Статті в журналах з теми "2- dimensional electron system (2 DES)"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: 2- dimensional electron system (2 DES).

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "2- dimensional electron system (2 DES)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Zaluzec, N. J., and M. G. Strauss. "EELS parallel detection using 2-dimensional CCD array." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 662–63. http://dx.doi.org/10.1017/s0424820100105370.

Повний текст джерела
Анотація:
Conventional parallel detectors for Electron Energy Loss Spectroscopy (EELS) have been mainly based upon systems using linear photodiode arrays in a conjugate image plane of an electron spectrometer. We have developed a unique two dimensional charge coupled device (CCD) camera system which can be used as a detector for EEL spectroscopy and imaging, utilizing high sensitivity, high resolution CCD's, which are typically used in medial or astronomic imaging.The present detector system is based upon a Tektronics TK512M 512 x 512 pixel CCD array, (figure 1) which is optically coupled to a YAG:Ce single crystal scintillator. This CCD imaging system views an electron energy loss spectrum which is magnified by a quadrupole doublet lens attached to a Gatan 607 electron spectrometer on a Philips EM420 TEM as is illustrated in figure 2. The CCD controller, detector head electronics and electron optics were developed at Argonne specifically for high speed data acquisition and allow the recording of complete spectra in as short a time as 10 μsec or approximately 103 times faster than the typical 1024 pixel photodiode arrays’ thus allowing the potential for time resolved spectroscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

KVON, Z. D., E. B. OLSHANETSKY, D. A. KOZLOV, N. N. MIKHAILOV, and S. A. DVORETSKII. "A NEW TWO-DIMENSIONAL ELECTRON-HOLE SYSTEM." International Journal of Modern Physics B 23, no. 12n13 (May 20, 2009): 2888–92. http://dx.doi.org/10.1142/s0217979209062499.

Повний текст джерела
Анотація:
A two-dimensional electron-hole system consisting of light high-mobility electrons with a density of Ns = (4 - 7) × 1010 cm -2 and heavier lower-mobility holes with a density Ps = (0.7 - 1.6) × 1011 cm -2 has been discovered in a quantum well based on mercury telluride with the (013) surface orientation. The system exhibits a number of specific magnetotransport properties in both the classical magnetotransport (positive magnetoresistance and sign-variable Hall effect) and the quantum Hall effect regime. These properties are associated with the coexistence of two-dimensional electrons and holes and actually manifest the first realization of a two-dimensional semimetal.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

von Harrach, H. S., and J. A. Colling. "A 2-dimensional detection system for Electron Energy Loss Spectroscopy." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 408–9. http://dx.doi.org/10.1017/s0424820100154019.

Повний текст джерела
Анотація:
A UHV-compatible parallel and serial detection system for electron energy-loss spectroscopy (EELS) has been developed for the VG HB501 field-emission scanning transmission electron microscope (STEM) using a 2-dimensional detector. As pointed out previously the charge coupled devices (CCD) available commercially are vastly superior, in terms of read-out noise, to linear photodiode arrays which are currently used for parallel EELS detection. This feature, together with the ability of operating as an imaging and storage device, makes the 2-dimensional CCD array an attractive choice for parallel EELS and low light-level imaging applications.The system reported here (Fig. 1) is an extension of the VG ELS501 sector magnetspectrometer used for serial EELS with many STEMS. It uses one quadrupole lens to magnify the energy-loss spectrum over a range of 2 to 0.1 eV per detector element. An electromagnetic deflector steers the spectrum to one of three YAG scintillators. Two of these scintillators with suitable masks are used for parallel EELS detection; the third is used for serial EELS and energy filtered STEM imaging via a lightguide and photomultiplier system by scanning the beam across a variable slit as in ELS 501 systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Taboryski, R., and P. E. Lindelof. "Spin-orbit effects in a 2-dimensional electron gas system with 2 subbands occupied." Physica B: Condensed Matter 165-166 (August 1990): 859–60. http://dx.doi.org/10.1016/s0921-4526(09)80015-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huang, Geng-Ling, Rue-Ron Hsu, Chin-Rong Lee, and Hsiang-Nan Li. "Study of a 2+1 dimensional electron-monopole system via supersymmetry." Physics Letters A 191, no. 1-2 (August 1994): 7–12. http://dx.doi.org/10.1016/0375-9601(94)90552-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lissayou, J., J. C. Bissey, and Y. Servant. "Electron paramagnetic resonance of the two-dimensional system Mn(CH3COO)2·4H2O." Solid State Communications 57, no. 8 (February 1986): 717–19. http://dx.doi.org/10.1016/0038-1098(86)90359-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bissey, Jean-Claude, Jean Lissayou, and Yves Servant. "Electron Paramagnetic Resonance of the two-dimensional system Mn(HCOO)2·2H2O." Journal of Magnetism and Magnetic Materials 59, no. 1-2 (May 1986): 5–8. http://dx.doi.org/10.1016/0304-8853(86)90003-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hu, G. Y., and R. F. O'Connell. "Dielectric response of a quasi-one-dimensional electron system." Journal of Physics: Condensed Matter 2, no. 47 (November 26, 1990): 9381–97. http://dx.doi.org/10.1088/0953-8984/2/47/013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zvyagin, A. A., H. Johannesson, and M. Granath. "Multichannel Kondo screening in a one-dimensional correlated electron system." Europhysics Letters (EPL) 41, no. 2 (January 15, 1998): 213–18. http://dx.doi.org/10.1209/epl/i1998-00567-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yi, Wang, Wang Kelin, and Wan Shaolong. "Soliton-Like Bipolaron in Two-Dimensional Deformable Electron-Phonon System." Communications in Theoretical Physics 29, no. 2 (March 15, 1998): 309–12. http://dx.doi.org/10.1088/0253-6102/29/2/309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

FAN, HONG-YI. "ENTANGLED STATE REPRESENTATIONS FOR DESCRIBING 2-DIMENSIONAL ELECTRON SYSTEM IN UNIFORM MAGNETIC FIELD." International Journal of Modern Physics B 18, no. 20n21 (August 30, 2004): 2771–817. http://dx.doi.org/10.1142/s0217979204026196.

Повний текст джерела
Анотація:
We review how to rely on the quantum entanglement idea of Einstein–Podolsky–Rosen and the developed Dirac's symbolic method to set up two kinds of entangled state representations for describing the motion and states of an electron in uniform magnetic field. The entangled states can be employed for conveniently expressing Landau wave function and Laughlin wave function with a fresh look. We analyze the entanglement involved in electron's coordinates (or momenta) eigenstates, and in the angular momentum-orbit radius entangled state. Various applications of these two representations, such as in developing angular momentum theory, squeezing mechanism, Wigner function and tomography theory for this system are presented. Thus the present review systematically summarizes a distinct approach for tackling this physical system.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Beckel, Andreas, Daming Zhou, Bastian Marquardt, Dirk Reuter, Andreas D. Wieck, Martin Geller, and Axel Lorke. "Momentum matching in the tunneling between 2-dimensional and 0-dimensional electron systems." Applied Physics Letters 100, no. 23 (June 4, 2012): 232110. http://dx.doi.org/10.1063/1.4728114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

D’Antuono, M., A. Kalaboukhov, R. Caruso, S. Wissberg, S. Weitz Sobelman, B. Kalisky, G. Ausanio, M. Salluzzo, and D. Stornaiuolo. "Nanopatterning of oxide 2-dimensional electron systems using low-temperature ion milling." Nanotechnology 33, no. 8 (November 30, 2021): 085301. http://dx.doi.org/10.1088/1361-6528/ac385e.

Повний текст джерела
Анотація:
Abstract We present a ‘top-down’ patterning technique based on ion milling performed at low-temperature, for the realization of oxide two-dimensional electron system devices with dimensions down to 160 nm. Using electrical transport and scanning Superconducting QUantum Interference Device measurements we demonstrate that the low-temperature ion milling process does not damage the 2DES properties nor creates oxygen vacancies-related conducting paths in the STO substrate. As opposed to other procedures used to realize oxide 2DES devices, the one we propose gives lateral access to the 2DES along the in-plane directions, finally opening the way to coupling with other materials, including superconductors.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Gurzhi, R. N., A. N. Kalinenko, and A. I. Kopeliovich. "Inefficiency of odd relaxation and propagation of electron beams in a two-dimensional electron system." Surface Science 361-362 (July 1996): 497–99. http://dx.doi.org/10.1016/0039-6028(96)00454-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

OLPAK, MEHMET ALI. "DIRAC EQUATION ON A CURVED (2+1)-DIMENSIONAL HYPERSURFACE." Modern Physics Letters A 27, no. 03 (January 30, 2012): 1250016. http://dx.doi.org/10.1142/s0217732312500162.

Повний текст джерела
Анотація:
Interest on (2+1)-dimensional electron systems has increased considerably after the realization of novel properties of graphene sheets, in which the behavior of electrons is effectively described by relativistic equations. Having this fact in mind, the following problem is studied in this work: when a spin-1/2 particle is constrained to move on a curved surface, is it possible to describe this particle without giving reference to the dimensions external to the surface? As a special case of this, a relativistic spin-1/2 particle which is constrained to move on a (2+1)-dimensional hypersurface of the (3+1)-dimensional Minkowskian spacetime is considered, and an effective Dirac equation for this particle is derived using the so-called thin layer method. Some of the results are compared with those obtained in a previous work by Burgess and Jensen.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

XU, W. "FAR-INFRARED EMISSION BY HEATED ELECTRONS IN A TWO-DIMENSIONAL SEMICONDUCTOR SYSTEM." Modern Physics Letters B 10, no. 06 (March 10, 1996): 181–88. http://dx.doi.org/10.1142/s0217984996000225.

Повний текст джерела
Анотація:
In this letter, we present a detailed theoretical study that explores the possibility to use AlGaAs/GaAs-based two-dimensional semiconductor systems (2DSSs) as the far-infrared (FIR) generators at zero-magnetic field and by electrically heated electrons. A simple model from which the intensity of FIR radiation can be calculated as a function of photon frequency is developed by calculating the electron-energy-loss induced by hot-electron interaction with electromagnetic field, mediated by electron-phonon scattering. The main results obtained from the present study are: (1) in a 2DSS, FIR radiation is mainly generated among the different electronic subbands; (2) the polarization of FIR generated from a 2DSS is along the growth direction; (3) the intensity of FIR radiation increases rapidly with increasing energy excitation, i.e., with electron temperature; (4) the frequency of electromagnetic wave generated is around ω~|εm– εn|/ħ with εn the electronic subband energy; and (5) for an AlGaAs-GaAs-AlGaAs single quantum well structure, the frequency of the FIR emission can be tuned by varying the width of the well layer. We have also studied the influence of electron density, lattice temperature, etc. on the FIR emission by heated electrons in 2DSSs.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Huang, Yalei, Xinyu Yao, Fangyi Qi, Weihao Shen, and Guixin Cao. "Anomalous resistivity upturn in the van der Waals ferromagnet Fe5GeTe2." Applied Physics Letters 121, no. 16 (October 17, 2022): 162403. http://dx.doi.org/10.1063/5.0109735.

Повний текст джерела
Анотація:
Fe nGeTe2 ( n = 3, 4, and 5) has recently attracted increasing attention due to its two-dimensional van der Waals characteristic and high temperature ferromagnetism, which makes promises for spintronic devices. A Fe(1) split site is an important structural characteristic of Fe5GeTe2, which makes it very different from other Fe nGeTe2 ( n = 3 and 4) systems. The local atomic disorder and short-range order can be induced by the split site. In this work, high-quality van der Waals ferromagnet Fe5GeTe2 single crystals were grown to study low-temperature transport properties. We found a resistivity upturn below 10 K. The temperature and magnetic field dependence of the resistivity are in good agreement with a combination of the theory of disorder-enhanced three-dimensional electron–electron and single-channel Kondo effect. The Kondo effect exists only at low magnetic fields [Formula: see text], while electron–electron interaction dominates the appearance for the low-temperature resistivity upturn. We believe that the enhanced three-dimensional electron–electron interaction in this system is induced by the local atomic structural disorder due to the split site of Fe(1). Our results indicate that the split site of Fe plays an important role for the exceptional transport properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Bouzian, Younos, Cemile Baydere, Necmi Dege, Noureddine Hamou Ahabchane, Joel T. Mague, Abdulmalik Abudunia, Khalid Karrouchi, and El Mokhtar Essassi. "Crystal structure, Hirshfeld surface analysis, DFT and molecular docking investigation of 2-(2-oxo-1,3-oxazolidin-3-yl)ethyl 2-[2-(2-oxo-1,3-oxazolidin-3-yl)ethoxy]quinoline-4-carboxylate." Acta Crystallographica Section E Crystallographic Communications 77, no. 1 (January 1, 2021): 28–33. http://dx.doi.org/10.1107/s2056989020015960.

Повний текст джерела
Анотація:
In the molecular structure of the title compound, C20H21N3O7, the quinoline ring system is slightly bent, with a dihedral angle between the phenyl and the pyridine rings of 3.47 (7)°. In the crystal, corrugated layers of molecules extending along the ab plane are generated by C—H...O hydrogen bonds. The intermolecular interactions were quantified by Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are from H...H (42.3%), H...O/O...H (34.5%) and H...C/ C...H (17.6%) contacts. Molecular orbital calculations providing electron-density plots of the HOMO and LUMO as well as molecular electrostatic potentials (MEP) were computed, both with the DFT/B3LYP/6–311 G++(d,p) basis set. A molecular docking study between the title molecule and the COVID-19 main protease (PDB ID: 6LU7) was performed, showing that it is a good agent because of its affinity and ability to adhere to the active sites of the protein.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Yanetka, I. "On the One-Dimensional Electron System with the Plasmon-Mediated Interparticle Interaction." physica status solidi (b) 206, no. 2 (April 1998): 653–60. http://dx.doi.org/10.1002/(sici)1521-3951(199804)206:2<653::aid-pssb653>3.0.co;2-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Hanasaki, N. "One-dimensional π–d electron system in TPP[Fe(Pc)(CN)2]2, [PXX][Fe(Pc)(CN)2], and (PTMA)x[Fe(Pc)(CN)2]Y(CH3CN): electron spin resonance and negative magnetoresistance". Synthetic Metals 133-134 (13 березня 2003): 519–21. http://dx.doi.org/10.1016/s0379-6779(02)00429-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Kushwaha, M. S., and F. Garcia-Möliner. "Response functions for quasi-n-dimensional (n = 2, 1, 0) electron systems." Physics Letters A 205, no. 2-3 (September 1995): 217–23. http://dx.doi.org/10.1016/0375-9601(95)00566-l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

OLSZEWSKI, S. "MAGNETIC MOMENT OF 2-DIMENSIONAL AND 3-DIMENSIONAL MANY-ELECTRON SYSTEMS EXAMINED WITH DEPENDENCE ON A COMMON SIZE PARAMETER." Modern Physics Letters B 16, no. 30 (December 30, 2002): 1183–91. http://dx.doi.org/10.1142/s0217984902004585.

Повний текст джерела
Анотація:
The orbital magnetic moments induced by a constant magnetic field in a two-dimensional (2D) and three-dimensional (3D) electron gas are calculated on the same footing independent of the conventional method based on statistical thermodynamics. The dependence of the moment on a common size parameter — defined as the cubic root of the volume occupied by one electron in a 3D gas — is found to be a similar monotonic function for both kinds of electron gas. This monotonic dependence is compared with the oscillating function of the size parameter obtained for the magnetic moment calculated in the case of a 2D slice of the tightly-bound s-electron states in a simple-cubic, or body-centred cubic, lattice.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Rauh, Alexander. "Analytical Localization Lengths in an One-Dimensional Disordered Electron System." Zeitschrift für Naturforschung A 64, no. 3-4 (April 1, 2009): 205–21. http://dx.doi.org/10.1515/zna-2009-3-407.

Повний текст джерела
Анотація:
Abstract Analytical approximations of the Lyapunov exponent are derived for a random displacement model with equal potential barriers and random positions of the scatterers. Two asymptotic regions are considered corresponding to high and low reflectivity of the single scattering potential. The analytical results are in terms of a distribution function W for certain phases of the transfer matrices. A functional equation for W is derived and numerically solved. This serves to validate the analytical asymptotic formulas which turn out to be accurate in the high and low reflectivity regions with dimensionless wave number K < 2 and K > 6, respectively. The high wave number asymptotics allows for an analytical examination of the sufficient conditions for Anderson localization
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Zhou, Biao, Shoji Ishibashi, Tatsuru Ishii, Takahiko Sekine, Ryosuke Takehara, Kazuya Miyagawa, Kazushi Kanoda, Eiji Nishibori, and Akiko Kobayashi. "Single-component molecular conductor [Pt(dmdt)2]—a three-dimensional ambient-pressure molecular Dirac electron system." Chemical Communications 55, no. 23 (2019): 3327–30. http://dx.doi.org/10.1039/c9cc00218a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Orlenko, Elena, and Fedor Orlenko. "An Effect of the Space Dimension of Electron Fermi Gas upon the Spin Ordering in Clusters and Nanoparticles." Chemosensors 7, no. 1 (March 25, 2019): 15. http://dx.doi.org/10.3390/chemosensors7010015.

Повний текст джерела
Анотація:
Herein, the collective effects of spin polarization in a degenerate electron gas of an arbitrary space dimension are discussed. We consider these low-dimensional systems in light of potential wells (rectangular or cylindrical), and as a two- or one-dimensional oscillator system with the second (and third) spatial dimension proportional to the oscillator’s length. The concept of “intermediate” sizes ν = 6, 5, 4 corresponding to the quasi-low dimensions ν* = 0, 1, 2, contrary to “pure” space dimensions ν = 1, 2 is introduced. A general effect of the space dimension upon the spontaneous polarization in electron Fermi gas is detected.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Motokawa, Natsuko, Hitoshi Miyasaka, Masahiro Yamashita, and Kim R Dunbar. "An Electron-Transfer Ferromagnet withTc=107 K Based on a Three-Dimensional [Ru2]2/TCNQ System." Angewandte Chemie International Edition 47, no. 40 (September 22, 2008): 7760–63. http://dx.doi.org/10.1002/anie.200802574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Motokawa, Natsuko, Hitoshi Miyasaka, Masahiro Yamashita, and Kim R Dunbar. "An Electron-Transfer Ferromagnet withTc=107 K Based on a Three-Dimensional [Ru2]2/TCNQ System." Angewandte Chemie 120, no. 40 (September 22, 2008): 7874–77. http://dx.doi.org/10.1002/ange.200802574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Weis, J., Y. Y. Wei, and K. v. Klitzing. "Probing the depletion region of a two-dimensional electron system in high magnetic fields." Physica B: Condensed Matter 256-258 (December 1998): 1–7. http://dx.doi.org/10.1016/s0921-4526(98)00574-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Brown, R. J., M. Pepper, H. Ahmed, D. G. Hasko, D. A. Ritchie, J. E. F. Frost, D. C. Peacock, and G. A. C. Jones. "Differential negative resistance in a one-dimensional mesoscopic system due to single-electron tunnelling." Journal of Physics: Condensed Matter 2, no. 8 (February 26, 1990): 2105–9. http://dx.doi.org/10.1088/0953-8984/2/8/017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Popov, V. V., and T. V. Teperik. "Total polarization conversion in a two-dimensional electron system under cyclotron polariton resonance conditions." Journal of Optics B: Quantum and Semiclassical Optics 3, no. 2 (April 1, 2001): S194—S197. http://dx.doi.org/10.1088/1464-4266/3/2/368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Bucheli, D., S. Caprara, C. Castellani, and M. Grilli. "Metal–superconductor transition in low-dimensional superconducting clusters embedded in two-dimensional electron systems." New Journal of Physics 15, no. 2 (February 8, 2013): 023014. http://dx.doi.org/10.1088/1367-2630/15/2/023014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Takanashi, K., H. Wu, Y. Kuramoto, Zh H. Cheng, T. Sakamoto, M. Owari, and Y. Nihei. "An ion and electron multibeam system for three-dimensional microanalysis." Surface and Interface Analysis 30, no. 1 (2000): 493–96. http://dx.doi.org/10.1002/1096-9918(200008)30:1<493::aid-sia765>3.0.co;2-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Hasan, M. Z., Y. Li, Y. D. Chuang, P. A. Montano, Z. Hussain, H. Eisaki, N. Motoyama, and S. Uchida. "Particle-Hole Pair Excitations in a Quasi-Zero-Dimensional Mott Insulator." International Journal of Modern Physics B 17, no. 18n20 (August 10, 2003): 3513–18. http://dx.doi.org/10.1142/s0217979203021319.

Повний текст джерела
Анотація:
We investigate momentum dependence of charge excitations across the effective Mott gap in a quasi-zero dimensional (q-ZD) model cuprate Li 2 CuO 2, using high resolution inelastic X-ray scattering by working near a resonance. In comparison to quasi-one dimensional (q-1D) systems such as Sr 2 CuO 3 or SrCuO 2, momentum dependence is much weaker in Li 2 CuO 2. Particle-hole pair excitations at the gap edge in these low dimensional Mott systems are found to be strongly dependent on the effective dimensionality (or topology) of the lattice and the strength of electron–electron interaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Ma, Xi Ying. "Study of the Electrical Properties of Monolayer MoS2 Semiconductor." Advanced Materials Research 651 (January 2013): 193–97. http://dx.doi.org/10.4028/www.scientific.net/amr.651.193.

Повний текст джерела
Анотація:
We present the study of the electrical properties of monolayer MoS2 in terms of semiconductor theory. The free electron and hole concentrations formulas in two-dimensional (2D) semiconductors have been developed based on three-dimensional (3D) semiconductors theory, and derived the intrinsic carrier concentration equation of 2D system. Using these equations, we simulated the intrinsic carrier concentration in monolayer MoS2 with temperature. The intrinsic carrier density in monolayer MoS2 increases exponentially with temperature, but it lows a few orders of magnitude than that of 3D semiconductor. It means that monolayer MoS2 based devices can operated at very high temperatures. Accordingly, the conductivity and resistivity were simulated for 2D MoS2, the former increases exponentially while the latter decreases with temperature or carrier concentration.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Intawin, Pratthana, Sukum Eitssayeam, Gobwute Rujijanagul, Tawee Tunkasiri, and Kamonpan Pengpat. "Crystallization Kinetics and Heat Treatment Temperature on Microstructure of Na2O-CaO-P2O5-TiO2 Glass System." Key Engineering Materials 766 (April 2018): 151–56. http://dx.doi.org/10.4028/www.scientific.net/kem.766.151.

Повний текст джерела
Анотація:
Bioactive glass ceramics from Na2O-CaO-P2O5-TiO2 system have been fabricated by conventional melt quenching method. In order to change the fabricated glass to glass ceramic samples, a heat treatment technique was employed using temperatures ranging between 700 and 900°C for 2 h. Glass transition and crystallization temperature were analyzed via differential thermal analyzer (DTA). In addition, phase formation and microstructure of the glass-ceramics were also investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). From the crystallization kinetics, the crystallization rate constant (n) of the glass was found to be close to the value of 3, indicating the two-dimensional growth of crystals occurred in the glass ceramics. From the XRD results, the major crystalline phases were sodium titanium phosphate and calcium sodium phosphate along with titanium dioxide as the minor crystalline phases presented in high heat treatment temperatures (750-900°C) of the glass ceramics. SEM of the crystallized base glass Na2O-CaO-P2O5-TiO2 system, showed that crystallization of dendritic-like growths in the glass ceramics.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wang, Xiaoqun. "A Kondo Impurity in One-Dimensional Correlated Conduction Electrons." Modern Physics Letters B 12, no. 17 (July 20, 1998): 667–75. http://dx.doi.org/10.1142/s0217984998000780.

Повний текст джерела
Анотація:
A spin-1/2 magnetic impurity coupled to a one-dimensional correlated electron system have been studied by applying the density renormalization group method. The Kondo temperature is substantially enhanced by strong repulsive interactions in the chain, but it changes non-monotonically in the case of electron attraction. The magnetization of the impurity at zero-temperature shows local Fermi liquid behavior.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

MORGENSTERN, M. "Comparing measured and calculated local density of states in a disordered two-dimensional electron system." Physica B: Condensed Matter 329-333 (May 2003): 1536–37. http://dx.doi.org/10.1016/s0921-4526(02)02279-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

SITKO, PIOTR. "ON THE INTERACTION ENERGY OF TWO-DIMENSIONAL ELECTRON FQHE SYSTEMS WITHIN THE CHERN–SIMONS APPROACH." International Journal of Modern Physics B 13, no. 17 (July 10, 1999): 2263–74. http://dx.doi.org/10.1142/s021797929900237x.

Повний текст джерела
Анотація:
The interaction energy of the two-dimensional electron system in the region of fractional quantum Hall effect is considered within the Chern–Simons composite fermion approach. In the limit when Coulomb interaction is very small comparing to the cyclotron energy the RPA results are obtained for the fillings ν=1/3, 1/5, 2/3, 2/5, 3/7 and compared with the exact diagonalization results for small systems (extrapolated for infinite systems). They show very poor agreement suggesting the need for looking for alternative approaches.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Jayanand, Kishan, and Anupama B. Kaul. "Photodetectors with Buckminsterfullerene Decorated WSe2." Journal of The Electrochemical Society 169, no. 4 (April 1, 2022): 047503. http://dx.doi.org/10.1149/1945-7111/ac6074.

Повний текст джерела
Анотація:
In this work, we have studied the interactions of van der Waals (vdWs) hybrid structures composed of two-dimensional tungsten diselenide (WSe2) with zero-dimensional buckminsterfullerene (C60) spheres. The organic-inorganic vdWs heterostructure was fabricated using the spin coated dispersion of C60 over monolayer WSe2 crystallites. The morphology of the spin coated C60 on the surface of monolayer (1L) WSe2 was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Raman and photoluminescence spectroscopy were used to reveal the p -type doping of WSe2 by the C60 molecules. Photodetector devices were then fabricated with Ti-contacted electrodes and the photodetector figures of merit for WSe2 and C60-WSe2 hybrids were examined as a function of illumination power and incoming wavelength which showed the C60 decoration of 1L-WSe2 provides an improvement in device performance. Furthermore, the temporal response of the devices was analyzed which showed a reduction in response times by more than two times for the hybrid system. Our results indicate that the C60-WSe2 vdWs hybrid heterostructure appears to be an attractive architecture for enabling charge transfer and high performance photodetection capabilities.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

WEGER, M., and L. BURLACHKOV. "RENORMALIZATION OF FERMI VELOCITY IN A COMPOSITE TWO DIMENSIONAL ELECTRON GAS." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 87–94. http://dx.doi.org/10.1142/s0217979293000214.

Повний текст джерела
Анотація:
We calculate the self-energy Σ(k, ω) of an electron gas with a Coulomb interaction in a composite 2D system, consisting of metallic layers of thickness d ≳ a 0, where a 0 = ħ2∊1/ me 2 is the Bohr radius, separated by layers with a dielectric constant ∊2 and a lattice constant c perpendicular to the planes. The behavior of the electron gas is determined by the dimensionless parameters k F a 0 and k F c ∊2/∊1. We find that when ∊2/∊1 is large (≈5 or more), the velocity v(k) becomes strongly k-dependent near k F , and v ( k F ) is enhanced by a factor of 5-10. This behavior is similar to the one found by Lindhard in 1954 for an unscreened electron gas; however here we take screening into account. The peak in v(k) is very sharp (δ k/k F is a few percent) and becomes sharper as ∊2/∊1 increases. This velocity renormalization has dramatic effects on the transport properties; the conductivity at low T increases like the square of the velocity renormalization and the resistivity due to elastic scattering becomes temperature dependent, increasing approximately linearly with T. For scattering by phonons, ρ ∝ T 2. Preliminary measurements suggest an increase in v k in YBCO very close to k F .
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Karwowski, J., J. Planelles, and F. Rajadell. "Average energy of anN-electron system in a finite-dimensional and spin-adapted model space." International Journal of Quantum Chemistry 61, no. 1 (1997): 63–65. http://dx.doi.org/10.1002/(sici)1097-461x(1997)61:1<63::aid-qua7>3.0.co;2-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Tanatar, B., and E. Demirel. "Quasi-Particle Properties of a One-Dimensional Electron System Interacting with a Short-Range Potential." physica status solidi (b) 220, no. 2 (August 2000): 909–22. http://dx.doi.org/10.1002/(sici)1521-3951(200008)220:2<909::aid-pssb909>3.0.co;2-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Auer, Manfred, Abrahram J. Koster, Ulrike Ziese, Chandrajit Bajaj, Niels Volkmann, Da Neng Wang, and A. J. Hudspeth. "Three-dimensional Architecture of Hair-bundle Linkages Revealed by Electron-microscopic Tomography." Journal of the Association for Research in Otolaryngology 9, no. 2 (April 18, 2008): 215–24. http://dx.doi.org/10.1007/s10162-008-0114-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Shashkin, A. "Lateral tunneling through the controlled barrier between edge channels in a two-dimensional electron gas system." Physica B: Condensed Matter 272, no. 1-4 (December 1, 1999): 133–35. http://dx.doi.org/10.1016/s0921-4526(99)00256-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Xue, Yudong, Zachary S. Fishman, Yunting Wang, Zhenhua Pan, Xin Shen, Rito Yanagi, Gregory S. Hutchings, et al. "Hydrogen evolution activity tuning via two-dimensional electron accumulation at buried interfaces." Journal of Materials Chemistry A 7, no. 36 (2019): 20696–705. http://dx.doi.org/10.1039/c9ta07123g.

Повний текст джерела
Анотація:
The buried electrocatalytic interfaces between bimetallic sulfide nanosheets and ALD TiO2 coatings achieved remarkable HER activity improvement, offering a general strategy for improving the charge-transfer kinetics of an electrocatalytic system.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Suresha, Kasala. "Hot Electron Transport in Two-dimensional SiGe/Si Quantum Wells." International Journal for Research in Applied Science and Engineering Technology 11, no. 4 (April 30, 2023): 1103–6. http://dx.doi.org/10.22214/ijraset.2023.50288.

Повний текст джерела
Анотація:
Abstract: The hot carrier energy loss rate in a two-dimensioal electron gas in SiGe/Si quantum well has been theoretically studied and carrier concentration ranging from 1.0x1012 to 5.0x1014 m-2. The energy loss rate in this highly non-parabolic system is dominated by acoustic deformation potential scattering, whereas the acoustic piezoelectric scattering is negligible. We also studied variation of energy loss rate with thickness of various quantum wells
Стилі APA, Harvard, Vancouver, ISO та ін.
47

TAKASHINA, K., Y. NIIDA, V. T. RENARD, A. FUJIWARA, T. FUJISAWA, and Y. HIRAYAMA. "NEGATIVE MAGNETORESISTANCE OF A SILICON 2DEG UNDER IN-PLANE MAGNETIC FIELD DUE TO SPIN-SPLITTING OF UPPER SUBBANDS." International Journal of Modern Physics B 23, no. 12n13 (May 20, 2009): 2938–42. http://dx.doi.org/10.1142/s021797920906258x.

Повний текст джерела
Анотація:
We examine the effect of an in-plane magnetic field on the resistance of a 2-dimensional electron system confined in a silicon quantum well when the Fermi energy is tuned through the upper valley-subband edge while the electrons are otherwise valley-polarized. In contrast to previous experiments on valley-degenerate systems which only showed positive magnetoresistance, when the Fermi energy is at or near the upper valley-subband edge, the magnetoresistance is found to show a distinct negative contribution which is interpreted as being due to spin polarization of the upper valley-subband.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

WAN, X., K. YANG, and E. H. REZAYI. "RECONSTRUCTION OF FRACTIONAL QUANTUM HALL EDGES." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 2985. http://dx.doi.org/10.1142/s0217979202013389.

Повний текст джерела
Анотація:
Edge reconstruction has been a well-known effect for integer quantum Hall liquids in the presence of both electron interactions and a confining potential generated by charged background. At more generic fractional fillings, we point out that confined two-dimensional interacting electrons can exhibit the similar reconstruction effect. Our exact diagonalization results show that, in a fractional quantum Hall system with a sharp cleaved edge potential, the electron density oscillation near the edge increases with the distance between the electron gas and the background charge layer. As a results, the outermost hump can detach from the bulk beyond certain point. We suggest that the edge reconstruction effect is relevant to the recent edge tunneling experiments,1 as well as the microwave absorption experiment on two-dimensional electrons in an antidot array.2 Calculating the finite-temperature density profiles, we estimate the temperature above which the edge reconstruction disappears to further discuss the relevance to the microwave absorption experiment.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Fukaya, A., Y. Fudamoto, I. M. Gat, T. Ito, M. I. Larkin, A. T. Savici, Y. J. Uemura, et al. "Spin dynamics in the two-dimensional spin system SrCu2(BO3)2." Physica B: Condensed Matter 326, no. 1-4 (February 2003): 446–49. http://dx.doi.org/10.1016/s0921-4526(02)01659-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Takahashi, Akira, Hiroki Gomi, and Masaki Aihara. "Multi-photon excited states of two-dimensional strongly correlated electron systems." Journal of Luminescence 94-95 (December 2001): 499–502. http://dx.doi.org/10.1016/s0022-2313(01)00408-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії