Добірка наукової літератури з теми "3D Point cloud Compression"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "3D Point cloud Compression".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "3D Point cloud Compression"
Huang, Tianxin, Jiangning Zhang, Jun Chen, Zhonggan Ding, Ying Tai, Zhenyu Zhang, Chengjie Wang, and Yong Liu. "3QNet." ACM Transactions on Graphics 41, no. 6 (November 30, 2022): 1–13. http://dx.doi.org/10.1145/3550454.3555481.
Повний текст джерелаMorell, Vicente, Sergio Orts, Miguel Cazorla, and Jose Garcia-Rodriguez. "Geometric 3D point cloud compression." Pattern Recognition Letters 50 (December 2014): 55–62. http://dx.doi.org/10.1016/j.patrec.2014.05.016.
Повний текст джерелаYu, Siyang, Si Sun, Wei Yan, Guangshuai Liu, and Xurui Li. "A Method Based on Curvature and Hierarchical Strategy for Dynamic Point Cloud Compression in Augmented and Virtual Reality System." Sensors 22, no. 3 (February 7, 2022): 1262. http://dx.doi.org/10.3390/s22031262.
Повний текст джерелаImdad, Ulfat, Mirza Tahir Ahmed, Muhammad Asif, and Hanan Aljuaid. "3D point cloud lossy compression using quadric surfaces." PeerJ Computer Science 7 (October 6, 2021): e675. http://dx.doi.org/10.7717/peerj-cs.675.
Повний текст джерелаYu, Jiawen, Jin Wang, Longhua Sun, Mu-En Wu, and Qing Zhu. "Point Cloud Geometry Compression Based on Multi-Layer Residual Structure." Entropy 24, no. 11 (November 17, 2022): 1677. http://dx.doi.org/10.3390/e24111677.
Повний текст джерелаQuach, Maurice, Aladine Chetouani, Giuseppe Valenzise, and Frederic Dufaux. "A deep perceptual metric for 3D point clouds." Electronic Imaging 2021, no. 9 (January 18, 2021): 257–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.9.iqsp-257.
Повний текст джерелаLee, Mun-yong, Sang-ha Lee, Kye-dong Jung, Seung-hyun Lee, and Soon-chul Kwon. "A Novel Preprocessing Method for Dynamic Point-Cloud Compression." Applied Sciences 11, no. 13 (June 26, 2021): 5941. http://dx.doi.org/10.3390/app11135941.
Повний текст джерелаLuo, Guoliang, Bingqin He, Yanbo Xiong, Luqi Wang, Hui Wang, Zhiliang Zhu, and Xiangren Shi. "An Optimized Convolutional Neural Network for the 3D Point-Cloud Compression." Sensors 23, no. 4 (February 16, 2023): 2250. http://dx.doi.org/10.3390/s23042250.
Повний текст джерелаGu, Shuai, Junhui Hou, Huanqiang Zeng, and Hui Yuan. "3D Point Cloud Attribute Compression via Graph Prediction." IEEE Signal Processing Letters 27 (2020): 176–80. http://dx.doi.org/10.1109/lsp.2019.2963793.
Повний текст джерелаDybedal, Joacim, Atle Aalerud, and Geir Hovland. "Embedded Processing and Compression of 3D Sensor Data for Large Scale Industrial Environments." Sensors 19, no. 3 (February 2, 2019): 636. http://dx.doi.org/10.3390/s19030636.
Повний текст джерелаДисертації з теми "3D Point cloud Compression"
Morell, Vicente. "Contributions to 3D Data Registration and Representation." Doctoral thesis, Universidad de Alicante, 2014. http://hdl.handle.net/10045/42364.
Повний текст джерелаRoure, Garcia Ferran. "Tools for 3D point cloud registration." Doctoral thesis, Universitat de Girona, 2017. http://hdl.handle.net/10803/403345.
Повний текст джерелаEn aquesta tesi, hem fet una revisió en profunditat de l'estat de l'art del registre 3D, avaluant els mètodes més populars. Donada la falta d'estandardització de la literatura, també hem proposat una nomenclatura i una classificació per tal d'unificar els sistemes d'avaluació i poder comparar els diferents algorismes sota els mateixos criteris. La contribució més gran de la tesi és el Toolbox de Registre, que consisteix en un software i una base de dades de models 3D. El software presentat aquí consisteix en una Pipeline de registre 3D escrit en C++ que permet als investigadors provar diferents mètodes, així com afegir-n'hi de nous i comparar-los. En aquesta Pipeline, no només hem implementat els mètodes més populars de la literatura, sinó que també hem afegit tres mètodes nous que contribueixen a millorar l'estat de l'art de la tecnologia. D'altra banda, la base de dades proporciona una sèrie de models 3D per poder dur a terme les proves necessàries per validar el bon funcionament dels mètodes. Finalment, també hem presentat una nova estructura de dades híbrida especialment enfocada a la cerca de veïns. Hem testejat la nostra proposta conjuntament amb altres estructures de dades i hem obtingut resultats molt satisfactoris, superant en molts casos les millors alternatives actuals. Totes les estructures testejades estan també disponibles al nostre Pipeline. Aquesta Toolbox està pensada per ésser una eina útil per tota la comunitat i està a disposició dels investigadors sota llicència Creative-Commons
Tarcin, Serkan. "Fast Feature Extraction From 3d Point Cloud." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615659/index.pdf.
Повний текст джерелаForsman, Mona. "Point cloud densification." Thesis, Umeå universitet, Institutionen för fysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-39980.
Повний текст джерелаGujar, Sanket. "Pointwise and Instance Segmentation for 3D Point Cloud." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-theses/1290.
Повний текст джерелаChen, Chen. "Semantics Augmented Point Cloud Sampling for 3D Object Detection." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/26956.
Повний текст джерелаDey, Emon Kumar. "Effective 3D Building Extraction from Aerial Point Cloud Data." Thesis, Griffith University, 2022. http://hdl.handle.net/10072/413311.
Повний текст джерелаThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Info & Comm Tech
Science, Environment, Engineering and Technology
Full Text
Eckart, Benjamin. "Compact Generative Models of Point Cloud Data for 3D Perception." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1089.
Повний текст джерелаOropallo, William Edward Jr. "A Point Cloud Approach to Object Slicing for 3D Printing." Thesis, University of South Florida, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10751757.
Повний текст джерелаVarious industries have embraced 3D printing for manufacturing on-demand, custom printed parts. However, 3D printing requires intelligent data processing and algorithms to go from CAD model to machine instructions. One of the most crucial steps in the process is the slicing of the object. Most 3D printers build parts by accumulating material layers by layer. 3D printing software needs to calculate these layers for manufacturing by slicing a model and calculating the intersections. Finding exact solutions of intersections on the original model is mathematically complicated and computationally demanding. A preprocessing stage of tessellation has become the standard practice for slicing models. Calculating intersections with tessellations of the original model is computationally simple but can introduce inaccuracies and errors that can ruin the final print.
This dissertation shows that a point cloud approach to preprocessing and slicing models is robust and accurate. The point cloud approach to object slicing avoids the complexities of directly slicing models while evading the error-prone tessellation stage. An algorithm developed for this dissertation generates point clouds and slices models within a tolerance. The algorithm uses the original NURBS model and converts the model into a point cloud, based on layer thickness and accuracy requirements. The algorithm then uses a gridding structure to calculate where intersections happen and fit B-spline curves to those intersections.
This algorithm finds accurate intersections and can ignore certain anomalies and error from the modeling process. The primary point evaluation is stable and computationally inexpensive. This algorithm provides an alternative to challenges of both the direct and tessellated slicing methods that have been the focus of the 3D printing industry.
Lev, Hoang Justin. "A Study of 3D Point Cloud Features for Shape Retrieval." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM040.
Повний текст джерелаWith the improvement and proliferation of 3D sensors, price cut and enhancementof computational power, the usage of 3D data intensifies for the last few years. The3D point cloud is one type amongst the others for 3D representation. This particularlyrepresentation is the direct output of sensors, accurate and simple. As a non-regularstructure of unordered list of points, the analysis on point cloud is challenging andhence the recent usage only.This PhD thesis focuses on the use of 3D point cloud representation for threedimensional shape analysis. More particularly, the geometrical shape is studied throughthe curvature of the object. Descriptors describing the distribution of the principalcurvature is proposed: Principal Curvature Point Cloud and Multi-Scale PrincipalCurvature Point Cloud. Global Local Point Cloud is another descriptor using thecurvature but in combination with other features. These three descriptors are robustto typical 3D scan error like noisy data or occlusion. They outperform state-of-the-artalgorithms in instance retrieval task with more than 90% of accuracy.The thesis also studies deep learning on 3D point cloud which emerges during thethree years of this PhD. The first approach tested, used curvature-based descriptor asthe input of a multi-layer perceptron network. The accuracy cannot catch state-ofthe-art performances. However, they show that ModelNet, the standard dataset for 3Dshape classification is not a good picture of the reality. Indeed, the experiment showsthat the dataset does not reflect the curvature wealth of true objects scans.Ultimately, a new neural network architecture is proposed. Inspired by the state-ofthe-art deep learning network, Multiscale PointNet computes the feature on multiplescales and combines them all to describe an object. Still under development, theperformances are still to be improved.In summary, tackling the challenging use of 3D point clouds but also the quickevolution of the field, the thesis contributes to the state-of-the-art in three majoraspects: (i) Design of new algorithms, relying on geometrical curvature of the objectfor instance retrieval task. (ii) Study and exhibition of the need to build a new standardclassification dataset with more realistic objects. (iii) Proposition of a new deep neuralnetwork for 3D point cloud analysis
Книги з теми "3D Point cloud Compression"
Liu, Shan, Min Zhang, Pranav Kadam, and C. C. Jay Kuo. 3D Point Cloud Analysis. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89180-0.
Повний текст джерелаZhang, Guoxiang, and YangQuan Chen. Towards Optimal Point Cloud Processing for 3D Reconstruction. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96110-7.
Повний текст джерелаChen, YangQuan, and Guoxiang Zhang. Towards Optimal Point Cloud Processing for 3D Reconstruction. Springer International Publishing AG, 2022.
Знайти повний текст джерела3D Point Cloud Analysis: Traditional, Deep Learning, and Explainable Machine Learning Methods. Springer International Publishing AG, 2021.
Знайти повний текст джерела3D Point Cloud Analysis: Traditional, Deep Learning, and Explainable Machine Learning Methods. Springer International Publishing AG, 2022.
Знайти повний текст джерелаЧастини книг з теми "3D Point cloud Compression"
Tu, Chenxi. "Point Cloud Compression for 3D LiDAR Sensor." In Frontiers of Digital Transformation, 119–34. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-1358-9_8.
Повний текст джерелаCheng, Shyi-Chyi, Ting-Lan Lin, and Ping-Yuan Tseng. "K-SVD Based Point Cloud Coding for RGB-D Video Compression Using 3D Super-Point Clustering." In MultiMedia Modeling, 690–701. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37731-1_56.
Повний текст джерелаAlexandrov, Victor V., Sergey V. Kuleshov, Alexey J. Aksenov, and Alexandra A. Zaytseva. "The Method of Lossless 3D Point Cloud Compression Based on Space Filling Curve Implementation." In Automation Control Theory Perspectives in Intelligent Systems, 415–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33389-2_39.
Повний текст джерелаHéno, Raphaële, and Laure Chandelier. "Point Cloud Processing." In 3D Modeling of Buildings, 133–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118648889.ch5.
Повний текст джерелаWeinmann, Martin. "Point Cloud Registration." In Reconstruction and Analysis of 3D Scenes, 55–110. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29246-5_4.
Повний текст джерелаLiu, Shan, Min Zhang, Pranav Kadam, and C. C. Jay Kuo. "Deep Learning-Based Point Cloud Analysis." In 3D Point Cloud Analysis, 53–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89180-0_3.
Повний текст джерелаLiu, Shan, Min Zhang, Pranav Kadam, and C. C. Jay Kuo. "Introduction." In 3D Point Cloud Analysis, 1–13. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89180-0_1.
Повний текст джерелаLiu, Shan, Min Zhang, Pranav Kadam, and C. C. Jay Kuo. "Conclusion and Future Work." In 3D Point Cloud Analysis, 141–43. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89180-0_5.
Повний текст джерелаLiu, Shan, Min Zhang, Pranav Kadam, and C. C. Jay Kuo. "Explainable Machine Learning Methods for Point Cloud Analysis." In 3D Point Cloud Analysis, 87–140. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89180-0_4.
Повний текст джерелаMcInerney, Daniel, and Pieter Kempeneers. "3D Point Cloud Data Processing." In Open Source Geospatial Tools, 263–82. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01824-9_15.
Повний текст джерелаТези доповідей конференцій з теми "3D Point cloud Compression"
Cao, Chao, Marius Preda, and Titus Zaharia. "3D Point Cloud Compression." In Web3D '19: The 24th International Conference on 3D Web Technology. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3329714.3338130.
Повний текст джерелаRenault, Sylvain, Thomas Ebner, Ingo Feldmann, and Oliver Schreer. "Point cloud compression framework for the web." In 2016 International Conference on 3D Imaging (IC3D). IEEE, 2016. http://dx.doi.org/10.1109/ic3d.2016.7823455.
Повний текст джерелаHuang, Tianxin, and Yong Liu. "3D Point Cloud Geometry Compression on Deep Learning." In MM '19: The 27th ACM International Conference on Multimedia. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3343031.3351061.
Повний текст джерелаBui, Mai, Lin-Ching Chang, Hang Liu, Qi Zhao, and Genshe Chen. "Comparative Study of 3D Point Cloud Compression Methods." In 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021. http://dx.doi.org/10.1109/bigdata52589.2021.9671822.
Повний текст джерелаXu, Jiacheng, Zhijun Fang, Yongbin Gao, Siwei Ma, Yaochu Jin, Heng Zhou, and Anjie Wang. "Point AE-DCGAN: A deep learning model for 3D point cloud lossy geometry compression." In 2021 Data Compression Conference (DCC). IEEE, 2021. http://dx.doi.org/10.1109/dcc50243.2021.00085.
Повний текст джерелаDaribo, Ismael, Ryo Furukawa, Ryusuke Sagawa, and Hiroshi Kawasaki. "Adaptive arithmetic coding for point cloud compression." In 2012 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON 2012). IEEE, 2012. http://dx.doi.org/10.1109/3dtv.2012.6365475.
Повний текст джерелаFan, Tingyu, Linyao Gao, Yiling Xu, Zhu Li, and Dong Wang. "D-DPCC: Deep Dynamic Point Cloud Compression via 3D Motion Prediction." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/126.
Повний текст джерелаLi, Li, Zhu Li, Vladyslav Zakharchenko, and Jianle Chen. "Advanced 3D Motion Prediction for Video Based Point Cloud Attributes Compression." In 2019 Data Compression Conference (DCC). IEEE, 2019. http://dx.doi.org/10.1109/dcc.2019.00058.
Повний текст джерелаNguyen, Dat Thanh, Maurice Quach, Giuseppe Valenzise, and Pierre Duhamel. "Learning-Based Lossless Compression of 3D Point Cloud Geometry." In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021. http://dx.doi.org/10.1109/icassp39728.2021.9414763.
Повний текст джерелаLi, Zhe, Lanyi He, Wenjie Zhu, Yiling Xu, Jun Sun, and Le Yang. "3D Point Cloud Attribute Compression Based on Cylindrical Projection." In 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2019. http://dx.doi.org/10.1109/bmsb47279.2019.8971837.
Повний текст джерелаЗвіти організацій з теми "3D Point cloud Compression"
Blundell, S., and Philip Devine. Creation, transformation, and orientation adjustment of a building façade model for feature segmentation : transforming 3D building point cloud models into 2D georeferenced feature overlays. Engineer Research and Development Center (U.S.), January 2020. http://dx.doi.org/10.21079/11681/35115.
Повний текст джерелаHabib, Ayman, Darcy M. Bullock, Yi-Chun Lin, and Raja Manish. Road Ditch Line Mapping with Mobile LiDAR. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317354.
Повний текст джерела