Дисертації з теми "3D Networks"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "3D Networks".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Stigeborn, Patrik. "Generating 3D-objects using neural networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230668.
Повний текст джерелаCosta, Breno Jacinto Duarte da. "3D Routing with Context Awareness." Universidade Federal de Pernambuco, 2009. https://repositorio.ufpe.br/handle/123456789/1771.
Повний текст джерелаConselho Nacional de Desenvolvimento Científico e Tecnológico
O surgimento de interfaces de rede sem-fio de baixo custo no mercado e o crescimento na demanda por dispositivos móveis (como Smartphones, PDAs, Internet Tablets e Laptops) permitiram a criação de cenários onde serviços de rede para usuários móveis possam existir sem nenhuma infra-estrutrutura pré-configurada. No entanto, a interoperabilidade entre tais redes, que são dinâmicas e heterogêneas, é atualmente objeto de pesquisa. Várias pesquisas na área de redes ad hoc sem-fio tem focado em uma única tecnologia sem-fio, baseada no padrão IEEE 802.11, onde os nós da rede são vistos de maneira plana (2D), ou seja, como elementos homogêneos, identificados apenas por endereços IP, não levando em consideração seus perfis de hardware e tecnologias de rede. Desta forma, pesquisas envolvendo mais de uma tecnologia de rede encontram-se em estágios iniciais. Novas propostas são necessárias para estes cenários, que são cada vez mais comuns, envolvendo múltiplos dispositivos com múltiplas interfaces de rede (multi-homed). Este trabalho propõe o protocolo de roteamento 3D, direcionado a cenários onde há heterogeneidade de dispositivos e tecnologias de rede. O objetivo do protocolo de roteamento proposto é prover mecanismos para a interoperabilidade de redes ad hoc heterogêneas, considerando outra dimensão de informações, aqui denominada de terceira dimensão (3D), que consiste em agregar mais informações, como informações de contexto, recursos dos dispositivos e interfaces de rede, ao processo de roteamento. Para isto, o protocolo considera os seguintes aspectos fundamentais: o processo de bootstrapping da rede heterogênea e dos nós, a construção e disseminação de informações de ciência de contexto entre os nós, e a atribuição de papéis específicos para determinados nós da rede. A avaliação do protocolo é feita através de experimentos em um test-bed real, utilizando um protótipo da implementação do protocolo, num cenário composto de dispositivos móveis como Smartphones OpenMoko, Internet Tablets N810 da Nokia e Laptops, possuindo tecnologias Bluetooth e 802.11, executando versões embarcadas do sistema operacional Linux
Zhao, Yao. "Autonomous Localization in 3D Surface Wireless Sensor Networks." Thesis, University of Louisiana at Lafayette, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3622968.
Повний текст джерелаLocation awareness is imperative for a variety of sensing applications and network operations. Although a diversity of GPS-less and GPS-free solutions have been developed recently for autonomous localization in wireless sensor networks, they primarily target at 2D planar or 3D volumetric settings. There exists unique and fundamental hardness to extend them to 3D surfaces.
The contributions of this work are twofold. First, it proposes a theoretically-proven algorithm for the 3D surface localization problem. Seeing the challenges to localize general 3D surface networks and the solvability of the localization problem on single-value (SV) surface, this work proposes the cut-and-sew algorithm that takes a divide-and-conquer approach by partitioning a general 3D surface network into SV patches, which are localized individually and then merged into a unified coordinates system. The algorithm is optimized by discovering the minimum SV partition, an optimal partition that creates a minimum set of SV patches.
Second, it develops practically-viable solutions for real-world sensor network settings where the inputs are often noisy. The proposed algorithm is implemented and evaluated via simulations and experiments in an indoor testbed. The results demonstrate that the proposed cut-and-sew algorithm achieves perfect 100% localization rate and the desired robustness against measurement errors.
Cronje, Frans. "Human action recognition with 3D convolutional neural networks." Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/15482.
Повний текст джерелаNihlén, Ramström Max. "Sketch to 3D Model using Generative Query Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251507.
Повний текст джерелаFör digitala artister och animatörer är processen att gå ifrån en idé i form av en sketch till en färdig 3D-modell tidskrävande och sträcker sig över en mängd olika mjukvaror. Detta arbete presenterar en Generativ Modell som direkt kan generera bilder av en 3D-modell ifrån sketchade bilder i 2D. Modellen är baserad på Generative Query Networks och två olika Generativa Modeller testades för att generera nya bilder, den första en Variational Auto Encoder och den andra en Generative Adversarial Network. Modellen lär sig att skapa nya bilder ifrån godtyckliga synvinklar vilket tillåter den att utföra så kallad mental rotation av ett objekt på samma sätt som om en 3D-modell hade genererats. För att kunna träna modellen skapades ett dataset där bilder sparades både i ursprungs- samt i sketchform tillsammans med synvinklarna där bilderna tagits ifrån. Modellen som använde sig av en Variational Auto Encoder visade sig kunna generera trovärdiga bilder efter att endast ha observerat en sketch medan modellen som använde ett Generative Adversarial Network misslyckades med att betinga de genererade bilderna på de sketcher den observerat.
Mohib, Hamdullah. "End-to-end 3D video communication over heterogeneous networks." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/8293.
Повний текст джерелаBirgersson, Anna, and Klara Hellgren. "Texture Enhancement in 3D Maps using Generative Adversarial Networks." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162446.
Повний текст джерелаNguyen, Thu Duc. "System support for distributed 3D real-time rendering on commodity clusters /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/7018.
Повний текст джерелаAhmad, Waqar. "Core Switching Noise for On-Chip 3D Power Distribution Networks." Doctoral thesis, KTH, Elektroniksystem, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103566.
Повний текст джерелаQC 20121015
Nordhus, Lars Espen Strand. "Ray Tracing for Simulation of Wireless Networks in 3D Scenes." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23002.
Повний текст джерелаEmbley, Ben. "3D loaded foam structures and transport on quasi-1D networks." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493534.
Повний текст джерелаUmar, Abubakar Sadiq. "3D multiple description coding for error resilience over wireless networks." Thesis, Brunel University, 2011. http://bura.brunel.ac.uk/handle/2438/6418.
Повний текст джерелаLiau, Forrest (Forrest W. ). "Virus-enabled synthesis and 2D/3D assembly of nanowire networks." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/92064.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis. "June 2013."
Includes bibliographical references.
Dense networks of high aspect ratio nanowires can provide important functionality to electronic devices through a unique combination of electronic and structural properties including high conductivity, high surface area, and tunable porosity. In this thesis, we explore the virus-enabled synthesis and two/three-dimensional assembly of metallic and semiconducting nanowire networks for future applications including batteries and solar cells. In Chapter 2, we describe the virus-enabled synthesis of titanium oxide nanowires and their incorporation in layer-by-layer polyelectrolyte assemblies for use in dye sensitized solar cells. In Chapter 3, we describe a two-dimensional network of virus-templated cobalt oxide nanowires integrated into ultrathin microbatteries via soft lithography. In Chapter 4, we describe a three-dimensional porous virus-only aerogel network and demonstrate a virus-assembled metal nanowire network for use in batteries. Finally, in Chapter 5, the mechanical properties of various virus assembled three-dimensional structures are measured and compared. We hereby expand the virus assembly toolkit and demonstrate the versatility of bioengineered materials templates.
by Forrest W. Liau.
Ph. D.
Prince, Justin. "Coupled 1D-3D simulation of flow in subway transit networks." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/29431.
Повний текст джерелаQamar, Isabel Perveen Sophia. "Development of 3D printed vascular networks for repeated self healing." Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730887.
Повний текст джерелаChristopoulos, Charitos Andreas. "Brain disease classification using multi-channel 3D convolutional neural networks." Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-174329.
Повний текст джерелаScott, Dion Hamish. "Development of a dynamic 3D imaging system for vascular networks." Thesis, Queensland University of Technology, 2000.
Знайти повний текст джерелаVinther, Sven. "Active 3D object recognition using geometric invariants." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362974.
Повний текст джерелаZhao, Jing. "Protein Structure Prediction Based on Neural Networks." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23636.
Повний текст джерелаShafin, Rubayet. "3D Massive MIMO and Artificial Intelligence for Next Generation Wireless Networks." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/97633.
Повний текст джерелаDoctor of Philosophy
Multiple-input-multiple-output (MIMO) is a technology where a transmitter with multiple antennas communicates with one or multipe receivers having multiple antennas. 3- dimensional (3D) massive MIMO is a recently developed technology where a base station (BS) or cell tower with a large number of antennas placed in a two dimensional array communicates with hundreds of user terminals simultaneously. 3D massive MIMO/full dimensional (FD) MIMO and application of artificial intelligence are two main driving forces for next generation wireless systems. This dissertation focuses on aspects of channel estimation and precoding for 3D massive MIMO systems and application of deep reinforcement learning (DRL) for MIMO broadcast beam synthesis. To be specific, downlink (DL) precoding and power allocation strategies are identified for a time-division-duplex (TDD) multi-cell multi-user massive FD-MIMO network. Utilizing channel reciprocity, DL channel state information (CSI) feedback is eliminated and the DL multi-user MIMO precoding is linked to the uplink (UL) direction of arrival (DoA) estimation through estimation of signal parameters via rotational invariance technique (ESPRIT). Assuming non-orthogonal/non-ideal spreading sequences of the UL pilots, the performance of the UL DoA estimation is analytically characterized and the characterized DoA estimation error is incorporated into the corresponding DL precoding and power allocation strategy. Simulation results verify the accuracy of our analytical characterization of the DoA estimation and demonstrate that the introduced multi-user MIMO precoding and power allocation strategy outperforms existing zero-forcing based massive MIMO strategies. In 3D massive MIMO systems, especially in TDD mode, a BS relies on the uplink sounding signals from mobile stations to obtain the spatial information for downlink MIMO processing. Accordingly, multi-dimensional parameter estimation of MIMO channel becomes crucial for such systems to realize the predicted capacity gains. In this work, we also study the joint estimation of elevation and azimuth angles as well as the delay parameters for 3D massive MIMO orthogonal frequency division multiplexing (OFDM) systems under a parametric channel modeling. We introduce a matrix-based joint parameter estimation method, and analytically characterize its performance for massive MIMO OFDM systems. Results show that antenna array configuration at the BS plays a critical role in determining the underlying channel estimation performance, and the characterized MSEs match well with the simulated ones. Also, the joint parametric channel estimation outperforms the MMSE-based channel estimation in terms of the correlation between the estimated channel and the real channel. Beamforming in MIMO systems is one of the key technologies for modern wireless communication. Creating wide common beams are essential for enhancing the coverage of cellular network and for improving the broadcast operation for control signals. However, in order to maximize the coverage, patterns for broadcast beams need to be adapted based on the users' movement over time. In this dissertation, we present a MIMO broadcast beam optimization framework using deep reinforcement learning. Our proposed solution can autonomously and dynamically adapt the MIMO broadcast beam parameters based on user' distribution in the network. Extensive simulation results show that the introduced algorithm can achieve the optimal coverage, and converge to the oracle solution for both single cell and multiple cell environment and for both periodic and Markov mobility patterns.
Tannouri, Anthony. "Using Wireless multimedia sensor networks for 3D scene asquisition and reconstruction." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD053/document.
Повний текст джерелаNowadays, the WMSNs are promising for different applications and fields, specially with the development of the IoT and cheap efficient camera sensors. The stereo vision is also very important for multiple purposes like Cinematography, games, Virtual Reality, Augmented Reality, etc. This thesis aim to develop a 3D scene reconstruction system that proves the concept of using multiple view stereo disparity maps in the context of WMSNs. Our work can be divided in three parts. The first one concentrates on studying all WMSNs applications, components, topologies, constraints and limitations. Adding to this stereo vision disparity map calculations methods in order to choose the best method(s) to make a 3d reconstruction on WMSNs with low cost in terms of complexity and power consumption. In the second part, we experiment and simulate different disparity map calculations on a couple of nodes by changing scenarios (indoor and outdoor), coverage distances, angles, number of nodes and algorithms. In the third part, we propose a tree-based network model to compute accurate disparity maps on multi-layer camera sensor nodes that meets the server needs to make a 3d scene reconstruction of the scene or object of interest. The results are acceptable and ensure the proof of the concept to use disparity maps in the context of WMSNs
Neupane, Bishal, and Pooya Moazzeni. "Live 3D-TV Streaming." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4016.
Повний текст джерелаAppuhami, Ralalage Harsha Nishantha Deepal. "Cross-layer design for scalable/3D wireless video transmission over IP networks." Thesis, Kingston University, 2014. http://eprints.kingston.ac.uk/30012/.
Повний текст джерелаSällqvist, Jessica. "Real-time 3D Semantic Segmentation of Timber Loads with Convolutional Neural Networks." Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148862.
Повний текст джерелаWiklander, Marcus. "Classification of tree species from 3D point clouds using convolutional neural networks." Thesis, Umeå universitet, Institutionen för fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-174662.
Повний текст джерелаDogru, Sedat. "Sycophant Wireless Sensor Networks Tracked By Sparsemobile Wireless Sensor Networks While Cooperativelymapping An Area." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615139/index.pdf.
Повний текст джерелаs mobility without intervention. SWS networks not only communicate with each other through mobileWireless Sensor Networks (WSN) but also cooperate with them to form a global hybrid Wireless Sensor Network. Such a hybrid network has its own problems and opportunities, some of which have been studied in this thesis work. Assuming that direct position measurements are not always feasible tracking performance of the sycophant using range only measurements for various communication intervals is studied. Then this framework was used to create a hybrid 2D map of the environment utilizing the capabilities of the mobile network the sycophant. In order to show possible applications of a sycophant deployment, the sycophant sensor node was equipped with a laser ranger as its sensor, and it was let to create a 2D map of its environment. This 2D map, which corresponds to a height dierent than the follower network, was merged with the 2D map of the mobile network forming a novel rough 3D map. Then by giving up from the need to properly localize the sycophant even when it is disconnected to the rest of the network, a full 3D map of the environment is obtained by fusing 2D map and tracking capabilities of the mobile network with the 2D vertical scans of the environment by the sycophant. And finally connectivity problems that arise from the hybrid sensor/actuator network were solved. For this 2 new connectivity maintenance algorithms, one based on the helix structures of the proteins, and the other based on the acute triangulation of the space forming a Gabriel Graph, were introduced. In this new algorithms emphasis has been given to sparseness in order to increase fault tolerance to regional problems. To better asses sparseness a new measure, called Resistance was introduced, as well as another called updistance.
Rowe, Laura Elizabeth. "An Active Microscaffold System with Fluid Delivery and Stimulation/Recording Functionalities for Culturing 3-D Neuronal Networks." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14542.
Повний текст джерелаJustin, Alexander William. "Vascular network formation via 3D printing and cell-based approaches." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/276227.
Повний текст джерелаMaamar, Haifa Raja. "Supplying Partners Suite of Protocols for P2P 3D Streaming Over Thin Mobile Devices." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23709.
Повний текст джерелаAndriolo, Stefano. "Convolutional Neural Networks in Tomographic Image Enhancement." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22843/.
Повний текст джерелаGroueix, Thibault. "Learning 3D Generation and Matching." Thesis, Paris Est, 2020. http://www.theses.fr/2020PESC1024.
Повний текст джерелаThe goal of this thesis is to develop deep learning approaches to model and analyse 3D shapes. Progress in this field could democratize artistic creation of 3D assets which currently requires time and expert skills with technical software.We focus on the design of deep learning solutions for two particular tasks, key to many 3D modeling applications: single-view reconstruction and shape matching.A single-view reconstruction (SVR) method takes as input a single image and predicts the physical world which produced that image. SVR dates back to the early days of computer vision. In particular, in the 1960s, Lawrence G. Roberts proposed to align simple 3D primitives to the input image under the assumption that the physical world is made of cuboids. Another approach proposed by Berthold Horn in the 1970s is to decompose the input image in intrinsic images and use those to predict the depth of every input pixel.Since several configurations of shapes, texture and illumination can explain the same image, both approaches need to form assumptions on the distribution of images and 3D shapes to resolve the ambiguity. In this thesis, we learn these assumptions from large-scale datasets instead of manually designing them. Learning allows us to perform complete object reconstruction, including parts which are not visible in the input image.Shape matching aims at finding correspondences between 3D objects. Solving this task requires both a local and global understanding of 3D shapes which is hard to achieve explicitly. Instead we train neural networks on large-scale datasets to solve this task and capture this knowledge implicitly through their internal parameters.Shape matching supports many 3D modeling applications such as attribute transfer, automatic rigging for animation, or mesh editing.The first technical contribution of this thesis is a new parametric representation of 3D surfaces modeled by neural networks.The choice of data representation is a critical aspect of any 3D reconstruction algorithm. Until recently, most of the approaches in deep 3D model generation were predicting volumetric voxel grids or point clouds, which are discrete representations. Instead, we present an alternative approach that predicts a parametric surface deformation ie a mapping from a template to a target geometry. To demonstrate the benefits of such a representation, we train a deep encoder-decoder for single-view reconstruction using our new representation. Our approach, dubbed AtlasNet, is the first deep single-view reconstruction approach able to reconstruct meshes from images without relying on an independent post-processing, and can do it at arbitrary resolution without memory issues. A more detailed analysis of AtlasNet reveals it also generalizes better to categories it has not been trained on than other deep 3D generation approaches.Our second main contribution is a novel shape matching approach purely based on reconstruction via deformations. We show that the quality of the shape reconstructions is critical to obtain good correspondences, and therefore introduce a test-time optimization scheme to refine the learned deformations. For humans and other deformable shape categories deviating by a near-isometry, our approach can leverage a shape template and isometric regularization of the surface deformations. As category exhibiting non-isometric variations, such as chairs, do not have a clear template, we learn how to deform any shape into any other and leverage cycle-consistency constraints to learn meaningful correspondences. Our reconstruction-for-matching strategy operates directly on point clouds, is robust to many types of perturbations, and outperforms the state of the art by 15% on dense matching of real human scans
Gustafsson, Klas, and Oskar Berg. "2D and 3D Visualization to Support Fieldwork in the Area of Utility Networks." Thesis, KTH, Geoinformatik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-221430.
Повний текст джерелаZiqing, Li S. "Towards 3D vision from range images : an optimisation framework and parallel distributed networks." Thesis, University of Surrey, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.291880.
Повний текст джерелаTeratani, Mehrdad. "3D Image Processing and Communication in Camera Sensor Networks: Free Viewpoint Television Networking." Doctoral thesis, Nagoya University, Nagoya, Japan, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/319673.
Повний текст джерелаGrundberg, Måns, and Viktor Altintas. "Generating 3D Scenes From Single RGB Images in Real-Time Using Neural Networks." Thesis, Malmö universitet, Institutionen för datavetenskap och medieteknik (DVMT), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43091.
Повний текст джерелаKarlsson, Linda Sofia. "Coding for Improved Perceived Quality of 2D and 3D Video over Heterogeneous Networks." Doctoral thesis, Mittuniversitetet, Institutionen för informationsteknologi och medier, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-11461.
Повний текст джерелаDen snabba utvecklingen av videoapplikation för TV, Internet och mobiltelefoner tar ytterliggare ett steg i och med introduceringen av stereo 3D TV under 2010. Upplevelsen av 3D kan förstärkas ytterliggare genom att använda multipla vyer i visualiseringen. Skillnaden i innehåll, nätverksresurser och slutanvändare gör överföring av 2D och 3D video med en tillräcklig hög upplevd kvalitet till en utmaning. För det första, hur man ökar den upplevda kvalitén hos en applikation med en begränsad överföringshastighet. För det andra, hur man tillhandahåller den bästa upplevda kvalitén hos alla slutanvändare i ett heterogent nätverk. Region-of-interest (ROI) videokodning är en lösning till det första problemet, vilken anpassar kodningen för att ge högre kvalitet i regioner som är intressanta för användaren. Ett spatio-temporalt filter är föreslaget för att tillhandahålla codec- och standardoberoende ROI videokodning. Filtret reducerar antalet bitar som krävs för att koda bakgrunden och omfördelar dessa till ROI:t. Den temporala delen av filtret minskar komplexiteten jämfört med att använda enbart spatiala filter. Filtret kan anpassas till överföringshastigheten genom att ändra standardavvikelsen för filtret. Filtret har också˙ använts på˙ 3D video i formen 2D-plus-depth, där djupdata användes i ROI detektionen. Det andra problemet kan lösas genom att tillhandahålla en videosekvens som har högsta möjliga kvalitet i hela nätverket. Därmed även den bästa kvaliteten för for varje del av nätverket och för varje 2D- och 3D-skärm. Skalbar videokodning gör det möjligt att extrahera delar av datan för anpassning till de rådande förutsättningarna. En metod som ger skalbarhet i djupet och mellan kameravyer hos multi-view plus depth video har föreslagits. Videosekvensen delas upp i lager beroende på innehållets avstånd till kameran. Metoder för att fördela data över lager i djupet och mellan närliggande vyer har analyserats. Kvalitetsutvärderingen visar att lagrens position i djupet och antalet lager bör bestämmas utifrån fördelningen av djupdata. De främsta lagren i närliggande vyer bör ges högre prioritet om inte applikationen kräver hög kvalitet hos vyer i centrum.
Medi3D
3D-reklam
MediaSense
MORENA, Anthony. "POSS-based 3D functional networks as catalysts for the conversion of carbon dioxide." Doctoral thesis, Università degli Studi di Palermo, 2023. https://hdl.handle.net/10447/580035.
Повний текст джерелаToday, the development of sustainable processes is in the spotlight due to the climate emergencies. Green Chemistry with its twelve principles developed by Paul Anastas, focuses on the development of alternative and more environmentally friendly processes. This branch of chemistry shows how concepts such as waste prevention, the use of renewable raw materials and catalysis are of great importance in making a process more sustainable. In this context, carbon dioxide (CO2) represents one of the most abundant, non-toxic and renewable carbon feedstocks. The possibility of reusing CO2 and transforming this molecule into value-added products such as cyclic carbonates, via addition into epoxides, makes this molecule interesting from a research point of view. Despite these interesting characteristics, the transformation of CO2 has a very high energy thermodynamic requirement. To overcome this problem, a suitable catalyst is essential to decrease the activation energy of the process and make it work in milder condition. In this context this Ph.D. dissertation finds its outlines. Among all the possible catalysts proposed in literature, one class of catalysts that has been little explored is that of bifunctional materials. The excellent catalytic performance shown by these heterogeneous catalysts seems to narrow the gap in terms of catalytic activity between heterogeneous and homogeneous catalysis in relation to this reaction. The first Chapter of the dissertation introduces the reader into the field of heterogeneous catalysis and in catalysis applied for the conversion of carbon dioxide in cyclic carbonates. After this introductory chapter, the dissertation is splitted into two main sections. A first part concerning the Chapter III is related to the study of the stability during catalysis of different materials based on carbon nanoforms (CNFs). On the other hand, Chapters IV and V are related to the second part of the thesis that put its attention in the design of different bifunctional materials based on polyhedral oligomeric silsesquioxanes and their application as a catalyst for the conversion of carbon dioxide with epoxides.
Chen, Cong. "High-Dimensional Generative Models for 3D Perception." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103948.
Повний текст джерелаDoctor of Philosophy
The development of automation systems and robotics brought the modern world unrivaled affluence and convenience. However, the current automated tasks are mainly simple repetitive motions. Tasks that require more artificial capability with advanced visual cognition are still an unsolved problem for automation. Many of the high-level cognition-based tasks require the accurate visual perception of the environment and dynamic objects from the data received from the optical sensor. The capability to represent, identify and interpret complex visual data for understanding the geometric structure of the world is 3D perception. To better tackle the existing 3D perception challenges, this dissertation proposed a set of generative learning-based frameworks on sparse tensor data for various high-dimensional robotics perception applications: underwater point cloud filtering, image restoration, deformation detection, and localization. Underwater point cloud data is relevant for many applications such as environmental monitoring or geological exploration. The data collected with sonar sensors are however subjected to different types of noise, including holes, noise measurements, and outliers. In the first chapter, we propose a generative model for point cloud data recovery using Variational Bayesian (VB) based sparse tensor factorization methods to tackle these three defects simultaneously. In the second part of the dissertation, we propose an image restoration technique to tackle missing data, which is essential for many perception applications. An efficient generative chaotic RNN framework has been introduced for recovering the sparse tensor from a single corrupted image for various types of missing data. In the last chapter, a multi-level CNN for high-dimension tensor feature extraction for underwater vehicle localization has been proposed.
Campagna, Anne. "Structural analysis of protein interaction networks." Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/84111.
Повний текст джерелаLas funciones de las proteínas resultan de la manera con la que interaccionan entre ellas. Los experimentos de alto rendimiento han permitido identificar miles de interacciones de proteínas que forman parte de redes grandes y complejas. En esta tesis, utilizamos la información de estructuras de proteínas para estudiar las redes de interacciones de proteínas. Con esta información, se puede entender como las proteínas interaccionan al nivel molecular y con este conocimiento se puede identificar las interacciones que pueden ocurrir al mismo tiempo de las que están incompatibles. En base a este principio, hemos desarrollado un método que permite estudiar las redes de interacciones de proteínas con un punto de vista mas dinámico de lo que ofrecen clásicamente. Además, al combinar este método con minería de la literatura y Los datos de la proteomica hemos construido la red de interacciones de proteínas asociada con la Rodopsina, un receptor acoplado a proteínas G y hemos identificado sus sub--‐módulos funcionales. Estos análisis surgieron una novel vıa de señalización hacia la regulación del citoesqueleto y el trafico vesicular por Rodopsina, además de su papel establecido en la visión.
Isik, Mehmet Talha. "Localization In Underwater Acoustic Sensor Networks." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608794/index.pdf.
Повний текст джерелаCastelli, Filippo Maria. "3D CNN methods in biomedical image segmentation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18796/.
Повний текст джерелаAlja'afreh, Mohammad Mahmoud. "An Efficient Hybrid Objects Selection Protocol for 3D Streaming over Mobile Devices." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23602.
Повний текст джерелаFay, Rebecca. "Feature selection and information fusion in hierarchical neural networks for iterative 3D-object recognition." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-60447.
Повний текст джерелаOpoku, Agyeman Michael. "Optimizing heterogeneous 3D networks-on-chip architectures for low power and high performance applications." Thesis, Glasgow Caledonian University, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.688307.
Повний текст джерелаZhao, Fangli. "Optical Control of "All Visible" Fluoroazobenzene-Containing Architectures: From Small Molecules to 3D Networks." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19193.
Повний текст джерелаOrtho-fluoroazobenzenes represent one of the most interesting family of visible-light-responsive azobenzenes. Since the first report by our group in 2012, they have been intensively studied at the molecular level, for biological applications, and in bulk materials, due to their outstanding photo/electrochemical properties. Typically, ortho-fluorinated azobenzenes can isomerize in both directions using visible light with high photo-conversions, and the Z-isomers exhibit superior thermal half-lives (up to 2 years). In this work, two projects based on our recently acquired knowledge of fluorinated azobenzenes are presented. First, exploiting complementary absorption profiles and ease of electrochemical isomerization, a mixed azobenzene dimer, whose four isomers can be orthogonally addressed was prepared. It was investigated from its photo-isomerization, thermal relaxation, and electrochemical isomerization aspects. Second, we prepared a photo-responsive hydrogel via covalently cross-linking a poly(ethylene glycol) (PEG)-based precursor with a fluorinated azobenzene forming a 3D polymer network. As a result, the gel’s mechanical properties could be tuned reversibly due to the azobenzenes’ isomerization triggered by visible light irradiation.
Almeida, Rodrigo de Matos Pires Tavares de. "3D terrain generation using neural networks." Master's thesis, 2020. http://hdl.handle.net/10071/22222.
Повний текст джерелаCom o aumento do poder de computação, juntamente com os avanços neste campo na forma de GANs e cGANs, as Redes Neurais tornaram-se numa proposta atrativa para a geração de conteúdos. Graças a estes avanços, abriram-se oportunidades para os algoritmos de Geração de Conteúdos Procedimentais(PCG) explorarem o poder generativo das Redes Neurais para a criação de ferramentas que permitam aos programadores remover parte da carga criativa e de desenvolvimento imposta em toda a indústria dos jogos, seja por parte dos investidores que procuram um retorno do seu investimento ou por parte dos consumidores que querem mais e melhor conteúdo, o mais rápido possível. Esta dissertação pretende desenvolver uma ferramenta de iniciativa mista PCG, alavancando cGANs, para criar terrenos 3D cocriados, permitindo aos utilizadores influenciarem diretamente o conteúdo gerado sem necessidade de terem formação formal sobre a criação de terrenos 3D ou interações complexas com a ferramenta para influenciar a produção generativa, opondo-se assim a algoritmos generativos comummente utilizados, que apenas permitem a geração de conteúdo aleatório ou que são desnecessariamente complexos. Um conjunto de testes feitos a 113 pessoas online e a 30 pessoas presencialmente, revelaram que é de facto possível desenvolver uma ferramenta que permita aos utilizadores, de qualquer nível de conhecimento sobre criação de terrenos, e com uma formação mínima na ferramenta, criar um terreno 3D mais realista do que os terrenos gerados a partir da solução de estado da arte, como o Perlin Noise, e de uma forma fácil.
Chiou, Wen-Hau, and 邱文顥. "Information Brokerage in 3D Wireless Sensor Networks." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/58982491460790259409.
Повний текст джерела國立清華大學
資訊工程學系
101
In 3D wireless sensor networks, many connection-based information brokerage schemes, which use the node connection information rather than the geographic location in- formation, have been proposed. Each one, however, either cannot guarantee data retrieval or incurs a considerable amount of replication overhead costs, making these schemes hard to use in actual practice. In this thesis, a connection-based infor- mation brokerage schemes, RGIB3D, are proposed for 3D wireless sensor networks. RGIB3D are shown, using theoretical analysis, to be retrieval-guaranteed, and shown, with simulations, to have short retrieval latencies while ensuring moderate replication overhead costs in 3D wireless sensor networks.
Huang, Yang-Cheng, and 黃揚晟. "3D Point Cloud Registration Using Neural Networks." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/6ntjsu.
Повний текст джерела國立臺北科技大學
電機工程系
106
In order to enhance the performance of industrial production, manufacturing automation has been playing a critical role. Applications focused on automated 3D visual object detection, positioning, and identification are thus becoming important in manufacturing industry. Hence, 3D point cloud registration appears to be one of the core technologies. Therefore, some practical optimization methods are proposed in this thesis. Specifically, neural networks (NNs) and convolutional neural networks (CNNs) are actively integrated to accomplish 3D pose estimation. The training sample set for offline supervised learning is constructed by various geometric features and descriptors with labels based on randomly rotating and down-sampling the model point cloud. A number of optimized 3D point cloud registration architecture using both neural networks and ICP are proposed that make rigid alignment between the model point cloud and data point cloud which further determine the transformation between the two point clouds. The entire 3D point cloud registration task including sample set construction, training, registration, and inference has been successfully accomplished for typical objects. The proposed approaches have been validated by experiments.
Pascoal, Cláudio. "3D Convolutional Neural Networks for Identifying Protein Interfaces." Master's thesis, 2021. http://hdl.handle.net/10362/123467.
Повний текст джерелаA interação entre proteínas é fundamental em todos os processos biológicos e bioquímicos. As proteínas são compostas por regiões específicas que permitem o reconhecimento molecular e, consequentemente, interações com outras moléculas. Normalmente, estas regiões são estruturalmente diferentes da restante molécula sendo caracterizadas e compostas por aminoácidos diferentes, propriedades químicas e geometria diversa. A detecção das interfaces das proteínas pode ser uma mais valia no contexto de perceber a interação entre as mesmas e consecutivamente, ser vantajoso para o design de novos fármacos (ou drug design) e engenharia metabólica. As previsões de interfaces usam maioritariamente dados estruturados, ou seja, dados bem definidos normalmente obtidos em bancos de dados. No entanto, as proteínas são moléculas complexas o que impossibilita a distinção da sua interface, uma vez que não existe uma propriedade única e específica para todas. Deste modo, o deep learning é uma ferramenta fundamental porque usa características de dados não estruturados, como por exemplo a informação espacial da proteína, imagens, textos, dados de sensores ou volumes. O objetivo principal deste projeto é identificar regiões de interfaces através de estruturas tri-dimensionais de proteínas conhecidas juntamente com as respetivas distribuição espacial das suas propriedades, usando redes neuronais de convolução. Neste trabalho foram estudados algoritmos de deep learning para encontrar a rede neuronal mais adequada ao problema que pretendemos resolver com o melhor desempenho. Outros algoritmos de previsão foram considerados para identificar quais as melhores propriedades bioquímicas a serem usadas como novos canais de input. Seguidamente, as previsões do modelo foram comparadas com as interfaces reais, que foram obtidas pelo cálculo das distâncias dos átomos entre cadeias diferentes do mesmo complexo.
Chen, Yu-Chih, and 陳昱志. "A 3D-Mesh Scatternet Formation Method for Bluetooth Networks." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/z4t8n2.
Повний текст джерела中華大學
電機工程學系碩士班
101
In this thesis, a 3D-Mesh formation method is proposed. The types of 3D-Mesh architecture were divided into triangular-shaped, quadrilaterals, pentagons and hexagons. The number of layers can be generated from level 1 to level 8. The type of its interconnection bridge contains RmS(Ring Inter-mesh Slave)、RMS(Ring Intra-mesh Slave)、and RmMS(Ring Mesh Slave). Scatternet formation procedures include two stages. The first stage is to select a BlueRoot, First, any two nodes with random probability to enter the inquiry or inquiry state and the inquiry node keeps the information of the other node. Then the inquiry node starts the probability decision again to enter either the inquiry or inquiry scan state. The step is repeated iteratively until the last node called BlueRoot is generated. In the second stage, BlueRoot computes the scatternet topology according to the predefined formula and passes the piconet information to the other masters. Each master pages and connects its slave and bridge to form its piconet until the scatternet is formed. The predefined formula can be deduced according to the number of nodes and the hierarchical relationship. In addition, an optimum method by the simulation results is designed to achieve the lowest hop length of 3D-Mesh topology. Computer simulation is performed to generate the performance metrics including the average hop length, throughput, packet delay, and packet delivery ratio. The performance results show that 3D-Mesh Network achieve good scatternet performance for the Bluetooth-based ad hoc networks.