Добірка наукової літератури з теми "3D conductive polymer"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "3D conductive polymer".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "3D conductive polymer"

1

Cai, Zewei, Naveen Thirunavukkarasu, Xuefeng Diao, Haoran Wang, Lixin Wu, Chen Zhang, and Jianlei Wang. "Progress of Polymer-Based Thermally Conductive Materials by Fused Filament Fabrication: A Comprehensive Review." Polymers 14, no. 20 (October 13, 2022): 4297. http://dx.doi.org/10.3390/polym14204297.

Повний текст джерела
Анотація:
With the miniaturization and integration of electronic products, the heat dissipation efficiency of electronic equipment needs to be further improved. Notably, polymer materials are a choice for electronic equipment matrices because of their advantages of low cost and wide application availability. However, the thermal conductivity of polymers is insufficient to meet heat dissipation requirements, and their improvements remain challenging. For decades, as an efficient manufacturing technology, additive manufacturing has gradually attracted public attention, and researchers have also used this technology to produce new thermally conductive polymer materials. Here, we review the recent research progress of different 3D printing technologies in heat conduction and the thermal conduction mechanism of polymer matrix composites. Based on the classification of fillers, the research progress of thermally conductive materials prepared by fused filament fabrication (FFF) is discussed. It analyzes the internal relationship between FFF process parameters and the thermal conductivity of polymer matrix composites. Finally, this study summarizes the application and future development direction of thermally conductive composites by FFF.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Eutionnat-Diffo, Prisca Aude, Aurélie Cayla, Yan Chen, Jinping Guan, Vincent Nierstrasz, and Christine Campagne. "Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing." Polymers 12, no. 10 (October 8, 2020): 2300. http://dx.doi.org/10.3390/polym12102300.

Повний текст джерела
Анотація:
3D printing utilized as a direct deposition of conductive polymeric materials onto textiles reveals to be an attractive technique in the development of functional textiles. However, the conductive fillers—filled thermoplastic polymers commonly used in the development of functional textiles through 3D printing technology and most specifically through Fused Deposition Modeling (FDM) process—are not appropriate for textile applications as they are excessively brittle and fragile at room temperature. Indeed, a large amount of fillers is incorporated into the polymers to attain the percolation threshold increasing their viscosity and stiffness. For this reason, this study focuses on enhancing the flexibility, stress and strain at rupture and electrical conductivity of 3D-printed conductive polymer onto textiles by developing various immiscible polymer blends. A phase is composed of a conductive polymer composite (CPC) made of a carbon nanotubes (CNT) and highly structured carbon black (KB)- filled low-density polyethylene (LDPE) and another one of propylene-based elastomer (PBE) blends. Two requirements are essential to create flexible and highly conductive monofilaments for 3D-printed polymers onto textile materials applications. First, the co-continuity of both the thermoplastic and the elastomer phases and the location of the conductive fillers in the thermoplastic phase or at the interface of the two immiscible polymers are necessary to preserve the flexibility of the elastomer while decreasing the global amount of charges in the blends. In the present work based on theoretical models, when using a two-step melt process, the KB and CNT particles are found to be both preferentially located at the LDPE/PBE interface. Moreover, in the case of the two-step extrusion, SEM characterization showed that the KB particles were located in the LDPE while the CNT were mainly at the LDPE/PBE interface and TEM analysis demonstrated that KB and CNT nanoparticles were in LDPE and at the interface. For one-step extrusion, it was found that both KB and CNT are in the PBE and LDPE phases. These selective locations play a key role in extending the co-continuity of the LDPE and PBE phases over a much larger composition range. Therefore, the melt flow index and the electrical conductivity of monofilament, the deformation under compression, the strain and stress and the electrical conductivity of the 3D-printed conducting polymer composite onto textiles were significantly improved with KB and CNT-filled LDPE/PBE blends compared to KB and CNT-filled LDPE separately. The two-step extrusion processed 60%(LDPE16.7% KB + 4.2% CNT)/40 PBE blends presented the best properties and almost similar to the ones of the textile materials and henceforth, could be a better material for functional textile development through 3D printing onto textiles.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Xiao, Jian Zheng, Yong Qiang Du, and Chun Ming Zhang. "Three-Dimensional Graphite Filled Poly(Vinylidene Fluoride) Composites with Enhanced Strength and Thermal Conductivity." Key Engineering Materials 842 (May 2020): 63–68. http://dx.doi.org/10.4028/www.scientific.net/kem.842.63.

Повний текст джерела
Анотація:
Three-dimensional (3D) network structure has been recognized as an efficient approach to enhance the mechanical and thermal conductive properties of polymeric composites. However, it has not been applied in energetic materials. In this work, a fluoropolymer based composite with vertically oriented and interconnected 3D graphite network was fabricated for polymer bonded explosives (PBXs). Here, the graphite and graphene oxide platelets were mixed, and self-assembled via rapid freezing and using crystallized ice as the template. The 3D structure was finally obtained by freezing-dry, and infiltrating with polymer. With the increasing of filler fraction and cooling rate, the thermal conductivity of the polymer composite was significantly improved to 2.15 W m-1 K-1 by 919% than that of pure polymer. Moreover, the mechanical properties, such as tensile strength and elastic modulus, were enhanced by 117% and 563%, respectively, when the highly ordered structure was embedded in the polymer. We attribute the increased thermal and mechanical properties to this 3D network, which is beneficial to the effective heat conduction and force transfer. This study supports a desirable way to fabricate the strong and thermal conductive fluoropolymer composites used for the high-performance polymer bonded explosives (PBXs).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yurduseven, Okan, Shengrong Ye, Thomas Fromenteze, Benjamin J. Wiley, and David R. Smith. "3D Conductive Polymer Printed Metasurface Antenna for Fresnel Focusing." Designs 3, no. 3 (September 4, 2019): 46. http://dx.doi.org/10.3390/designs3030046.

Повний текст джерела
Анотація:
We demonstrate a 3D printed holographic metasurface antenna for beam-focusing applications at 10 GHz within the X-band frequency regime. The metasurface antenna is printed using a dual-material 3D printer leveraging a biodegradable conductive polymer material (Electrifi) to print the conductive parts and polylactic acid (PLA) to print the dielectric substrate. The entire metasurface antenna is 3D printed at once; no additional techniques, such as metal-plating and laser etching, are required. It is demonstrated that using the 3D printed conductive polymer metasurface, high-fidelity beam focusing can be achieved within the Fresnel region of the antenna. It is also shown that the material conductivity for 3D printing has a substantial effect on the radiation characteristics of the metasurface antenna.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nakagawa, Yoshitaka, Hiroyuki Kageyama, Riho Matsumoto, Yuya Oaki, and Hiroaki Imai. "Conductive polymer-mediated 2D and 3D arrays of Mn3O4 nanoblocks and mesoporous conductive polymers as their replicas." Nanoscale 7, no. 44 (2015): 18471–76. http://dx.doi.org/10.1039/c5nr05912g.

Повний текст джерела
Анотація:
2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by polymerization of pyrrole in the interparticle spaces. Mesoporous polypyrrole films were obtained as replicas of the composite assemblies by dissolving the oxide nanocuboids.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Park, Bumjun, Christiana Oh, Sooyoun Yu, Bingxin Yang, Nosang V. Myung, Paul W. Bohn, and Jennifer L. Schaefer. "Coupling of 3D Porous Hosts for Li Metal Battery Anodes with Viscous Polymer Electrolytes." Journal of The Electrochemical Society 169, no. 1 (January 1, 2022): 010511. http://dx.doi.org/10.1149/1945-7111/ac47ea.

Повний текст джерела
Анотація:
As the energy storage markets demand increased capacity of rechargeable batteries, Li metal anodes have regained major attention due to their high theoretical specific capacity. However, Li anodes tend to have dendritic growth and constant electrolyte consumption upon cycling, which lead to safety concerns, low Coulombic efficiency, and short battery lifetime. In this work, both conductive and non-conductive 3D porous hosts were coupled with a viscous (melt) polymer electrolyte. The cross-section of the hosts showed good contact between porous hosts and the melt polymer electrolyte before and after extensive cycling, indicating that the viscous electrolyte successfully refilled the space upon Li stripping. Upon deep Li deposition/stripping cycling (5 mAh cm−2), the non-conductive host with the viscous electrolyte successfully cycled, while the conductive host allowed rapid short circuiting. Post-mortem cross-sectional imaging showed that the Li deposition was confined to the top layers of the host. COMSOL simulations indicated that current density was higher and more restricted to the top of the conductive host with the polymer electrolyte than the liquid electrolyte. This resulted in quicker short circuiting of the polymer electrolyte cell during deep cycling. Thus, the non-conductive 3D host is preferred for coupling with the melt polymer electrolyte.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marasso, Simone Luigi, Matteo Cocuzza, Valentina Bertana, Francesco Perrucci, Alessio Tommasi, Sergio Ferrero, Luciano Scaltrito, and Candido Fabrizio Pirri. "PLA conductive filament for 3D printed smart sensing applications." Rapid Prototyping Journal 24, no. 4 (May 14, 2018): 739–43. http://dx.doi.org/10.1108/rpj-09-2016-0150.

Повний текст джерела
Анотація:
Purpose This paper aims to present a study on a commercial conductive polylactic acid (PLA) filament and its potential application in a three-dimensional (3D) printed smart cap embedding a resistive temperature sensor made of this material. The final aim of this study is to add a fundamental block to the electrical characterization of printed conductive polymers, which are promising to mimic the electrical performance of metals and semiconductors. The studied PLA filament demonstrates not only to be suitable for a simple 3D printed concept but also to show peculiar characteristics that can be exploited to fabricate freeform low-cost temperature sensors. Design/methodology/approach The first part is focused on the conductive properties of the PLA filament and its temperature dependency. After obtaining a resistance temperature characteristic of this material, the same was used to fabricate a part of a 3D printed smart cap. Findings An approach to the characterization of the 3D printed conductive polymer has been presented. The major results are related to the definition of resistance vs temperature characteristic of the material. This model was then exploited to design a temperature sensor embedded in a 3D printed smart cap. Practical implications This study demonstrates that commercial conductive PLA filaments can be suitable materials for 3D printed low-cost temperature sensors or constitutive parts of a 3D printed smart object. Originality/value The paper clearly demonstrates that a new generation of 3D printed smart objects can already be obtained using low-cost commercial materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Eutionnat-Diffo, Prisca Aude, Yan Chen, Jinping Guan, Aurelie Cayla, Christine Campagne, and Vincent Nierstrasz. "Study of the Wear Resistance of Conductive Poly Lactic Acid Monofilament 3D Printed onto Polyethylene Terephthalate Woven Materials." Materials 13, no. 10 (May 19, 2020): 2334. http://dx.doi.org/10.3390/ma13102334.

Повний текст джерела
Анотація:
Wear resistance of conductive Poly Lactic Acid monofilament 3D printed onto textiles, through Fused Deposition Modeling (FDM) process and their electrical conductivity after abrasion are important to consider in the development of smart textiles with preserved mechanical and electrical properties. The study aims at investigating the weight loss after abrasion and end point of such materials, understanding the influence of the textile properties and 3D printing process parameters and studying the impact of the abrasion process on the electrical conductivity property of the 3D printed conductive polymers onto textiles. The effects of the 3D printing process and the printing parameters on the structural properties of textiles, such as the thickness of the conductive Poly Lactic Acid (PLA) 3D printed onto polyethylene terephthalate (PET) textile and the average pore sizes of its surface are also investigated. Findings demonstrate that the textile properties, such as the pattern and the process settings, for instance, the printing bed temperature, impact significantly the abrasion resistance of 3D printed conductive Poly Lactic Acid (PLA) onto PET woven textiles. Due to the higher capacity of the surface structure and stronger fiber-to-fiber cohesion, the 3D printed conductive polymer deposited onto textiles through Fused Deposition Modeling process have a higher abrasion resistance and lower weight loss after abrasion compared to the original fabrics. After printing the mean pore size, localized at the surface of the 3D-printed PLA onto PET textiles, is five to eight times smaller than the one of the pores localized at the surface of the PET fabrics prior to 3D printing. Finally, the abrasion process did considerably impact the electrical conductivity of 3D printed conductive PLA onto PET fabric.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Prasopthum, Aruna, Zexing Deng, Ilyas M. Khan, Zhanhai Yin, Baolin Guo, and Jing Yang. "Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells." Biomaterials Science 8, no. 15 (2020): 4287–98. http://dx.doi.org/10.1039/d0bm00621a.

Повний текст джерела
Анотація:
We report a conductive and biodegradable 3D printed polymer scaffold that promotes chondrogenic differentiation of chondroprogenitor cells. The conductive material consists of tetraniline-b-polycaprolactone-b-tetraaniline and polycaprolactone.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Krzeminski, Jakub, Bartosz Blicharz, Andrzej Skalski, Grzegorz Wroblewski, Małgorzata Jakubowska, and Marcin Sloma. "Photonic curing of silver paths on 3D printed polymer substrate." Circuit World 45, no. 1 (February 4, 2019): 9–14. http://dx.doi.org/10.1108/cw-11-2018-0084.

Повний текст джерела
Анотація:
Purpose Despite almost limitless possibilities of rapid prototyping, the idea of 3D printed fully functional electronic device still has not been fulfilled – the missing point is a highly conductive material suitable for this technique. The purpose of this paper is to present the usage of the photonic curing process for sintering highly conductive paths printed on the polymer substrate. Design/methodology/approach This paper evaluates two photonic curing processes for the conductive network formulation during the additive manufacturing process. Along with the xenon flash sintering for aerosol jet-printed paths, this paper examines rapid infrared sintering for thick-film and direct write techniques. Findings This paper proves that the combination of fused deposition modeling, aerosol jet printing or paste deposition, along with photonic sintering, is suitable to obtain elements with low resistivity of 3,75·10−8 Ωm. Presented outcomes suggest the solution for fabrication of the structural electronics systems for daily-use applications. Originality/value The combination of fused deposition modelling (FDM) and aerosol jet printing or paste deposition used with photonic sintering process can fill the missing point for highly conductive materials for structural electronics.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "3D conductive polymer"

1

SCORDO, GIORGIO. "A novel electrical conductive resin for stereolithographic 3D printing." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2899751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bertolini, Mayara Cristina. "Flexible and 3D printable conductive composites for pressure sensor applications." Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/360281.

Повний текст джерела
Анотація:
O objetivo deste estudo foi o desenvolvimento de compósitos poliméricos flexíveis e altamente condutores elétricos preparados por moldagem por compressão e por fabricação de filamentos fundidos (FFF) para possíveis aplicações como materiais piezoresistivos ou piezoelétricos para sensores de compressão. Compósitos baseados em misturas de poli(fluoreto de vinilideno)/poliuretano termoplástico (PVDF/TPU) como matriz e contendo várias frações de negro de fumo-polipirrol (CB-PPy) como aditivo condutor foram preparados. Diversas técnicas de caracterização foram realizadas para avaliar as propriedades mecânicas, térmicas, químicas e elétricas, morfologia e printabilidade dos materiais investigados. Primeiro, blendas de PVDF/TPU com diferentes composições foram produzidas por mistura por fusão seguida de moldagem por compressão. Os resultados mostraram que a flexibilidade desejada para os materiais foi melhorada com a adição de TPU aos compósitos de PVDF. As imagens SEM evidenciaram a obtenção de uma blenda co-contínua com 50/50 vol% de PVDF/TPU. As blendas compostas de PVDF/TPU 38/62 vol% e a blenda co-contínua de PVDF/TPU 50/50 vol% foram selecionadas como matrizes para a preparação de compósitos moldados por compressão e impressos em 3D a fim de alcançar uma ótima combinação entre condutividade, propriedades mecânicas e printabilidade. Várias quantidades de negro de fumo-polipirrol, de 0 a 15%, foram adicionadas às blendas selecionadas para aumentar a condutividade elétrica dos compósitos e possivelmente atuar como agente nucleante para a fase cristalina do PVDF a fim de aumentar sua resposta piezoelétrica. A adição de CB-PPy aumentou a condutividade elétrica de todos os compósitos. No entanto, a condutividade elétrica dos compósitos baseados em blendas co-contínuas PVDF/TPU 50/50 vol% foi maior do que as encontradas para os compósitos de PVDF/TPU 38/62 vol% com mesma concentração de aditivo. De fato, o limiar de percolação elétrico dos compósitos com blenda co-contínua foi de 2%, enquanto o limiar de percolação elétrico dos compósitos compostos da blenda não contínua foi de 5%. Com relação às propriedades mecânicas, a incorporação do aditivo condutor nas blendas resultou em materiais mais rígidos com maior módulo de elasticidade, menor alongamento na ruptura e maior módulo de armazenamento. O módulo de armazenamento (G') e a viscosidade complexa (η*) dos compósitos aumentaram com a adição de CB-PPy. O limiar de percolação reológico foi de 3% para PVDF/TPU/CB-PPy 38/62 vol% e 1% para PVDF/TPU/CB-PPy 50/50 vol%, indicando que uma quantidade maior de carga poderia comprometer a processabilidade dos compósitos. A adição de CB-PPy também resultou na redução dos valores de Tg e Tm dos compósitos devido à redução da mobilidade das cadeias poliméricas. Com base na condutividade elétrica e no comportamento mecânico dos compósitos, três composições diferentes foram selecionadas para a extrusão de filamentos para serem posteriormente utilizados no processo de impressão 3D. No geral, as peças impressas em 3D apresentaram propriedades mecânicas e elétricas inferiores devido à presença de vazios, defeitos e camadas sobrepostas que podem dificultar o fluxo de elétrons. Os valores de condutividade elétrica dos compósitos impressos em 3D de PVDF/TPU/CB-PPy 38/62 vol% contendo 5% e 6% de CB-PPy são de uma a sete ordens de grandeza menores do que os encontrados para os compósitos com a mesma composição moldados por compressão. Mesmo que o valor da condutividade elétrica para o compósito PVDF/TPU 38/62 vol% com 6% de CB-PPy moldado por compressão foi de 1,94x10-1 S•m-1, o compósito impresso em 3D com a mesma composição mostrou um valor muito baixo de condutividade elétrica de 6,01x10-8 S•m-1. Por outro lado, o compósito co-contínuo de PVDF/TPU 50/50 vol% com 10% de aditivo impresso em 3D apresentou um alto valor de condutividade elétrica de 4,14×100 S•m-1 mesmo após o processo de impressão. Além disso, as respostas piezoresistivas dos compósitos foram investigadas. Para os compósitos PVDF/TPU/CB-PPy 38/62 vol%, as amostras moldadas por compressão e impressas em 3D com 5% e 6% de CB-PPy exibiram boa resposta piezoresistiva. No entanto, apenas os compósitos com 6% de aditivo apresentaram valores elevados de sensibilidade e gauge factor, atuação em ampla faixa de pressão e respostas piezoresistivas reprodutíveis durante a aplicação de 100 ciclos de compressão/descompressão para ambos os métodos de fabricação. Por outro lado, para os compósitos co-contínuos de PVDF/TPU/CB-PPy apenas a amostra moldada por compressão com 5% de CB-PPy apresentou respostas piezorresistivas boas e reprodutíveis. A cristalinidade e o teor de fase β do PVDF foram investigados para os compósitos. Embora o grau de cristalinidade das amostras tenha diminuído com a adição de CB-PPy, a porcentagem de fase β no PVDF aumentou. O coeficiente piezoelétrico d33 das amostras aumentou com a porcentagem de fase β. A adição de 6% ou mais de CB-PPy foi necessária para aumentar significativamente o coeficiente piezoelétrico (d33) dos compósitos. O conteúdo de fase β e as respostas piezoelétricas do PVDF foram menores para as amostras preparadas por FFF. Por fim, como pesquisa colateral, a eficiência de blindagem contra interferência eletromagnética (EMI-SE) foi medida para todos os compósitos. Compósitos com maior condutividade elétrica apresentaram melhor blindagem da radiação eletromagnética. Além disso, os compósitos baseados na blenda co-contínua apresentaram maior eficiência de blindagem contra EMI do que os compósitos de PVDF/TPU 38/62 vol%. O principal mecanismo de blindagem foi a absorção para todos os compósitos. As amostras preparadas por FFF apresentaram respostas de EMI-SE menores quando comparadas às amostras moldadas por compressão.
The aim of this study was the development of flexible and highly electrically conductive polymer composites via compression molding and fused filament fabrication for possible applications as piezoresistive or piezoelectric materials for pressure sensors. Composites based on blends of poly(vinylidene fluoride)/thermoplastic polyurethane (PVDF/TPU) as matrix and containing various fractions of carbon black-polypyrrole (CB-PPy) as conductive filler were prepared. Several characterization techniques were performed in order to evaluate the mechanical, thermal, chemical and electrical properties, morphology and printability of the investigated materials. First, PVDF/TPU blends with different compositions were prepared by melt compounding followed by compression molding. The results showed that the flexibility aimed for the final materials was improved with the addition of TPU to PVDF composites. SEM images evidenced the achievement of a co-continuous blend comprising 50/50 vol% of PVDF/TPU. The blends composed of PVDF/TPU 38/62 vol% and the co-continuous blend of PVDF/TPU 50/50 vol% were selected as matrices for the preparation of compression molded and 3D printed composites in order to achieve an optimal compromise between electrical conductivity, mechanical properties and printability. Various amounts of carbon black-polypyrrole, from 0 up to 15%, were added to the selected blends in order to rise the electrical conductivity of the composites and to possible act as nucleating filler for the β crystalline phase of PVDF in order to increase its piezoelectric response. The addition of CB-PPy increased the electrical conductivity of all composites. However, the electrical conductivity of composites based on PVDF/TPU 50/50 vol% co-continuous blends was higher than those found for PVDF/TPU 38/62 vol% composites at the same filler content. Indeed, the electrical percolation threshold of the conductive co-continuous composite blends was 2%, while the electrical percolation threshold of the composites with the nonco-continuous composite blends was 5%. With respect to the mechanical properties, the incorporation of the filler into the blends leaded to more rigid materials with higher elastic modulus, lower elongation at break and higher storage modulus. The storage modulus (G’) and complex viscosity (η*) of the composites increased with the addition of CB-PPy. The rheological percolation threshold was found to be 3% for PVDF/TPU/CB-PPy 38/62 vol% and 1% for PVDF/TPU/CB-PPy 50/50 vol%, indicating that higher amount of filler could compromise the processability of the composites. The addition of CB-PPy also resulted in a reduction on the Tg and Tm values of the composites due to the reduction of the mobility of the polymeric chains. Based on the electrical conductivity and mechanical behavior of the composites, three different compositions were selected for the extrusion of filaments to be used in a 3D printing process. Overall, the 3D printed parts presented lower mechanical and electrical properties because of the presence of voids, defects and overlapping layers that can hinder the flow of electrons. The electrical conductivity values of PVDF/TPU/CB-PPy 38/62 vol% composites containing 5% and 6 wt% of CB-PPy 3D printed samples are one to seven orders of magnitude lower than those found for compression molded composites with the same composition. Even if the electrical conductivity value for PVDF/TPU 38/62 vol% compression molded composite with 6% of CB-PPy was as high as 1.94x10-1 S•m-1, the 3D printed composite with same composition showed a very low electrical conductivity of 6.01x10-8 S•m-1. On the other hand, the 3D printed co-continuous composite PVDF/TPU 50/50 vol% with 10% of filler displayed a high value of electrical conductivity of 4.14×100 S•m-1 even after the printing process. Moreover, the piezoresistive responses of the composites were investigated. For PVDF/TPU/CB-PPy 38/62 vol% composites, the compression molded and 3D printed samples with 5% and 6% of CB-PPy exhibited good piezoresistive response. However, only the composites with 6% displayed high sensitivity and gauge factor values, large pressure range and reproducible piezoresistive responses under 100 cycles for both methods. On the other hand, for PVDF/TPU/CB-PPy co-continuous composites only the compression molded sample with 5% of CB-PPy presented good and reproducible piezoresistive responses. The crystallinity and β phase content of PVDF were investigated for the composites. Althought the degree of crystallinity of the samples decreased with the addition of CB-PPy, the percentage of β phase in PVDF was increased. The piezoelectric coefficient d33 of the samples increased with the percentage of β phase. The addition of 6% or more of CB-PPy was necessary to increase significatively the piezoelectric coefficient (d33) of the composites. The β phase content and piezoelectric responses of PVDF were lower for samples prepared by FFF. Finally, as a collateral research, the electromagnetic interference shielding effectiveness (EMI-SE) were measured for all composites. Composites with higher electrical conductivity showed better shielding of the electromagnetic radiation. In addition, composites based on the co-continuous blend displayed higher EMI shielding efficiency than 38/62 vol% composites. The main mechanism of shielding was absorption for all composites. Specimens prepared by FFF displayed diminished EMI-SE responses when compared to compression molded samples.
Lo scopo di questo studio è lo sviluppo di compositi polimerici flessibili e ad elevata conducibilità elettrica tramite stampaggio a compressione e manifattura additiva (fused filament fabrication) per possibili applicazioni come materiali piezoresistivi o piezoelettrici in sensori di pressione. In particolare, sono stati preparati compositi a base di miscele di poli(vinilidene fluoruro)/poliuretano termoplastico (PVDF/TPU) come matrice e contenenti varie frazioni di nerofumo-polipirrolo (CB-PPy) come riempitivo conduttivo. Sono state utilizzate diverse tecniche di caratterizzazione al fine di valutare le proprietà meccaniche, termiche, chimiche ed elettriche, la morfologia e la stampabilità dei materiali ottenuti. In primo luogo, miscele PVDF/TPU con diverse composizioni sono state preparate mediante mescolatura allo stato fuso seguita da stampaggio a compressione. I risultati hanno mostrato che la flessibilità del PVDF viene notevolemente migliorata dall’aggiunta di TPU. Le immagini SEM hanno evidenziato il raggiungimento di una miscela co-continua per una composizione 50/50% in volume di PVDF/TPU. Le miscele composte da PVDF/TPU 38/62 vol% e la miscela co-continua di PVDF/TPU 50/50 vol% sono state selezionate come matrici per la preparazione di compositi per stampaggio a compressione e manifattura additiva al fine di ottenere un compromesso ottimale tra conducibilità, proprietà meccaniche e stampabilità. Alle miscele selezionate sono state aggiunte varie quantità di nerofumo-polipirrolo, dallo 0 al 15%, per aumentare la conducibilità elettrica dei compositi ed eventualmente fungere da additivo nucleante per la fase β cristallina del PVDF al fine di aumentarne la risposta piezoelettrica. L'aggiunta di CB-PPy ha aumentato la conduttività elettrica di tutti i compositi. Tuttavia, la conduttività elettrica dei compositi basati su miscele co-continue di PVDF/TPU 50/50% in volume era superiore a quella trovata per compositi PVDF/TPU 38/62% in volume con lo stesso contenuto di riempitivo. Infatti, la soglia di percolazione elettrica delle miscele conduttive era del 2%, mentre la soglia di percolazione elettrica dei compositi con miscele composite non continue era del 5%. Per quanto riguarda le proprietà meccaniche, l'incorporazione del riempitivo nelle mescole ha portato a materiali più rigidi con modulo elastico più elevato, allungamento a rottura inferiore e modulo conservativo più elevato. Il modulo conservativo (G') e la viscosità complessa (η*) dei compositi sono aumentate con l'aggiunta di CB-PPy. La soglia di percolazione reologica è risultata essere del 3% per PVDF/TPU/CB-PPy 38/62 vol% e dell'1% per PVDF/TPU/CB-PPy 50/50 vol%, indicando che una maggiore quantità di riempitivo potrebbe compromettere la processabilità dei compositi. L'aggiunta di CB-PPy ha comportato anche una riduzione dei valori di Tg e Tm dei compositi a causa della riduzione della mobilità delle catene polimeriche. Sulla base della conduttività elettrica e del comportamento meccanico dei compositi, sono state selezionate tre diverse composizioni per l'estrusione di filamenti da utilizzare in un processo di stampa 3D. Nel complesso, le parti stampate in 3D presentavano proprietà meccaniche ed elettriche inferiori a causa della presenza di vuoti, difetti e strati sovrapposti che possono ostacolare il flusso di elettroni. I valori di conducibilità elettrica dei compositi PVDF/TPU/CB-PPy 38/62 vol% contenenti il 5% e il 6% di CB-PPy di campioni stampati in 3D sono da uno a sette ordini di grandezza inferiori a quelli trovati per i compositi stampati a compressione con la stessa composizione. Anche se il valore di conducibilità elettrica per il composito stampato a compressione PVDF/TPU 38/62 vol% con il 6% di CB-PPy era pari a 1,94x10-1 S•m-1, il composito stampato in 3D con la stessa composizione ha mostrato un valore molto basso di conducibilità elettrica, pari a 6,01x10-8 S•m-1. D'altra parte, il composito PVDF/TPU 50/50 vol% stampato in 3D con il 10% di riempitivo ha mostrato un elevato valore di conducibilità elettrica, pari a 4,14 × 100 S•m-1, anche dopo il processo di stampa. Inoltre, sono state studiate le risposte piezoresistive dei compositi. Per i compositi PVDF/TPU/CB-PPy 38/62 vol%, i campioni stampati a compressione e stampati in 3D con il 5% e il 6% di CB-PPy hanno mostrato una buona risposta piezoresistiva. Tuttavia, solo i compositi con il 6% hanno mostrato valori di sensibilità e gauge factor elevati, ampio intervallo di pressione e risposte piezoresistive riproducibili in 100 cicli per entrambi i metodi. D'altra parte, per i compositi co-continui PVDF/TPU/CB-PPy solo il campione stampato a compressione con il 5% di CB-PPy ha presentato risposte piezoresistive adeguate e riproducibili. La cristallinità e il contenuto di fase β del PVDF sono stati studiati per i compositi. Sebbene il grado di cristallinità dei campioni diminuisca con l'aggiunta di CB-PPy, la percentuale di fase β in PVDF risulta aumentata. Il coefficiente piezoelettrico d33 dei campioni aumenta anch’esso con la percentuale di fase β. L'aggiunta del 6% o più di CB-PPy è stata necessaria per aumentare significativamente il coefficiente piezoelettrico (d33) dei compositi. Il contenuto di fase β e le risposte piezoelettriche del PVDF sono inferiori per i campioni ottenuti mediante stampa 3D. Infine, come ricerca collaterale, è stata misurata l'efficacia della schermatura contro le interferenze elettromagnetiche (EMI-SE) per tutti i compositi. I compositi con una maggiore conduttività elettrica hanno mostrato una migliore schermatura della radiazione elettromagnetica. Inoltre, i compositi basati sulla miscela co-continua hanno mostrato un'efficienza di schermatura EMI maggiore rispetto ai compositi a 38/62% in volume. Per tutti i compositi, il principale meccanismo di schermatura è l'assorbimento. I campioni preparati mediante manifattura additiva hanno mostrato risposte EMI-SE inferiori rispetto ai campioni stampati a compressione.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hashemi, Sanatgar Razieh. "FDM 3D printing of conductive polymer nanocomposites : A novel process for functional and smart textiles." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I052/document.

Повний текст джерела
Анотація:
Le but de cette étude est d’exploiter les fonctionnalités des nano-Composites Polymères Conducteurs (CPC) imprimés en utilisant la technologie FDM (modélisation par dépôt de monofilament en fusion) pour le développement de textiles fonctionnels et intelligents. L’impression 3D présente un fort potentiel pour la création d’une nouvelle classe de nanocomposites multifonctionnels. Par conséquent, le développement et la caractérisation des polymères et nanocomposites fonctionnels et imprimables en 3D sont nécessaires afin d’utiliser l’impression 3D comme nouveau procédé de dépôt de ces matériaux sur textiles. Cette technique introduira des procédés de fonctionnalisation de textiles plus flexibles, économes en ressources et très rentables, par rapport aux procédés d'impression conventionnels tels que la sérigraphie et le jet d'encre. L’objectif est de développer une méthode de production intégrée et sur mesure pour des textiles intelligents et fonctionnels, afin d’éviter toute utilisation d'eau, d'énergie et de produits chimiques inutiles et de minimiser les déchets dans le but d’améliorer l'empreinte écologique et la productivité. La contribution apportée par cette thèse consiste en la création et la caractérisation de filaments CPC imprimables en 3D, le dépôt de polymères et de nanocomposites sur des tissus et l’étude des performances en termes de fonctionnalité des couches de CPC imprimées en 3D. Dans un premier temps, nous avons créé des filaments de CPC imprimables en 3D, notamment des nanotubes de carbone à parois multiples (MWNT) et du noir de carbone à haute structure (Ketjenblack) (KB), incorporés dans de l'acide polylactique (PLA) à l'aide d'un procédé de mélange à l'état fondu. Les propriétés morphologiques, électriques, thermiques et mécaniques des filaments et des couches imprimées en 3D ont été étudiées. Deuxièmement, nous avons déposé les polymères et les nanocomposites sur des tissus à l’aide d’une impression 3D et étudié leur adhérence aux tissus. Enfin, les performances des couches de CPC imprimées en 3D ont été analysées sous tension et force de compression appliquées. La variation de la valeur de la résistance correspondant à la charge appliquée permet d’évaluer l'efficacité des couches imprimées en tant que capteur de pression / force. Les résultats ont montré que les nanocomposites à base de PLA, y compris MWNT et KB, sont imprimables en 3D. Les modifications des propriétés morphologiques, électriques, thermiques et mécaniques des nanocomposites avant et après l’impression 3D nous permettent de mieux comprendre l’optimisation du procédé. De plus, différentes variables du procédé d’impression 3D ont un effet significatif sur la force d'adhérence des polymères et des nanocomposites déposés sur les tissus. Nous avons également développé des modèles statistiques fiables associés à ces résultats valables uniquement pour le polymère et le tissu de l’étude. Enfin, les résultats démontrent que les mélanges PLA/MWNT et PLA/KB sont de bonnes matières premières piézorésistives pour l’impression 3D. Elles peuvent être potentiellement utilisées dans l’électronique portable, la robotique molle et la fabrication de prothèses, où une conception complexe, multidirectionnelle et personnalisable est nécessaire
The aim of this study is to get the benefit of functionalities of fused deposition modeling (FDM) 3D printed conductive polymer nanocomposites (CPC) for the development of functional and smart textiles. 3D printing holds strong potential for the formation of a new class of multifunctional nanocomposites. Therefore, development and characterization of 3D printable functional polymers and nanocomposites are needed to apply 3D printing as a novel process for the deposition of functional materials on fabrics. This method will introduce more flexible, resource-efficient and cost-effective textile functionalization processes than conventional printing process like screen and inkjet printing. The goal is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity. The contribution of this thesis is the creation and characterization of 3D printable CPC filaments, deposition of polymers and nanocomposites on fabrics, and investigation of the performance of the 3D printed CPC layers in terms of functionality. Firstly, the 3D printable CPC filaments were created including multi-walled carbon nanotubes (MWNT) and high-structured carbon black (Ketjenblack) (KB) incorporated into a biobased polymer, polylactic acid (PLA), using a melt mixing process. The morphological, electrical, thermal and mechanical properties of the 3D printer filaments and 3D printed layers were investigated. Secondly, the performance of the 3D printed CPC layers was analyzed under applied tension and compression force. The response for the corresponding resistance change versus applied load was characterized to investigate the performance of the printed layers in terms of functionality. Lastly, the polymers and nanocomposites were deposited on fabrics using 3D printing and the adhesion of the deposited layers onto the fabrics were investigated. The results showed that PLA-based nanocomposites including MWNT and KB are 3D printable. The changes in morphological, electrical, thermal, and mechanical properties of nanocomposites before and after 3D printing give us a great understanding of the process optimization. Moreover, the results demonstrate PLA/MWNT and PLA/KB as a good piezoresistive feedstock for 3D printing with potential applications in wearable electronics, soft robotics, and prosthetics, where complex design, multi-directionality, and customizability are demanded. Finally, different variables of the 3D printing process showed a significant effect on adhesion force of deposited polymers and nanocomposites onto fabrics which has been presented by the best-fitted model for the specific polymer and fabric
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Oziat, Julie. "Electrode 3D de PEDOT : PSS pour la détection de métabolites électrochimiquement actifs de Pseudomonas aeruginosa." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEM026/document.

Повний текст джерела
Анотація:
Lors d’infections, l'identification rapide des micro-organismes est cruciale pour améliorer la prise en charge du patient et mieux contrôler l'usage des antibiotiques. L’électrochimie présente plusieurs avantages pour les tests rapides : elle permet des analyses in situ, faciles et peu chères dans la plupart des liquides. Son utilisation pour l’identification bactérienne est récente et provient de la découverte de molécules donnant de forts signaux redox dans le surnageant de bactéries du genre Pseudomonas.Cette thèse s’intéresse à l’analyse de surnageants de la bactérie Pseudomonas aeruginosa, 4e cause de maladies nosocomiales en Europe. Tout d’abord, l’intérêt de l’analyse électrochimique de surnageants de culture dans une visée d’identification a été évalué. Pour cela, après l’étude de 4 potentiels biomarqueurs de la présence de cette bactérie en solutions modèles, l’analyse électrochimiques de surnageant de plusieurs souches P. aeruginosa a été effectuée. Les résultats obtenus sont prometteurs. Ils mettent en évidence une signature électrochimique complexe et souche-dépendante du surnageant.La suite de la thèse s’est intéressée à l’amplification de la détection électrochimique grâce à l’utilisation du polymère conducteur PEDOT:PSS. Il a été choisi pour ses bonnes propriétés électrochimiques, sa biocompatibilité et sa facilité de mise en forme. Il a tout d’abord été utilisé sous forme de films minces pour confirmer son pouvoir d’amplification. Une électrode 3D a ensuite été fabriquée par lyophilisation. L’utilisation de ce type d’électrode permet d’amplifier encore la détection en augmentant la surface d’échange mais aussi en confinant les bactéries dans l'électrode
During infections, microorganisms fast identification is critical to improve patient treatment and to better manage antibiotics use. Electrochemistry exhibits several advantages for rapid diagnostic: it enables easy, cheap and in situ analysis in most liquids. Its use for bacterial identification is recent and comes from the discovery of molecules giving strong redox signals in the bacterial supernatant of the Pseudomonas genus.This thesis focuses on the supernatants analysis of the bacterium Pseudomonas aeruginosa. This bacteria is the fourth cause of nosocomial infections in Europe. First, the interest of supernatants electrochemical analysis for identification was evaluated. For this, after the study of four redox biomarkers of this bacterium in model solutions, supernatant electrochemical analysis of several strains of P. aeruginosa was performed. The results are promising. They highlight a complex strain-dependant electrochemical signature of the supernatant.Following, we focused in the amplification of the electrochemical detection through the use of the conductive polymer PEDOT: PSS. This polymer was chosen for its good electrochemical properties, its biocompatibility and its easy shaping. It was first used as a thin films to confirm its amplification power through biomarker adsorption. Then, a 3D electrode was made by freeze drying. The use of this type of electrode can further amplify the detection by increasing the exchange surface as well as confining the bacteria in the electrode
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sandron, Marco. "Mils - Stampante per la creazione di PCB (printed circuit board) con polimero." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19757/.

Повний текст джерела
Анотація:
Nella mia carriera universitaria mi sono imbattuto in progetti che necessitavano di un circuito elettronico che in alcuni casi costituiva una parte fondamentale e che veniva valutata. Per la realizzazione di questi circuiti è stata utilizzata l’elettronica open source, di conseguenza è stato necessario collegare tra di loro varie schede e anche alcuni componenti. Questi collegamenti non potevano essere eseguiti solo con semplici cavi elettrici ma necessitavano si supporti fisici anche per posizionare in modo ordinato i componenti e sono state utilizzate perciò basette millefori. I collegamenti eseguiti con cavi elettrici occupano spazio e rendono difficoltose le riparazioni in caso di guasto o mal funzionamento inoltre la qualità finale del circuito creato con le basette millefori sono una problematica nel realizzare circuiti per una piccola serie. Ho voluto quindi trovare una soluzione per questo, pensando a qualcosa di economico, rapido e facile da utilizzare, con una certa qualità del prodotto finale. Nella fase di ricerca ho notato che questa problematica è presente anche all’interno dei FabLab, dove la prototipazione, la personalizzazione e la piccola serie sono questioni fondamentali. Qui le tecnologie non sono poche (pantografo CNC, la stampante 3D e taglio laser) e quindi ho cercato di capire se la soluzione per risolvere il problema potesse essere già presente o derivare da quelle presenti, ponendomi in un’ottica di riciclo e riutilizzo a fine vita del circuito e dei sui componenti. La soluzione finale ne riprende la tecnologia base, le forme e i componenti fisici ed elettronici e utilizza una tipologia di materiale per la costruzione dei collegamenti tra i vari componenti elettronici, che è presente e utilizzato ampiamente all’interno dei FabLab, in varie tipologie e con varie caratteristiche. Questa può condurre corrente solo se opportunamente trattato, perché naturalmente ha l’effetto opposto cioè quello di isolare, si tratta del filamento di polimero.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Shaohua, Faxing Wang, Renhao Dong, Tao Zhang, Jian Zhang, Zhikun Zheng, Yiyong Mai, and Xinliang Feng. "Soft-Template Construction of 3D Macroporous Polypyrrole Scaffolds." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-235502.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Anhorn, Michael J. "Nitrogen Rich Porous Organic Frameworks: Proton Conduction Behavior of 3D Benzimidazole and Azo-linked Polymers." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5448.

Повний текст джерела
Анотація:
Nitrogen-rich porous organic frameworks show great promise for use as acid-doped proton conducting membranes, due to their high porosity, excellent chemical and thermal stability, ease of synthesis, and high nitrogen content. Aided by very high surface area and pore volume, the material has the ability to adsorb high amounts of H3PO4 into its network, which creates a proton rich environment, capable of facile proton conduction. The morphology and chemical environment, doping behavior, and proton conduction of these materials were investigated. With such high acid-doping, ex-situ studies revealed that under anhydrous conditions, PA@BILP-16 (AC) produced a proton conductivity value of 5.8 x 10-2 S cm-1 at 60 °C and PA@ALP-6 showed a slightly higher value of 5.91 x 10-2 S cm-1 at 60 °C. With such promising results, in-situ experiments with various analogues are scheduled to be conducted in the near future.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bou-Saleh, Ziad. "Nickel-based 3D electrocatalyst layers for production of hydrogen by water electrolysis in an acidic medium." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112559.

Повний текст джерела
Анотація:
This thesis discusses results on the development of three-dimensional (3D) Ni-based electrocatalytic layers for hydrogen production by water electrolysis in an acidic medium. This is of relevance to the development of polymer-electrolyte-membrane (PEM) hydrogen generators, which are promising hydrogen production systems suitable for both residential and industrial applications.
It was demonstrated that patterning of a glassy carbon electrode substrate with a 3D polyaniline (PANI) matrix is a convenient way of increasing the electrocatalytically active surface area of electrodeposited Ni, and hence its apparent electrocatalytic activity. The optimized PANI/Ni electrocatalyst layer showed a significantly higher activity in the hydrogen evolution reaction (HER) then a commercially available Ni-plate surface (control surface).
It was also demonstrated that it is possible to produce a Ni-based HER electrocatalyst layer by synthesizing Ni nanoparticles and supporting them on Vulcan carbon. This electrocatalyst also offered a significantly higher electrocatalytic activity in the HER then the control surface, but lower then the optimized PANI/Ni electrocatalyst.
The electrocatalytic activity of the optimized PANI/Ni layer was also compared to the activity of a 3D catalyst produced by electro-coating a porous reticulated vitreous carbon (RVC) substrate with Ni. This electrocatalyst showed the highest HER electrocatalytic activity among the investigated layers when tested under potentiodynamic polarization conditions. However, under the potentiostatic conditions, the optimized PANI/Ni layer showed the highest electrocatalytic activity.
The mechanisms and kinetics of the HER on the produced electrocatalysts was also investigated, as well as the electrocatalyst layers' surface morphology and crystalline structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ferro, Magali. "Development of conducting polymer devices for the monitoring of in vitro barrier tissue models." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEM017.

Повний текст джерела
Анотація:
La règlementation européenne des 3Rs (Remplacer, Réduire, Raffiner) impose de diminuer le nombre d’animaux utilisé à des fins de recherches scientifiques. Elle répond à des exigences éthiques en soutenant le développement de méthodes alternatives. Dans cet objectif, les modèles cellulaires in vitro connaissent un essor important notamment grâce à la possibilité d’utiliser des cellules humaines pour reproduire des tissus ou des organes en laboratoire. Les récents progrès en micro-fabrication et techniques d’ingénierie tissulaire ont permis de se rapprocher des conditions physiologiques des tissus reproduits en évoluant notamment vers des configurations en 3-Dimension. L’intégration de techniques de caractérisation pour rendre observable les phénomènes biologiques à l’échelle cellulaire ou tissulaire est inhérente au développement des modèles in vitro notamment pour leur utilisation en toxicologie. Au cours de cette thèse, j’exploite les possibilités qu’offre le polymère conducteur PEDOT:PSS intégré dans des dispositifs électriques pour la caractérisation de barrières tissulaires. Ainsi, les transistors organiques électrochimiques (OECTs) ont été adaptés pour le développement de plateformes de caractérisation de sphéroïdes, de modèles tissulaires à l’interface air-liquide ou encore de réseaux vasculaires. Le lyophilisation du PEDOT :PSS a également permis la création d’un échafaudage 3D offrant de nouvelles perspectives pour le mélange de polymères électriquement actifs avec la matrice extracellulaire des tissus
In vitro cell models are widely accepted platforms for toxicological studies. However starting from the 2D models, improvements are needed to reproduce the physiological environment of the tissue. Advances in tissue engineering have given rise to 3D barrier tissue models that recreate cell-cell and cell-matrix interactions. However, electrical platforms to quantify barrier tissue permeability hasn’t followed the rapid pace of models complexification. In this work I explore the possibilities to design conductive polymer-based devices adapted for the characterization of barrier tissue models. Conventional electrical tools used to evaluate integrity of barrier tissues are made of metal electrodes placed on each side of the tissue. This technology presents limitations when it comes to analyzing customized 3D tissue models due to issues in electrode size and stiffness. As an alternative option to metal electrodes, organic electronic materials have shown great promise to interface with biological tissues. In particular the Organic ElectroChemical Transistor (OECT) using PEDOT:PSS has already shown great efficiency to quantify electrical properties of barrier tissues in 2D. Thanks to microfabrication techniques they can be miniaturized and tuned to form mechanically compliant interface with a range of biological tissues. In this thesis, OECT compatibility with models such as tracheal cell culture at the air-liquid interface, spheroid models and microvessel-on-a-chip system has been tested. The achievements described in this work present significant progress in the field of in vitro platforms of barrier tissue modeling for toxicology and drug discovery testing
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mariani, Federica. "PEDOT:PSS thin films: Applications in Bioelectronics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11915/.

Повний текст джерела
Анотація:
Owing to their capability of merging the properties of metals and conventional polymers, Conducting Polymers (CPs) are a unique class of carbon-based materials capable of conducting electrical current. A conjugated backbone is the hallmark of CPs, which can readily undergo reversible doping to different extents, thus achieving a wide range of electrical conductivities, while maintaining mechanical flexibility, transparency and high thermal stability. Thanks to these inherent versatility and attracting properties, from their discovery CPs have experienced incessant widespread in a great plethora of research fields, ranging from energy storage to healthcare, also encouraging the spring and growth of new scientific areas with highly innovative content. Nowadays, Bioelectronics stands out as one of the most promising research fields, dealing with the mutual interplay between biology and electronics. Among CPs, the polyelectrolyte complex poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS), especially in the form of thin films, has been emphasized as ideal platform for bioelectronic applications. Indeed, in the last two decades PEDOT:PSS has played a key role in the sensing of bioanalytes and living cells interfacing and monitoring. In the present work, development and characterization of two kinds of PEDOT:PSS-based devices for applications in Bioelectronics are discussed in detail. In particular, a low-cost amperometric sensor for the selective detection of Dopamine in a ternary mixture was optimized, taking advantage of the electrocatalytic and antifouling properties that render PEDOT:PSS thin films appealing tools for electrochemical sensing of bioanalytes. Moreover, the potentialities of this material to interact with live cells were explored through the fabrication of a microfluidic trapping device for electrical monitoring of 3D spheroids using an impedance-based approach.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "3D conductive polymer"

1

Xiang, Dong. "3D-Printed Flexible Strain Sensors of Conductive Polymer Composites." In Carbon-Based Conductive Polymer Composites, 141–60. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003218661-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Alegret, Nuria, Antonio Dominguez-Alfaro, and David Mecerreyes. "Chapter 10. Conductive Polymers Building 3D Scaffolds for Tissue Engineering." In Polymer Chemistry Series, 383–414. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788019743-00383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Song, Edward, and Jin-Woo Choi. "Inkjet Printing of Conducting Polymer Nanomaterials." In Nanomaterials for 2D and 3D Printing, 245–64. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527685790.ch12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Barbosa, Joseane R., Pedro H. O. Amorim, Mariana C. de O. Gonçalves, Rafael M. Dornellas, Robson P. Pereira, and Felipe S. Semaan. "Evaluation of 3D Printing Parameters on the Electrochemical Performance of Conductive Polymeric Components for Chemical Warfare Agent Sensing." In Smart Innovation, Systems and Technologies, 425–35. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9155-2_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Agarwala, Shweta, Guo Liang Goh, Guo Dong Goh, Vishwesh Dikshit, and Wai Yee Yeong. "3D and 4D printing of polymer/CNTs-based conductive composites." In 3D and 4D Printing of Polymer Nanocomposite Materials, 297–324. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-816805-9.00010-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhu, Jianxiong. "Carbon black-reinforced 3D and 4D printable conductive polymer composites." In 3D and 4D Printing of Polymer Nanocomposite Materials, 367–85. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-816805-9.00012-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Horst, Diogo José, and Pedro Paulo Andrade Junior. "3D-Printed Conductive Filaments Based on Carbon Nanostructures Embedded in a Polymer Matrix." In Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials, 1725–42. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8591-7.ch072.

Повний текст джерела
Анотація:
Conductive and magnetic filaments are revolutionizing three-dimensional printing (3DP) to a new level. This review study presents the current state of the art on the subject, summarizing recent high impact studies about main advances regarding the application of 3DP filaments based on carbon nanostructures such as graphene, carbon fibers, nanotubes, and conductive carbon black embedded in a polymer matrix, by reviewing its main characteristics and showing the main producers and also the products available on the market. The availability of inexpensive, reliable, and electrically conductive material will be indispensable for the fabrication of circuits and sensors before the full potential of 3DP for customized products incorporating electrical elements can be fully explored.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Joshi, Atharv, Jonathan Kenneth Goh, and Kuan Eng Johnson Goh. "Polymer-based conductive composites for 3D and 4D printing of electrical circuits." In 3D and 4D Printing of Polymer Nanocomposite Materials, 45–83. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-816805-9.00003-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pradeep Kumar G. S., Sachith T. S., Sasidhar Jangam, Shivakumar S., and Gurumoorthy S. Hebbar. "Development of High Performance Polymer Composites by Additive Manufacturing." In Advances in Chemical and Materials Engineering, 220–38. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-6009-2.ch013.

Повний текст джерела
Анотація:
Additive manufacturing, often known as 3D printing, is a process that involves the manufacture of physical things in a manner that is similar to building them up layer by layer. As a result of its utilization of automated procedures to generate complicated three-dimensional forms, which are either difficult or impossible to produce using conventional methods, fused deposition modeling is a typical approach that uses heat to assist in the extrusion process. The term “high-performance polymer” refers to a group of polymer materials that are known to maintain their desirable mechanical, thermal, and chemical properties when subjected to harsh environments such as high temperatures, high pressures, and corrosive chemicals. This chapter starts off with a brief introduction of conductive and high-performance polymer composites, followed by a rundown of how these materials are utilized in the 3D printing process.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Huang, Ching-Cheng, and Masashi Shiotsuki. "Perspective Chapter: Design and Characterization of Natural and Synthetic Soft Polymeric Materials with Biomimetic 3D Microarchitecture for Tissue Engineering and Medical Applications." In Biomimetics - Bridging the Gap [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106471.

Повний текст джерела
Анотація:
Continuous work and developments in biomedical materials used in three-dimensional (3D) bioprinting have contributed to significant growth of 3D bioprinting applications in the production of personalized tissue-repairing membrane, skin graft, prostheses, medication delivery system, and 3D tissue engineering and regenerative medicine scaffolds. The design of clinic products and devices focus on new natural and synthetic biomedical materials employed for therapeutic applications in different 3D bioprinting technologies. Design and characterization of natural and synthetic soft polymeric materials with biomimetic 3D microarchitecture were considered. The natural soft polymeric materials would focus on new design bioinspired membranes containing supercritical fluids-decellularized dermal scaffolds for 3D bioprinting potential applications. Synthetic soft polymeric materials would focus on bioinspired polyvinyl alcohol (b-PVA) matrix with structural foam-wall microarchitectures. Characterization, thermal stability, and cell morphology of the b-PVA and the corresponding collagen-modified b-PVA were employed to evaluate their potential tissue engineering applications. Also, the b-PVA materials were conductive to HepG2 cells proliferation, migration, and expression, which might serve as a promising liver cell culture carrier to be used in the biological artificial liver reactor. TGA, DTG, DSC, SEM, and FTIR were employed to build up the effective system identification approach for biomimetic structure, stability, purity, and safety of target soft matrix.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "3D conductive polymer"

1

Blasco, Eva, Jonathan B. Müller, Patrick Müller, Andreas C. Fischer, Christopher Barner-Kowollik, and Martin Wegener. "Fabrication of 3D gold/polymer conductive microstructures via direct laser writing (Conference Presentation)." In Laser 3D Manufacturing IV, edited by Corey M. Dunsky, Jian Liu, Henry Helvajian, Alberto Piqué, and Bo Gu. SPIE, 2017. http://dx.doi.org/10.1117/12.2256873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kamkar, Milad, Majed Amini, Saeed Ghaderi, Ahmadreza Ghafarkhah, Amirhossein Ahmadian Hosseini, and Mohammad Arjmand. "Advanced 3D Printed Conductive Polymer Nanocomposites for Electromagnetic Shielding." In 2021 IEEE Sensors. IEEE, 2021. http://dx.doi.org/10.1109/sensors47087.2021.9639856.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kawakita, Jin, Barbara Horvath, and Toyohiro Chikyow. "Fast filling of through-silicon via (TSV) with conductive polymer/metal composites." In 2015 International 3D Systems Integration Conference (3DIC). IEEE, 2015. http://dx.doi.org/10.1109/3dic.2015.7334583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Elwood, Jacqueline, and Liwei Lin. "A 3D Printed Ethanol Sensor Using Conformally-Coated Conductive Polymer Electrodes." In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019. http://dx.doi.org/10.1109/transducers.2019.8808789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rodriguez, David Gonzalez, Cole Maynard, Julio Hernandez, Corey O’Brien, Tyler N. Tallman, Brittany Newell, and Jose Garcia. "3D Printed Flexible Dielectric Electroactive Polymer Sensors." In ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/smasis2022-91072.

Повний текст джерела
Анотація:
Abstract Flexible sensors have demonstrated great potential for utilization in many industrial applications due to their ability to be produced in complex shapes. Sensors are employed to monitor and detect changes in the surrounding environment or the structure itself. A great majority of these flexible structures are produced by casting processes, since they are generally composed of silicone materials due to their high elasticity and flexibility. Unfortunately, the casting process is time consuming, and it limits the development of complex geometries reducing the advantages of silicone materials. 3D printed flexible sensors have demonstrated great potential for utilization in a variety of different applications including healthcare, environmental sensing, and industrial applications. In recent years, research on these topics has increased to meet low-cost sensing needs due to the development of innovative materials and printing techniques that reduce cost, production time, and enhance the electrical and mechanical properties of the sensors. This paper presents a 3D printed flexible dielectric electroactive polymer (DEAP) sensor capable of producing an output signal based on the deformation caused by external forces. Three different conductive flexible filaments were tested, using one commercial filament and two custom-made filaments, a comparison of its sensing behavior is also presented herein. Additionally, computational simulations were done to evaluate the performance of the produced sensors, evaluating the capacitance change of the entire structure. This work demonstrates the production of 3D printed flexible sensors and studies the behavior of new customizable conductive flexible filaments. Both manufactured sensors were produced using fused deposition modeling (FDM) techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lu, Lu, Shan Hu, and Yayue Pan. "3D Printed Particle-Polymer Composites With Acoustically Localized Particle Distribution for Thermal Management Applications." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6643.

Повний текст джерела
Анотація:
The particle-polymer composite can perform multiple functionalities according to particle property, local particle distribution, and alignment. This paper shows thermal management applications of in situ manipulations of particle dispersion patterns within a 3D printed polymeric composite architecture. A 3D printed particle-polymer composite with enhanced thermal conductive properties was developed. Composite structures containing 30-micron-sized aluminum particles embedded in the acrylate polymer were produced using a novel acoustic field assisted projection based Stereolithography process. Thermal properties of the pure polymer and prepared uniform composite with 2.75 wt% particle were characterized by using the transient hot bridge technique. To investigate the effect of material composition and particle distribution pattern on composite thermal behavior, heat sinks were designed and fabricated with the pure polymer, homogeneous composite with particles uniformly distributed in the polymer matrix, and composite with patterned particles for comparison. Infrared thermal imaging was performed on the 3D printed objects. The homogeneous composites displayed slight enhancement in thermal conductivity. A significant improvement of heat dissipation speed was observed for the patterned composite, due to a densely interconnected aluminum aggregate network. To further improve the thermal property of the patterned composite, varying layer thicknesses were tested. The developed patterned composites with superior performance compared to the inherent polymer material and homogeneous composites can be used for fabricating thermal management applications in electronic and fluidic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Aliheidari, Nahal, Cameron Hohimer, and Amir Ameli. "3D-Printed Conductive Nanocomposites for Liquid Sensing Applications." In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3855.

Повний текст джерела
Анотація:
Additive manufacturing (AM) offers a new and unique method for the fabrication of functional and smart material and structures. In this method, parts are fabricated directly from a 3D computer model layer by layer. Fused deposition modeling (FDM) is the most widely adapted AM method. In this method, the feedstock is usually a thermoplastic-based material. In recent years, flexible smart materials have gained unflagging interests due to their promising applications in health monitoring, sensing, actuation, etc. However, the 3D printing of flexible materials is recent with its own challenges and limited sources of feedstock. Conductive polymer nanocomposites (CPNs) have many promising uses within sensing filed including liquid sensing. Sensing chemical leakage is one the important capabilities of liquid sensors. There is a good number of studies on the fabrication and sensitivity characterization of CPN-based liquid sensors. However, the sensitivity and response time of CPN-based liquid sensors do not yet meet the industrial demands and should be further enhanced for their practical and widespread applications. This study presents an attempt to integrate the tunability of CPN’s conductivity behavior and the design flexibility of 3D printing to explore the benefits that their coupling may offer toward more sensitive and/or faster liquid sensing. Thermoplastic polyurethane/multiwalled carbon nanotube (TPU/MWCNT) nanocomposites were selected as a model material system and their filaments were first fabricated using melt-mixing by twin-screw extruder at 1, 2 and 3 wt.% of MWCNT. Flexible U-shaped TPU/MWCNT specimens were designed and successfully 3D-printed as a liquid sensor. Specimens fabricated at three different raster patterns of linear, 0–90, and 45/−45 and three infill percent levels of 100, 75, and 50%. Ethanol was used as the model chemical and the resistivity change of the sensors was measured as a function of time when immersed in ethanol. The results revealed that the printed sensors greatly outperformed the pressed bulk counterparts. This enhancement in the 3D printed sensors was primarily due to the increased surface area, and thus higher surface/volume ratio, enabling faster liquid uptake. In addition, MWCNT content, raster pattern, and infill percent all affected the overall response time as well as the sensor sensitivity. This work suggests that highly sensitive liquid sensors can be developed by material and structure optimizations via FDM 3D printing.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Koyalamudi, Kiran Babu, Ruoyu Yang, and Rahul Rai. "Additive Manufacturing of Conductive Polymer Nanocomposites Under the Influence of External Magnetic Field." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59595.

Повний текст джерела
Анотація:
Conductive polymer nanocomposites (CPNCs) have gained a lot of attention by the researchers, in recent times, due to their diverse technological applications in different domains. This paper discusses the additive manufacturing of conductive polymer nanocomposite. Maghemite-Multiwalled carbon nanotubes were synthesized, and later dispersed in an acrylate resin, followed by curing with UV DLP 3D printer, under the presence of external magnetic field. Maghemite-Multiwalled carbon nanotubes showed superior magnetic properties, when compared to Multiwalled carbon nanotubes and lead to improvements in preferential alignment of filler material in the polymer matrix. The initial experimental results show preferential alignment of Maghemite-Multiwalled carbon nanotubes in the polymer matrix under the influence of external uniform magnetic field, at an intensity of 120 Gauss.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Han, Jun, Lingyu Sun, Lijun Li, Bincheng Huang, Xudong Yang, and Taikun Wang. "3D Numerical Model for Prediction of Percolation Threshold and Piezoresistive Characteristics of Conductive Polymer Filled With CNT." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86528.

Повний текст джерела
Анотація:
As a kind of functional materials, conductive polymer matrix composites filled with carbon nanotube (CNT) has potential application in structural health monitoring. A good formula should have a low percolation threshold and high piezoresistive strain sensitivity, which are always being sought by costly and time-consuming experimental method. Up to date, there is still a lack of numerical models to predict the sharp transition moment in electrical conductivity and mechanical resistance characteristics. This paper aims to establish a three-dimensional (3D) numerical model to observe the conductive network formation, predict the percolation threshold and investigate the piezoresistive characteristics of CNT-filled polymer matrix composites. Additionally, the influence of filler size, filler shape and filler volume fraction on the percolation threshold and piezoresistive characteristics would be investigated. The modeling and numerical simulation method can not only provide theoretical guidance for such a functional composite material, but also could be used in the future study on design and preparation of other conductive composites with two fillers added to improve the piezoresistive strain sensitivity and to decrease the percolation threshold.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, Eunkyoung, HanWhuy Lim, and Jongbeom Na. "Photothermal effect in conductive polymer layers for structural conversion into a complex 3D structure (Conference Presentation)." In Organic Photonic Materials and Devices XIX, edited by Christopher E. Tabor, François Kajzar, Toshikuni Kaino, and Yasuhiro Koike. SPIE, 2017. http://dx.doi.org/10.1117/12.2257109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії