Добірка наукової літератури з теми "3D holographic image"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "3D holographic image".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "3D holographic image":

1

Iano, Randrianasoa, and Randriamaroson Mahandrisoa. "Enhancing Real-Time Pyramid Holographic Display Through Iterative Algorithm Optimization for 3D Image Reconstruction." American Journal of Optics and Photonics 12, no. 1 (April 29, 2024): 9–17. http://dx.doi.org/10.11648/j.ajop.20241201.12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Holography, a crucial technology for 3D visualization, strives to create realistic relief images. This research aims to enhance hologram quality and viewer experience by optimizing the image-processing pipeline. Conventional holographic displays face challenges due to their bulkiness and limited viewing angles. To overcome these limitations, this study proposes a novel approach that integrates digital holography with holographic pyramid technology. Digital holography uses computer algorithms for hologram generation, while holographic pyramid technology projects images onto a reflective pyramid for 3D display. The drawback of holographic pyramid displays in low-light environments is addressed through increased diffraction to enhance image resolution. This integrated approach involves comprehensive research, including an examination of existing methods. The anticipated outcome is holograms with improved visibility and resolution from multiple angles. The research presents an initial image preprocessing phase, succeeded by sophisticated processing employing iterative algorithms. This aims to diminish the image size while upholding its quality, thereby achieving an image suitable for pyramidal display. The fusion of digital holography and holographic pyramid display shows promise for immersive visual experiences. However, advancements in processing techniques may lead to increased material complexity, posing a challenge. Through this research, the system aims to unlock creative potentials and pave the way for enhanced holographic displays in various applications.
2

Shoydin, S. A. "Synthesis of holograms received by a communication channel." Computer Optics 44, no. 4 (August 2020): 547–51. http://dx.doi.org/10.18287/2412-6179-co-694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A method for the synthesis of holograms that reconstruct a 3D image using two 2D images, including a topographic map of the surface of a 3D object and photographs of the texture of its surface obtained using coherent and incoherent radiation is proposed. The method is suitable for transmitting information about a 3D object via a communication channel at a distance and subsequent synthesis of holograms at a distance from the holography object. It can be used in augmented reality devices, when creating holographic cameras and 3D video cameras, in 3D projectors and microscopes, devices with a synthesized aperture. The proposed method for the remote hologram synthesis is suitable for reproducing 3D holographic images of distant objects at different parts of the electromagnetic spectrum. Examples of 3D image restoration in the infrared spectral range are given. The method is also suitable for the synthesis of holograms in the UV, THz, and even radio range.
3

Tyshchenko, I. A., and V. E. Kraskevich. "Holographic technologies as a way to attract investments." Mathematical machines and systems 3 (2022): 70–76. http://dx.doi.org/10.34121/1028-9763-2022-3-70-76.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The purpose of the work is to research and formalize the methods of conveying visual information at presentations and the expediency of using modern information technologies for the visualization of presentation objects. The object of the research and comparison is the information technology of holographic 3D showcases and the holographic 3D showcase itself as a modern device for the virtualization of static and dynamic objects as well as the addition of real objects that meet the size criteria set by the developer, by creating augmented reality without using mobile applications and smartphone cameras. Holographic technologies and methods of holography are analyzed in the article. The use of holography is due to the increase in realistic advertising, the introduction of new information technologies in society, and the increase in the demands of society for multimedia devices. Methods of presenting holographic technologies can be considered information technologies for creating presentation applications that are used to display 3D holographic presentations. The concepts and features of 3D images are revealed. Achieving the realism of the presented information is possible only by creating three-dimensional images that will be placed in space. Dynamic images allow the authors to fully convey their ideas and create the effect of the presence of a real prototype of the product at the presentation. Since the device does not have visible elements of the display of the image, the viewer has no doubts about what he sees. Creation technologies were analyzed and a comparison of 2D and 3D holography was made. It is shown that each of the technologies has its own characteristics and makes it possible to use a holographic 3D showcase as a full-fledged substitute for the screen. Technological features allow using a hologram as a transparent monitor screen which provides new opportunities for demonstration and visualization of goods.
4

Tahara, Tatsuki, Reo Otani, and Yasuhiro Takaki. "Wavelength-Selective Phase-Shifting Digital Holography: Color Three-Dimensional Imaging Ability in Relation to Bit Depth of Wavelength-Multiplexed Holograms." Applied Sciences 8, no. 12 (November 28, 2018): 2410. http://dx.doi.org/10.3390/app8122410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The quality of reconstructed images in relation to the bit depth of holograms formed by wavelength-selective phase-shifting digital holography was investigated. Wavelength-selective phase-shifting digital holography is a technique to obtain multiwavelength three-dimensional (3D) images with a full space-bandwidth product of an image sensor from wavelength-multiplexed phase-shifted holograms and has been proposed since 2013. The bit resolution required to obtain a multiwavelength holographic image was quantitatively and experimentally evaluated, and the relationship between wavelength resolution and dynamic range of an image sensor was numerically simulated. The results indicate that two-bit resolution per wavelength is required to conduct color 3D imaging.
5

Ren, Haoran, Wei Shao, Yi Li, Flora Salim, and Min Gu. "Three-dimensional vectorial holography based on machine learning inverse design." Science Advances 6, no. 16 (April 2020): eaaz4261. http://dx.doi.org/10.1126/sciadv.aaz4261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The three-dimensional (3D) vectorial nature of electromagnetic waves of light has not only played a fundamental role in science but also driven disruptive applications in optical display, microscopy, and manipulation. However, conventional optical holography can address only the amplitude and phase information of an optical beam, leaving the 3D vectorial feature of light completely inaccessible. We demonstrate 3D vectorial holography where an arbitrary 3D vectorial field distribution on a wavefront can be precisely reconstructed using the machine learning inverse design based on multilayer perceptron artificial neural networks. This 3D vectorial holography allows the lensless reconstruction of a 3D vectorial holographic image with an ultrawide viewing angle of 94° and a high diffraction efficiency of 78%, necessary for floating displays. The results provide an artificial intelligence–enabled holographic paradigm for harnessing the vectorial nature of light, enabling new machine learning strategies for holographic 3D vectorial fields multiplexing in display and encryption.
6

He, Zehao, Xiaomeng Sui, and Liangcai Cao. "Holographic 3D Display Using Depth Maps Generated by 2D-to-3D Rendering Approach." Applied Sciences 11, no. 21 (October 22, 2021): 9889. http://dx.doi.org/10.3390/app11219889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Holographic display has the potential to be utilized in many 3D application scenarios because it provides all the depth cues that human eyes can perceive. However, the shortage of 3D content has limited the application of holographic 3D displays. To enrich 3D content for holographic display, a 2D to 3D rendering approach is presented. In this method, 2D images are firstly classified into three categories, including distant view images, perspective view images and close-up images. For each category, the computer-generated depth map (CGDM) is calculated using a corresponding gradient model. The resulting CGDMs are applied in a layer-based holographic algorithm to obtain computer-generated holograms (CGHs). The correctly reconstructed region of the image changes with the reconstruction distance, providing a natural 3D display effect. The realistic 3D effect makes the proposed approach can be applied in many applications, such as education, navigation, and health sciences in the future.
7

Wu, Taihui, Jianshe Ma, Chengchen Wang, Haibei Wang, and Ping Su. "Full-Color See-Through Three-Dimensional Display Method Based on Volume Holography." Sensors 21, no. 8 (April 11, 2021): 2698. http://dx.doi.org/10.3390/s21082698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We propose a full-color see-through three-dimensional (3D) display method based on volume holography. This method is based on real object interference, avoiding the device limitation of spatial light modulator (SLM). The volume holography has a slim and compact structure, which realizes 3D display through one single layer of photopolymer. We analyzed the recording mechanism of volume holographic gratings, diffraction characteristics, and influencing factors of refractive index modulation through Kogelnik’s coupled-wave theory and the monomer diffusion model of photopolymer. We built a multiplexing full-color reflective volume holographic recording optical system and conducted simultaneous exposure experiment. Under the illumination of white light, full-color 3D image can be reconstructed. Experimental results show that the average diffraction efficiency is about 53%, and the grating fringe pitch is less than 0.3 μm. The reconstructed image of volume holography has high diffraction efficiency, high resolution, strong stereo perception, and large observing angle, which provides a technical reference for augmented reality.
8

Choi, Suyeon, Manu Gopakumar, Yifan Peng, Jonghyun Kim, and Gordon Wetzstein. "Neural 3D holography." ACM Transactions on Graphics 40, no. 6 (December 2021): 1–12. http://dx.doi.org/10.1145/3478513.3480542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Holographic near-eye displays promise unprecedented capabilities for virtual and augmented reality (VR/AR) systems. The image quality achieved by current holographic displays, however, is limited by the wave propagation models used to simulate the physical optics. We propose a neural network-parameterized plane-to-multiplane wave propagation model that closes the gap between physics and simulation. Our model is automatically trained using camera feedback and it outperforms related techniques in 2D plane-to-plane settings by a large margin. Moreover, it is the first network-parameterized model to naturally extend to 3D settings, enabling high-quality 3D computer-generated holography using a novel phase regularization strategy of the complex-valued wave field. The efficacy of our approach is demonstrated through extensive experimental evaluation with both VR and optical see-through AR display prototypes.
9

Ping, Guo. "Real Three-Dimensional Image Projection System Based on the Volumetric 3D Display Principles and the WPF Framework." Applied Mechanics and Materials 427-429 (September 2013): 1436–39. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.1436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The real projection system image of 3D Rotating cones based on the Volumetric 3D revelation principle and WPF platform is the true image. Compared with conventional 3D display, this system has the naked eye 3D display, so the viewer is no need to wear 3D glasses and 3D display can be achieved .At the same time, this system has a 360-degree holographic image display. The system is designed by using WPF 3D image, which makes it easy to produce 3D images.
10

Eom, Junseong, and Sangjun Moon. "Three-Dimensional High-Resolution Digital Inline Hologram Reconstruction with a Volumetric Deconvolution Method." Sensors 18, no. 9 (September 3, 2018): 2918. http://dx.doi.org/10.3390/s18092918.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The digital in-line holographic microscope (DIHM) was developed for a 2D imaging technology and has recently been adapted to 3D imaging methods, providing new approaches to obtaining volumetric images with both a high resolution and wide field-of-view (FOV), which allows the physical limitations to be overcome. However, during the sectioning process of 3D image generation, the out-of-focus image of the object becomes a significant impediment to obtaining evident 3D features in the 2D sectioning plane of a thick biological sample. Based on phase retrieved high-resolution holographic imaging and a 3D deconvolution technique, we demonstrate that a high-resolution 3D volumetric image, which significantly reduces wave-front reconstruction and out-of-focus artifacts, can be achieved. The results show a 3D volumetric image that is more finely focused compared to a conventional 3D stacked image from 2D reconstructed images in relation to micron-size polystyrene beads, a whole blood smear, and a kidney tissue sample. We believe that this technology can be applicable for medical-grade images of smeared whole blood or an optically cleared tissue sample for mobile phytological microscopy and laser sectioning microscopy.

Дисертації з теми "3D holographic image":

1

Chen, Jhen-Si. "Holographic 3D image display : layer-based method and coarse integrated holograms." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Barbotin, Thomas. "Etude, démonstration et prototypage de dispositifs d’éclairage/signalisation et d’IHM automobiles générant des effets d’images 3D flottantes par holographie synthétique sous illumination LED et multi-LED." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Afin d’améliorer l’expérience utilisateur de leurs véhicules, les constructeurs automobiles recherchent des systèmes d’affichage et de contrôles innovants, tels des dispositifs permettant de produire des images 3D. Pour ceci, l’holographie est une solution a priori très performante car elle permet de générer une scène 3D incluant la majorité des indices de perception de la 3D nécessaire au cerveau humain. Si la production en série d’hologrammes « classiques » (i.e. à enregistrement optique) est trop contraignante pour les applications automobiles, les hologrammes synthétiques en relief de surface sont compatibles avec la technique de nano-imprint et peuvent donc aisément être produits en grande série. Mais le milieu automobile impose de plus de fortes contraintes de coût, de compacité du système et de sécurité oculaire. Le recours à une illumination LED des hologrammes est donc largement préférable à l’illumination laser généralement utilisée. Une solution holographique illuminé par LED et générant la perception d’un objet flottant, dans le cadre d’une application d’IHM intérieure au véhicule est démontrée. La réalisation d’une étude statistique confirmant que la grande majorité des observateurs perçoivent la scène 3D flottante correctement est détaillée et discutée. Enfin, la démonstration d’une extension de l’approche encore plus compacte en permettant l’illumination par de multiples sources LED distinctes d’un hologramme synthétique générant une image flottante perçue en 3D est présentée
To improve the user experience in their vehicles, automotive manufacturers are searching for innovative display and control systems, such as devices producing 3D images. Holography is an attractive solution as it can generate 3D scenes incorporating most of the perceptual cues necessary for the human brain. While mass production of "classic" holograms (i.e., optically recorded) for automotive applications has strong constraints, surface relief synthetic holograms are compatible with nano-imprint technology, allowing easy large-scale production. However, the automotive environment imposes additional constraints of cost, system compactness, and eye safety. In this automotive context, the use of LED illumination for holograms is therefore highly preferable to the commonly used laser illumination. We demonstrate an LED illuminated holographic solution that creates the perception of a floating object, targeting an in-vehicle human-machine interface (HMI) application. We also present a statistical study confirming that a large majority of observers perceive the floating 3D scene correctly. Finally, we demonstrate an even more compact extension of the approach enabling simultaneous illumination by multiple distinct LED sources of a single synthetic hologram, generating the perception of floating 3D image
3

Lebon, Benoît. "Etude 3D d’un tourbillon dans un champ de houle par holographie numérique." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMLH22/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse traite de l'application de l'holographie numérique dans l'axe à l'étude d'une dynamique tourbillonnaire dans un champ de houle. Lors du passage de la houle au dessus d'une structure immergée, des tourbillons se forment à ses extrémités. Ces tourbillons ont un impact fort sur la dynamique proche des structures et peuvent engendrer des problèmes d'affouillement ou de vieillissement prématuré. On s'intéresse donc à la dynamique tridimensionnelle de ces tourbillons qui sont rapidement l'objet de déformations menant à leur éclatement. Pour étudier ce mécanisme, le problème est modélisé par une géométrie simple, une plaque soumise à une houle monochromatique. Les expériences sont menées dans un canal à houle de 10 m de long et 30 cm de large. Pour mesurer la dynamique 3D on utilise une technique innovante, l'holographie numérique qui permet une mesure 3D3C au moyen d'une diode laser et d'une seule caméra. Ses principales limitations résident dans la dimension de la section du volume de mesure, qui est de l'ordre de la surface du capteur CCD, ainsi que du nombre de particules présentes dans le champ. Toutefois, l'holographie permet une résolution de l'ordre de la taille d'un pixel dans le plan du capteur CCD et de 3 à 5 fois le diamètre de la particule suivie dans la direction orthogonale au capteur. Ces mesures permettent de suivre individuellement plusieurs centaines de particules dans le champ et d'en mesurer les vitesses. Enfin des mesures complémentaires en stéréo-piv confirment les résultats obtenues par holographie et permettent l'étude du confinement du tourbillon sous l'action combinée de la surface libre et de la plaque
This thesis deals with the use of digital in-line holography to the study of a vortex dynamics under water waves. As waves propagate above an immersed structure, vortices are formed at its edges. Those vortices have a strong impact on the flow dynamics in the vicinity of structures and can cause scouring or damages. Thus we are interested in the three-dimensional dynamics of those vortices which are quickly distorted, leading to their breakup. To study this dynamics, the physical problem is modelled by a basic geometry, a thin plate is set under monochromatic waves. Experiments are conduct within a wave flume of dimensions 10 m long and 30 cm width. To measure the 3D flow the use of an innovative technique, the digital holography which allow a 3D3C measure with only one camera and a laser diode. Its main limitations are the size of the cross-section of the sample volume and the number of particles allowed in it. However, digital holography can localize particles with a pixel sized resolution within the plans parallel to the CCD sensor and a depth resolution in the order of 3 to 5 times the particles diameter. Those measurements enable to follow the path of each particle inside the sample volume. Finally, acquisition by stereo particle image velocimetry confirms the velocities measured by holography and are used to study the interaction between the vortex and the combined action of free surface and the plate
4

Welsh, Thomas V. "Quantitative Analysis of 3D Images Formed Using Range Compressed Holography." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1512317926568769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zikmund, Tomáš. "Matematické metody pro zpracování obrazu v biologických pozorováních." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-234208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The dissertation deals with the image processing in digital holographic microscopy and X-ray computed tomography. The focus of the work lies in the proposal of data processing techniques to meet the needs of the biological experiments. Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The phase images are affected by the phase aberrations that make the analysis particularly difficult. Here, we present a novel algorithm for dynamical processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope. High resolution X-ray computed tomography is increasingly used technique for the study of the small rodent bones micro-structure. In this part of the work, the trabecular and cortical bone morphology is assessed in the distal half of rat femur. We developed new method for mapping the cortical position and dimensions from a central longitudinal axis with one degree angular resolution. This method was used to examine differences between experimental groups. The bone position in tomographic slices is aligned before the mapping using the propound standardization procedure. The activity of remodelling process of the long bone is studied on the system of cortical canals.
6

Grare, Stanislas. "Holographie numérique à deux longueurs d'onde : application à la vélocimétrie 3D de particules." Rouen, 2016. http://www.theses.fr/2016ROUES061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail de thèse s’inscrit dans le cadre du LABEX 3D. Durant ce travail, une collaboration entre le laboratoire CORIA (Rouen) et le laboratoire LOMC (le Havre) a été engagée. Le LOMC s’intéresse à l’étude des tourbillons générés par l’interaction houle-structure immergée. Le CORIA apporte ses compétences en diagnostics optiques et plus particulièrement en holographie numérique pour la caractérisation de ces tourbillons. Ce travail de thèse concerne le développement d’une nouvelle méthode de vélocimétrie 3D de particules par holographie numérique en utilisant deux longueurs d’onde d’enregistrement. Cette nouvelle méthode a été développée afin de contourner les principaux problèmes des méthodes couramment utilisées en holographique numérique pour la vélocimétrie de particules. Cette stratégie permet d’estimer simultanément une grande gamme de vitesse aussi bien transversale qu’axiale avec enregistrement des hologrammes sur un seul support numérique. Elle permet alors d’avoir des informations 4D,3C. Cette méthode de vélocimétrie a été testée avec succès dans des écoulements tourbillonnaires fortement inhomogènes dans lesquels des vitesses transversales sont comprises entre 1 cm/s et 25 cm/s, et des vitesses axiales comprises entre 1cm/s et 8 cm/s
This work is made in the context of the LABEX 3D. During this work, a collaboration between the laboratory CORIA (Rouen) and the laboratory LOMC (Le Havre) was initiated. The LOMC is interested in particular in the study of vortices generated by the swell-submerged structure interaction. The laboratory CORIA brings its expertise in optical diagnostics and more specifically in digital holography for the characterization of these vortices. This work deals with the development of a new method for 3D particle velocimetry by digital holography using two recording wavelengths. This new method, which is the extension of the classical multi-exposure previously developed in the laboratory, was developed in order to overcome the main problems of the methods commonly used in digital holography for particle velocimetry. This strategy makes it possible to simultaneously estimate a wide range of velocity, both transversely and axially, with the recording of holograms on a single frame. It then makes it possible to have 4D, 3C informations. This new velocimetry method has then been successfully tested in highly inhomogeneous vortex flows
7

Dapore, Benjamin R. "Phase Noise Analysis of 3D Images From a Two Wavelength Coherent Imaging System." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1375447146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sansone, Enrico. "Study on the practical realization of a device able to generate an in-space 3D luminous image." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21052/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Gli ologrammi sono parte integrante della cultura pop a partire dagli anni 50, tanto che ad oggi sentirne parlare non desta più scalpore. Dal lato pratico, invece, solo negli ultimi anni sono state fatte ricerche approfondite con lo scopo di realizzarli. Fra i dispositivi attualmente in commercio, in pochi sono degni di nota e presentano numerose limitazioni, questo perché è molto difficile riuscire a progettare un sistema che permetta di illuminare dei punti specifici in uno spazio tridimensionale per lunghi periodi. In questa tesi si illustrano i principi di funzionamento ed il progetto per un nuovo dispositivo, diverso da quelli fino ad ora realizzati, che sfrutti il decadimento spontaneo di atomi di rubidio eccitati tramite due fasci laser opportunamente incrociati. Nel punto di incrocio si produce luce visibile a 420 nm. Con un opportuno sistema di specchi che muovono velocemente il punto di intersezione tra i due fasci è possibile realizzare un vero ologramma tridimensionale visibile da quasi ogni angolazione.
9

Lebrun, Denis. "Etude et applications d'un analyseur d'images optoélectronique : mesure de diamètres in situ et trajectographie 3D de fibres de verre restituées par holographie." Rouen, 1992. http://www.theses.fr/1992ROUES043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nous améliorons l'analyse de la figure de diffraction des objets filiformes en remplaçant une barrette de photodiodes par un capteur CCD bidimensionnel. Le diamètre et la position d'une fibre de verre en mouvement sont extraits à partir de cette figure. La résolution du problème inverse de diffraction par la méthode de Newton autorise un temps de traitement de 0,25 s. Des méthodes de filtrage et de normalisation sont appliquées pour augmenter le rapport signal/bruit. Ce traitement met en évidence l'effet Moiré entre le reseau CCD et la figure de diffraction. Nous utilisons cette information pour valider les mesures. La gamme de diamètres mesurés est de 8 à 25 micromètres sur des distances objet-capteur de 30 à 50 mm. Ce même récepteur est utilisé pour la trajectographie 3D des fibres de verre enregistrées par holographie en cours d'étirage dans une flamme. Le suivi des trajectoires est automatisé après le repérage d'une extrémité. Le bruit optique lié à la turbulence et aux contraintes thermiques du milieu d'enregistrement nécessite le développement d'algorithmes de mise au point et de filtrage adaptés à la reconnaissance d'objets unidimensionnels. Ce système, testé au laboratoire est à même de fournir une cartographie 3D des trajets des fibres : l'opérateur est sollicité environ une dizaine de fois pour un suivi de longueur 40 mm
10

YU, CHIEN-YU, and 余芊豫. "Display of 3D Real Image by Depth-Added Computer-Generated Holographic Stereogram." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8r87vm.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
逢甲大學
光電科學與工程學系
107
Computer-generated holographic stereogram (CGHS) is a technique that computes the holographic interference fringes from multiple two-dimensional images with different viewing angles. We know that hologram can display two reconstructed images:real image and virtual image. However, the studies of CGHS concentrate on generating a 3D virtual image, so our idea is using CGHS to generate a 3D real image. This thesis is based on the depth added-computer generated holographic stereogram (Depth-Added CGHS). The hologram is calculated by the images captured by the camera as a holographic element (Hogel). In order to change direct light field propagation, we changed the position of hologram plane to the back of the 3D object. Here comes a problem when using simple camera method, the hogel fringe can’t be calculation individually. To solve this problem, we proposed to use the tilted camera method to capture the images of the 3D object, and then use the look-up table method to generate the hologram. Because of the shooting area consists of the size of the hologram plane, there will be a problem of insufficient memory when calculating the large-size hologram. The solution is to divide the hologram into multiples by using the concept of hogel. The hologram needs to be divided into a certain size that will be the most advantageous for calculation time. After calculating the optimal size of hogel, we can generate hogel one by one. Finally, we confirmed the digital reconstruction result is a 3D real image and exposed the interference fringe on the photosensitive film by the hologram printer to observe the optical reconstruction image.

Книги з теми "3D holographic image":

1

Matsushima, Kyoji. Introduction to Computer Holography: Creating Computer-Generated Holograms as the Ultimate 3D Image. Springer, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "3D holographic image":

1

Blanche, Pierre-Alexandre. "Holographic Visualization of 3D Data." In Optical and Digital Image Processing, 201–26. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635245.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hiscox, Colin, Juanyong Li, Ziyang Gao, Dmitry Korkin, Cosme Furlong, and Kristen Billiar. "Characterization of Bioengineered Tissues by Digital Holographic Vibrometry and 3D Shape Deep Learning." In Advancements in Optical Methods, Digital Image Correlation & Micro-and Nanomechanics, Volume 4, 57–62. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17471-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khan, Javid. "Holographic 3D Visualisation of Medical Scan Images." In Lasers in Oral and Maxillofacial Surgery, 209–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-29604-9_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Uma Mahesh, R. N., B. Lokesh Reddy, and Anith Nelleri. "Deep Learning-Based Multi-class 3D Objects Classification Using Digital Holographic Complex Images." In Futuristic Communication and Network Technologies, 443–48. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4625-6_43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bao, Lili, Yuan Guo, Rui Wang, Yanxia Cai, and Lei Lei. "Design and Implementation of Augmented Image for the Space Environment Journals Based on AR Technology." In Artificial Intelligence and Human-Computer Interaction. IOS Press, 2024. http://dx.doi.org/10.3233/faia240169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With the advancement of space exploration, the significance of space environment has grown. Currently, by means of the space environment journals, people can learn frontier in space environment domain. In order to make the space environment journals more attractive, this paper applies AR technology in the space environment journals. In system design, the web framework architecture of Operational Space Environment Technology System is adopted to periodically update the target image database, SIFT-TF-ORB algorithm is used for the recognition of space environment image with massive similar patterns and gradient distributions, and an improved HVQ-1d method is described to improve the visual quality of volume rendering for space environment. A mobile AR application has been developed for the Journal of Space Environment Monthly Report. By scanning a coronal mass ejection image in the journal, readers can see dynamic event process, monitoring index charts and forecast text. By scanning a coronal hole image or a solar flare image, readers can see a holographic 3D solar model, related charts and text. By scanning a near-Earth space environment image like an ionospheric image or an atmospheric image, readers can see a holographic 3D parameter model, as well as index charts and explanatory text. To evaluate our application, we conducted a questionnaire and user feedback indicated a relatively high level of satisfaction with the application. Thus, we have drawn a conclusion that AR technology can help readers interact with the space environment journals and make space environment events more intuitive and vivid, and easier to understand.
6

Goncharsky, Anton, and Svyatoslav Durlevich. "Synthesis of Nano-Optical Elements for Forming 3D Images at Zero Diffraction Order." In Holography - Recent Advances and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A method is proposed to compute and synthesize a nano-optical element to produce a new visual effect: a 3D image formed in the vicinity of zero diffraction order. Usual relief rainbow holograms or OVDs can form 3D effect, but at +1 or − 1 diffraction order only and they provide 3D parallax in left/right direction only, and after rotation/inclination of an element, a 3D image changes its color and further disappears completely. The new visual effect provides with full 3D parallax. Moreover, a 3D zero-order image is well visible when an optical element is rotated through 360 degrees; the color of 3D image does not depend on the viewing angle. A synthesis technology is developed incorporating the computation of scattering patterns in elementary areas, computation of the phase function of the entire optical element, and the formation of its microrelief by using e-beam lithography. The microrelief consists of multilevel kinoforms with an accuracy of 10 nm in terms of depth. It was demonstrated by experimental results that the new visual effect is easy for visual perception under white light illumination. A sample of nano-optical element is manufactured, which when illuminated by white light, forms a 3D image in the vicinity of zero-order of diffraction (video available at: https://bit.ly/3QtzxbI).
7

Ng, Jenna. "Holograms/Holographic Projections : Ghosts Amongst the Living; Ghosts of the Living." In The Post-Screen Through Virtual Reality, Holograms and Light Projections. Nieuwe Prinsengracht 89 1018 VR Amsterdam Nederland: Amsterdam University Press, 2021. http://dx.doi.org/10.5117/9789463723541_ch04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter explicates holographic projections as the second instantiation of post-screen media. Often mistaken as holograms, these projections of images ranging from Tupac to Julian Assange to holographic protests redraw the boundaries between life and death, and enable a re-imagination of ghosts, deadness, aliveness and afterlife. The chapter argues for four different moments in a history of ghosts in the media: resurrection; necrophilia; necromancy; and interactivity. The last facilitates spectral life in the post-screen through considering holographic projections of both dead and living figures. In relation to the dead, the post-screen becomes a space in limbo between deadness and aliveness; in relation to the living, the realness of the holographic body stretches in a tetravalence across dual axes of actual/virtual and here/elsewhere, and enlivened in what I call vivification. In these 3D displays on the post-screen of resurrected and vivified bodies, different kinds of life, afterlife and after-death emerge.
8

Blundell, Barry G. "On Volume Based 3D Display Techniques." In Managing Information Resources and Technology, 257–67. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-3616-3.ch017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the case of certain applications in which a need exists to visualize and interact with voluminous data sets and complex 3-D geometrical models, the conventional computer interface inhibits key human-computer interaction processes. Here, several deficiencies of the standard interface are identified with emphasis on a failure to make optimal use of the complex human sensory systems. Various general forms of interaction modality are outlined together with several types of image space. This provides a basis for brief discussion of emerging ‘creative’ 3-D display systems with emphasis on computational holography, varifocal techniques, and volumetric systems.
9

Krishnan, Kannan M. "Transmission and Analytical Electron Microscopy." In Principles of Materials Characterization and Metrology, 552–692. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198830252.003.0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Transmission electron microscopy provides information on all aspects of the microstructure — structural, atomic, chemical, electronic, magnetic, etc. — at the highest spatial resolution in physical and biological materials, with applications ranging from fundamental studies to process metrology in the semiconductor industry. Developments in correcting electron-optical aberrations have improved TEM resolution to sub-Å levels. Coherent Bragg scattering (diffraction), incoherent Rutherford scattering (atomic mass), and interference (phase) are some contrast mechanisms in TEM. For phase contrast, optimum imaging is observed at the Scherzer defocus. Magnetic domains are imaged in Fresnel, Foucault, or differential phase contrast (DPC) modes. Off-axis electron holography measures phase shifts of the electron wave, and is affected by magnetic and electrostatic fields of the specimen. In scanning-transmission (STEM) mode, a focused electron beam is scanned across the specimen to sequentially form an image; a high-angle annular dark field detector gives Z-contrast images with elemental specificity and atomic resolution. Series of (S)TEM images, recorded every one or two degrees about a tilt axis, over as large a tilt-range as possible, are back-projected to reconstruct a 3D tomographic image. Inelastically scattered electrons, collected in the forward direction, form the energy-loss spectrum (EELS), and reveal the unoccupied local density of states, partitioned by site symmetry, nature of the chemical species, and the angular momentum of the final state. Energy-lost electrons are imaged by recording them, pixel-by-pixel, as a sequence of spectra (spectrum imaging), or by choosing electrons that have lost a specific energy (energy-filtered TEM). De-excitation processes (characteristic X-ray emission) are detected by energy dispersive methods, providing compositional microanalysis, including chemical maps. Overall, specimen preparation methods, even with many recent developments, including focused ion beam milling, truly limit applications of TEM.
10

Angelsky, Oleg, Peter Maksymyak, Claudia Zenkova, Olexander Ushenko, and Jun Zheng. "New Trends of Optical Measurements." In Applied Aspects of Modern Metrology. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.100589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Some of the achievements of modern optical metrology are offered for the reader at this chapter. Optical testing methods have always attracted by their important advantages: distance, non-destructive impact on the test object and, of course, high accuracy. So, using of polarization optics approach, the authors were able to implement the methods for controlling the surface roughness for the moving surface with the measurement accuracy of 10 angstroms. It has become possible to make a breakthrough in the basic methods of measurements from the nano to the femto or pico units of the measured quantity value over the past decades. Control of nano (micro) particle motion by an optical field and their use for testing complex optical fields; ultra-precise determination of the optical parameters of both solid and liquid and gas-like substances by optical methods; by interference methods and many other, are proposed for consideration here. Some biomedical applications are also offered for reader’s familiarization. Particularly, the results of 3D Stokes-polarimetric mapping of microscopic biological images with digital holographic reproduction of layer-by-layer ellipticity polarization maps in differential diagnosis of benign and malignant tumors with different degrees of differentiation are presented. The authors have shown that using of polarization-holographic measurements in biomedical applications makes it possible to obtain a reliable diagnostic of pathological states both of biological fluids and solid-state objects.

Тези доповідей конференцій з теми "3D holographic image":

1

Park, Dae-Youl, and Jae-Hyeung Park. "Holographic Display using Volume Holographic Recording Medium." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/3d.2018.jw4a.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hong, Jisoo, Youngmin Kim, Sunghee Hong, Choonsung Shin, and Hoonjong Kang. "Near-eye foveated holographic display." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/3d.2018.3m2g.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lee, Byounghyo, Jinsoo Jeong, Dukho Lee, and Byoungho Lee. "LED based Off-axis Reflection Digital Holographic Microscopy using Holographic Optical Element." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/3d.2018.jtu4a.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tsujiuchi, Jumpei. "3D Image Display Using Holographic Stereograms." In Intl Conf on Trends in Quantum Electronics, edited by Ioan Ursu. SPIE, 1989. http://dx.doi.org/10.1117/12.950647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Skirnewskaja, Jana, Yunuen Montelongo, Jinze Sha, and Timothy D. Wilkinson. "Holographic LiDAR Projections with Brightness Control." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/3d.2022.3f2a.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pixel by pixel brightness control was achieved in the 3D 4k holographic replay field results. High accuracy and brightness control is required for maps in military applications and real-time head-up displays.
6

Olchewsky, François, Frédéric champagnat, and Jean-Michel Desse. "Multidirectional holographic interferometer for 3D gas density reconstruction." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/3d.2018.3w5g.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ram, G. Hanu Phani, Vaibhav Bansode, and Renu John. "Lensless holographic microscope of biological samples." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/3d.2018.jtu4a.36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Winnik, J., T. Kozacki, and B. M. Hennelly. "Holographic Tomography with Spherical Wave Illumination." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/3d.2018.jw4a.7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Andreassen, R., O. Birkeland, T. E. Grahl-Nielsen, K. E. Olsen, and I. Singstad. "Construction of a Holographic 3D Printer using Silver-Halide Filmplates." In Holography. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/holography.1996.hmc.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper reports on the production of multi stereo hologram from a series of computer images with different camera views which are copied onto a LCD panel, one image view at a time. The LCD images serves as an object in a conventional holographic set up, and two production methods are considered, two-step reflection hologram, produced from a master hologram and one-step reflection hologram.
10

Liu, Juan, Shijie Zhang, and Haowen Ma. "Real-time Holographic Display based on Dynamic Scene Reconstruction and Rendering." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/3d.2023.dw5a.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We propose an end-to-end real-time holographic display based on real-time capture of real scenes with simple system composition and affordable hardware requirements, the proposed technique will break the dilemma of the existing real-scene holographic display.

Звіти організацій з теми "3D holographic image":

1

Katz, Joseph, and Charles Meneveau. Instrumentation for 2D and 3D Holographic Particle Image Velocimetry in Axial Turbomachines. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada381937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії