Добірка наукової літератури з теми "3D Electron diffraction"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "3D Electron diffraction".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "3D Electron diffraction"

1

Gemmi, Mauro, and Arianna E. Lanza. "3D electron diffraction techniques." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 75, no. 4 (August 1, 2019): 495–504. http://dx.doi.org/10.1107/s2052520619007510.

Повний текст джерела
Анотація:
3D electron diffraction is an emerging technique for the structural analysis of nanocrystals. The challenges that 3D electron diffraction has to face for providing reliable data for structure solution and the different ways of overcoming these challenges are described. The route from zone axis patterns towards 3D electron diffraction techniques such as precession-assisted electron diffraction tomography, rotation electron diffraction and continuous rotation is also discussed. Finally, the advantages of the new hybrid detectors with high sensitivity and fast readout are demonstrated with a proof of concept experiment of continuous rotation electron diffraction on a natrolite nanocrystal.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cho, Jungyoun, and Xiaodong Zou. "Revealing structural details with 3D electron diffraction/microcrystal electron diffraction." Acta Crystallographica Section A Foundations and Advances 78, a1 (July 29, 2022): a217. http://dx.doi.org/10.1107/s2053273322097820.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Beanland, R. "3D electron diffraction goes multipolar." IUCrJ 11, no. 3 (April 26, 2024): 277–78. http://dx.doi.org/10.1107/s2052252524003774.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schröder, Rasmus R., and Christoph Burmester. "Improvements in electron diffraction of frozen hydrated crystals by energy filtering and large-area single-electron detection." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 666–67. http://dx.doi.org/10.1017/s0424820100149167.

Повний текст джерела
Анотація:
Diffraction patterns of 3D protein crystals embedded in vitrious ice are critical to record. Inelastically scattered electrons almost completely superimpose the diffraction pattern of crystals if the thickness of the crystal is higher than the mean free path of electrons in the specimen. Figure 1 shows such an example of an unfiltered electron diffraction pattern from a frozen hydrated 3D catalase crystal. However, for thin 2D crystals electron diffraction has been the state of the art method to determine the Fourier amplitudes for reconstructions to atomic level, and in one case the possibility of obtaining Fourier phases from diffraction patterns has been studied. One of the main problems could be the background in the diffraction pattern due to inelastic scattering and the recording characteristics for electrons of conventional negative material.It was pointed out before, that the use of an energy filtered TEM (EFTEM) and of the Image Plate as a large area electron detector gives considerable improvement for detection of diffraction patterns.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schmidt, Ella Mara, Yasar Krysiak, Paul Benjamin Klar, Lukas Palatinus, Reinhard B. Neder та Andrew L. Goodwin. "3D-ΔPDF from electron diffraction data". Acta Crystallographica Section A Foundations and Advances 77, a2 (14 серпня 2021): C80. http://dx.doi.org/10.1107/s0108767321095994.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gemmi, Mauro, Enrico Mugnaioli, Tatiana E. Gorelik, Ute Kolb, Lukas Palatinus, Philippe Boullay, Sven Hovmöller, and Jan Pieter Abrahams. "3D Electron Diffraction: The Nanocrystallography Revolution." ACS Central Science 5, no. 8 (July 19, 2019): 1315–29. http://dx.doi.org/10.1021/acscentsci.9b00394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mei, Kaili, Kejia Zhang, Jungu Xu, and Zhengyang Zhou. "The Application of 3D-ED to Distinguish the Superstructure of Sr1.2Ca0.8Nb2O7 Ignored in SC-XRD." Crystals 13, no. 6 (June 8, 2023): 924. http://dx.doi.org/10.3390/cryst13060924.

Повний текст джерела
Анотація:
Compared to X-rays, electrons have stronger interactions with matter. In electron diffraction, the low-order structure factors are sensitive to subtle changes in the arrangement of valence electrons around atoms when the scattering vector is smaller than the critical scattering vector. Therefore, electron diffraction is more advantageous for studying the distribution of atoms in the structure with atomic numbers smaller than that of sulfur. In this work, the crystal structure of Sr1.2Ca0.8Nb2O7 (SCNO-0.8) was analyzed using single-crystal X-ray diffraction (SC-XRD) and three-dimensional electron diffraction (3D-ED) techniques, respectively. Interestingly, the superstructure could only be identified by the 3D-ED technique, while no signal corresponding to the superstructure was detected from the SC-XRD data. The superstructure in SCNO-0.8 was disclosed to be caused by different tilting of NbO6 octahedra and the displacements of Sr/Ca atoms in the different atomic layers perpendicular to the a-axis. Therefore, the application of 3D-ED provides an effective method for studying superstructures caused by ordered arrangements of light atoms.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

NISHIYAMA, Yusuke. "3D Electron Diffraction and Solid-State NMR." Nihon Kessho Gakkaishi 64, no. 3 (August 31, 2022): 201–2. http://dx.doi.org/10.5940/jcrsj.64.201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Meents, A., V. Hennicke, M. Hachmann, A. Rodrigues, W. Brehm, P. Reinke, J. Meyer, et al. "3D structure determination with MeV electron diffraction." Acta Crystallographica Section A Foundations and Advances 79, a2 (August 22, 2023): C309. http://dx.doi.org/10.1107/s2053273323093063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Palatinus, Lukáš, Cinthia Corrêa, Gwladys Mouillard, Philippe Boullay, and Damien Jacob. "Accurate structure refinement from 3D electron diffraction data." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C374. http://dx.doi.org/10.1107/s2053273314096259.

Повний текст джерела
Анотація:
Structure determination from electron diffraction data has seen an enormous progress over the past few years. At present, complex structures with hundreds of atoms in the unit cell can be solved from electron diffraction using the concept of electron diffraction tomography (EDT), possibly combined with precession electron diffraction (PED) [1]. Unfortunately, the initial model is typically optimized using the kinematical approximation to calculate model diffracted intensities. This approximation is quite inaccurate for electron diffraction and leads to high figures of merit and inaccurate results with unrealistically low standard uncertainties. The obvious remedy to the problem is the use of dynamical diffraction theory to calculate the model intensities in structure refinement. This technique has been known and used before, but it has not become very popular, because good fits could be obtained only for sufficiently perfect and sufficiently thin crystals. It has been shown recently on several zone-axis patterns [2] that the quality of the refinement can be improved by using precession electron diffraction. In the present contribution we demonstrate that the same approach can be successfully used to refine crystal structures against non-oriented patterns acquired by EDT combined with PED (PEDT in short). Because the PEDT technique provides three-dimensional diffraction information, it can be used for a complete structure refinement. Several test examples demonstrate that the dynamical structure refinement yields better figures of merit and more accurate results than the refinement using kinematical approximation.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "3D Electron diffraction"

1

Wang, Yunchen. "3D Electron Diffraction : Application and Development towards High-quality Structure Determination." Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-147732.

Повний текст джерела
Анотація:
Electron crystallography has been proven to be effective for structure determination of nano- and micron-sized crystals. In the past few years, 3D electron diffraction (3DED) techniques were used for the structure solution of various types of complex structures such as zeolites, metal-organic frameworks (MOF) and pharmaceutical compounds. However, unlike X-ray crystallography, electron diffraction has not yet become an independent technique for a complete structure determination due to relatively poorer diffraction intensities and often powder X-ray diffraction data are used for structure validation and refinement. Electron beam damage to the structures that are sensitive to high energy electrons and dynamical scattering are important factors to lead to the deviation of electron diffraction intensities from the squared amplitudes of the structure factors. In this thesis, we investigate various aspects around the 3D electron diffraction data quality and strategies for obtaining better data and structure models. We combined 3D electron diffraction methods and powder X-ray diffraction to determine the structure of an open-framework material and discussed the difficulties and limitations of electron diffraction for beam sensitive materials. Next, we illustrated the structure determination of a pharmaceutical compound, bismuth subgallate, using 3D electron diffraction. While severe beam damage and diffuse scattering were observed in the dataset collected with the conventional rotation electron diffraction (RED) method, the continuous rotation electron diffraction (cRED) method coupled with sample cooling significantly improved the data quality and made the structure solution possible. In order to better understand the potentials and limitations of the continuous rotation method, we collected multiple datasets from different crystals of a known structure and studied the data quality by evaluating the accuracy of the refined structure models. To tackle dynamical scattering in electron diffraction data, we explored a routine for structure refinement with dynamical intensity calculation using RED data from a known structure and discussed its potentials and limitations.

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.

Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cordero, Oyonarte Erica. "Electrοn crystallοgraphy οf nanοparticles". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC235.

Повний текст джерела
Анотація:
Les nanoparticules (NPs) suscitent un grand intérêt en raison de leurs propriétés uniques, ce qui les rend utiles dans différents domaines scientifiques. Comprendre la structure cristallographique des NPs est crucial pour découvrir leurs caractéristiques distinctes et concevoir de nouveaux matériaux. La diffraction des rayons X sur monocristal est utilisée pour la détermination précise de la structure cristalline ; cependant, elle est limitée par la petite taille des NPs. La diffraction des rayons X sur poudre (PXRD) constitue une alternative pour l'identification de phases et la taille moyenne des particules, mais elle présente des limitations en matière d'affinement de structure en raison de l'élargissement et du chevauchement des pics. La diffraction des électrons (ED) apparaît comme une méthode précieuse pour étudier des nanoparticules individuelles, car les électrons interagissent plus fortement avec la matière que les rayons X. En particulier, les techniques de diffraction des électrons en 3D (3D ED) ont révolutionné ce domaine, permettant une analyse structurelle détaillée de très petits cristaux. Ce travail vise à tester les limites de la 3D ED pour analyser la structure de nanoparticules inorganiques aussi petites que 10 nm en utilisant différents protocoles, tels que la 3D ED assistée par précession, la 3D ED en rotation continue ou la ED sérielle. Il explore également le potentiel de la 3D ED par rapport à la PXRD et son application à divers défis de caractérisation structurelle des nanoparticules. Ceux-ci incluent, par exemple, la détection d'atomes légers, l'affinement des occupations mixtes ou la résolution de structures complexes inconnues
Nanoparticles (NPs) are of great interest due to their unique properties, making them useful in different scientific fields. Understanding the crystallographic structure of NPs is crucial for uncovering their distinct characteristics and designing new materials. Single Crystal X-ray Diffraction is employed for accurate crystal structure determination; however, it is limited by the small size of NPs. Powder X-ray Diffraction (PXRD serves as an alternative for phase identification and average particle size, but it has limitations in structure refinement due to peak broadening and overlapping. In particular, 3D Electron Diffraction (3D ED) techniques have revolutionized the field, enabling detailed structural analysis of very small crystals. This work aims to test the limits of 3D ED for analyzing the structure of inorganic nanoparticles as small as 10 nm using various protocols, such as precession-assisted 3D ED, continuous rotation 3D ED, and serial ED. It also explores the potential of 3D ED compared to PXRD and its application to various structural characterization challenges in NPs, including the detection of light atoms, refinement of mixed occupancies, and solving complex unknown structures
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mateescu, Nora-Maria Materials Science &amp Engineering Faculty of Science UNSW. "Development of 3D-EBSD and its application to the study of various deformation and annealing phenomena." Publisher:University of New South Wales. Materials Science & Engineering, 2008. http://handle.unsw.edu.au/1959.4/41541.

Повний текст джерела
Анотація:
The ability to generate three dimensional (3D) microstructures in solids is of great importance in understanding their true nature, as it eliminates speculation about the spatial distribution of features associated with conventional two dimensional (2D) imaging techniques. There are several recently-developed 3D techniques for determining the spatial distribution of microstructural features, each with a given resolution. There is considerable interest in the development of a specific serial sectioning methodology, termed 3D electron backscatter diffraction (3D-EBSD), which combines a focused ion beam (FIB) with EBSD interfaced to a field emission gun scanning electron microscope. Here, FIB is used as a serial sectioning device for cutting parallel slices of single- and multi-phase materials with a site-specific accuracy of up to 50 nm. Each consecutive slice is mapped by EBSD and the complete dataset combined using advanced computer algorithms to generate a volume of a material whereby the true crystallographic features can be analyzed at submicron resolution. The aims of the thesis was to develop 3D-EBSD into a powerful materials analysis tool and use it to resolve several issues concerning the nature of the deformed state and the nucleation and the growth behaviour of recrystallizing grains. The study commenced with an investigation into the effect of material type (restricted to face centred cubic AI, Cu and Au metallic crystals), FIB milling conditions and EBSD software variables on the quality of EBSD patterns generated on ion-milled surfaces of these materials. The effect of material type on EBSD pattern quality following FIB milling was found to be significant with relatively poor quality EBSD patterns obtained for metals of low atomic number. It was demonstrated, particularly for the high atomic number metals, that moderate FIB milling currents (~1-5nA) generated good quality EBSD maps from a given ion-milled surface. This preliminary work was necessary for balancing the time required for serial sectioning during 3D-EBSD and the generation of sufficient quality EBSD maps from each ion-milled surface. The outcomes of this investigation were applied to two major 3D-EBSD investigations on the microstructural and crystallographic characteristics of: (i) deformation features generated in a cold rolled interstitial free (IF) steel, with particular emphasis on the formation of microbands; and (ii) recrystallization of a cold rolled nickel alloy containing coarse (>1 ??m) silica particles, with particular attention given to the generation of particle deformation zones and their influence on nucleation and growth of recrystallizing grains including particle stimulated nucleation (PSN), twin formation during PSN and the growth behaviour of various types of grain boundary into the deformation microstructure. The foregoing 3D-EBSD studies were significant as they revealed various microstructural and crystallographic features not usually clearly evident in conventional 2D micrographs obtained by either EBSD or optical metallography. For example, the technique demonstrated that microbands in cold rolled IF steel consist of irregular curved surfaces that reconcile findings that microbands straight and aligned parallel to slip planes when viewed in normal direction-rolling direction sections but are wavy in transverse direction-rolling direction sections. Three slip planes were found within the angular range of the curved surface of the microband, which indicates that multiple slip planes are operative during deformation. The work also showed the influence of particle diameter on the misorientations generated within particle deformation zones and clearly showed that particle stimulated nucleation (PSN) occurred at particles greater than 1.5-2 ??m. It was observed that PSN in the nickel sample also generates contiguous grains separated by both coherent and incoherent twin boundaries and, on further growth of these grains into the matrix, the coherent boundary dominates and remains parallel to the primary growth direction of the grains.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yuan, Hui. "3D morphological and crystallographic analysis of materials with a Focused Ion Beam (FIB)." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0134/document.

Повний текст джерела
Анотація:
L’objectif principal de ce travail est d’optimise la tomographie par coupe sériée dans un microscope ‘FIB’, en utilisant soit l’imagerie électronique du microscope à balayage (tomographie FIB-MEB), soit la diffraction des électrons rétrodiffusés (tomographie dite EBSD 3D). Dans les 2 cas, des couches successives de l’objet d’étude sont abrasées à l’aide du faisceau ionique, et les images MEB ou EBSD ainsi acquises séquentiellement sont utilisées pour reconstruire le volume du matériau. A cause de différentes sources de perturbation incontrôlées, des dérives sont généralement présentes durant l'acquisition en tomographie FIB-MEB. Nous avons ainsi développé une procédure in situ de correction des dérives afin de garder automatiquement la zone d'intérêt (ROI) dans le champ de vue. Afin de reconstruction le volume exploré, un alignement post-mortem aussi précis que possible est requis. Les méthodes actuelles utilisant la corrélation-croisée, pour robuste que soit cette technique numérique, présente de sévères limitations car il est difficile, sinon parfois impossible de se fier à une référence absolue. Ceci a été démontré par des expériences spécifiques ; nous proposons ainsi 2 méthodes alternatives qui permettent un bon alignement. Concernant la tomographie EBSD 3D, les difficultés techniques liées au pilotage de la sonde ionique pour l'abrasion précise et au repositionnement géométrique correct de l’échantillon entre les positions d'abrasion et d’EBSD conduisent à une limitation importante de la résolution spatiale avec les systèmes commerciaux (environ 50 nm)3. L’EBSD 3D souffre par ailleurs de limites théoriques (grand volume d'interaction électrons-solide et effets d'abrasion. Une nouvelle approche, qui couple l'imagerie MEB de bonne résolution en basse tension, et la cartographie d'orientation cristalline en EBSD avec des tensions élevées de MEB est proposée. Elle a nécessité le développement de scripts informatiques permettant de piloter à la fois les opérations d’abrasion par FIB et l’acquisition des images MEB et des cartes EBSD. L’intérêt et la faisabilité de notre approche est démontrée sur un cas concret (superalliage de nickel). En dernier lieu, s’agissant de cartographie d’orientation cristalline, une méthode alternative à l’EBSD a été testée, qui repose sur l’influence des effets de canalisation (ions ou électrons) sur les contrastes en imagerie d’électrons secondaires. Cette méthode corrèle à des simulations la variation d’intensité de chaque grain dans une série d’images expérimentales obtenues en inclinant et/ou tournant l’échantillon sous le faisceau primaire. Là encore, la méthode est testée sur un cas réel (polycritsal de TiN) et montre, par comparaison avec une cartographie EBSD, une désorientation maximale d'environ 4° pour les angles d’Euler. Les perspectives d’application de cette approche, potentiellement beaucoup plus rapide que l’EBSD, sont évoquées
The aim of current work is to optimize the serial-sectioning based tomography in a dual-beam focused ion beam (FIB) microscope, either by imaging in scanning electron microscopy (so-called FIB-SEM tomography), or by electron backscatter diffraction (so-called 3D-EBSD tomography). In both two cases, successive layers of studying object are eroded with the help of ion beam, and sequentially acquired SEM or EBSD images are utilized to reconstruct material volume. Because of different uncontrolled disruptions, drifts are generally presented during the acquisition of FIB-SEM tomography. We have developed thus a live drift correction procedure to keep automatically the region of interest (ROI) in the field of view. For the reconstruction of investigated volume, a highly precise post-mortem alignment is desired. Current methods using the cross-correlation, expected to be robust as this digital technique, show severe limitations as it is difficult, even impossible sometimes to trust an absolute reference. This has been demonstrated by specially-prepared experiments; we suggest therefore two alternative methods, which allow good-quality alignment and lie respectively on obtaining the surface topography by a stereoscopic approach, independent of the acquisition of FIB-SEM tomography, and realisation of a crossed ‘hole’ thanks to the ion beam. As for 3D-EBSD tomography, technical problems, linked to the driving the ion beam for accurate machining and correct geometrical repositioning of the sample between milling and EBSD position, lead to an important limitation of spatial resolution in commercial softwares (~ 50 nm)3. Moreover, 3D EBSD suffers from theoretical limits (large electron-solid interaction volume for EBSD and FIB milling effects), and seems so fastidious because of very long time to implement. A new approach, coupling SEM imaging of good resolution (a few nanometres for X and Y directions) at low SEM voltage and crystal orientation mapping with EBSD at high SEM voltage, is proposed. This method requested the development of computer scripts, which allow to drive the milling of FIB, the acquisition of SEM images and EBSD maps. The interest and feasibility of our approaches are demonstrated by a concrete case (nickel super-alloy). Finally, as regards crystal orientation mapping, an alternative way to EBSD has been tested; which works on the influence of channelling effects (ions or electrons) on the imaging contrast of secondary electrons. This new method correlates the simulations with the intensity variation of each grain within an experimental image series obtained by tilting and/or rotating the sample under the primary beam. This routine is applied again on a real case (polycrystal TiN), and shows a max misorientation of about 4° for Euler angles, compared to an EBSD map. The application perspectives of this approach, potentially faster than EBSD, are also evoked
Стилі APA, Harvard, Vancouver, ISO та ін.
5

SCHELL, JULIANA. "Investigação de parâmetros hiperfinos dos óxidos semicondutores SnOsub(2) e TiOsub(2) puros e dopados com metais de transição 3d pela espectroscopia de correlação angular gama-gama perturbada." reponame:Repositório Institucional do IPEN, 2015. http://repositorio.ipen.br:8080/xmlui/handle/123456789/23699.

Повний текст джерела
Анотація:
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-06-09T18:22:48Z No. of bitstreams: 0
Made available in DSpace on 2015-06-09T18:22:49Z (GMT). No. of bitstreams: 0
Tese (Doutorado em Tecnologia Nuclear)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Passuti, Sara. "Electrοn crystallοgrathy οf nanοdοmains in functiοnal materials". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC230.

Повний текст джерела
Анотація:
L’étude des matériaux fonctionnels se concentre de plus en plus sur des échantillonscaractérisés par des nano-domaines (allant de tailles submicroniques à des dizaines denanomètres) en raison de leurs propriétés physiques intéressantes, telles que celles observéesdans les films minces ou les matériaux céramiques. Lorsqu’il faut déterminer des phases inconnuesou obtenir des informations détaillées sur la structure cristalline de ces matériaux, ladiffraction des rayons X et la microscopie électronique à transmission (MET) se heurtent à desdifficultés. Pour résoudre ce problème, une nouvelle technique de diffraction électronique (ED),dite « Scanning Precession Electron Tomography » (SPET), a été employée. La SPET combinela méthode établie d’acquisition de données 3D ED assistée par la précession (également connuesous l’acronyme PEDT) avec un balayage du faisceau d’électrons sur une région d’intérêt (ROI)de l’échantillon et ce à chaque angle d’inclinaison du porte objet. Cette procédure permet decollecter des données 3D ED à partir de plusieurs ROIs en une seule acquisition, ce qui facilitela résolution et l’affinement précis de la structure cristalline de plusieurs nano-domaines ou dezones distinctes à l’intérieur d’un seul domaine. Dans cette thèse, les potentialités de la SPETsont explorées à la fois sur des films minces d’oxyde et sur des matériaux thermoélectriques(céramiques) préparés sous forme de lamelles TEM. En outre, une nouvelle méthodologie a étédéveloppée pour analyser efficacement la grande quantité de données collectées. Cette méthodeconsiste à trier les diagrammes de diffraction en fonction de leur région d’origine, à reconstruirela série 3D ED selon les différentes ROIs et à traiter automatiquement ces données pour la résolutionet l’obtention d’affinements précis de la structure. Ce travail démontre le potentiel de laSPET pour la caractérisation cristallographique fine de matériaux nano-structurés complexes.Cette approche est complémentaire de ce qui peut être fait en imagerie ou en spectroscopie par(S)TEM ou, en diffraction, par les approches dites 4D-STEM et ACOM
The investigation of functional materials has increasingly focused on samplescharacterized by nanodomains (ranging from submicron sizes to tens of nanometers) due totheir interesting physical properties, such as those observed in thin films and ceramic materials.When unknown phases need to be determined or detailed information on the crystallinestructure of these materials is required, this presents challenges for both X-ray diffraction andtransmission electron microscopy (TEM). To address this, a novel electron diffraction (ED) technique,Scanning Precession Electron Tomography (SPET), has been employed. SPET combinesthe established precession-assisted 3D ED data acquisition method (a.k.a. Precession ElectronDiffraction Tomography – PEDT) with a scan of the electron beam on a region of interest (ROI)of the specimen at each tilt step. This procedure allows to collect 3D ED data from multipleROIs with a single acquisition, facilitating structure solution and accurate structure refinementsof multiple nanodomains or distinct areas within a single domain, at once. In this thesis, thepotentialities of SPET are explored on both oxide thin films and ceramic thermoelectric materialsprepared as TEM lamellae. Additionally, a novel methodology was developed to efficientlyanalyze the large amount of data collected. This method involves sorting the diffraction patternsaccording to their region of origin, reconstructing the diffraction tilt series of the ROI, andautomatically processing the obtained tilt series for structure solution and accurate refinements.This work demonstrates the potential of SPET for the fine crystallographic characterization ofcomplex nanostructured materials. This approach appears to be complementary to what can bedone in imaging or spectroscopy by (S)TEM or, in diffraction, by the so-called 4D-STEM andACOM approaches
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gérard, Pascale. "Contribution à l'étude magnétostatique des systèmes intermétalliques R(Co1-xNix)5." Grenoble 1, 1992. http://www.theses.fr/1992GRE10041.

Повний текст джерела
Анотація:
Une etude de l'evolution du magnetisme des electrons 3d dans le systeme y(co#1##xni#x)#5 (entre le fort ferromagnetisme itinerant associe au compose yco#3 et le paramagnetisme de pauli caracteristique du compose yni#5) est effectuee. On montre qu'aux fortes concentrations en nickel, les instabilites du magnetisme s'instaurent de maniere inhomogene, en fonction des environnements locaux. On precise ensuite les anisotropies associees a ce magnetisme. Elles revelent le caractere du magnetisme itinerant du sous-reseau (co#1##xni#x). Une etude de la coercivite magnetique, associee aux defauts d'echange et d'anisotropie introduits par la substitution du nickel au cobalt, est egalement menee sur les composes monocristallins du systeme riches en nickel. Cette coercivite est interpretee dans un modele de parois flexibles ancrees sur les clusters de faible densite d'aimantation. Nous considerons ensuite l'influence sur le magnetisme 3d, associe au sous-reseau (co#1##xni#x), d'une terre rare magnetique isotrope. Cette etude est realisee sur le systeme gd(co#1##xni)#5. Elle permet d'apprehender l'effet de champ d'echange, associe au gadolinium, sur la stabilite relative du magnetisme du sous-reseau 3d, et de mettre en evidence experimentalement une anisotropie des interactions d'echange entre les sous-reseaux 3d et 4f. Nous presentons enfin une etude par diffraction de neutrons polarises et non polarises du compose yco#3ni#2. Une determination fine de la structure cristallographique de ce compose est realisee. On met en evidence une repartition non aleatoire des atomes de cobalt et de nickel dans les deux types de sites qu'ils occupent. Une carte de la densite d'aimantation moyenne dans ce compose est etablie. Elle met en evidence l'existence d'une polarisation des electrons 5d, mediateurs des interactions d'echange 3d-4f, et permet en outre, d'evaluer la contribution orbitale au magnetisme du compose
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kulik, Victor. "Structure of Bovine Liver Catalase Solved by Electron Diffraction on Multilayered Crystals." Doctoral thesis, 2005. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2005071317.

Повний текст джерела
Анотація:
The high resolution structure of protein molecules and protein-protein complexes is important to investigate their functions. Today, large 3D or 2D crystals are required to obtain protein structures by X-ray crystallography or conventional Electron Microscopy, respectively. However, production of such crystals of good quality is a solely empirical procedure, which relies on screening numerous crystallization conditions. At the same time, multilayered protein crystals are often a by-product of attempts to grow 3D or 2D crystals and could be obtained more easily. So far, multilayered protein crystals have not been used in electron microscopy for structure determination, as the interpretation of an electron diffraction pattern is rather complicated. In this thesis we present the first protein structure bovine liver catalase at 4 Å resolution solved using electron diffraction data from multilayered crystals. 55 diffraction patterns (17 tilt series) were recorded and used for the reconstruction. The tilt geometry of each individual diffraction pattern was determined by a least-squares algorithm or Laue zone analysis to perform spot indexing. The phase problem was solved by molecular replacement. The influence of the missing data cone on the self-rotation function and interpretation of reconstructed map is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Staraselski, Yauheni. "On the experimental design of the material microstructures." Thesis, 2014. http://hdl.handle.net/10012/8418.

Повний текст джерела
Анотація:
The design techniques of the components on the macro level are established in the scientific community, however are far behind from the real material performance limits. To obtain those limits, the deeper understanding of the material structure is required. The methods of a new comonents production through standard alloying are the basis of the modern material science manufacturing. The design of the materials with expected required performance limits is the next conceptual step for the materials scientist. As results, to make this step, the problem of a precise material structure analyses on the microstructural level is one os the major importance for the next generation materials design. The complexity of the material structure across the scales(macro-micro) requires a new non deterministic methods for better understanding of the connectivity betwen a materials performance and material microstructure features. This work presents a various new research methodologies and techniques of the material microstructure characterization and numerical design with future applications to the anlyses of the material behavior. The focus of the particular research was to analyse a new cross correlation function of the material structure on the micro length scale and develop a novel framework which allows a better understanding of various important material phenomenas such as failure initiation and recrystallization.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

CAZZATO, Alberto. "Residual stress evaluation in innovative manufacturing techniques: FSW and FDM." Doctoral thesis, 2017. http://hdl.handle.net/11589/99055.

Повний текст джерела
Анотація:
Oggi, la velocità con cui vengono sviluppate tecniche di produzione innovative è sempre più crescente e nuove tecnologie o sviluppi di processi già esistenti vengono raggiunti in un tempo minore. Sebbene, queste nuove tecnologie debbano affrontare e risolvere i nuovi problemi e le questioni relative alla novità dei processi stessi, tuttavia molte volte, devono affrontare anche vecchi problemi noti da più di un secolo. Uno di questi problemi è quello delle tensioni residue. Queste ultime sono stati tensionali "congelati" che esistono in materiali o strutture, essenzialmente a causa dei processi di fabbricazione, indipendentemente che qualsiasi carico esterno sia stato applicato alla struttura o al materiale. Combinandosi con i carichi esterni, gli effetti delle tensioni residue possono essere sia positivi che negativi, a seconda della grandezza, dal segno e dalla distribuzione delle sollecitazioni. In questa tesi, sono state studiate due tecniche innovative in due diversi campi che devono affrontare i problemi relativi alle tensioni residue: Friction Stir Welding (FSW) e Fused Deposition Modelling (FDM). Poiché il materiale nella FSW non raggiunge il punto di fusione, si può pensare che i valori delle tensioni residue possano essere bassi. Tuttavia, poiché la FSW è principalmente un processo di saldatura meccanico, a causa delle elevate forze in gioco e delle importanti forze di serraggio utilizzate, le tensioni residue non possono essere considerate basse in generale. Infatti, i vincoli imposti alle piastre da saldare, impediscono la contrazione del materiale durante il raffreddamento generando tensioni residue. Nella tecnica FDM, il modello è costruito come una deposizione strato per strato del materiale base. A causa di questo approccio, la parte stampata si raffredda strato dopo strato durante la deposizione e, di conseguenza, si creano variazioni termiche e diverse velocità di raffreddamento da un livello all'altro. Questo produce tensioni interne tra gli strati, ritrazione irregolare, problemi di destratificazione, deformazioni e i problemi ad esse associati in particolare con pezzi di grandi dimensioni. Per effettuare questo studio, le due linee di indagine sono state divise sostanzialmente come segue. Per quanto riguarda le tensioni residue nella saldatura FSW, è stato sviluppato il setup sperimentale per misurare il campo di temperatura durante il processo di saldatura sia nella FSW e che nella Laser Assisted FSW. Questo permette di avere una mappa di temperatura a campo intero durante il processo di saldatura. Questo ha permesso di studiare l'influenza sulla temperatura della distanza spot laser – utensile FSW e della potenza della sorgente laser. Inoltre, sono state effettuate le misure sperimentali delle tensioni residue in nuove tecniche derivate dalla FSW e in nuovi materiali per la FSW, cioè LAFSW, l'in-process cooled FSW e giunti a sovrapposizione alluminio-titanio. Infine, i risultati sperimentali termografici e della misura delle tensioni residue sono stati impiegati per validare i modelli numerici per FSW e LAFSW. Questi modelli sono in grado di prevedere la temperatura e le tensioni residue cambiando i parametri di processo e il setup dei vincoli. Per quanto concerne le tensioni residue nella FDM, è stato eseguito prima uno studio preliminare sul comportamento meccanico dei pezzi FDM al fine di dimostrare che questi mostrano un comportamento ortotropo sia a carichi statici che dinamici. Questi studi sono stati utilizzati al fine di avere una migliore conoscenza delle parti FDM e stabilire il comportamento appropriato da impiegare al fine di creare il modello numerico per eseguire il calcolo delle tensioni residue. Questo modello permette di correlare gli spostamenti sperimentali misurati dall’Electronic Speckle pattern Interferometry (ESPI) durante la foratura e le tensioni residue.
Nowadays, the speed whereby innovative manufacturing techniques are developed is more and more increasing and new technologies or developments of already existing processes are achieved in a smaller time. Though these innovative technologies have to face and resolve new difficulties and issues related to the novelty of the processes, however, many times they have to tackle old problems known for more than a century. One of these problems is the residual stresses issue. Residual stresses are �frozen� stresses that exist in materials or structures, essentially due to the manufacturing processes, independently that any external load has been applied on the structure or materials. Combining with the external loads, the effects of residual stresses may be either beneficial or detrimental, depending upon the magnitude, sign, and distribution of the stress. In this thesis, two innovative techniques in different fields that have to face to residual stress issues have been addressed: Friction Stir Welding and Fused Deposition Modelling. In the Friction stir welding (FSW), the material is not led to fusion and this helps to decreases the residual stresses values. However, because FSW is mainly a mechanical welding process, due to the high force involved in the weld and, thus, the rigid clamping used, the residual stresses are not low in general. Indeed, the constraints avoid the contraction of the materials during cooling in both longitudinal and transverse directions producing residual stresses. In the Fused deposition modelling (FDM), the model is built as a layer-by-layer deposition of a feedstock material. Due to this approach, the part cools down layer by layer during the deposition and, consequently, there is thermal variation and different cooling rates from one layer to the other. This produces internal stresses between layers, uneven shrinkage, de-layering problems, warping, and the relatively associated problems especially with large parts. In order to carry out this study, the two lines of investigation are basically divided as follow. For residual stress in Friction stir welding, the experimental setup to measure the temperature field on both FSW and LAFSW during the welding process has been developed. This allows to capture the whole temperature fields during the welding process and to study the influence on the temperature of the distance laser spot - FSW tool and of the laser source power. Moreover, the experimental measurements of residual stresses in new developed FSW techniques and materials, i.e. Laser Assisted FSW, the in-process cooled FSW, and lap-joint of aluminium-titanium have been carried out. Finally, the thermographic experimental results and the residual stresses measurements have been employed to validate the numerical models for FSW and LAFSW. These models can predict the temperature and residual stresses changing the process parameters and clamping configuration. For residual stress in fused deposition modelling, a preliminary study on the mechanical behaviour of FDM parts has been done in order to prove that FDM parts show an orthotropic behaviour on both static and dynamic loads. These studies are useful in order to have a better knowledge of the FDM parts and establish the appropriate behaviour of the material to employ in order to create the numerical model to carry out the residual stress calculation. This model allows to correlate the experimental displacements measured by Electronic Speckle Pattern Interferometry (ESPI) during hole drilling and the residual stresses.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "3D Electron diffraction"

1

Nangia, Ashwini K. "3D Electron Diffraction." In Supramolecular Synthons in Crystal Engineering of Pharmaceutical Properties, 163–71. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003260073-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Abrahams, Jan Pieter, Dilyana Georgieva, Linhua Jiang, and Igor Nederlof. "Electron Diffraction of Protein 3D Nanocrystals." In NATO Science for Peace and Security Series B: Physics and Biophysics, 389–98. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5580-2_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sintay, Stephen D., Michael A. Groeber, and Anthony D. Rollett. "3D Reconstruction of Digital Microstructures." In Electron Backscatter Diffraction in Materials Science, 139–53. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-88136-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Oleynikov, Peter. "Automated Quantitative 3D Electron Diffraction Rotation Tomography." In NATO Science for Peace and Security Series B: Physics and Biophysics, 327–35. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5580-2_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Barton, Nathan R., Joel V. Bernier, Ricardo A. Lebensohn, and Anthony D. Rollett. "Direct 3D Simulation of Plastic Flow from EBSD Data." In Electron Backscatter Diffraction in Materials Science, 155–67. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-88136-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zou, Xiaodong, Sven Hovmöller, and Peter Oleynikov. "3D electron crystallography." In Electron CrystallographyElectron Microscopy and Electron Diffraction, 223–44. Oxford University Press, 2011. http://dx.doi.org/10.1093/acprof:oso/9780199580200.003.0011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Amelinckx, S., and D. Van Dyck. "Electron Diffraction Effects due to Modulated Structures." In Electron Diffraction Techniques, 309–72. Oxford University PressOxford, 1993. http://dx.doi.org/10.1093/oso/9780198557333.003.0004.

Повний текст джерела
Анотація:
Abstract The diffraction pattern of a modulated structure is often characterized by the appearance of weak reflections derived from and often close to the reflections of the basic structure. These so-called satellites often form linear sequences or 2D or 3D arrays associated with the basic reflections. When arrays of satellites belonging to different basic spots meet, they do not necessarily match, i.e. they do not belong to a common reciprocal lattice. In the simplest case of linear arrays a “spacing” anomaly or an “orientation” anomaly or a combination of both may occur (Figure 4.1). In this case we call the diffraction pattern “incommensurate”. In some systems the positions of the satellites may change continuously upon varying one parameter such as temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xu, Hongyi. "3D electron diffraction for structural characterization of nanomaterials." In Reference Module in Materials Science and Materials Engineering. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822425-0.00033-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

N. Hattori, Azusa, and Ken Hattori. "Creation and Evaluation of Atomically Ordered Side- and Facet-Surface Structures of Three-Dimensional Silicon Nano-Architectures." In 21st Century Surface Science - a Handbook. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92860.

Повний текст джерела
Анотація:
The realization of three-dimensional (3D)-architected nanostructures, that is, the transformation from novel two-dimensional (2D) film-based devices to 3D complex nanodevices, is of crucial importance with the progress of scaling down devices to nanometer order. However, little attention has been devoted to controlling the atomic ordering and structures of side-surfaces on 3D structures, while techniques for controlling and investigating 2D surfaces, namely, surface science, have been established only for planar 2D surfaces. We have established an original methodology that enables atomic orderings and arrangements of surfaces with arbitrary directions to be observed on 3D figured structures by developing diffraction and microscopy techniques. An original technique, namely, directly and quantitatively viewing the side- and facet-surfaces at the atomic scale by reflection high-energy electron diffraction (RHEED) and low-energy electron diffraction (LEED), can be used to determine process parameters in etching. This chapter introduces methods of evaluation by RHEED and LEED based on a reciprocal space map and methods of creating various atomically flat 111 and {100} side-surfaces of 3D Si nano-architectures and tilted 111 facet-surfaces fabricated by lithography dry and wet etching processes, followed by annealing treatment in vacuum.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Krishnan, Kannan M. "Transmission and Analytical Electron Microscopy." In Principles of Materials Characterization and Metrology, 552–692. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198830252.003.0009.

Повний текст джерела
Анотація:
Transmission electron microscopy provides information on all aspects of the microstructure — structural, atomic, chemical, electronic, magnetic, etc. — at the highest spatial resolution in physical and biological materials, with applications ranging from fundamental studies to process metrology in the semiconductor industry. Developments in correcting electron-optical aberrations have improved TEM resolution to sub-Å levels. Coherent Bragg scattering (diffraction), incoherent Rutherford scattering (atomic mass), and interference (phase) are some contrast mechanisms in TEM. For phase contrast, optimum imaging is observed at the Scherzer defocus. Magnetic domains are imaged in Fresnel, Foucault, or differential phase contrast (DPC) modes. Off-axis electron holography measures phase shifts of the electron wave, and is affected by magnetic and electrostatic fields of the specimen. In scanning-transmission (STEM) mode, a focused electron beam is scanned across the specimen to sequentially form an image; a high-angle annular dark field detector gives Z-contrast images with elemental specificity and atomic resolution. Series of (S)TEM images, recorded every one or two degrees about a tilt axis, over as large a tilt-range as possible, are back-projected to reconstruct a 3D tomographic image. Inelastically scattered electrons, collected in the forward direction, form the energy-loss spectrum (EELS), and reveal the unoccupied local density of states, partitioned by site symmetry, nature of the chemical species, and the angular momentum of the final state. Energy-lost electrons are imaged by recording them, pixel-by-pixel, as a sequence of spectra (spectrum imaging), or by choosing electrons that have lost a specific energy (energy-filtered TEM). De-excitation processes (characteristic X-ray emission) are detected by energy dispersive methods, providing compositional microanalysis, including chemical maps. Overall, specimen preparation methods, even with many recent developments, including focused ion beam milling, truly limit applications of TEM.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "3D Electron diffraction"

1

Galliopoulou, Eirini C., Christopher Jones, Lawrence Coghlan, Mariia Zimina, Tomas L. Martin, Peter E. J. Flewitt, Alan Cocks, John Siefert, and Jonathan D. Parker. "Creep Cavitation Imaging and Analysis in 9%Cr-1%Mo P91 Steels." In AM-EPRI 2024, 219–34. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.am-epri-2024p0219.

Повний текст джерела
Анотація:
Abstract The current research adopts a novel approach by integrating correlative microscopy and machine learning in order to study creep cavitation in an ex-service 9%Cr 1%Mo Grade 91 ferritic steel. This method allows for a detailed investigation of the early stages of the creep life, enabling identification of features most prone to damage such as precipitates and the ferritic crystal structure. The microscopy techniques encompass Scanning Electron Microscopy (SEM) imaging and Electron Back-scattered Diffraction (EBSD) imaging, providing insights into the two-dimensional distribution of cavitation. A methodology for acquiring and analysing serial sectioning data employing a Plasma Focused Ion Beam (PFIB) microscope is outlined, complemented by 3D reconstruction of backscattered electron (BSE) images. Subsequently, cavity and precipitate segmentation was performed with the use of the image recognition software, DragonFly and the results were combined with the 3D reconstruction of the material microstructure, elucidating the decoration of grain boundaries with precipitation, as well as the high correlation of precipitates and grain boundaries with the initiation of creep cavitation. Comparison between the 2D and 3D results is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"3D Electron Diffraction on Ferroelectric Perovskites." In Microscience Microscopy Congress 2023 incorporating EMAG 2023. Royal Microscopical Society, 2023. http://dx.doi.org/10.22443/rms.mmc2023.31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yang, Jie, Christopher J. Hensley, and Martin Centurion. "Ultrafast 3D imaging of isolated molecules with electron diffraction." In SPIE Optical Engineering + Applications, edited by Zhiwen Liu. SPIE, 2013. http://dx.doi.org/10.1117/12.2023391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Palatinus, Lukáš. "Democratization of dynamical 3D ED: structure analysis using dynamical diffraction applied to all types of 3D electron diffraction data." In Microscience Microscopy Congress 2021 incorporating EMAG 2021. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.mmc2021.331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cheng, Guanxiao. "Equally Sloped Tomography Applied to X-ray Free Electron Lasers Single-particle Coherent Diffraction Imaging." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/3d.2017.jtu5a.23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Meißner, Laura. "Determination of 3D strain fields by dark field electron holography utilizing dynamical diffraction." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jiang, Linhua, Dilyana Georgieva, Kim IJspeert, and Jan Pieter Abrahams. "An Intelligent Peak Search Program for Digital Electron Diffraction Images of 3D Nano-Crystals." In 2009 2nd International Congress on Image and Signal Processing (CISP). IEEE, 2009. http://dx.doi.org/10.1109/cisp.2009.5301421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Goncharsky, Anton, and Svyatoslav Durlevich. "Synthesis of nano-optical elements for zero-order diffraction 3D imaging." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/dh.2022.w3a.8.

Повний текст джерела
Анотація:
A method is proposed to compute and synthesize a microrelief to produce a new nano-optical element for forming 3D images with full parallax at the zero order of diffraction. The synthesis of nano-optical elements requires the use of multilevel structures. Optical security elements that produce the new security feature are synthesized using electron-beam lithography. The accuracy of microrelief formation is 10 nanometres in terms of depth. A sample optical security element is manufactured, which when illuminated by white light, forms a 3D image at the zero order of diffraction. The new optical security feature is easy to control visually, safely protected against counterfeiting, and designed to protect banknotes, documents, ID cards, etc.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pratim Das, Partha. "3D Electron Diffraction / Micro-ED for Structural Characterization of beam sensitive API using Pixelated detectors." In Microscience Microscopy Congress 2021 incorporating EMAG 2021. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.mmc2021.195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, J., S. Mochizuki, E. Stuckert, L. Tierney, K. Toole, R. Conte, and N. Loubet. "Precession Electron Diffraction (PED) Strain Characterization in Stacked Nanosheet FET Structure." In ISTFA 2022. ASM International, 2022. http://dx.doi.org/10.31399/asm.cp.istfa2022p0074.

Повний текст джерела
Анотація:
Abstract Non-planar semiconductor devices, such as vertical fin-based field-effect transistor (FinFET) devices have been developed that include multiple vertical fins serving as conducting channel regions to enable larger effective conduction width in a small layout area. However, as circuits are scaled to smaller dimensions, it has become increasingly difficult to improve the performance of FinFET devices. Stacked nanosheet FETs have been developed to further enable larger effective conduction width in a given small layout area while enabling gate length scaling. Nanosheet (NS) FET devices have attracted attention as a candidate to replace FinFET technology at the 5 nm technology node and beyond due to their excellent electrostatics and short channel control. The use of silicon-germanium for the channel material has been explored as a major technology element for FinFET CMOS technology, and the performance benefits of Si-Ge channel over silicon channel have been demonstrated. Compared with conventional FinFET, stacked gate-all-around (GAA) NS CMOS shows higher electron mobility for nFET but lower hole mobility for pFET due to its unique device architecture and carrier transport direction. To improve pFET performance, SiGe NS is proposed as the pFET channel material. However, introducing and maintaining strain in the SiGe GAA NS channel is challenging but important for improving carrier transport. It is critical to understand the strain distribution in the advanced 3D nanosheet FET structures. This paper describes the use of advanced transmission electron microscopy (TEM) techniques to investigate the strain distribution in strained SiGe channel NS pFET through Si channel trimming and selective Si1-xGex epitaxial growth. A stacked GAA NS pFET was fabricated from compressively strained Si1-xGex channel with good crystallinity and high uniaxial compressive stress of ~1 GPa. From lattice deformation maps with a nanometer spatial resolution obtained by TEM techniques, the authors demonstrate that nano-beam precession electron diffraction techniques can be used to investigate the local strain distribution of the stacked GAA NS pFET devices with high precision, and thus help to optimize the integration process and strain engineering for pFET device performance enhancement for the next generation of CMOS logic in GAA NS technology.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "3D Electron diffraction"

1

Scheinker, Alexander, and Reeju Pokharel. Adaptive Machine Learning for Bragg Coherent Diffraction Imaging (BCDI) of 3D Electron Density Maps with Application to La2-xBaxCuO4 (LBCO) High Temperature Superconductor Studies. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1671079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії