Добірка наукової літератури з теми "2D array transducer"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "2D array transducer".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "2D array transducer"
Roh, Yongrae. "Design and Fabrication of a 2D Array Ultrasonic Transducer." JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA 32, no. 5 (2013): 393. http://dx.doi.org/10.7776/ask.2013.32.5.393.
Повний текст джерелаLu, Jian-Yu, and Jiqi Cheng. "Field Computation for Two-Dimensional Array Transducers with Limited Diffraction Array Beams." Ultrasonic Imaging 27, no. 4 (October 2005): 237–55. http://dx.doi.org/10.1177/016173460502700403.
Повний текст джерелаDong, Zhijie, Shuangliang Li, Chengwu Huang, Matthew R. Lowerison, Dongliang Yan, Yike Wang, Shigao Chen, Jun Zou, and Pengfei Song. "Real-time 3D ultrasound imaging with a clip-on device attached to common 1D array transducers." Journal of the Acoustical Society of America 155, no. 3_Supplement (March 1, 2024): A102. http://dx.doi.org/10.1121/10.0026955.
Повний текст джерелаLi, Xiaotong, Anthony Gachagan, and Paul Murray. "Design of 2D Sparse Array Transducers for Anomaly Detection in Medical Phantoms." Sensors 20, no. 18 (September 19, 2020): 5370. http://dx.doi.org/10.3390/s20185370.
Повний текст джерелаLight, Edward D., Salim F. Idriss, Kathryn F. Sullivan, Patrick D. Wolf, and Stephen W. Smith. "Real-Time 3D Laparoscopic Ultrasonography." Ultrasonic Imaging 27, no. 3 (July 2005): 129–44. http://dx.doi.org/10.1177/016173460502700301.
Повний текст джерелаWang, Xu-Bo, Le-Ming He, You-Cao Ma, Wen-Juan Liu, Wei-Jiang Xu, Jun-Yan Ren, Antoine Riaud, and Jia Zhou. "Development of Broadband High-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array." Sensors 21, no. 5 (March 5, 2021): 1823. http://dx.doi.org/10.3390/s21051823.
Повний текст джерелаChoi, Jae Hoon, and Kwan Kyu Park. "2D Sparse Array Transducer Optimization for 3D Ultrasound Imaging." Journal of the Korean Society for Nondestructive Testing 34, no. 6 (December 30, 2014): 441–46. http://dx.doi.org/10.7779/jksnt.2014.34.6.441.
Повний текст джерелаBybi, Abdelmajid, Driss Khouili, Christian Granger, Mohammed Garoum, Ahmed Mzerd, and Anne-Christine Hladky-Hennion. "Experimental Characterization of A Piezoelectric Transducer Array Taking into Account Crosstalk Phenomenon." International Journal of Engineering and Technology Innovation 10, no. 1 (January 1, 2020): 01–14. http://dx.doi.org/10.46604/ijeti.2020.4348.
Повний текст джерелаHua, Shao Yan, Yu Chi Ming, and Ming Yue Ding. "Computer Simulation for Medical Ultrasound C-Mode Imaging Based on 2d Array." Advanced Materials Research 532-533 (June 2012): 719–23. http://dx.doi.org/10.4028/www.scientific.net/amr.532-533.719.
Повний текст джерелаJoshi, Sanjog Vilas, Sina Sadeghpour, and Michael Kraft. "Polyimide-On-Silicon 2D Piezoelectric Micromachined Ultrasound Transducer (PMUT) Array." Sensors 23, no. 10 (May 17, 2023): 4826. http://dx.doi.org/10.3390/s23104826.
Повний текст джерелаДисертації з теми "2D array transducer"
Guerif, Benjamin. "Conception d’une sonde programmable, polyvalente et abordable pour l'imagerie médicale ultrasonore volumétrique en temps réel." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS041.
Повний текст джерелаSelon l’Organisation Mondiale de la Santé, les maladies cardiovasculaires sont la principale cause de décès dans le monde avec 17.9 millions de décès soit 32% des morts constatés en 2019. L’échocardiographie transthoracique (TTE), une technique d’imagerie ultrasonore non invasive et non irradiante, s’est alors imposée comme un outil de diagnostic efficace permettant d’identifier les dysfonctionnements du muscle cardiaque. Cette technique permet alors de procéder à une analyse morphologique et cinétique du cœur à l’aide de techniques d’imagerie dites conventionnelles.D’autres techniques alternatives telles que l’imagerie ultrarapide proposent des modalités complémentaires pouvant permettre d’améliorer le diagnostic des maladies cardiovasculaires. Si ces techniques ont pu faire leurs preuves en imagerie bidimensionnelle (2D), différentes barrières technologiques s’opposent à sa démocratisation en imagerie tridimensionnelle (3D). En effet, le passage de la 2D à la 3D nécessite d’adresser des réseaux de transducteurs de plusieurs milliers de voies. Les systèmes d’imagerie cliniques ayant un nombre de voies limité (le plus souvent à 256), l’utilisation de techniques dites de réduction de voie s’avère donc nécessaire. L’une d’entre elles, appelée micro-formation de faisceau, s’est ainsi démarquée en proposant des performances d’imagerie conventionnelles 3D similaires à une sonde d’imagerie 2D. Cette technologie est le plus souvent fermé et semble a priori difficilement compatible avec des techniques d’imagerie alternative. Ce faisant l’imagerie ultrarapide s’est rapidement orientée sur des techniques de réduction de voie alternatives telles que les réseaux ligne-colonne, les réseaux clairsemés ou l’utilisation de systèmes d’imagerie encombrants avec des sondes matricielles de plus petite surface acoustique et composée de milliers d’éléments.Dans cette thèse, un premier travail visant à améliorer les techniques d’imagerie ultrarapide existantes est proposé en nous appuyant sur l’utilisation d’une nouvelle sonde complètement peuplée composée de 3072 éléments associée à nouveau système d’imagerie de plusieurs milliers de voies. Par la suite, la définition et l’étude d’une sonde matricielle active dédiée à l’imagerie TTE reposant sur l’utilisation de la micro-formation de faisceau et composée de plusieurs milliers d’éléments pilotés par un unique système d’imagerie est proposée. Enfin, un prototype de sonde de micro-formation de faisceau est réalisé et évalué expérimentalement à l’aide d’un échographe de recherche ouvert afin de proposer une première sonde suffisamment polyvalente, programmable et abordable pour rendre accessible cette technologies aux laboratoires de recherche et ainsi offrir de nouveaux outils de diagnostic en échocardiographie transthoracique 3D
Roux, Emmanuel. "2D sparse array optimization and operating strategy for real-time 3D ultrasound imaging." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1255/document.
Повний текст джерелаToday, the use of 3D ultrasound imaging in cardiology is limited because imaging the entire myocardium on a single heartbeat, without apnea, remains a technological challenge. A solution consists in reducing the number of active elements in the 2D ultrasound probes to lighten the acquisition process: this approach leads to sparse arrays. The aim of this thesis is to propose the best configuration of a given number of active elements distributed on the probe active surface in order to maximize their ability to produce images with homogeneous contrast and resolution over the entire volume of interest. This work presents the integration of realistic acoustic simulations performed in a stochastic optimization process (simulated annealing algorithm). The proposed sparse array design framework is general enough to be applied on both on-grid (active elements located on a regular grid) and non-grid (arbitrary positioning of the active elements) arrays. The introduction of an innovative energy function sculpts the optimal 3D beam pattern radiated by the array. The obtained optimized results have 128, 192 or 256 active elements to help their compatibility with currently commercialized ultrasound scanners, potentially allowing a large scale development of 3D ultrasound imaging with low cost systems
Merabet, Lucas. "Etude d’algorithmes de reconstruction ultrasonore dans le domaine de Fourier pour l’imagerie rapide 2D et 3D en contrôle non- destructif." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET060.
Повний текст джерелаThis research work deals with ultrasound imaging with transducer arrays for Non Destructive Testing (NDT), and aims at speeding up the formation of 2D and 3D images. The methods studied in this manuscript are inspired from reconstruction algorithms in the Fourier frequency-wavenumber (f-k) domain introduced in seismic imaging in the 70’s. The literature shows that f-k methods offer a numerical advantage over the more conventional time-domain focusing algorithms. On the other hand, the rise of transducer arrays has allowed for the exploration of new emission modes, such as plane wave emissions in ultra-fast medical imaging. In this thesis, we propose to combine fast f-k algorithms with plane wave emissions to form 2D and 3D images as fast as possible. These algorithms are adapted to deal with realistic NDT inspection configurations. Analyses of algorithmic complexities, computation times, and image qualities are carried out in 2D, and a comparison with the time-domain Plane Wave Imaging (PWI) shows a clear advantage for f-k methods. This is confirmed in 3D, where we show that Fourier domain algorithms improve image quality while reducing computation times by a factor up to 300 compared to PWI. Finally, the f-k methods are generalized to multi-modal imaging to characterize cracks. The theory, which accounts for mode conversions and reflections at the specimen interfaces, is first presented, and we then demonstrate that it is possible to improve the reconstruction quality thanks to spectral windowing in the image frequency-domain. This spectral filter cancels undesired artifacts caused by interface echoes, and improves the image contrast
Частини книг з теми "2D array transducer"
Guiroy, Axel, Dominique Certon, Philippe Boy, Marc Lethiecq, and Franck Levassort. "2D Numerical Modeling for Transducers with Combined Pseudospectral and Finite Difference Methods: Application to High Frequency Linear Arrays." In Acoustical Imaging, 351–61. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2619-2_34.
Повний текст джерелаJiang, Huabei. "Transducer array-based TAT: 2D and 3D thermoacoustic imaging." In Thermoacoustic Tomography, 4–1. IOP Publishing, 2020. http://dx.doi.org/10.1088/978-0-7503-3163-0ch4.
Повний текст джерела"Transducer Array-Based Photoacoustic Tomography: 2D, 3D, and 4-D Photoacoustic Imaging." In Photoacoustic Tomography, 124–45. CRC Press, 2018. http://dx.doi.org/10.1201/9781315213903-7.
Повний текст джерелаТези доповідей конференцій з теми "2D array transducer"
Woo, Jeongdong, Wonseok Lee, Sanggon Lee, Yongrae Roh, Hyungkeun Lee, Byungkuk Bae, Eunhee Shin, and Sunghag Kim. "2D array transducer with a conductive backing." In 2013 IEEE International Ultrasonics Symposium (IUS). IEEE, 2013. http://dx.doi.org/10.1109/ultsym.2013.0503.
Повний текст джерелаMakarov, Vladimir A., Ivan M. Pelivanov, Victor V. Kozhushko, Tat'yana D. Khokhlova, Alexei N. Zharinov, and Alexander A. Karabutov. "Focused array transducer for 2D OA tomography." In Biomedical Optics 2003, edited by Alexander A. Oraevsky. SPIE, 2003. http://dx.doi.org/10.1117/12.483515.
Повний текст джерелаKim, Wangyu, Wonseok Choi, Changyeop Lee, Joongho Ahn, and Chulhong Kim. "Volumetric photoacoustic/ultrasound imaging using 2D matrix array transducer scanner." In Photons Plus Ultrasound: Imaging and Sensing 2022, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2022. http://dx.doi.org/10.1117/12.2609137.
Повний текст джерелаZeng, Xiaozheng Jenny, K. Michael Sekins, Steve Barnes, and Barbrina Dunmire. "Simulation aided dosing control of a 2D array therapeutic ultrasound transducer." In 2010 IEEE Ultrasonics Symposium (IUS). IEEE, 2010. http://dx.doi.org/10.1109/ultsym.2010.5935650.
Повний текст джерелаWoo, Jeongdong, and Yongrae Roh. "Ultrasonic 2D matrix array transducer for volumetric imaging in real time." In 2012 IEEE International Ultrasonics Symposium. IEEE, 2012. http://dx.doi.org/10.1109/ultsym.2012.0392.
Повний текст джерелаJia, Yanping, Liushuai Lv, Mingyue Ding, and Ming Yuchi. "The design of split row-column addressing array for 2D transducer." In SPIE Medical Imaging, edited by Johan G. Bosch and Marvin M. Doyley. SPIE, 2014. http://dx.doi.org/10.1117/12.2043328.
Повний текст джерелаSanpanich, A., K. Hamamoto, M. Sangworasil, and C. Pintavirooj. "2D Ultrasonic Reflection Tomography by Linear Array Transducer and Wave Reflector." In 2009 IEEE-RIVF International Conference on Computing and Communication Technologies. IEEE, 2009. http://dx.doi.org/10.1109/rivf.2009.5174606.
Повний текст джерелаWang, Xu-Bo, You-Cao Ma, Le-Ming He, Yan Wang, Wei-Jiang Xu, Antoine Riaud, Jun-Yan Ren, and Jia Zhou. "Development of backing piezoelectric micromachined ultrasonic transducer (B-PMUT) 2D array." In 2021 IEEE International Ultrasonics Symposium (IUS). IEEE, 2021. http://dx.doi.org/10.1109/ius52206.2021.9593679.
Повний текст джерелаLu, Jian-yu, Gengxi Lu, Mark Humayun, and Qifa Zhou. "Concave 2D Ring Array Transducer for Ultrasound Visual Stimulation of the Brain." In 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9958276.
Повний текст джерелаMoini, Azadeh, Amin Nikoozadeh, Jung Woo Choe, Butrus T. Khuri-Yakub, Chienliu Chang, Doug Stephens, L. Scott Smith, and David Sahn. "Fabrication, Packaging, and Catheter Assembly of 2D CMUT Arrays for Endoscopic Ultrasound and Cardiac Imaging." In ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48611.
Повний текст джерелаЗвіти організацій з теми "2D array transducer"
Decroux, Agnes, Kassem Kalo, and Keith Swinden. PR-393-205100-R01 IRIS X-Ray CT Qualification for Flexible Pipe Inspection (Phase 1). Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2021. http://dx.doi.org/10.55274/r0012068.
Повний текст джерела