Добірка наукової літератури з теми "22nm CMOS FD-SOI"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "22nm CMOS FD-SOI".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Дисертації з теми "22nm CMOS FD-SOI":

1

Paquien, Lucien. "Transmetteur intégré bidirectionnel dédié à la 5G mmW dans un système de formation de faisceaux hybride et numérique." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La demande croissante en débit pour les télécommunications mobiles a conduit à l’utilisation de systèmes à formation de faisceaux afin de limiter notamment l’impact des pertes de propagation dans l’espace libre (FSPL) sur le bilan de liaison, dues à l’élévation de la fréquence d’opération. Afin de pouvoir orienter un faisceau directif concentrant la majorité du gain du réseau d’antennes en direction d’un utilisateur donné, un nombre important de circuits radiofréquences intégrés (RFFE) est nécessaire.De manière conventionnelle, les RFFE 5G sont généralement constitués d’un amplificateur à faible bruit (LNA), et d’un amplificateur de puissance (PA). Ces derniers sont physiquement dissociés, et alternativement adressés avec un élément commuté, afin de fonctionner en duplexage par répartition dans le temps (TDD). Dans ce cas, non seulement l’élément commuté implique des pertes et un besoin en surface silicium non négligeable, mais aussi les RFFE ne sont utilisés que la moitié du temps (dû au TDD). Aussi, cet important espace silicium requis est ensuite à multiplier par le nombre d’éléments que compose le système à formation de faisceau. De plus, l’espacement entre chaque antenne constituant le réseau d’antennes étant proportionnel à la longueur d’onde, ce dernier pourrait donc fonctionner à des fréquences de fonctionnement plus élevées si les RFFE sont miniaturisés. Dans ce travail, une solution permettant l’élimination du besoin d’un élément commuté, ainsi qu’à la fusion des LNA et PA est proposé, induisant une forte réduction de la surface silicium requise, utilisant la technologie GF 22nm CMOS FD-SOI. Bien que la conception de fonctions millimétriques (mmW) soit abordé, l’aspect conversion de fréquence ainsi que l’étude de fonctions de bande de base sera également discutée, avec notamment la conception d’un mixer passif RF, de deux filtres passe-bas RC actifs reconfigurables d’ordre 2 et 4, d’un amplificateur à gain variable (VGA), d’un bloc analogique tampon 50Ω, d’un commutateur bipolaire à deux directions (DPDT), ainsi qu’une chaine de génération de signaux en quadrature, grâce à l’association d’un coupleur hybride (HCPLR), et d’un oscillateur local (LO) externe hors-puce. Le système complet sera caractérisé pour démontrer l’intérêt de ces structures en termes de performances et de surface silicium requise, et des pistes d’améliorations seront énumérées
The increasing demand for data rate for mobile telecommunications has led to the use of beamforming systems in order to notably limit the impact of free space propagation losses (FSPL) over the link budget, due to the elevation of the operating frequency. In order to be able to direct a directional beam concentrating the majority of the gain of the antenna array towards a given user, a large number of integrated radio frequency front-ends (RFFE) is necessary.Conventionally, 5G RFFEs generally consist of a low noise amplifier (LNA), and a power amplifier (PA). The latter are physically dissociated, and are alternatively addressed using a commuted element, in order to operate in time division duplexing (TDD). In this case, not only does the switched element involve losses and a significant silicon surface requirement, but also the RFFEs are only used half the time (due to TDD). Also, this large silicon area required must then be multiplied by the number of elements that constitutes the beamforming system. In addition, the spacing between each antenna constituting the antenna array being proportional to the wavelength, the latter could therefore reach higher operating frequencies if the RFFEs are miniaturized. In this work, a solution allowing the elimination of the need for a commuted element, as well as the merging of the LNA and PA is proposed, inducing a strong reduction in the silicon surface area required for the same operation that conventional architectures, using the GF 22nm CMOS FD-SOI technology. Although the design of millimeter functions (mmW) will be discussed, the frequency conversion aspect as well as the study of baseband functions will also be covered, including the design of a RF passive mixer, two reconfigurable second- and fourth-order active-RC low-pass filters, a variable gain amplifier (VGA), a 50Ω analog buffer, a double pole double throw (DPDT) switch, as well as a generation chain of quadrature signals, done from the combination of a hybrid coupler (HCPLR), and an external off-chip local oscillator (LO). The complete system will be simulated to demonstrate the relevancy of these structures regarding performances and required silicon surface, and axis for improvement will also be listed

Тези доповідей конференцій з теми "22nm CMOS FD-SOI":

1

Jain, Ritesh, Robin Zatta, Janusz Grzyb, David Harame, and Ullrich R. Pfeiffer. "A Terahertz Direct Detector in 22nm FD-SOI CMOS." In 2018 13th European Microwave Integrated Circuits Conference (EuMIC). IEEE, 2018. http://dx.doi.org/10.23919/eumic.2018.8539908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Solano, Jose, Matthew Spear, Trace Wallace, Donald Wilson, Oliver Forman, Ivan Sanchez Esqueda, Hugh Barnaby, Aymeric Privat, Marek Turowski, and Rudolf Vonniederhausern. "Total Ionizing Dose Response of Commercial 22nm FD-SOI CMOS Technology." In 2022 IEEE Radiation Effects Data Workshop (REDW) (in conjunction with 2022 NSREC). IEEE, 2022. http://dx.doi.org/10.1109/redw56037.2022.9921673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Testa, P. V., V. Riess, C. Carta, and F. Ellinger. "An Inductorless 60GHz Down-Conversion Mixer in 22nm FD-SOI CMOS Technology." In 2019 14th European Microwave Integrated Circuits Conference (EuMIC). IEEE, 2019. http://dx.doi.org/10.23919/eumic.2019.8909566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Luo, Yu-Lun, Dharma Paladugu, Ramy Rady, Kamran Entesari, and Samuel Palermo. "A 16-32GHz RF Silicon Photonic Receiver with 22nm FD-SOI CMOS Driver." In 2023 IEEE Photonics Conference (IPC). IEEE, 2023. http://dx.doi.org/10.1109/ipc57732.2023.10360718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Yang, Giovanni Mangraviti, Johan Nguyen, Zhiwei Zong, and Piet Wambacq. "26.4 A Reflection-Coefficient Sensor for 28GHz Beamforming Transmitters in 22nm FD-SOI CMOS." In 2021 IEEE International Solid- State Circuits Conference (ISSCC). IEEE, 2021. http://dx.doi.org/10.1109/isscc42613.2021.9366018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mayeda, Jill C., Donald Y. C. Lie, and Jerry Lopez. "A 24-28GHz Reconfigurable CMOS Power Amplifier in 22nm FD-SOI for Intelligent SoC Applications." In 2018 International SoC Design Conference (ISOCC). IEEE, 2018. http://dx.doi.org/10.1109/isocc.2018.8649915.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ritter, Philipp, Michael Geyer, Tilman Gloekler, Xiaolei Gai, Thomas Schwarzenberger, Gregor Tretter, Yikun Yu, and Guenter Vogel. "A Fully Integrated 78 GHz Automotive Radar System-an-Chip in 22nm FD-SOI CMOS." In 2020 17th European Radar Conference (EuRAD). IEEE, 2021. http://dx.doi.org/10.1109/eurad48048.2021.00026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mayeda, Jill C., Jerry Lopez, and Donald Y. C. Lie. "Highly-Efficient Broadband Medium Power Amplifier Design in 22nm CMOS FD-SOI for mm-Wave 5G." In 2020 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS). IEEE, 2020. http://dx.doi.org/10.1109/wmcs49442.2020.9172413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mayeda, Jill C., Jerry Tsay, Donald Y. C. Lie, and Jerry Lopez. "Effective AM-PM Cancellation with Body Bias for 5G CMOS Power Amplifier Design in 22nm FD-SOI." In 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mayeda, Jill, Clint Sweeney, Donald Y. C. Lie, and Jerry Lopez. "A 19.1 - 46.5 GHz Broadband Efficient Power Amplifier in 22nm CMOS FD-SOI for mm-Wave 5G." In 2022 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2022. http://dx.doi.org/10.1109/iscas48785.2022.9937729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії