrix, which provides information about both architecture and constraint singularities, can be derived by making use of the theory of reciprocal screws. The 3-UPU and 3-RPS parallel manipulators are used as examples to demonstrate the methodology.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Araki, Motoki, Naoya Umeda, Hirotada Hashimoto, and Akihiko Matsuda. "An Improvement of Broaching Prediction with a Nonlinear 6 Degrees of Freedom Model." Journal of the Japan Society of Naval Architects and Ocean Engineers 14 (2011): 85–96. http://dx.doi.org/10.2534/jjasnaoe.14.85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Martelli, Michele, Michele Viviani, Marco Altosole, Massimo Figari, and Stefano Vignolo. "Numerical modelling of propulsion, control and ship motions in 6 degrees of freedom." Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 228, no. 4 (September 16, 2014): 373–97. http://dx.doi.org/10.1177/1475090214544181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Miškinis, P. "ON THE POSSIBLE EXISTENCE OF NEW FERMIONIC DEGREES OF FREEDOM IN D = 6." Mathematical Modelling and Analysis 8, no. 2 (June 30, 2003): 155–64. http://dx.doi.org/10.3846/13926292.2003.9637220.

Повний текст джерела
Анотація:
The bispinors formed by quaternion in D = 6 dimensional space‐time are proposed to be treated as new fermionic fields. The gauge nonabelian field is formulated by the quaternions. A new kind of physical object, an extended relativistic quaternionic membrane in D = 6, is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Gordon, Adam M., Eric Perez, and Kanu S. Goyal. "Using 6 Degrees of Freedom to Systematically Reduce and Fix Distal Radius Fractures." Techniques in Hand & Upper Extremity Surgery 24, no. 4 (April 21, 2020): 207–15. http://dx.doi.org/10.1097/bth.0000000000000287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Urrea, Claudio, Juan Cortés, and José Pascal. "Design, construction and control of a SCARA manipulator with 6 degrees of freedom." Journal of Applied Research and Technology 14, no. 6 (December 2016): 396–404. http://dx.doi.org/10.1016/j.jart.2016.09.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Sarkar, V., V. J. Gonzalez, J. Hinkle, B. Wang, P. Rassiah-Szegedi, H. Zhao, Y. J. Huang, M. W. Szegedi, S. Joshi, and B. J. Salter. "Dosimetric Evaluation of an Alternative to 6 Degrees of Freedom Robotic Couch Correction." International Journal of Radiation Oncology*Biology*Physics 78, no. 3 (November 2010): S95. http://dx.doi.org/10.1016/j.ijrobp.2010.07.251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

HENMI, Nobuhiko. "A Six-degrees of Freedom Fine Motion Mechanism (3rd Report)." Journal of the Japan Society for Precision Engineering 59, no. 6 (1993): 1001–6. http://dx.doi.org/10.2493/jjspe.59.1001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

SASAKI, Yuji, and Kan YONEDA. "Degrees of Freedom Arrangement of Tri-Frame Six-legged Robot." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2016 (2016): 1A2–06b2. http://dx.doi.org/10.1299/jsmermd.2016.1a2-06b2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Blixt, Daniel, Manuel Hohmann, and Christian Pfeifer. "On the Gauge Fixing in the Hamiltonian Analysis of General Teleparallel Theories." Universe 5, no. 6 (June 10, 2019): 143. http://dx.doi.org/10.3390/universe5060143.

Повний текст джерела
Анотація:
The covariant formulation of teleparallel gravity theories must include the spin connection, which has 6 degrees of freedom. One can, however, always choose a gauge such that the spin connection is put to zero. In principle this gauge may affect counting of degrees of freedom in the Hamiltonian analysis. We show for general teleparallel theories of gravity, that fixing the gauge such that the spin connection vanishes in fact does not affect the counting of degrees of freedom. This manifests in the fact that the momenta of the Lorentz transformations which generate the spin connection are fully determined by the momenta of the tetrads.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Behzadipour, Saeed, and Amir Khajepour. "A New Cable-Based Parallel Robot with Three Degrees of Freedom." Multibody System Dynamics 13, no. 4 (May 2005): 371–83. http://dx.doi.org/10.1007/s11044-005-3985-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Wang, An-Ping. "A quadrilateral membrane hybrid stress element with drilling degrees of freedom." Acta Mechanica Sinica 28, no. 5 (September 16, 2012): 1367–73. http://dx.doi.org/10.1007/s10409-012-0087-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Niitsu, Satoshi, Ryosuke Tamura, Ryoya Kamata, Hiroshi Kawaharada, and Hiroyuki Hiraoka. "109 Development of a mouse-type haptic device with 1 degree of freedom used for remote controlled assembly operation in 6 degrees of freedom." Proceedings of Manufacturing Systems Division Conference 2013 (2013): 47–48. http://dx.doi.org/10.1299/jsmemsd.2013.47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Takamasu, Kiyoshi. "Measurement System for Multiple Degrees of Freedom Moving Robot." Journal of Robotics and Mechatronics 5, no. 5 (October 20, 1993): 453–56. http://dx.doi.org/10.20965/jrm.1993.p0453.

Повний текст джерела
Анотація:
The multiple degrees of freedom (multi-DOF) moving robot and its measurement system have been developed realize a positioning system with high flexibility. The multi-DOF robot is driven by six piezo-electric devices; and it moves in two modes, an absolute motion mode and a relative motion mode. In the absolute motion mode, it walks on a surface plate by a two-dimensional inchworm method having 3-DOF, in X and Y directions and a rotation. After a frame body is fixed, a center table can be positioned on 6-DOF. For measuring its position, the novel position measurement system has been developed. It has two measurement modes; an absolute measurement mode and a relative measurement mode. In the absolute mode, the two-dimensional position of the robot can be calculated from the length of a laser interferometer and the angle of a tracking mirror. After the tracking mirror is fixed, the relative displacement of the center table is measured by the laser interferometer, and the position of a reflecting laser beam is measured on a Position Sensitive Detector (PSD). We conclude that the high flexibility positioning system can be realized using the multi-DOF robot and the measurement system.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kung, Joseph S., William T. Tran, Ian Poon, Eshetu G. Atenafu, Lorraine Courneyea, Kevin Higgins, Danny Enepekides, Arjun Sahgal, Lee Chin, and Irene Karam. "Evaluation of the Efficacy of Rotational Corrections for Standard-Fractionation Head and Neck Image-Guided Radiotherapy." Technology in Cancer Research & Treatment 18 (January 1, 2019): 153303381985382. http://dx.doi.org/10.1177/1533033819853824.

Повний текст джерела
Анотація:
Purpose: Modern linear accelerators are equipped with cone beam computed tomography and robotic couches that can correct for errors in the translational (X, Y, Z) and rotational (α, β, γ) axes prior to treatment delivery. Here, we compared the positional accuracy of 2 cone beam registration approaches: (1) employing translational shifts only in 3 degrees of freedom (X, Y, Z), versus; (2) using translational-rotational shifts in 6 degrees of freedom (X, Y, Z, α, β, γ). Methods: This retrospective study examined 140 interfraction cone beam images from 20 patients with head and neck cancer treated with standard intensity-modulated radiation therapy. The cone beam images were matched to planning simulation scans in 3, then in 6 degrees of freedom, using the mandible, clivus, and C2 and C7 vertebrae as surrogate volumes. Statistical analyses included a generalized mixed model and was used to assess whether there were significant differences in acceptable registrations between the 2 correction methods. Results: The rates of improvement with corrections in 6 degrees of freedom for the mandible with a 5-mm expansion margin were 54.55% ( P = .793), for the clivus 85.71% ( P = .222), and for C7 87.50% ( P = .015). There was a 100% increase in acceptability for the C2 vertebra within the 5-mm margin ( P < .001). For the 3-mm expansion margin, the rates of improvement for the mandible, clivus, C2, and C7 were 63.16% ( P = .070), 91.30% ( P = .011), 84.21% ( P = .027), and 76.92% ( P < .001), respectively. Conclusions: Significant registration improvements with the use of rotational corrections with a 5-mm expansion margin are only seen in the C7 vertebra. At the 3-mm margin, significant improvements are found for the C2, C7, and clivus registrations, suggesting that intensity-modulated radiotherapy treatments for head and neck cancers with 3-mm planning target volume margins may benefit from corrections in 6 degrees of freedom.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії