Добірка наукової літератури з теми "1D combustion modelling"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "1D combustion modelling".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "1D combustion modelling"

1

Barmina, Inesa, Harijs Kalis, Antons Kolmickovs, Maksims Marinaki, Liiva Ozola, Uldis Strautins, Raimonds Valdmanis, and Maija Zake. "MATHEMATICAL MODELLING AND EXPERIMENTAL STUDY OF STRAW CO-FIRING WITH GAS." Mathematical Modelling and Analysis 24, no. 4 (October 25, 2019): 507–29. http://dx.doi.org/10.3846/mma.2019.031.

Повний текст джерела
Анотація:
The main goal of the present study is to promote a more effective use of agriculture residues (straw) as an alternative renewable fuel for cleaner energy production with reduced greenhouse gas emissions. With the aim to improve the main combustion characteristics at thermo-chemical conversion of wheat straw, complex experimental study and mathematical modelling of the processes developing when co-firing wheat straw pellets with a gaseous fuel were carried out. The effect of co-firing on the main gasification and combustion characteristics was studied experimentally by varying the propane supply and additional heat input into the pilot device, along with the estimation of the effect of co-firing on the thermal decomposition of wheat straw pellets, on the formation, ignition and combustion of volatiles (CO, H2). A mathematical model has been developed using the environment of the Matlab (2D modelling) and MATLAB package ”pdepe”(1D modelling) considering the variations in supplying heat energy and combustible volatiles (CO, H2) into the bottom of the combustor. Dominant exothermal chemical reactions were used to evaluate the effect of co-firing on the main combustion characteristics and composition of the products CO2 and H2O. The results prove that the additional heat from the propane flame makes it possible to control the thermal decomposition of straw pellets, the formation, ignition and combustion of volatiles and the development of combustion dynamics, thus completing the combustion of biomass and leading to cleaner heat energy production.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Osorio, Alejandro Aljure, Xavier Tauzia, and Alain Maiboom. "Development of a wall jet model dedicated to 1D combustion modelling for CI engines." International Journal of Spray and Combustion Dynamics 13, no. 2-3 (December 2021): 146–63. http://dx.doi.org/10.1177/17568277211059073.

Повний текст джерела
Анотація:
Diesel engines are becoming smaller as technology advances, which means that the fuel spray (or jet) interacts with the cylinder walls before combustion starts. Most fuel injection 1D models (especially for diesel fuel) do not consider this interaction. Therefore, a wall-jet sub-model was created on an Eulerian 1D diesel spray model. It was calibrated using data from the literature and validated with experimental data from a fuel spray impacting a plate in a constant volume combustion chamber. Results show that the spray moving along the wall has a higher mixing rate but less penetration as an equivalent free jet, therefore they show a similar volume. Spray-wall interaction creates a stagnation zone right before the impact with the wall, and friction of the jet with the wall is relatively low. All these phenomena are well captured by the wall-jet sub-model.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Thompson, Bradley, and Hwan-Sik Yoon. "Internal Combustion Engine Modeling Framework in Simulink: Gas Dynamics Modeling." Modelling and Simulation in Engineering 2020 (September 3, 2020): 1–16. http://dx.doi.org/10.1155/2020/6787408.

Повний текст джерела
Анотація:
With advancements in computer-aided design, simulation of internal combustion engines has become a vital tool for product development and design innovation. Among the simulation software packages currently available, MATLAB/Simulink is widely used for automotive system simulations, but does not contain a comprehensive engine modeling toolbox. To leverage MATLAB/Simulink’s capabilities, a Simulink-based 1D flow engine modeling framework has been developed. The framework allows engine component blocks to be connected in a physically representative manner in the Simulink environment, reducing model build time. Each component block, derived from physical laws, interacts with other blocks according to block connection. In this Part 1 of series papers, a comprehensive gas dynamics model is presented and integrated in the engine modeling framework based on MATLAB/Simulink. Then, the gas dynamics model is validated with commercial engine simulation software by conducting a simple 1D flow simulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sandu, Vlad-Cristian, Ana-Maria Cormos, and Calin-Cristian Cormos. "Fuel Reactor CFD Multiscale Modelling in Syngas-Based Chemical Looping Combustion with Ilmenite." Energies 14, no. 19 (September 23, 2021): 6059. http://dx.doi.org/10.3390/en14196059.

Повний текст джерела
Анотація:
As global power generation is currently relying on fossil fuel-based power plants, more anthropogenic CO2 is being released into the atmosphere. During the transition period to alternative energy sources, carbon capture and storage seems to be a promising solution. Chemical-looping combustion (CLC) is an energy conversion technology designed for combustion of fossil fuel with advantageous carbon capture capabilities. In this work, a 1D computational fluid dynamics (CFD) multiscale model was developed to study the reduction step in a syngas-based CLC system and was validated using literature data (R=0.99). In order to investigate mass transfer effects, flow rate and particle dimension studies were carried out. Sharper mass transfer rates were seen at lower flow rates and smaller granule sizes due to suppression of diffusion limitations. In addition, a 3D CFD particle model was developed to investigate in depth the reduction within an ilmenite particle, with focus on heat transfer effects. Minor differences of 1 K were seen when comparing temperature changes predicted by the two models during the slightly exothermic reduction reaction with syngas.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Magryta, P. "1D modelling and PID control of helicopter Diesel engine rotational speed in torque changes." Journal of Physics: Conference Series 2130, no. 1 (December 1, 2021): 012007. http://dx.doi.org/10.1088/1742-6596/2130/1/012007.

Повний текст джерела
Анотація:
Abstract The article discusses the results of simulation tests concerning the operation of a diesel engine for a light helicopter. The tests were carried out in the AVL Boost software which is used to analyze dynamic phenomena in internal combustion engines. The research object was a newly designed diesel engine of a V8 structure and a power of 330 kW. This engine was designed to be used in the construction of a light class helicopter. The created one-dimensional simulation model included all the main engine components as well as the connection to the helicopter main transmission and the helicopter rotor. The tests consisted in selecting the P value in the PID controller used to control the amount of fuel injected into the engine. The change in the P value indirectly influenced the reaction of the engine to a change in power and torque during horizontal flight of a helicopter. These changes were introduced by changing thrust torque in the helicopter rotor. The fuel injection regulator was designed to maintain a constant engine rotational speed. The maximum speed deviations from the nominal speed of the engine operation due to both increasing and decreasing speed were analyzed. Additionally, the sum of the deviation values was analyzed until the rotational speed of the tested object stabilized. The results showed that the change of the P parameter affects all the analyzed parameters of the engine operation; however, the minimum deviation values for each parameter occur at non-equal PID settings, which makes it difficult to clearly indicate the appropriate value of the P element.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Aranburu, Iñigo, Bakartxo Egilegor, Iñigo Bonilla, Jaio Manzanedo, and Haizea Gaztañaga. "Modelica model of industrial gas furnaces." E3S Web of Conferences 116 (2019): 00003. http://dx.doi.org/10.1051/e3sconf/201911600003.

Повний текст джерела
Анотація:
Modelica models for the prediction of the temperature of the load inside a walking basket type reheat furnace of the aluminium industry have been developed. The loads move through the furnace with discrete movements. Several library components have been developed using the Modelica Standard Fluid Library. In order to validate them a full 1D furnace simulation model has been built. It allows calculating the heat transfer through walls, the temperature and the composition of combustion gases, the temperature of the aluminium products, as well as the fumes flow and the pressure drops. The library provides the necessary resources for modelling this type of furnaces flexibly and quickly. The objective of the work is to validate Modelica as analyse tool for evaluating the different possibilities of heat recovery in this kind on furnaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ling, C. H., and M. A. Abas. "One-Dimensional Simulation Using Port Water Injection for a Spark Ignition Engine." International Journal of Automotive and Mechanical Engineering 15, no. 4 (December 24, 2018): 5803–14. http://dx.doi.org/10.15282/ijame.15.4.2018.7.0444.

Повний текст джерела
Анотація:
Water injection is a promising solution to reduce fuel consumption while improving the performance of a turbocharged gasoline engine. One-dimensional (1D) engine simulation software, AVL BOOST is rarely used to model water injection. Therefore, this study is aimed to demonstrate the detailed port water injection modelling via AVL BOOST. A four-cylinder turbocharged gasoline engine was developed in AVL BOOST based on the specification of the engine test rig and verified to be used as the baseline model. The port water injection modelling was then added to the baseline model. Water to fuel mass ratios of 0.05, 0.10, 0.15, 0.2 and 0.25 were chosen as the variables to investigate the effect of water injection on the engine performance. The results showed that maximum engine torque and IMEP increased by 10.80% and 8.65%, respectively at 3000 rpm. The water injection also reduced the in-cylinder pressure at the end of the compression stroke, reducing the compression work and improving efficiency. The reduction of combustion temperature also indicates potential for NOx reduction. The lower exhaust temperature can reduce the use of fuel enrichment which consequently reduces the fuel consumption. Conclusively, the water injection model can predict the engine performance parameters accurately.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Di Luca, Giuseppe, Massimiliano Muccillo, Giovanni Giardiello, Alfredo Gimelli, and Gabriele Di Blasio. "1D and Map-Based Modeling Approaches for Railway Compression Ignition Engine in NRTC Application." Applied Sciences 12, no. 5 (March 4, 2022): 2665. http://dx.doi.org/10.3390/app12052665.

Повний текст джерела
Анотація:
Internal combustion engine-driven railway vehicles play an important role in the sector even today, due to the incomplete electrification of railway routes. However, stringent COP26 environmental rules are driving manufacturers and the scientific community to study more complex or alternative propulsion systems. Therefore, the design of new powertrains is becoming more challenging. Affordable, along with robust, development tools are fundamental for their development and optimization. In this framework, numerical simulation can represent an effective instrument to face these requirements. The proposed study assesses the accuracy of different modelling approaches for the same engine. In particular, a detailed 1D model, a simplified 1D model and a map-based model are compared. Although studies on engine simulation are available in the technical literature, the novelty introduced with this work is the assessment of accuracy and computational times of the engine models, considered by performing the new emission standard Non-Road Transient Cycle (NRTC), which is applied to a specific field such as Heavy Duty (HD) Compression Ignition (CI) engines for railway applications. This study provides new and quantitative results rarely available in the specific literature. The results show that the simplest model, despite its lower accuracy, maintains good predictive results in terms of cumulative fuel consumption and cumulative nitric oxide (NOx) emissions over the cycle considered. In particular, the difference in terms of fuel consumption for the map-based model is within 5% compared with the more detailed models. Moreover, the computational effort required by the simplest model is three orders of magnitude lower compared with the more detailed model. Therefore, as the simulation run-time is the priority, the simplest modeling approach is suitable for the evaluation of the global performance, in view of a more complex systems simulation, such as a hybrid powertrain.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bykov, V., and A. Koksharov. "Study of internal flame front structure of accelerating hydrogen/oxygen flames with detailed chemical kinetics and diffusion models." Mathematical Modelling of Natural Phenomena 13, no. 6 (2018): 53. http://dx.doi.org/10.1051/mmnp/2018079.

Повний текст джерела
Анотація:
The problem of Detonation to Deflagration (DDT) is revisited. A stoichiometric hydrogen/oxygen combustion system is considered. The study focuses on the investigation of the system solution in the thermo-chemical state space of the system. The Σ model is implemented to study the flame acceleration and DDT in 1D formulation. The model was suggested to take into account wrinkling of the flame surface. In this way, the problem becomes treatable numerically even with the detailed mechanism of chemical kinetics and with detailed models for molecular diffusion. In order to treat and integrate the model a recently developed numerical scheme to deal with very stiff systems both in time and in space is introduced and applied. Typical system solution profiles of the ignition, quasi-deflagration, flame acceleration, DDT and detonation stages are considered to study the structure of the flame front in the system thermo-chemical state space. The results of computations show that at the stages of the ignition, deflagration and acceleration the flame structure in the state/composition space moderately depends on Σ, however, significant influence shows up during later stages of the flame acceleration and DDT. Moreover, the path of the solution in the detonation regime significantly deviates from that of deflagration. This means that accurate and quantitative study of the DDT is not possible without reliable mechanisms of chemical kinetics able to describe the system state space during the transient.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hoste, J. J. O. E., M. Fossati, I. J. Taylor, and R. J. Gollan. "Characterisation of the eddy dissipation model for the analysis of hydrogen-fuelled scramjets." Aeronautical Journal 123, no. 1262 (March 27, 2019): 536–65. http://dx.doi.org/10.1017/aer.2018.169.

Повний текст джерела
Анотація:
ABSTRACTThe eddy dissipation model (EDM) is analysed with respect to the ability to address the turbulence–combustion interaction process inside hydrogen-fuelled scramjet engines designed to operate at high Mach numbers (≈7–12). The aim is to identify the most appropriate strategy for the use of the model and the calibration of the modelling constants for future design purposes. To this end, three hydrogen-fuelled experimental scramjet configurations with different fuel injection approaches are studied numerically. The first case consists of parallel fuel injection and it is shown that relying on estimates of ignition delay from a 1D kinetics program can greatly improve the effectiveness of the EDM. This was achieved through a proposed zonal approach. The second case considers fuel injection behind a strut. Here the EDM predicts two reacting layers along the domain which is in agreement with experimental temperature profiles close to the point of injection but not the case any more at the downstream end of the test section. The first two scramjet test cases demonstrated that the kinetic limit, which can be applied to the EDM, does not improve the predictions in comparison to experimental data. The last case considered a transverse injection of hydrogen and the EDM approach provided overall good agreement with experimental pressure traces except in the vicinity of the injection location. The EDM appears to be a suitable tool for scramjet combustor analysis incorporating different fuel injection mechanisms with hydrogen. More specifically, the considered test cases demonstrate that the model provides reasonable predictions of pressure, velocity, temperature and composition.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "1D combustion modelling"

1

Dombrovsky, Artem. "Synthesis of the 1D modelling of turbochargers and its effects on engine performance prediction." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/82307.

Повний текст джерела
Анотація:
Low fuel consumption is one of the main requirement for current internal combustion engines for passenger car applications. One of the most used strategies to achieve this goal is to use downsized engines (smaller engines while maintaining power) what implies the usage of turbochargers. The coupling between both machines (the turbocharger and the internal combustion engines) presents many difficulties due to the different nature between turbomachines and reciprocating machines. These difficulties make the optimal design of the turbocharged internal combustion engines a complicated issue. In these thesis a strong effort has been made to improve the global understanding of different physical phenomena occurring in turbochargers and in turbocharged engines. The work has been focused on the 1D modelling of the phenomena since 1D tools currently play a major role in the engine design process. Both experimental and modelling efforts have been made to understand the heat transfer and gas flow processes in turbochargers. Previously to the experimental analysis a literature review has been made in which the state of the art of heat transfer and gas flow modelling in turbochargers have been analysed. The experimental effort of the thesis has been focused on measuring different turbochargers in the gas stand and the engine test bench. In the first case, the gas stand, a more controlled environment, has been used to perform tests at different conditions. Hot tests with insulated and not insulated turbocharger have been made to characterise the external heat transfer. Moreover, adiabatic tests have been made to compare the effect of the heat transfer on different turbocharger variables and for the validation of the turbine gas flow models. In the engine test bench full and partial load tests have been made for model validation purposes. For the models development task, the work has been divided in heat flow models and gas flow models. In the first case, a general heat transfer model for turbochargers has been proposed based on the measured turbochargers and data available from previous works of the literature. This model includes a procedure of conductive conductances estimation, internal and external convection correlations and radiation estimation procedure. In the case of the gas flow modelling, an extended model for VGT performance maps extrapolation for both the efficiency and the mass flow has been developed as well as a model for discharge coefficient prediction in valves for two stage turbochargers. Finally, the models have been fully validated coupling them with a 1D modelling software simulating both the gas stand and the whole engine. On the one hand, the results of the validation show that compressor and turbine outlet temperature prediction is highly improved using the developed models. This results prove that the turbocharger heat transfer phenomena are important not only for partial load and transient simulation but also in full loads. On the other hand, the VGT extrapolation model accuracy is high even at off-design conditions.
El bajo consumo de combustible es uno de los principales requerimientos de los motores de combustión interna actuales para aplicaciones de coches de pasajeros. Una de las estrategias más usadas para conseguir ese fin es el uso de motores "downsized" (motores más pequeños con la misma potencia) lo que implica el uso de turbocompresores. El acoplamiento entre ambas máquinas (el turbocompresor y el motor de combustión alternativo) presenta muchas dificultades debido a la diferente naturaleza entre las turbomáquinas y las máquinas alternativas. Estas dificultades convierten el diseño óptimo de los motores de combustión interna sobrealimentados en un asunto complicado. En esta tesis se ha realizado un importante esfuerzo para mejorar el entendimiento global de los diferentes fenómenos físicos que ocurren en los turbocompresores y en los motores sobrealimentados. El trabajo se ha centrado en el modelado 1D de los fenómenos puesto que las herramientas 1D juegan actualmente un papel principal en el proceso de diseño del motor. Se han realizado tanto esfuerzos experimentales como de modelado para el entendimiento de los procesos de transmisión de calor y de flujo de gases en turbocompresores. Previamente al análisis experimental se ha realizado una revisión de la literatura disponible en la que se ha analizado el estado del arte del modelado de transmisión de calor y flujo de gases en turbocompresores. El esfuerzo experimental de la tesis se ha centrado en la medida de diferentes turbocompresores en el banco de gas y en el banco motor. En el primer caso, se ha utilizado el banco de gas, un ambiente más controlado, para realizar ensayos en diferentes condiciones. Se han realizado ensayos calientes con y sin aislamiento del turbocompresor para caracterizar el flujo de calor externo. Además, se han realizado ensayos adiabáticos para comparar el efecto de la transmisión de calor sobre diferentes variables del turbocompresor y para la validación de los modelos de flujo de gases de la turbina. En el banco motor se han realizado ensayos a plena carga y a cargas parciales para usarlos en la validación. Para la tarea del desarrollo de los modelos, el trabajo se dividió en modelos de flujo de calor y modelos de flujo de gases. En el primer caso, se ha propuesto un modelo general de transmisión de calor para turbocompresores basado en los turbocompresores medidos y en datos disponibles de trabajos previos de la literatura. Este modelo incluye un procedimiento para la estimación de las conductancias conductivas, correlaciones de convección interna y externa y un procedimiento de estimación de la radiación. En el caso del modelado de flujo de gases, se ha desarrollado un modelo extendido para la extrapolación de mapas de funcionamiento de TGV tanto para el rendimiento como para el gasto másico además del modelo de predicción de coeficientes de descarga en válvulas de turbocompresores de doble etapa. Finalmente, los modelos han sido completamente validados con su acoplamiento a un software de modelado 1D simulando tanto el banco de turbos como el motor completo. Por un lado, los resultados de la validación señalan que la predicción de las temperaturas de salida de compresor y turbina mejora notablemente usando los modelos desarrollados. Este resultado demuestra que los fenómenos de transmisión de calor son importantes no sólo en simulaciones de cargas parciales y de transitorios sino también en plenas cargas. Por otro lado, la precisión del modelo de extrapolación de TGV es alta incluso en condiciones fuera de diseño.
El baix consum de combustible és un dels principals requeriments dels motors de combustió interna actuals per a aplicacions de cotxes de passatgers. Una de les estratègies més usades per a aconseguir eixe fi és l'ús de motors "downsized" (motors més xicotets amb la mateixa potència) el que implica l'ús de turbocompressors. L'adaptament entre ambdues màquines (el turbocompressor i el motor de combustió alternatiu) presenta moltes dificultats degut a la diferent naturalesa entre les turbomàquines i les màquines alternatives. Estes dificultats convertixen el disseny òptim dels motors de combustió interna sobrealimentats en un assumpte complicat. En esta tesi s'ha realitzat un important esforç per a millorar l'enteniment global dels diferents fenòmens físics que ocorren en els turbocompressors i en els motors sobrealimentats. El treball s'ha centrat en el modelatge 1D dels fenòmens ja que les ferramentes 1D juguen actualment un paper principal en el procés de disseny del motor. S'han realitzat tant esforços experimentals com de modelatge per a l'enteniment dels processos de transmissió de calor i de flux de gasos en turbocompressors. Prèviament a l'anàlisi experimental s'ha realitzat una revisió de la literatura disponible en què s'ha analitzat l'estat de l'art del modelatge de transmissió de calor i flux de gasos en turbocompressors. L'esforç experimental de la tesi s'ha centrat en la mesura de diferents turbocompressors en el banc de gas i en el banc motor. En el primer cas, s'ha utilitzat el banc de gas, un ambient més controlat, per a realitzar assajos en diferents condicions. S'han realitzat assajos calents amb i sense aïllament del turbocompressor per a caracteritzar el flux de calor extern. A més, s'han realitzat assajos adiabàtics per a comparar l'efecte de la transmissió de calor sobre diferents variables del turbocompressor i per a la validació dels models de flux de gasos de la turbina. En el banc motor s'han realitzat assajos a plena càrrega i a càrregues parcials per a usar-los en la validació. Per a la tasca del desenvolupament dels models, el treball es va dividir en models de flux de calor i models de flux de gasos. En el primer cas, s'ha proposat un model general de transmissió de calor per a turbocompressors basat en els turbocompressors mesurats i en dades disponibles de treballs previs de la literatura. Este model inclou un procediment per a l'estimació de les conductàncies conductivas, correlacions de convecció interna i externa i un procediment d'estimació de la radiació. En el cas del modelatge de flux de gasos, s'ha desenvolupat un model estés per a l'extrapolació de mapes de funcionament de TGV tant per al rendiment com per al gasto màssic a més del model de predicció de coeficients de descàrrega en vàlvules de turbocompressors de doble etapa. Finalment, els models han sigut completament validats amb el seu adaptament a un software de modelatge 1D simulant tant el banc de turbos com el motor complet. D'una banda, els resultats de la validació assenyalen que la predicció de les temperatures d'eixida de compressor i turbina millora notablement usant els models desenrotllats. Este resultat demostra que els fenòmens de transmissió de calor són importants no sols en simulacions de càrregues parcials i de transitoris sinó també en plenes càrregues. D'altra banda, la precisió del model d'extrapolació de TGV és alta inclús en condicions fora de disseny.
Dombrovsky, A. (2017). Synthesis of the 1D modelling of turbochargers and its effects on engine performance prediction [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/82307
TESIS
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jannoun, Pascal. "Caractérisation expérimentale et modélisation 0D/1D de la quantité de gaz résiduels dans un moteur à allumage commandé." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0010/document.

Повний текст джерела
Анотація:
La quantité de gaz résiduels présents dans le cylindre d’un moteur à combustion interne a une influence important sur son fonctionnement (combustion, rendement, émissions,..) particulièrement en allumage commandé. Aujourd’hui, il est possible de modifier cette quantité, notamment grâce à des systèmes de distribution variable. Cependant, la détermination expérimentale de la quantité de résiduels et l’estimation à partir de modèles numériques restent délicates. L’objectif de cette thèse est de proposer de nouvelles méthodologies pour traiter ces deux problématiques. Un point bibliographique est tout d’abord effectué pour dresser un état de l’art. Il recense les principaux paramètres influençant la quantité de résiduels, les effets des résiduels sur le fonctionnement du moteur, les moyens expérimentaux et les modèles disponibles pour en évaluer la quantité. Un système original est ensuite développé pour mesurer la quantité de résiduels à partir d’un prélèvement gazeux effectué dans le cylindre à la fin de la compression. Les résultats ainsi obtenus sur l’ensemble du champ de fonctionnement d’un moteur automobile atmosphérique à allumage commandé sont ensuite analysés en fonction du régime, de la charge et de la position du déphaseur installé sur l’arbre à came d’admission. Enfin, plusieurs modélisations de la phase de croisement des soupapes en approche 0D/1D sont évaluées. L’approche classique de mélange parfait n’étant pas satisfaisante, de nouvelles approches originales sont proposée et testées. Une approche hybride mêlant mélange parfait et déplacement parfait permet d’obtenir des résultats améliorés, après calibration d’un paramètre en fonction du régime et de la charge du moteur
The amount of residual gas trapped in the cylinder of an internal combustion engine has a huge influence on its behavior (combustion, efficiency, emission,..), in particular for spark ignition engines. Nowadays, it is possible to modify this amount, in particular with variable valve train. However, the experimental assessment of residual gas content and its evaluation with numerical simulation are still challenging. The objective of this study is to propose new methodologies to improve these two aspects. A bibliographical survey is first proposed to give state of the art. It gathers the main parameters influencing residual gas content, the effects of residual gas on engine behavior, experimental procedures and numerical models available for residual gas content estimation. An original system is then developed to measure the amount of residual gas with an in-cylinder gas sampling triggered at the end of compression stroke. The results, obtained on the whole operating map of a naturally aspirated automotive spark ignition engine, are analyzed with respect to engine rotation speed, load and cam phaser position (intake side). Finally, various modeling of valve overlap with a 0D/1D approach are assessed. The standard “perfect mixing” assumption is not fully satisfactory, so that new assumptions are proposed and tested. A hybrid approach combining “perfect mixing” and “perfect displacement” allows for improved agreement with experiments, after calibration of a model parameter with respect to engine rotation speed and load
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "1D combustion modelling"

1

Krishna, C. Vamsi, and Santosh Hemchandra. "Reduced Order Modelling of Combustion Instability in a Backward Facing Step Combustor." In ASME 2013 Gas Turbine India Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gtindia2013-3559.

Повний текст джерела
Анотація:
This paper develops a fully coupled time domain Reduced Order Modelling (ROM) approach to model unsteady combustion dynamics in a backward facing step combustor. The acoustic field equations are projected onto the canonical acoustic eigenmodes of the systems to obtain a coupled system of modal evolution equations. The heat release response of the flame is modelled using the G-equation approach. Vortical velocity fluctuations that arise due to shear layer rollup downstream of the step are modelled using a simplified 1D-advection equation whose phase speed is determined from a linear, local, temporal stability analysis of the shear layer, just downstream of the step. The hydrodynamic stability analysis reveals a abrupt change in the value of disturbance phase speed from unity for Re < Recrit to 0.5 for Re > Recrit, where Recrit for the present geometry was found to be ≈ 10425. The results for self-excited flame response show highly wrinkled flame shapes that are qualitatively similar to those seen in prior experiments of acoustically forced flames. The effect of constructive and destructive interference between the two contributions to flame surface wrinkling results in high amplitude wrinkles for the case when Kc → 1.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yang, Bijie, Ricardo Martinez-Botas, Yingxian Xue, and Mingyang Yang. "One Dimensional Modelling for Pulsed Flow Twin-Entry Turbine." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-60069.

Повний текст джерела
Анотація:
Abstract One-dimensional (1D) modelling is critical for turbomachinery unsteady performance prediction and system response assessment of internal combustion engines. This paper uses a novel 1D modelling (TURBODYNA) and proposes two additional features for the application to a twin-entry turbocharger turbine. Compared to single-entry turbines, twin-entry turbines enhance turbocharger transient response and reduce engine exhaust valve overlap periods. However, out-of-phase high frequency pulsating pressure waves lead to an unsteady mixing process from the two flows and pose great challenges to traditional 1D modelling. The present work resolves the mixing problem by directly solving mass, momentum and energy conservation equations during the mixing process instead of applying constant pressure assumption at the limb-rotor joint. Comparisons of TURBODYNA and an experimentally validated CFD suggest that TURBODYNA can not only provide a very good agreement on turbine performance, but also accurately capture unsteady features due to flow field inertial and pressure wave propagation. Levels of accuracy achieved by TURBODYNA have proved superior to traditional 1D modelling on turbine performance and the generality of the current 1D modelling has been explored by extending the application to another turbine featuring distinct characteristics.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vogt, Mathias, Florian Frese, Holger Mai, and Roland Baar. "Improving the Application of Turbine Maps in 1D Engine Process Modelling." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45500.

Повний текст джерела
Анотація:
The new Euro 6 emission limits represent a major challenge to the development of internal combustion engines. One way to achieve this goal is to enhance the 1D engine process simulation of supercharged engines. In contrast to the widely-used 1D-modelling of pipe flow, turbochargers are generally modelled using maps of mass flow and efficiency. The turbines of turbochargers are usually mapped with constant back pressure and constant inlet temperature on special test beds. Standard non-dimensional values for flow and impeller speed should allow the turbine operating point to be recalculated depending on its boundary conditions. This procedure does not work sufficiently for operating conditions that, e.g. occur in two stage turbocharging or at high temperature offsets to the mapping conditions. This especially concerns the turbine efficiency. Methods like varying the turbine inlet temperature and the turbine back pressure expand the information of the turbine characteristic map. Both methods, used as additional boundary conditions, improve the precision of 1D simulation. The effects of the adjustments will be demonstrated using the example of a 1D engine process simulation of a turbocharged engine.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

D’Errico, G., A. Onorati, S. Ellgas, and A. Obieglo. "Thermo-Fluid Dynamic Simulation of a S.I. Single-Cylinder H2 Engine and Comparison With Experimental Data." In ASME 2006 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ices2006-1311.

Повний текст джерела
Анотація:
This paper deals with the modelling and experimental work carried out on a BMW single cylinder spark ignition hydrogen engine. The authors have enhanced a 1D thermo-fluid dynamic simulation code in order to cope with the different chemical and physical aspects due to the fuelling of a spark ignition engine with hydrogen rather than with conventional gasoline. In particular the combustion module, which is based on a quasi-dimensional approach, has been extended by introducing the possibility of predicting the burning rate of the combustion of a homogeneous mixture of hydrogen and air. A fractal approach was followed for the turbulent flame speed evaluation, while an extend database for laminar burning velocities was created applying a kinetic simulation code for one-dimensional laminar flames. The modelling of the whole intake and exhaust systems coupled to the engine has been addressed, considering port-injection fuel system, in which hydrogen has been injected at very low temperature (cryogenic conditions). The fundamental 1D fluid-dynamic equations are solved by means of second order finite difference schemes; the working fluid is considered as a mixture of ideal gases, with specific heats depending on the gas temperature and the mole fractions of species, whose correlations for each specie (including para-hydrogen) have been extended in the region of low temperature. A first validation of the enhanced model is shown in the paper, comparing the computed results with the experimental data of in-cylinder pressures, intake and exhaust instantaneous pressure histories at different locations and NO emissions discharged by the cylinder.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lynch, Bradford. "Simulation of Mechanical Hydraulic System Dynamics Using Coupled Specialized Fluid Models and Multibody Dynamics." In ASME 2015 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icef2015-1121.

Повний текст джерела
Анотація:
Durability is a prime concern in the design of hydraulic systems and fuel injectors [1–3] thus an accurate prediction of impact velocities between components and the flow through them is essential to assessing concepts. Simulation of these systems is difficult because the geometries are complex, some volumes go to zero as the components move, and the flow at a single operating condition generally spans Reynolds numbers less than 1 to more than 104[4–8]. As a result of these challenges, experimental testing of prototypes is the dominant method for comparing concepts. This approach can be effective but is far more costly, time consuming, and less flexible than the ability to run simulations of concepts early in the design cycle. A validated model of a fuel injector built from publicly available data [1] is used to present a new approach to modelling hydraulic systems which overcomes many of these obstacles. This is accomplished by integrating several commercially available tools to solve the physics specific to each area within the fuel injector. First, the fuel injector is simulated using a 3D CFD simulation integrated with a 1D CFD system model. The flow in various regions of the injector is then analyzed to determine if the fluid models in these areas can be simplified based on the flow regime. Based on this analysis, a combination of models is assembled to improve the quality of the simulation while decreasing the time required to run the model. The fuel injector is simulated using a multibody dynamics model coupled to a reluctance network model of the solenoid and several fluid models. The first is a 3D CFD simulation which uses novel mesh refinement techniques during runtime to ensure high mesh quality throughout the motion of components, to resolve the velocity profile of laminar flows, and to satisfy the requirements of the RNG k-ε turbulence model and wall functions. This approach frees the analyst from defining the mesh before runtime and instead allows the mesh to adapt based on the flow conditions in the simulation. Due to the highly efficient meshing algorithm employed, it is possible to re-mesh at each timestep thus ensuring a high quality structured mesh throughout the simulation duration. Then a 3D FEM solution to the Reynolds Equation and a statistical contact model is employed to solve for the squeeze films between components and to allow separation and contact between bodies in the control valve. These detailed simulations are integrated with a 1D flow model of the fuel injection system. The results from the detailed coupled simulations are compared to the results from simpler 1D models and measured data to illustrate under which operating conditions a more advanced technique incorporating 3D CFD is worth the additional computational expense versus a traditional 1D model.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vijayakumar, R., R. Burke, Y. Liu, and J. W. G. Turner. "Design of an Advanced Air Path Test Stand for Steady and Transient Evaluation." In ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9567.

Повний текст джерела
Анотація:
Different air systems such as turbochargers (TC), hybrid boosting, turbo compounding and exhaust gas recirculation (EGR) are increasingly used to improve the thermal efficiency of internal combustion engines (ICE). One dimensional (1D) gas dynamic codes supports their development and integration by modelling the engine and air systems and reducing testing time. However, this approach currently relies on steady flow characteristic maps which are inaccurate for simulating transient engine conditions. This is a key weakness of using gas-stand measured maps in engine simulations. Performing TC mapping on an engine would in principle solve this problem, however engine-based mapping is limited by the engine operating range and on these facilities, high-precision measurements are challenging. In addition, simple turbocharging can no longer be constrained to an individual TC supplying boost air to an engine. Instead, modern downsized engines require air-path system making use of multiple components including TCs, mechanical superchargers, electrically driven compressors (EDCs), EGR paths and control valves. Thus studying multiple air systems requires an experimental test facility to understand how they work in synergy. This is also useful in developing empirical models to minimize test time. Therefore the aim of this paper is to present a novel experimental facility that is flexibly designed for evaluating air systems individually and also at the system level representing a complicated air path both in steady and transient condition. The advanced test facility is built around a 2.2 l diesel engine to test the above air systems which can isolate the thermal and load transients from engine pulsating flows. Removing the flow pulsation allows study of the system characteristics in a steady state. Several examples of component and system level tests including a two-stage air path comprising of a VGT (variable geometry turbine) TC and a 48V EDC with typical operating condition (provided by 1D modeling) are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Serrano, José Ramón, Francisco José Arnau, Luis Miguel García-Cuevas, Alejandro Gómez-Vilanova, Stephane Guilain, and Samuel Batard. "A Methodology for Measuring Turbocharger Adiabatic Maps in a Gas-Stand and its Usage for Calibrating Control Oriented and 1D Models at Early ICE Design Stages." In ASME 2019 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/icef2019-7125.

Повний текст джерела
Анотація:
Abstract Turbocharged engines are the standard architecture for designing efficient spark ignition and compression ignition reciprocating internal combustion engines (ICE). Turbochargers characterization and modeling are basic tasks for the analysis and prediction of the whole engine system performance and this information is needed in quite early stages of the engine design. Turbocharger characteristics (efficiency, pressure ratio, mass flow rates...) traditionally rely in maps of pseudo non-dimensional variables called reduced variables. These maps must be used by reciprocating ICE designer and modeler not only for benchmarking of the turbocharger, but for a multiplicity of purposes, i.e: assessing engine back-pressure, boost pressure, load transient response, after-treatment inlet temperature, intercooler inlet temperature, low pressure EGR temperature, ... Maps of reduced variables are measured in gas-stands with steady flow but non-standardized fluids conditioning; neither temperatures nor flows. In concrete: turbine inlet gas temperature; lubrication-oil flow and temperature; water-cooling flow and turbo-machinery external heat transfer are non-standardized variables which have a big impact in assessing said multiplicity of purposes. Moreover, adiabatic efficiency, heat losses and friction losses are important data, hidden in the maps of reduced variables, which depend on the testing conditions as much as on the auxiliary fluids temperature and flow rate. In this work it is proposed a methodology to standardize turbochargers testing based in measuring the maps twice: in close to adiabatic and in diathermal conditions. Along the paper it is discussed with special detail the impact of the procedure followed to achieve said quasi-adiabatic conditions in both the energy balance of the turbocharger and the testing complexity. As a conclusion, the paper proposes a methodology which combines quasi-adiabatic tests (cold and hot gas flow) with diathermal tests (hot gas flow) in order to extract from a turbocharger gas-stand all information needed by engine designers interested in controlling or 1D-modelling the ICE. The methodology is completed with a guide for calibrating said control-oriented turbocharger models in order to separate aerodynamic efficiency (adiabatic) from heat transfer losses and from friction losses in the analysis of the turbocharger performance. The outsourced calibration of the turbocharger model allows avoiding uncertainties in the global ICE model calibration, what is very interesting for turbochargers benchmarking at early ICE-turbo matching stages or for global system analysis at early control design stages.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liu, Yang, Ramkumar Vijayakumar, and Richard Burke. "Analysis of the Opportunities and Trade-Offs for an 48V Electrified Air Path." In ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9583.

Повний текст джерела
Анотація:
The electrification of powertrains is now the accepted roadmap for automotive vehicles. The next big step in this area will be the adoption of 48V systems, which will facilitate the use of technologies such as electric boosting and integrated startergenerators. The introduction of these technologies gives new opportunities for engine airpath design as an electrical energy source may now be used in addition to the conventional mechanical and exhaust thermal power used in super- and turbochargers. This work was conducted as part of the EU funded project “THOMSON” which aims to create a cost effective 48V system enabling engine downsizing, kinetic energy recovery, and emissions management to reduce the environmental impact of transportation. The paper presents a study on an electrified airpath for a 1.6L diesel engine. The aim of this study is to understand the design and control trade-offs which must be managed in such an electrified boosting system. A two-stage boosting system including an electric driven compressor (EDC) and a variable geometry turbocharger (VGT) is used. The air path also include low and high pressure EGR loops. The work was performed using a combination of 1D modelling and experiments conducted on a novel transient air path test facility. The simulation results illustrate the trade-off between using electrical energy from in the EDC or thermal energy in the turbocharger to deliver the engine boost pressure. For a same engine boost target, the use of the EDC allows wider VGT opening which leads to lower engine backpressure (at most 0.4bar reduction in full load situation) and reduced pumping losses. However, electricity consumed in EDC either needs to be provided from the alternator (which increases the load on the engine) or by depleting the state of charge of the battery. The location of charge air coolers (pre- or post-EDC) is also investigated. This changes the EDC intake temperature by 100K and the intake manifold by 5K which subsequently impacts on engine breathing. An experimentally validated model of a water charge air cooler model has been developed for predicting flow temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Andreini, A., A. Ceccherini, B. Facchini, F. Turrini, and I. Vitale. "Assessment of a Set of Numerical Tools for the Design of Aero-Engines Combustors: Study of a Tubular Test Rig." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59539.

Повний текст джерела
Анотація:
This paper reports the numerical study performed during the setup of a tubular laboratory combustor developed by Avio Group. The main purpose of this study is the assessment of some numerical tools which might be employed for the design of aero-engines combustors. Adopted methodologies pertains with heat transfer and exhaust emissions issues of combustor design, and they refer to both detailed three dimensional and simplified zero/one dimensional formulations. An exhaustive discussion about the obtained result and about the adopted modelling criteria is reported in the paper. The rig has a tubular geometry that allows to study the single burner of a typical annular combustor of jet engines. Considered operating condition for the tests refers to Max Take-Off (ICAO 100%) in the cycle of a typical jet engine. Three different numerical tools were considered, representing the fundamental steps during the preliminary and detailed design of combustors. The first one is a 1D procedure capable to analyze the cooling flow network of the combustor and to predict liner wall temperature and heat loads. The second is a classical chemical reactor network code for flame temperature and exhaust emissions prediction. Such preliminary design tools are usually supported by reactive CFD computations. In this work both two dimensional and three dimensional CFD models are considered with different goals. A 2D CFD model of flame tube with prescribed mass flow rates allows to quickly test various turbulence, combustion and emissions models, while a 3D model of the complete hardware (liner, burner and cooling network), permits to predict air flow splits and wall radiative and convective heat loads. Furthermore a final 3D reactive CFD computation with radiation conjugated with the thermal conduction solution across the liner, permits to estimate the wall temperature distribution. The whole set of numerical results has pointed out an appreciable agreement among the various tools representing a valid assessment of the validity and robustness of selected design methodologies. A more significant validation of codes accuracy will be possible as soon as the scheduled experimental results will be available.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mazzei, L., A. Andreini, B. Facchini, and L. Bellocci. "A 3D Coupled Approach for the Thermal Design of Aero-Engine Combustor Liners." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56605.

Повний текст джерела
Анотація:
The adoption of lean burn combustion to limit NOx emissions of modern aero-engines imposes a drastic reduction of air dedicated to cooling combustor dome and liners. In the latest years many aero-engine manufacturers are hence implementing effusion cooling, which provides uniform protection on the hot side of the liner and significant heat removal within the perforation. With an industrial perspective, the development of such components is usually carried out with different strategies depending on the level of accuracy required in the design phase involved (i.e preliminary or detailed). In the collaboration between GE Avio and University of Florence, the preliminary design of these devices is carried out with Therm1D, an in-house thermal flow-network solver based on the 1D correlative approach proposed by Lefebvre. This strategy, however, is not capable of taking into account the complexity of the three-dimensional nature of the flow field and the interaction between swirling flow and liner cooling, making necessary the use of Computational Fluid Dynamics (CFD) in the most advanced phases of the design process. Nevertheless, notwithstanding the increasing popularity of CFD, even a RANS simulation of a single sector of an annular combustor still presents a challenge, when the cooling system is taken into account. This issue becomes more critical in case of modern effusion cooled combustors, which may contain thousands of holes for each sector. With the aim of of increasing the fidelity of the prediction, keeping in mind the industrial needs for limited computational efforts, a new tool has been developed: Therm3D. This approach involves the CFD simulation of the combustor flametube by modelling effusion cooling with point mass sources, whereas the fluid dynamic prediction of the remaining part is fulfilled exploiting the equivalent flow-network solver implemented in Therm1D, which provides the estimation of flow split and cold side heat loads. The solution is coupled with two separate calculations aimed at solving flame radiation and heat conduction within the metal. This paper describes the main findings of the application of Therm3D to a lean annular combustor. The results obtained have been compared to experimental data and the above mentioned numerical tools employed during the design process.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії