Добірка наукової літератури з теми "1D quantum gas"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "1D quantum gas".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "1D quantum gas"
Guan, Xiwen. "Critical phenomena in one dimension from a Bethe ansatz perspective." International Journal of Modern Physics B 28, no. 24 (August 5, 2014): 1430015. http://dx.doi.org/10.1142/s0217979214300151.
Повний текст джерелаLaburthe Tolra, B., K. M. O'Hara, J. H. Huckans, M. Anderlini, J. V. Porto, S. L. Rolston, and W. D. Phillips. "Study of a 1D interacting quantum Bose gas." Journal de Physique IV (Proceedings) 116 (October 2004): 227–32. http://dx.doi.org/10.1051/jp4:2004116010.
Повний текст джерелаSato, Jun, Rina Kanamoto, Eriko Kaminishi, and Tetsuo Deguchi. "Quantum states of dark solitons in the 1D Bose gas." New Journal of Physics 18, no. 7 (July 11, 2016): 075008. http://dx.doi.org/10.1088/1367-2630/18/7/075008.
Повний текст джерелаGuan, Xi-Wen, and Feng He. "Professor Chen Ping Yang’s early significant contributions to mathematical physics." International Journal of Modern Physics B 33, no. 06 (March 10, 2019): 1930002. http://dx.doi.org/10.1142/s0217979219300020.
Повний текст джерелаKaminishi, Eriko, Jun Sato, and Tetsuo Deguchi. "Recurrence Time in the Quantum Dynamics of the 1D Bose Gas." Journal of the Physical Society of Japan 84, no. 6 (June 15, 2015): 064002. http://dx.doi.org/10.7566/jpsj.84.064002.
Повний текст джерелаKinjo, Kayo, Eriko Kaminishi, Takashi Mori, Jun Sato, Rina Kanamoto, and Tetsuo Deguchi. "Quantum Dark Solitons in the 1D Bose Gas: From Single to Double Dark-Solitons." Universe 8, no. 1 (December 21, 2021): 2. http://dx.doi.org/10.3390/universe8010002.
Повний текст джерелаMarino, E. C., and Flávio I. Takakura. "Massive Quantum Vortex Excitations in a Pure Gauge Abelian Theory in 2 + 1D." International Journal of Modern Physics A 12, no. 23 (September 20, 1997): 4155–65. http://dx.doi.org/10.1142/s0217751x97002279.
Повний текст джерелаBouneb, I., and F. Kerrour. "Nanometric Modelization of Gas Structure, Multidimensional using COMSOL Software." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 4 (August 1, 2018): 2014. http://dx.doi.org/10.11591/ijece.v8i4.pp2014-2020.
Повний текст джерелаPan, Jun, Hao Shen, and Sanjay Mathur. "One-Dimensional SnO2Nanostructures: Synthesis and Applications." Journal of Nanotechnology 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/917320.
Повний текст джерелаKaminishi, Eriko, Jun Sato, and Tetsuo Deguchi. "Exact quantum dynamics of yrast states in the finite 1D Bose gas." Journal of Physics: Conference Series 497 (April 9, 2014): 012030. http://dx.doi.org/10.1088/1742-6596/497/1/012030.
Повний текст джерелаДисертації з теми "1D quantum gas"
Lee, Robert. "Application of quantum Monte Carlo methods to excitonic and electronic systems." Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/239379.
Повний текст джерелаDubois, Léa. "Dynamique hors d'équilibre d'un gaz de Bosons unidimensionnel étudiée via la mesure spatialement résolue de la distribution des quasiparticules." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP066.
Повний текст джерелаThis manuscript describes theoretical and experimental studies on characterizing one dimensionnal (1D) bose gas. To produce such a system, a Rubidium gas est trapped in a very transversally confining magnetic potential produced by an atom chip. Contrary to thermodynamic systems reaching an equilibrium described by several macroscopic parameters (pressure, temperature), this system relaxes towards a more complex state described by a function called the rapidity distribution. This function can be accessed experimentally : the rapidity distribution corresponds to the asymptotic atomic velocity distribution after a 1D expansion of the atoms. This quantity can also be extracted by studying the 1D expansion with the Generalized Hydrodynamic, an emerging theory with a lot of interest recently, specially conceived for studying these systems.A first study detailed in this manuscript consisted in characterizing 1D expansion of the gas. The evolution of the density profile and the evolution of phase fluctuations were analyzed and found to be compatible with theoretical predictions. A second project involved adding a spatial selection tool to produce non-equilibrium situations and to locally probe the rapidity distribution of the system. These measurements were performed on initial equilibrium and out of equilibrium situations. They are well understood with the predictions of Generalized Hydrodynamics
Utz, Yannic. "The Effect of In-Chain Impurities on 1D Antiferromagnets." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-217959.
Повний текст джерелаJiménez, Martín Daniel. "Comportamiento bosónico de pares de fermiones con interacción de contacto 1D." Bachelor's thesis, 2019. http://hdl.handle.net/11086/15290.
Повний текст джерелаPara determinar cuán bosónico es el comportamiento de pares de fermiones distinguibles interactuantes con interacción de contacto en un sistema unidimensional continuo se propusieron dos modelos: partículas libres y partículas en una trampa armónica. Para cada uno de ellos se determinó de manera analítica el estado fundamental de un sólo par mediante la resolución de la ecuación de Schrödinguer independiente del tiempo. A partir de dicho estado, se extrajo información acerca del comportamiento bosónico del par interactuante en función de la intensidad de la interacción. Se estudió el régimen atractivo para ambos modelos y también el régimen repulsivo para partículas en una trampa armónica. En el régimen atractivo, se verificó para ambos modelos que en el límite de interacción muy fuerte los pares de fermiones se comportan como bosones ideales. Esta situación corresponde a una separación característica entre las partículas que componen el par muy pequeña comparada con las dimensiones del sistema. Por su parte, para partículas con interacción repulsiva en una trampa armónica se verificó que aún en el límite de interacción muy fuerte los pares de fermiones noanzan a tener un comportamiento bosónico.
To determine how bosonic is the behavior of pairs formed by distinguishable fermions with contact interaction in a continuos one-dimensional system we proposed two models: free particles and particles in a harmonic trap. For each one of them, we analytically determined the ground state of a single pair solving the independent time Schrödinguer equation. From this state, we extracted information about the bosonic behavior of the interacting pair in relation to the interaction strength. We studied the attractive regime for both models and also the repulsive regimen for particles in a harmonic trap. In the attractive regime, we verified for both models that in the strong interaction limit the pairs behave as ideal bosons. This situation corresponds to a characteristic separation between the particles of the pair very short compared with the dimensions of the system. For particles with repulsive interaction in a harmonic trap, we verify that even in the strong interaction regime the fermion pairs do not behave as bosons.
Fil: Jiménez, Martín Daniel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
ROSI, SARA. "Interacting Bosons in optical lattices: optimal control ground state production, entanglement characterization and 1D systems." Doctoral thesis, 2015. http://hdl.handle.net/2158/1004929.
Повний текст джерелаTsai, Ming-Wei, and 蔡明巍. "Split gate fabrication by electron beam lithography on GaAs/AlGaAs system for 1D quantum wire conductance." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/20258404414329790730.
Повний текст джерелаUtz, Yannic. "The Effect of In-Chain Impurities on 1D Antiferromagnets: An NMR Study on Doped Cuprate Spin Chains." Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30141.
Повний текст джерелаЧастини книг з теми "1D quantum gas"
Matveev, K. A., and L. I. Glazman. "Scattering on an Impurity in a Weakly Interacting 1D Electron Gas." In Quantum Dynamics of Submicron Structures, 153–68. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0019-9_13.
Повний текст джерелаBruus, Henrik, and Karsten Flensberg. "1D Electron Gases and Luttinger Liquids." In Many–Body Quantum Theory in Condensed Matter Physics, 347–75. Oxford University PressOxford, 2004. http://dx.doi.org/10.1093/oso/9780198566335.003.0019.
Повний текст джерелаKelly, M. J. "The one-dimensional electron gas." In Low-Dimensional Semiconductors, 134–61. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780198517818.003.0006.
Повний текст джерелаHaldane, F. D. M. "‘Luttinger liquid theory’ of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas." In Bosonization, 170–94. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812812650_0017.
Повний текст джерелаHaldane, F. D. M. "‘Luttinger liquid theory’ of one-dimensional quantum fluids I: Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas." In Exactly Solvable Models of Strongly Correlated Electrons, 416–40. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812798268_0035.
Повний текст джерелаChakraborty, Kunal, and Samrat Paul. "Effect of Intra-Band Tunneling on the Performance of Lead-Free Sn-Based Perovskite Solar Cell Using SCAPS-1D Simulator." In Advances in IT Standards and Standardization Research, 68–74. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9795-8.ch006.
Повний текст джерелаShakeel, R. "Fundamental Concepts of Topological Insulators." In Materials Research Foundations, 1–20. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644902851-1.
Повний текст джерелаТези доповідей конференцій з теми "1D quantum gas"
Sykes, A. G., D. M. Gangardt, M. J. Davis, and K. V. Kheruntsyan. "Non-Local Pair Correlations and Quasi-Crystalline Phases in a 1D Bose Gas." In Quantum-Atom Optics Downunder. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/qao.2007.qme17.
Повний текст джерелаKheruntsyan, K. V., T. Jacqmin, J. Armijo, T. Berrada, and I. Bouchoule. "Sub-Poissonian fluctuations in a 1D Bose gas: from quantum quasi-condensate to the strongly interacting regime." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i291.
Повний текст джерелаBielejec, E. "1D-1D tunneling between vertically coupled GaAs/AlGaAs quantum wires." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994408.
Повний текст джерелаSchnell, J. Ph, J. P. Pocholle, E. Barbier, J. Raffy, A. Delboulbe, C. Fromont, J. P. Hirtz, and J. P. Huignard. "Investigation of a 1D GaAs-GaAIAs Multiple Quantum Wells Spatial Light Modulator." In Spatial Light Modulators and Applications. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/slma.1988.tha4.
Повний текст джерелаKim, S., H. Choi, M. Scherrer, K. Moselund, and C. W. Lee. "Robustness of the topological interface state in a 1D photonic crystal resonator with an air-gap." In 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542096.
Повний текст джерелаGreene, B. I., J. F. Mueller, J. Orenstein, D. Rapkine, S. Schmitt-Rink, and M. Thakur. "Phonon-Mediated Optical Nonlinearities in Polydiacetylene." In Nonlinear Optical Properties of Materials. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/nlopm.1988.tuc1.
Повний текст джерелаChen, Yunfei, Deyu Li, Jennifer R. Lukes, and Zhonghua Ni. "Monte Carlo Simulation of Thermal Conductivities of Silicon Nanowires." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72377.
Повний текст джерела