Добірка наукової літератури з теми "2D array transducer"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "2D array transducer".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "2D array transducer"

1

Roh, Yongrae. "Design and Fabrication of a 2D Array Ultrasonic Transducer." JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA 32, no. 5 (2013): 393. http://dx.doi.org/10.7776/ask.2013.32.5.393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lu, Jian-Yu, and Jiqi Cheng. "Field Computation for Two-Dimensional Array Transducers with Limited Diffraction Array Beams." Ultrasonic Imaging 27, no. 4 (October 2005): 237–55. http://dx.doi.org/10.1177/016173460502700403.

Повний текст джерела
Анотація:
A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dong, Zhijie, Shuangliang Li, Chengwu Huang, Matthew R. Lowerison, Dongliang Yan, Yike Wang, Shigao Chen, Jun Zou, and Pengfei Song. "Real-time 3D ultrasound imaging with a clip-on device attached to common 1D array transducers." Journal of the Acoustical Society of America 155, no. 3_Supplement (March 1, 2024): A102. http://dx.doi.org/10.1121/10.0026955.

Повний текст джерела
Анотація:
Performing 3D ultrasound imaging at a real-time volume rate (e.g., >20 Hz) is a challenging task. While 2D array transducers remain the most practical approach for real-time 3D imaging, the large number of transducer elements (e.g., several thousand) that are necessary to cover an effective 3D field-of-view impose a fundamental constraint on imaging speed. Although solutions such as multiplexing and specialized transducers, including sparse arrays and row-column-addressing arrays, have been developed to address this limitation, they inevitably compromise imaging quality (e.g., SNR, resolution) in favor of speed. Coupled with the high equipment cost of 2D arrays, these compromises hinder the widespread adoption of 3D ultrasound imaging technologies in clinical settings. In this presentation, we introduce an innovative transducer clip-on device comprising a water-immersible, fast-tilting electromechanical acoustic reflector and a redirecting reflector to enable real-time 3D ultrasound imaging using common 1D array transducers. We will first introduce the principles underlying our novel technique, followed by validation studies incorporating simulation and experimental data. We will also demonstrate the feasibility of using the clip-on device to achieve a high 3D imaging volume rate that is suitable for advanced imaging modes such as shear wave elastography, blood flow imaging, and super-resolution ultrasound localization microscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Xiaotong, Anthony Gachagan, and Paul Murray. "Design of 2D Sparse Array Transducers for Anomaly Detection in Medical Phantoms." Sensors 20, no. 18 (September 19, 2020): 5370. http://dx.doi.org/10.3390/s20185370.

Повний текст джерела
Анотація:
Aperiodic sparse 2D ultrasonic array configurations, including random array, log spiral array, and sunflower array, have been considered for their potential as conformable transducers able to image within a focal range of 30–80 mm, at an operating frequency of 2 MHz. Optimisation of the imaging performance of potential array patterns has been undertaken based on their simulated far field directivity functions. Two evaluation criteria, peak sidelobe level (PSL) and integrated sidelobe ratio (ISLR), are used to access the performance of each array configuration. Subsequently, a log spiral array pattern with −19.33 dB PSL and 2.71 dB ISLR has been selected as the overall optimal design. Two prototype transducers with the selected log spiral array pattern have been fabricated and characterised, one using a fibre composite element composite array transducer (CECAT) structure, the other using a conventional 1–3 composite (C1–3) structure. The CECAT device demonstrates improved coupling coefficient (0.64 to 0.59), reduced mechanical cross-talk between neighbouring array elements (by 10 dB) and improved operational bandwidth (by 16.5%), while the C1–3 device performs better in terms of sensitivity (~50%). Image processing algorithms, such as Hough transform and morphological opening, have been implemented to automatically detect and dimension particles located within a fluid-filled tube structure, in a variety of experimental scenarios, including bespoke phantoms using tissue mimicking material. Experiments using the fabricated CECAT log spiral 2D array transducer demonstrated that this algorithmic approach was able to detect the walls of the tube structure and stationary anomalies within the tube with a precision of ~0.1 mm.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Light, Edward D., Salim F. Idriss, Kathryn F. Sullivan, Patrick D. Wolf, and Stephen W. Smith. "Real-Time 3D Laparoscopic Ultrasonography." Ultrasonic Imaging 27, no. 3 (July 2005): 129–44. http://dx.doi.org/10.1177/016173460502700301.

Повний текст джерела
Анотація:
We have previously described 2D array ultrasound transducers operating up to 10 MHz for applications including real time 3D transthoracic imaging, real time volumetric intracardiac echocardiography (ICE), real time 3D intravascular ultrasound (IVUS) imaging, and real time 3D transesophageal echocardiography (TEE). We have recently built a pair of 2D array transducers for real time 3D laparoscopic ultrasonography (3D LUS). These transducers are intended to be placed down a trocar during minimally invasive surgery. The first is a forward viewing 5 MHz, 11 times 19 array with 198 operating elements. It was built on an 8 layer multilayer flex circuit. The interelement spacing is 0.20 mm yielding an aperture that is 2.2 mm × 3.8 mm. The O.D. of the completed transducer is 10.2 mm and includes a 2 mm tool port. The average measured center frequency is 4.5 MHz, and the −6 dB bandwidth ranges from 15% to 30%. The 50 Ω insertion loss, including Gore MicroFlat cabling, is −81.2 dB. The second transducer is a 7 MHz, 36 times 36 array with 504 operating elements. It was built upon a 10 layer multilayer flex circuit. This transducer is in the forward viewing configuration and the interelement spacing is 0.18 mm. The total aperture size is 6.48 mm x 6.48 mm. The O.D. of the completed transducer is 11.4 mm. The average measured center frequency is 7.2 MHz, and the −6 dB bandwidth ranges from 18% to 33%. The 50 Ω insertion loss is −79.5 dB, including Gore MicroFlat cable. Real-time in vivo 3D images of canine hearts have been made including an apical 4-chamber view from a substernal access with the first transducer to monitor cardiac function. In addition, we produced real time 3D rendered images of the right pulmonary veins from a right parasternal access with the second transducer, which would be valuable in the guidance of cardiac ablation catheters for treatment of atrial fibrillation.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Xu-Bo, Le-Ming He, You-Cao Ma, Wen-Juan Liu, Wei-Jiang Xu, Jun-Yan Ren, Antoine Riaud, and Jia Zhou. "Development of Broadband High-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array." Sensors 21, no. 5 (March 5, 2021): 1823. http://dx.doi.org/10.3390/s21051823.

Повний текст джерела
Анотація:
Piezoelectric micromachined ultrasonic transducers (PMUT) are promising elements to fabricate a two-dimensional (2D) array with a pitch small enough (approximately half wavelength) to form and receive arbitrary acoustic beams for medical imaging. However, PMUT arrays have so far failed to combine the wide, high-frequency bandwidth needed to achieve a high axial resolution. In this paper, a polydimethylsiloxane (PDMS) backing structure is introduced into the PMUTs to improve the device bandwidth while keeping a sub-wavelength (λ) pitch. We implement this backing on a 16 × 8 array with 75 µm pitch (3λ/4) with a 15 MHz working frequency. Adding the backing nearly doubles the bandwidth to 92% (−6 dB) and has little influence on the impulse response sensitivity. By widening the transducer bandwidth, this backing may enable using PMUT ultrasonic arrays for high-resolution 3D imaging.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Choi, Jae Hoon, and Kwan Kyu Park. "2D Sparse Array Transducer Optimization for 3D Ultrasound Imaging." Journal of the Korean Society for Nondestructive Testing 34, no. 6 (December 30, 2014): 441–46. http://dx.doi.org/10.7779/jksnt.2014.34.6.441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bybi, Abdelmajid, Driss Khouili, Christian Granger, Mohammed Garoum, Ahmed Mzerd, and Anne-Christine Hladky-Hennion. "Experimental Characterization of A Piezoelectric Transducer Array Taking into Account Crosstalk Phenomenon." International Journal of Engineering and Technology Innovation 10, no. 1 (January 1, 2020): 01–14. http://dx.doi.org/10.46604/ijeti.2020.4348.

Повний текст джерела
Анотація:
Ultrasonic transducer arrays are generally composed of several piezoelectric elements arranged in 1D or 2D ways. Crosstalk is an undesirable phenomenon decreasing the performance of these devices. It generates parasitic displacements at the elements' radiating surfaces, which changes the directivity of the array. Furthermore, the transducer's displacement plays a critical role in terms of the focal area and transferred intensities. The objective of this paper is to characterize a piezoelectric array composed of seven-elements made of PZ 27 ceramic experimentally. It investigates the effects of the crosstalk phenomenon on the array's performance in particular. The results have shown that the array's elements vibrate mainly in thickness mode, but the displacement is not uniform along their length due to the contribution of a parasitic length mode. Moreover, the major parasitic displacements are obtained on the neighboring passive elements: about -7.3 dB, -11 dB, and -12 dB, on the first, the second, and the third elements, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hua, Shao Yan, Yu Chi Ming, and Ming Yue Ding. "Computer Simulation for Medical Ultrasound C-Mode Imaging Based on 2d Array." Advanced Materials Research 532-533 (June 2012): 719–23. http://dx.doi.org/10.4028/www.scientific.net/amr.532-533.719.

Повний текст джерела
Анотація:
C-mode imaging is one of the ultrasound imaging modalities. Compared with other modalities, e.g. A-mode, B-mode, M-mode, and Doppler, C-mode is mainly developed and used in industry testing. The potential of C-mode imaging for medical application has not been fully explored. In this paper, we design one 2-d plane array transducer through using the point spread function (PSF), and apply the 2d array transducer for C-mode imaging. The simulation results show that the generated C-mode images can display the anatomic structure and the pathological changes on the biological tissue.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Joshi, Sanjog Vilas, Sina Sadeghpour, and Michael Kraft. "Polyimide-On-Silicon 2D Piezoelectric Micromachined Ultrasound Transducer (PMUT) Array." Sensors 23, no. 10 (May 17, 2023): 4826. http://dx.doi.org/10.3390/s23104826.

Повний текст джерела
Анотація:
This paper presents a fully addressable 8 × 8 two-dimensional (2D) rigid piezoelectric micromachined ultrasonic transducer (PMUT) array. The PMUTs were fabricated on a standard silicon wafer, resulting in a low-cost solution for ultrasound imaging. A polyimide layer is used as the passive layer in the PMUT membranes on top of the active piezoelectric layer. The PMUT membranes are realized by backside deep reactive ion etching (DRIE) with an oxide etch stop. The polyimide passive layer enables high resonance frequencies that can be easily tuned by controlling the thickness of the polyimide. The fabricated PMUT with 6 µm polyimide thickness showed a 3.2 MHz in-air frequency with a 3 nm/V sensitivity. The PMUT has shown an effective coupling coefficient of 14% as calculated from the impedance analysis. An approximately 1% interelement crosstalk between the PMUT elements in one array is observed, which is at least a five-fold reduction compared to the state of the art. A pressure response of 40 Pa/V at 5 mm was measured underwater using a hydrophone while exciting a single PMUT element. A single-pulse response captured using the hydrophone suggested a 70% −6 dB fractional bandwidth for the 1.7 MHz center frequency. The demonstrated results have the potential to enable imaging and sensing applications in shallow-depth regions, subject to some optimization.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "2D array transducer"

1

Guerif, Benjamin. "Conception d’une sonde programmable, polyvalente et abordable pour l'imagerie médicale ultrasonore volumétrique en temps réel." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS041.

Повний текст джерела
Анотація:
Selon l’Organisation Mondiale de la Santé, les maladies cardiovasculaires sont la principale cause de décès dans le monde avec 17.9 millions de décès soit 32% des morts constatés en 2019. L’échocardiographie transthoracique (TTE), une technique d’imagerie ultrasonore non invasive et non irradiante, s’est alors imposée comme un outil de diagnostic efficace permettant d’identifier les dysfonctionnements du muscle cardiaque. Cette technique permet alors de procéder à une analyse morphologique et cinétique du cœur à l’aide de techniques d’imagerie dites conventionnelles.D’autres techniques alternatives telles que l’imagerie ultrarapide proposent des modalités complémentaires pouvant permettre d’améliorer le diagnostic des maladies cardiovasculaires. Si ces techniques ont pu faire leurs preuves en imagerie bidimensionnelle (2D), différentes barrières technologiques s’opposent à sa démocratisation en imagerie tridimensionnelle (3D). En effet, le passage de la 2D à la 3D nécessite d’adresser des réseaux de transducteurs de plusieurs milliers de voies. Les systèmes d’imagerie cliniques ayant un nombre de voies limité (le plus souvent à 256), l’utilisation de techniques dites de réduction de voie s’avère donc nécessaire. L’une d’entre elles, appelée micro-formation de faisceau, s’est ainsi démarquée en proposant des performances d’imagerie conventionnelles 3D similaires à une sonde d’imagerie 2D. Cette technologie est le plus souvent fermé et semble a priori difficilement compatible avec des techniques d’imagerie alternative. Ce faisant l’imagerie ultrarapide s’est rapidement orientée sur des techniques de réduction de voie alternatives telles que les réseaux ligne-colonne, les réseaux clairsemés ou l’utilisation de systèmes d’imagerie encombrants avec des sondes matricielles de plus petite surface acoustique et composée de milliers d’éléments.Dans cette thèse, un premier travail visant à améliorer les techniques d’imagerie ultrarapide existantes est proposé en nous appuyant sur l’utilisation d’une nouvelle sonde complètement peuplée composée de 3072 éléments associée à nouveau système d’imagerie de plusieurs milliers de voies. Par la suite, la définition et l’étude d’une sonde matricielle active dédiée à l’imagerie TTE reposant sur l’utilisation de la micro-formation de faisceau et composée de plusieurs milliers d’éléments pilotés par un unique système d’imagerie est proposée. Enfin, un prototype de sonde de micro-formation de faisceau est réalisé et évalué expérimentalement à l’aide d’un échographe de recherche ouvert afin de proposer une première sonde suffisamment polyvalente, programmable et abordable pour rendre accessible cette technologies aux laboratoires de recherche et ainsi offrir de nouveaux outils de diagnostic en échocardiographie transthoracique 3D
Selon l’Organisation Mondiale de la Santé, les maladies cardiovasculaires sont la principale cause de décès dans le monde avec 17.9 millions de décès soit 32% des morts constatés en 2019. L’échocardiographie transthoracique (TTE), une technique d’imagerie ultrasonore non invasive et non irradiante, s’est alors imposée comme un outil de diagnostic efficace permettant d’identifier les dysfonctionnements du muscle cardiaque. Cette technique permet alors de procéder à une analyse morphologique et cinétique du cœur à l’aide de techniques d’imagerie dites conventionnelles.D’autres techniques alternatives telles que l’imagerie ultrarapide proposent des modalités complémentaires pouvant permettre d’améliorer le diagnostic des maladies cardiovasculaires. Si ces techniques ont pu faire leurs preuves en imagerie bidimensionnelle (2D), différentes barrières technologiques s’opposent à sa démocratisation en imagerie tridimensionnelle (3D). En effet, le passage de la 2D à la 3D nécessite d’adresser des réseaux de transducteurs de plusieurs milliers de voies. Les systèmes d’imagerie cliniques ayant un nombre de voies limité (le plus souvent à 256), l’utilisation de techniques dites de réduction de voie s’avère donc nécessaire. L’une d’entre elles, appelée micro-formation de faisceau, s’est ainsi démarquée en proposant des performances d’imagerie conventionnelles 3D similaires à une sonde d’imagerie 2D. Cette technologie est le plus souvent fermé et semble a priori difficilement compatible avec des techniques d’imagerie alternative. Ce faisant l’imagerie ultrarapide s’est rapidement orientée sur des techniques de réduction de voie alternatives telles que les réseaux ligne-colonne, les réseaux clairsemés ou l’utilisation de systèmes d’imagerie encombrants avec des sondes matricielles de plus petite surface acoustique et composée de milliers d’éléments.Dans cette thèse, un premier travail visant à améliorer les techniques d’imagerie ultrarapide existantes est proposé en nous appuyant sur l’utilisation d’une nouvelle sonde complètement peuplée composée de 3072 éléments associée à nouveau système d’imagerie de plusieurs milliers de voies. Par la suite, la définition et l’étude d’une sonde matricielle active dédiée à l’imagerie TTE reposant sur l’utilisation de la micro-formation de faisceau et composée de plusieurs milliers d’éléments pilotés par un unique système d’imagerie est proposée. Enfin, un prototype de sonde de micro-formation de faisceau est réalisé et évalué expérimentalement à l’aide d’un échographe de recherche ouvert afin de proposer une première sonde suffisamment polyvalente, programmable et abordable pour rendre accessible cette technologies aux laboratoires de recherche et ainsi offrir de nouveaux outils de diagnostic en échocardiographie transthoracique 3D
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Roux, Emmanuel. "2D sparse array optimization and operating strategy for real-time 3D ultrasound imaging." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1255/document.

Повний текст джерела
Анотація:
Aujourd'hui l'utilisation de l'échographie 3D en cardiologie est limitée car l'imagerie de la totalité du myocarde sur un cycle cardiaque, sans apnée, reste un défi technologique. Une solution consiste à réduire le nombre de capteurs dans les sondes échographiques matricielles afin d'alléger le procédé d'acquisition: ces sondes sont dites parcimonieuses. Le but de cette thèse est de proposer les meilleures dispositions d'un nombre réduit de capteurs piézo-électriques répartis sur la surface active de la sonde afin d'optimiser leur capacité à produire des images homogènes en termes de contraste et résolution dans tout le volume d'intérêt. Ce travail présente l'intégration de simulations acoustiques réalistes élaborées au sein d'un processus d'optimisation stochastique (algorithme de recuit simulé). La structure proposée pour le design des sondes parcimonieuse est suffisamment générale pour être appliquée aux sondes régulières (éléments actifs disposés selon une grille) et non-régulières (positionnement arbitraire des éléments actifs). L'introduction d'une fonction d'énergie innovante permet de sculpter en 3D le diagramme optimal de rayonnement de la sonde. Les résultats de sondes optimisées obtenues possèdent 128, 192 ou 256 éléments pour favoriser leur compatibilité avec les échographes commercialisés à ce jour, ce qui permettrait de déployer l'échographie 3D à moindre coût et à très large échelle
Today, the use of 3D ultrasound imaging in cardiology is limited because imaging the entire myocardium on a single heartbeat, without apnea, remains a technological challenge. A solution consists in reducing the number of active elements in the 2D ultrasound probes to lighten the acquisition process: this approach leads to sparse arrays. The aim of this thesis is to propose the best configuration of a given number of active elements distributed on the probe active surface in order to maximize their ability to produce images with homogeneous contrast and resolution over the entire volume of interest. This work presents the integration of realistic acoustic simulations performed in a stochastic optimization process (simulated annealing algorithm). The proposed sparse array design framework is general enough to be applied on both on-grid (active elements located on a regular grid) and non-grid (arbitrary positioning of the active elements) arrays. The introduction of an innovative energy function sculpts the optimal 3D beam pattern radiated by the array. The obtained optimized results have 128, 192 or 256 active elements to help their compatibility with currently commercialized ultrasound scanners, potentially allowing a large scale development of 3D ultrasound imaging with low cost systems
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Merabet, Lucas. "Etude d’algorithmes de reconstruction ultrasonore dans le domaine de Fourier pour l’imagerie rapide 2D et 3D en contrôle non- destructif." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET060.

Повний текст джерела
Анотація:
Ce travail de thèse s’intéresse à l’imagerie ultrasonore multi-éléments pour le Contrôle Non-Destructif (CND), et vise à accélérer l’imagerie échographique en 2D et 3D. Les méthodes étudiées s’inspirent des algorithmes de reconstruction dans le domaine de Fourier (f-k) en imagerie sismique. La littérature montre que ces méthodes offrent un avantage numérique par rapport à celles dans le domaine temporel basées sur un principe de focalisation en émission/réception. D’autre part, l’essor des traducteurs multi-éléments a permis d’explorer de nouveaux modes d’émission, comme les ondes planes en imagerie médicale ultra-rapide. Dans cette thèse, on se propose de combiner les algorithmes rapides du domaine f-k avec des émissions planes pour calculer des images aussi rapidement que possible. Ces algorithmes sont adaptés pour traiter des configurations d’inspection usuelles en CND. Une analyse des complexités algorithmiques, des temps de calcul et de la qualité des reconstructions est menée en 2D. La comparaison avec la méthode temporelle Plane Wave Imaging (PWI) démontre un avantage certain pour l’imagerie f-k. Ces avantages sont confirmés en 3D où l’on démontre que cette dernière améliore la qualité d’image tout en réduisant le temps de calcul d’un facteur allant jusqu’à 300 par rapport à PWI. Enfin, la méthode f-k est généralisée à l’imagerie multimodale pour la caractérisation de fissures. La théorie est d’abord présentée, puis on montre qu’il est possible d’améliorer la qualité des reconstructions grâce à un fenêtrage des fréquences spatiales de l’image. Ce filtre spectral élimine des artéfacts d’imagerie liés à des échos de géométrie, améliorant ainsi le contraste des images
This research work deals with ultrasound imaging with transducer arrays for Non Destructive Testing (NDT), and aims at speeding up the formation of 2D and 3D images. The methods studied in this manuscript are inspired from reconstruction algorithms in the Fourier frequency-wavenumber (f-k) domain introduced in seismic imaging in the 70’s. The literature shows that f-k methods offer a numerical advantage over the more conventional time-domain focusing algorithms. On the other hand, the rise of transducer arrays has allowed for the exploration of new emission modes, such as plane wave emissions in ultra-fast medical imaging. In this thesis, we propose to combine fast f-k algorithms with plane wave emissions to form 2D and 3D images as fast as possible. These algorithms are adapted to deal with realistic NDT inspection configurations. Analyses of algorithmic complexities, computation times, and image qualities are carried out in 2D, and a comparison with the time-domain Plane Wave Imaging (PWI) shows a clear advantage for f-k methods. This is confirmed in 3D, where we show that Fourier domain algorithms improve image quality while reducing computation times by a factor up to 300 compared to PWI. Finally, the f-k methods are generalized to multi-modal imaging to characterize cracks. The theory, which accounts for mode conversions and reflections at the specimen interfaces, is first presented, and we then demonstrate that it is possible to improve the reconstruction quality thanks to spectral windowing in the image frequency-domain. This spectral filter cancels undesired artifacts caused by interface echoes, and improves the image contrast
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "2D array transducer"

1

Guiroy, Axel, Dominique Certon, Philippe Boy, Marc Lethiecq, and Franck Levassort. "2D Numerical Modeling for Transducers with Combined Pseudospectral and Finite Difference Methods: Application to High Frequency Linear Arrays." In Acoustical Imaging, 351–61. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2619-2_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jiang, Huabei. "Transducer array-based TAT: 2D and 3D thermoacoustic imaging." In Thermoacoustic Tomography, 4–1. IOP Publishing, 2020. http://dx.doi.org/10.1088/978-0-7503-3163-0ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"Transducer Array-Based Photoacoustic Tomography: 2D, 3D, and 4-D Photoacoustic Imaging." In Photoacoustic Tomography, 124–45. CRC Press, 2018. http://dx.doi.org/10.1201/9781315213903-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "2D array transducer"

1

Woo, Jeongdong, Wonseok Lee, Sanggon Lee, Yongrae Roh, Hyungkeun Lee, Byungkuk Bae, Eunhee Shin, and Sunghag Kim. "2D array transducer with a conductive backing." In 2013 IEEE International Ultrasonics Symposium (IUS). IEEE, 2013. http://dx.doi.org/10.1109/ultsym.2013.0503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Makarov, Vladimir A., Ivan M. Pelivanov, Victor V. Kozhushko, Tat'yana D. Khokhlova, Alexei N. Zharinov, and Alexander A. Karabutov. "Focused array transducer for 2D OA tomography." In Biomedical Optics 2003, edited by Alexander A. Oraevsky. SPIE, 2003. http://dx.doi.org/10.1117/12.483515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kim, Wangyu, Wonseok Choi, Changyeop Lee, Joongho Ahn, and Chulhong Kim. "Volumetric photoacoustic/ultrasound imaging using 2D matrix array transducer scanner." In Photons Plus Ultrasound: Imaging and Sensing 2022, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2022. http://dx.doi.org/10.1117/12.2609137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zeng, Xiaozheng Jenny, K. Michael Sekins, Steve Barnes, and Barbrina Dunmire. "Simulation aided dosing control of a 2D array therapeutic ultrasound transducer." In 2010 IEEE Ultrasonics Symposium (IUS). IEEE, 2010. http://dx.doi.org/10.1109/ultsym.2010.5935650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Woo, Jeongdong, and Yongrae Roh. "Ultrasonic 2D matrix array transducer for volumetric imaging in real time." In 2012 IEEE International Ultrasonics Symposium. IEEE, 2012. http://dx.doi.org/10.1109/ultsym.2012.0392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jia, Yanping, Liushuai Lv, Mingyue Ding, and Ming Yuchi. "The design of split row-column addressing array for 2D transducer." In SPIE Medical Imaging, edited by Johan G. Bosch and Marvin M. Doyley. SPIE, 2014. http://dx.doi.org/10.1117/12.2043328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sanpanich, A., K. Hamamoto, M. Sangworasil, and C. Pintavirooj. "2D Ultrasonic Reflection Tomography by Linear Array Transducer and Wave Reflector." In 2009 IEEE-RIVF International Conference on Computing and Communication Technologies. IEEE, 2009. http://dx.doi.org/10.1109/rivf.2009.5174606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Xu-Bo, You-Cao Ma, Le-Ming He, Yan Wang, Wei-Jiang Xu, Antoine Riaud, Jun-Yan Ren, and Jia Zhou. "Development of backing piezoelectric micromachined ultrasonic transducer (B-PMUT) 2D array." In 2021 IEEE International Ultrasonics Symposium (IUS). IEEE, 2021. http://dx.doi.org/10.1109/ius52206.2021.9593679.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lu, Jian-yu, Gengxi Lu, Mark Humayun, and Qifa Zhou. "Concave 2D Ring Array Transducer for Ultrasound Visual Stimulation of the Brain." In 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9958276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moini, Azadeh, Amin Nikoozadeh, Jung Woo Choe, Butrus T. Khuri-Yakub, Chienliu Chang, Doug Stephens, L. Scott Smith, and David Sahn. "Fabrication, Packaging, and Catheter Assembly of 2D CMUT Arrays for Endoscopic Ultrasound and Cardiac Imaging." In ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48611.

Повний текст джерела
Анотація:
Ultrasound is increasingly in demand as a medical imaging tool and can be particularly beneficial in the field of intracardiac echocardiography (ICE). However, many challenges remain in the development of a 3D ultrasound imaging system. We have designed and fabricated a quad-ring capacitive micromachined ultrasound transducer (CMUT) for real-time, volumetric medical imaging. Each CMUT array is composed of four concentric, independent ring arrays, each operating at a different frequency, with 128 elements per ring. In this project, one ring will be used for imaging. A large (5mm diameter) lumen is available for delivering other devices, including high intensity focused ultrasound transducers for therapeutic applications or optical fibers for photoacoustic imaging. We address several challenges in developing a 3D imaging system. Through wafer vias are incorporated in the fabrication process for producing 2D CMUT arrays. Device integration with electronics is achieved through solder bumping the arrays, designing a flexible PCB, and flip chip bonding CMUT and ASICs to the flexible substrate. Finally, we describe a method for integrating the flex assembly into a catheter shaft. The package, once assembled, will be used for in-vivo open chest experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "2D array transducer"

1

Decroux, Agnes, Kassem Kalo, and Keith Swinden. PR-393-205100-R01 IRIS X-Ray CT Qualification for Flexible Pipe Inspection (Phase 1). Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2021. http://dx.doi.org/10.55274/r0012068.

Повний текст джерела
Анотація:
There are several techniques available to inspect single wall carbon steel pipelines including; Magnetic flux leakage (MFL), ultrasonic testing (UT), Electro-Magnetic Acoustic Transducer (EMAT), Phased Array, guide wave testing (GWT), etc. However, for more complex structures such as flexible pipelines the technology available to inspect them is far more limited. PRCI commissioned a program (SPIM 2-1) under the Subsea TC (2017-2020) to evaluate all known and suspected technologies that could be used to provide a detailed subsea inspection of a flexible riser. PRCI produced four samples of flexible pipe containing pre-manufactured cracks and corrosion defects which were located in; the outer armour layer, inner armour layer, pressure vault and carcass. The samples were used for blind testing of all identified inspection technologies. On conclusion of the SPIM 2-1 program, HR-XCT was identified as the technology showing the most promise and a follow-on program (SPIM 2-2) was commissioned to further explore the capabilities. This report will show the way in which high resolution image clarity and image manipulation was extracted from the HR-XCT system when used on the PRCI flexible pipe samples. The XCT results from SPIM 2-2 will be presented to show the initial setup of the experiment and 2D and 3D high resolution sectioned images from the testing. These images clearly identify and characterize 100% of the pre-manufactured defects introduced into the samples in all layers.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії