Статті в журналах з теми "170305 Energy systems and analysis"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: 170305 Energy systems and analysis.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "170305 Energy systems and analysis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kutliyarov, Damir, Ivan Stafiychuk, Amir Kutliyarov, Rail Khisamov, and Alfiya Lukmanova. "Retrospective Result Analysis of Land Reforms in the Russian Federation." International Journal of Sustainable Development and Planning 17, no. 3 (June 2, 2022): 743–49. http://dx.doi.org/10.18280/ijsdp.170305.

Повний текст джерела
Анотація:
The existing system of land relations requires better organizational and economic mechanisms, search for new ways to increase its efficiency and competitiveness. Land reforms in Russia focused on land privatization transformed the entire system of land relations. Undeveloped state regulation and the difficult financial situation discouraged most agricultural producers from reproducing land resources. The present paper aims to conduct a post-event analysis of land tenure strategies, regulatory and legal acts and scientific and methodological support of land reforms in Russia. The existing approaches to studying theoretical and methodological issues of land relations regulation, shortcomings in methodological and legal support, the practical need for new methods and tools for effective land management in the agricultural sector have predetermined the relevance and significance of the research topic. Research target is the territory of the Russian Federation, the creation of a system of land ownership and land use adapted to the market economy. The study involved analyzing statistical data on agricultural production in combination with quantitative and qualitative indicators of land resources. The work provides a wealth of experience in land transformations, planning and forecasting the Russian territories' socio-economic development, and working out land management methods, which can be applied in other countries.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Elangovan, Sampandam, Tilahun Diriba Garbi, and Senbeto Kena Etana. "Dielectric Relaxation Studies Between Brompheniramine with 1-Butanol, 1-Pentanol and 1-Hexanol at 303K." Material Science Research India 17, no. 3 (December 25, 2020): 230–35. http://dx.doi.org/10.13005/msri/170305.

Повний текст джерела
Анотація:
The dielectric relaxation studies are vital in analyzing the strength of the inter molecular interaction between the binary liquid systems [1-4]. Jyostna et al. [5] reported thermodynamic parameters of isoamyl alcohols and mono clinic aromatic liquid mixtures. Shakila et al. [6] studied the dielectric properties of aromatic alcohols and aliphatic amines at different temperatures. In general, dielectric relaxation time varies with the inter molecular forces acting between the molecules in the selected liquid mixtures. Brompheniramine is one of the critical compounds of an amine group with spectacular applications, including pharmaceutical industries [7]. Higher carbon chain length alcohols are having self associated and proton donating ability in the liquid mixtures. The variations in the dielectric constant (є’), dielectric loss (є’’), static dielectric constant (є0) and the dielectric constant at an optical frequency (є∞) with a range of brompheniramine concentrations with 1-butanol,1-pentanol and 1-hexanol systems are useful in the applied research and chemical industries. Moreover, the variations in the dielectric constant and dielectric relaxation time should be useful in the analysis of intermolecular interaction between the functional group of the selected liquid mixtures. This research work attempts to analyse the intermolecular interaction between the brompheniramine and 1-butanol,1-pentanol and 1-hexanol at 303K using time domain reflectometry techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ali, Ahmar, Syed Kamal, Waqas Ahmad, Jawad Ahmad, and Sheraz Khan. "Energy Demand Analysis for Distributed Energy Systems." International journal of Engineering Works 9, no. 09 (September 28, 2022): 156–65. http://dx.doi.org/10.34259/ijew.22.909156165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kuznetsov, Roman, and Valeri Chipulis. "Regression Analysis in Energy Systems." Advanced Materials Research 740 (August 2013): 772–77. http://dx.doi.org/10.4028/www.scientific.net/amr.740.772.

Повний текст джерела
Анотація:
The methods are considered for analytical data processing by measurements in heat supply systems. These methods are oriented to the solution of practical problems in the heat-power engineering by using the information-analytical systems. The possibilities of regression analysis for effective heating control and diagnosis of the measuring equipment are shown.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jebaselvi, G. D. Anbarasi, and S. Paramasivam. "Analysis on renewable energy systems." Renewable and Sustainable Energy Reviews 28 (December 2013): 625–34. http://dx.doi.org/10.1016/j.rser.2013.07.033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Suresh, S., and M. Mohanraj. "Thermal analysis and energy systems." Journal of Thermal Analysis and Calorimetry 141, no. 6 (July 21, 2020): 2165–67. http://dx.doi.org/10.1007/s10973-020-10024-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nasif, M., R. AL-Waked, G. Morrison, and M. Behnia. "Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis." Energy and Buildings 42, no. 10 (October 2010): 1833–40. http://dx.doi.org/10.1016/j.enbuild.2010.05.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Uchino, Kenji, and Takaaki Ishii. "Energy Flow Analysis in Piezoelectric Energy Harvesting Systems." Ferroelectrics 400, no. 1 (September 21, 2010): 305–20. http://dx.doi.org/10.1080/00150193.2010.505852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kozlov, S. V., A. N. Kindryashov, and E. V. Solomin. "ANALYSIS OF ENERGY STORAGE SYSTEMS EFFICIENCY." Alternative Energy and Ecology (ISJAEE), no. 2 (November 5, 2015): 29–34. http://dx.doi.org/10.15518/isjaee.2015.02.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bagdanavicius, Audrius. "Energy and Exergy Analysis of Renewable Energy Conversion Systems." Energies 15, no. 15 (July 29, 2022): 5528. http://dx.doi.org/10.3390/en15155528.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Liu, Sha, and Jiong Shen. "Improved Thermoeconomic Energy Efficiency Analysis for Integrated Energy Systems." Processes 10, no. 1 (January 10, 2022): 137. http://dx.doi.org/10.3390/pr10010137.

Повний текст джерела
Анотація:
The structure of an integrated energy system is complex. Thermoeconomics can play a significant role in the analysis of IES because it makes up for the deficiency of traditional thermodynamic analysis and provides new information on the cost and energy conversion efficiency. When using thermoeconomics to analyze the energy efficiency of an IES, one key issue that needs to be solved is how to transfer irreversible loss across thermal cycles, so that the mechanism of system performance degradation can be fully revealed. To this end, an irreversible cost and exergy cost integrated analysis method based on improved thermoeconomics is proposed, in which the cumulative and transmission impact of irreversible loss across thermal cycles is evaluated using linear transformation of <KP> matrix. A case study on a 389MW combined cooling, heating, and power IES demonstrates the effectiveness of the proposed approach. The proposed approach can reveal the key links impairing the overall energy efficiency and transfer of irreversible loss across thermal cycles. The approach can be extended to various types of IES to provide directions for the assessment and optimization of the system.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Park, S. R., A. K. Pandey, V. V. Tyagi, and S. K. Tyagi. "Energy and exergy analysis of typical renewable energy systems." Renewable and Sustainable Energy Reviews 30 (February 2014): 105–23. http://dx.doi.org/10.1016/j.rser.2013.09.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Lund, Henrik, Jakob Zinck Thellufsen, Poul Alberg Østergaard, Peter Sorknæs, Iva Ridjan Skov, and Brian Vad Mathiesen. "EnergyPLAN – Advanced analysis of smart energy systems." Smart Energy 1 (February 2021): 100007. http://dx.doi.org/10.1016/j.segy.2021.100007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Bolaji, B. O. "Exergetic Analysis of Solar Energy drying Systems." Natural Resources 02, no. 02 (2011): 92–97. http://dx.doi.org/10.4236/nr.2011.22012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

褚, 晋生. "Comprehensive Benefit Analysis of Energy Storage Systems." Modern Management 12, no. 05 (2022): 564–70. http://dx.doi.org/10.12677/mm.2022.125075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Chen, Han, and Chris-Kriton Skylaris. "Energy decomposition analysis method for metallic systems." Physical Chemistry Chemical Physics 24, no. 3 (2022): 1702–11. http://dx.doi.org/10.1039/d1cp05112a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Fragkos, Panagiotis, and Pelopidas Siskos. "Energy Systems Analysis and Modelling towards Decarbonisation." Energies 15, no. 6 (March 8, 2022): 1971. http://dx.doi.org/10.3390/en15061971.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Bailey, Brandon M., Torrey J. Wagner, and Jada B. Williams. "E700XD Portable Doppler Radar Energy Systems Analysis." International Journal of Electrical Energy 7, no. 2 (December 2019): 62–66. http://dx.doi.org/10.18178/ijoee.7.2.62-66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Evola, Gianpiero, Vincenzo Costanzo, and Luigi Marletta. "Exergy Analysis of Energy Systems in Buildings." Buildings 8, no. 12 (December 12, 2018): 180. http://dx.doi.org/10.3390/buildings8120180.

Повний текст джерела
Анотація:
The performance of space heating and cooling systems in buildings is usually measured by applying the first law of thermodynamics, which makes it possible to quantify the energy losses of the single components and to measure their energy conversion efficiency. However, this common approach does not properly consider that different forms of energy have different potentials to produce useful work, the latter being a function of the temperature at which energy is made available. As a result, it is not possible to properly address how the “quality” of energy is exploited or conserved in the different processes. On the contrary, the second law of thermodynamics is able to do that by introducing the concept of exergy: This is the maximum amount of work that can be produced through an ideal reversible process evolving until a full condition of equilibrium with the environment is attained. Exergy is; thus, a possible way to measure the “quality” of an energy flow or an energy source. This perspective is particularly relevant when dealing with buildings and their energy conversion systems, which usually deliver thermal energy at a temperature level that is close to the environmental temperature. This means that the users require “low-quality” energy; notwithstanding, this energy comes from the depletion of “high-quality” energy sources, such as fossil fuels and electricity. The exergy analysis helps with identifying such irrational use of the energy sources, which cannot come to light from the energy analysis. In this paper, a literature review identifies methods and metrics commonly used to carry out the exergy analysis of buildings and their energy technologies, while also underlining discrepancies and open methodological issues. Then, the review discusses the main lessons learned from selected works, providing significant advice about the rational use of energy in buildings as well as the most effective technological solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Fradkov, A. L., and B. R. Andrievsky. "Singular Perturbation Analysis of Energy Control Systems." Journal of Vibration and Control 12, no. 4 (April 2006): 331–53. http://dx.doi.org/10.1177/1077546306061556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Tomita, Yasushi, and Junichi Murata. "Energy Saving Analysis Simulator for Utility Systems." IEEJ Transactions on Electronics, Information and Systems 134, no. 4 (2014): 599–606. http://dx.doi.org/10.1541/ieejeiss.134.599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Ržonca, Jozef, Martina Mitrušková, Jan Pozdíšek, Richard Pospíšil, Pavlína Mičová, Marie Štýbnarová, and Marie Svozilová. "Energy analysis of various grassland utilisation systems." Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 53, no. 4 (2005): 117–26. http://dx.doi.org/10.11118/actaun200553040117.

Повний текст джерела
Анотація:
In 2003 and 2004 was carried out the energy analysis of the different types of permanent grassland utilization on the Hrubý Jeseník locality. There were estimated values of the particular entrances of additional energy. Energy entrances moved according to the pratotechnologies from 2.17 GJ. ha–1 to 22.70 GJ.ha–1. The biggest share on energy entrances had fertilizers. It was 84.93% by the nitrogen fertilisation. The most energy benefit of brutto and nettoenergy was marked by the low intensive utilisation (33.40 GJ.ha–1 NEL and 32.40 GJ.ha–1 NEV on average). The highest value of energy efficiency (13.23%) was marked by the low intensive utilization of permanent grassland. By using of higher doses of industrial fertilizers has energy efficiency decreased. From view of energy benefit and intensiveness on energy entrances it appears the most available utilisation of permanent grassland with three cuts per year (first cut on May 31st at the latest, every next after 60 days) or two cuts per year (first cut on July 15th, next cuts after 90 days).
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Spelman, G. M., and R. S. Langley. "Statistical energy analysis of nonlinear vibrating systems." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2051 (September 28, 2015): 20140403. http://dx.doi.org/10.1098/rsta.2014.0403.

Повний текст джерела
Анотація:
Nonlinearities in practical systems can arise in contacts between components, possibly from friction or impacts. However, it is also known that quadratic and cubic nonlinearity can occur in the stiffness of structural elements undergoing large amplitude vibration, without the need for local contacts. Nonlinearity due purely to large amplitude vibration can then result in significant energy being found in frequency bands other than those being driven by external forces. To analyse this phenomenon, a method is developed here in which the response of the structure in the frequency domain is divided into frequency bands, and the energy flow between the frequency bands is calculated. The frequency bands are assigned an energy variable to describe the mean response and the nonlinear coupling between bands is described in terms of weighted summations of the convolutions of linear modal transfer functions. This represents a nonlinear extension to an established linear theory known as statistical energy analysis (SEA). The nonlinear extension to SEA theory is presented for the case of a plate structure with quadratic and cubic nonlinearity.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

WAGNER, U. "Energy life cycle analysis of hydrogen systems." International Journal of Hydrogen Energy 23, no. 1 (January 1998): 1–6. http://dx.doi.org/10.1016/s0360-3199(97)00021-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Chen, Genda, and T. T. Soong. "Energy‐Based Dynamic Analysis of Secondary Systems." Journal of Engineering Mechanics 120, no. 3 (March 1994): 514–34. http://dx.doi.org/10.1061/(asce)0733-9399(1994)120:3(514).

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Tsatsaronis, George. "Thermoeconomic analysis and optimization of energy systems." Progress in Energy and Combustion Science 19, no. 3 (January 1993): 227–57. http://dx.doi.org/10.1016/0360-1285(93)90016-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Culla, Antonio, Gianluca Pepe, and Antonio Carcaterra. "Nonlinear unsteady energy analysis of structural systems." Journal of the Acoustical Society of America 141, no. 5 (May 2017): 3745–46. http://dx.doi.org/10.1121/1.4988250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Marty, Pierre, Jean-François Hétet, David Chalet, and Philippe Corrignan. "Exergy Analysis of Complex Ship Energy Systems." Entropy 18, no. 4 (April 8, 2016): 127. http://dx.doi.org/10.3390/e18040127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Henze, Gregor P. "Economic Analysis of Thermal Energy Storage Systems." Journal of Architectural Engineering 8, no. 4 (December 2002): 133–41. http://dx.doi.org/10.1061/(asce)1076-0431(2002)8:4(133).

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Sørensen, B. "Life-cycle analysis of renewable energy systems." Renewable Energy 5, no. 5-8 (August 1994): 1270–77. http://dx.doi.org/10.1016/0960-1481(94)90161-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Keane, A. J., and W. G. Price. "Statistical energy analysis of strongly coupled systems." Journal of Sound and Vibration 117, no. 2 (September 1987): 363–86. http://dx.doi.org/10.1016/0022-460x(87)90545-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Candra, Oriza, Narukullapati Bharath Kumar, Ngakan Ketut Acwin Dwijendra, Indrajit Patra, Ali Majdi, Untung Rahardja, Mikhail Kosov, John William Grimaldo Guerrero, and Ramaswamy Sivaraman. "Energy Simulation and Parametric Analysis of Water Cooled Thermal Photovoltaic Systems: Energy and Exergy Analysis of Photovoltaic Systems." Sustainability 14, no. 22 (November 14, 2022): 15074. http://dx.doi.org/10.3390/su142215074.

Повний текст джерела
Анотація:
It is generally agreed that solar energy, which can be converted into usable electricity by means of solar panels, is one of the most important renewable energy sources. An energy and exergy study of these panels is the first step in developing this technology. This will provide a fair standard by which solar panel efficiency can be evaluated. In this study, the MATLAB tool was used to find the answers to the math problems that describe this system. The system’s efficiency has been calculated using the modeled data created in MATLAB. When solving equations, the initial value of the independent system parameters is fed into the computer in accordance with the algorithm of the program. A simulation and a parametric analysis of a thermal PV system with a sheet and spiral tube configuration have been completed. Simulations based on a numerical model have been run to determine where precisely the sheet and helical tubes should be placed in a PV/T system configured for cold water. Since then, the MATLAB code for the proposed model has been developed, and it agrees well with the experimental data. There is an RMSE of 0.94 for this model. The results indicate that the modeled sample achieves a thermal efficiency of between 43% and 52% and an electrical efficiency of between 11% and 11.5%.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Веремійчук, Юрій Андрійович, Іван Васильович Притискач, Олена Сергіївна Ярмолюк, and Віталій Павлович Опришко. "Operation analysis of integrated energy supply systems with energy hubs." ScienceRise 9, no. 2 (26) (September 29, 2016): 12. http://dx.doi.org/10.15587/2313-8416.2016.77950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Tao, Jing, Wu Xu, Yi WenHuo, and Yi LinLi. "Computational analysis of multi-energy flow in integrated energy systems." IOP Conference Series: Earth and Environmental Science 295 (July 25, 2019): 052042. http://dx.doi.org/10.1088/1755-1315/295/5/052042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Pilipenko, A. V., and S. P. Petrov. "Analysis of Energy Efficiency of Energy Conversion in Cogeneration Systems." IOP Conference Series: Earth and Environmental Science 224 (February 5, 2019): 012006. http://dx.doi.org/10.1088/1755-1315/224/1/012006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Mao, Yuyi, Guanding Yu, and Caijun Zhong. "Energy Consumption Analysis of Energy Harvesting Systems with Power Grid." IEEE Wireless Communications Letters 2, no. 6 (December 2013): 611–14. http://dx.doi.org/10.1109/wcl.2013.081913.130391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Miara, B., and M. L. Santos. "Energy decay in piezoelectric systems." Applicable Analysis 88, no. 7 (July 2009): 947–60. http://dx.doi.org/10.1080/00036810903042166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Dowell, E. H., and Y. Kubota. "Asymptotic Modal Analysis and Statistical Energy Analysis of Dynamical Systems." Journal of Applied Mechanics 52, no. 4 (December 1, 1985): 949–57. http://dx.doi.org/10.1115/1.3169174.

Повний текст джерела
Анотація:
A new derivation of the results commonly referred to as Statistical Energy Analysis (SEA) is given by studying the asymptotic behavior of classical modal analysis for a general, linear (structural) system. It is shown that, asymptotically, the response at (almost) all points of the system is the same. A numerical example is used to illustrate the way in which the asymptotic limit is approached. Both random and sinusoidal loadings are considered; for the latter an extension of the usual SEA result is obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Alak, Ali Osman, and Abdulhakim Karakaya. "Analysis of standard systems with solar monitoring systems." Open Chemistry 20, no. 1 (January 1, 2022): 1557–65. http://dx.doi.org/10.1515/chem-2022-0265.

Повний текст джерела
Анотація:
Abstract With the increase in the need for electrical energy in the world, electricity is tried to be generated by various methods. Some of these methods cause global warming and environmental pollution to increase. Therefore, it is aimed to generate electricity using renewable energy sources instead of fossil fuels. The sun is one of these renewable energy sources. Electricity generation with solar energy is one of the methods that have become quite common in recent years. One of the most important considerations required to achieve maximum efficiency in solar power and electricity generation is to ensure that the rays are perpendicular to the panel. When this is achieved, the depreciation time of the system will be reduced and electricity generation will be carried out with high efficiency from these panels with limited service life. To achieve this, various solar tracking systems are designed. In this study, the analysis of fixed systems was performed by comparing them with single- and dual-axis solar tracking systems. Comparisons were made using a design and simulation software (PVSOL) program for photovoltaic systems. In these comparisons, the effects of single- and dual-axis solar tracking methods on depreciation time compared to fixed systems were examined.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

KAISER, M. "Fiscal system analysis—concessionary systems." Energy 32, no. 11 (November 2007): 2135–47. http://dx.doi.org/10.1016/j.energy.2007.04.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Cotoni, Vincent, and Robin Langley. "Variance of energy and energy density in statistical energy analysis of complex systems." Journal of the Acoustical Society of America 116, no. 4 (October 2004): 2519. http://dx.doi.org/10.1121/1.4785053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Yuan, Xu, Cen Haifeng, Li Tao, C. Q. Wu, and J. H. Zheng. "Probabilistic Energy Flow Analysis for Integrated Energy Systems Considering Correlated Uncertainties." IOP Conference Series: Earth and Environmental Science 645 (January 26, 2021): 012040. http://dx.doi.org/10.1088/1755-1315/645/1/012040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Sawant, Parantapa, Christian Braasch, Manuel Koch, Adrian Bürger, and Sonja Kallio. "An energy-economic analysis of real-world hybrid building energy systems." Journal of Physics: Conference Series 2042, no. 1 (November 1, 2021): 012095. http://dx.doi.org/10.1088/1742-6596/2042/1/012095.

Повний текст джерела
Анотація:
Abstract A coordinated operation of decentralised micro-scale hybrid energy systems within a locally managed network such as a district or neighbourhood will play a significant role in the sector-coupled energy grid of the future. A quantitative analysis of the effects of the primary energy factors, energy conversion efficiencies, load profiles, and control strategies on their energy-economic balance can aid in identifying important trends concerning their deployment within such a network. In this contribution, an analysis of the operational data from five energy laboratories in the trinational Upper-Rhine region is evaluated and a comparison to a conventional reference system is presented. Ten exemplary data-sets representing typical operation conditions for the laboratories in different seasons and the latest information on their national energy strategies are used to evaluate the primary energy consumption, CO2 emissions, and demand-related costs. Various conclusions on the ecologic and economic feasibility of hybrid building energy systems are drawn to provide a toe-hold to the engineering community in their planning and development.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Tan, Lisha, Xiangyu He, Guangxin Xiao, Mengjun Jiang, and Yulin Yuan. "Design and energy analysis of novel hydraulic regenerative potential energy systems." Energy 249 (June 2022): 123780. http://dx.doi.org/10.1016/j.energy.2022.123780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wang, Lingshi, Fu Xiao, Borui Cui, Maomao Hu, and Tao Lu. "Performance analysis of absorption thermal energy storage for distributed energy systems." Energy Procedia 158 (February 2019): 3152–57. http://dx.doi.org/10.1016/j.egypro.2019.01.1017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Hu, Xiaoyun, Lun Yang, Xia Zhao, and Wei Yan. "Probabilistic Energy Flow Analysis for Urban Energy Systems Considering Correlated Uncertainties." Energy Procedia 158 (February 2019): 6472–77. http://dx.doi.org/10.1016/j.egypro.2019.01.120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Rogalev, Nikolay, Andrey Rogalev, Vladimir Kindra, Vladimir Naumov, and Igor Maksimov. "Comparative Analysis of Energy Storage Methods for Energy Systems and Complexes." Energies 15, no. 24 (December 15, 2022): 9541. http://dx.doi.org/10.3390/en15249541.

Повний текст джерела
Анотація:
The daily non-uniform power demand is a serious problem in power industry. In addition, recent decades show a trend for the transition to renewable power sources, but their power output depends upon weather and daily conditions. These factors determine the urgency of energy accumulation technology research and development. The presence of a wide variety of energy storage mechanisms leads to the need for their classification and comparison as well as a consideration of possible options for their application in modern power units. This paper presents a comparative analysis of energy storage methods for energy systems and complexes. Recommendations are made on the choice of storage technologies for the modern energy industry. The change in the cost of supplied energy at power plants by integrating various energy storage systems is estimated and the technologies for their implementation are considered. It is revealed that in the large-scale power production industry, the most productive accumulation methods for energy systems and complexes are the following: pumped hydroelectric energy storage systems, thermal and thermochemical accumulations, and hydrogen systems. These methods have the best technical and economic characteristics. The resulting recommendations allow for the assessment of the economic and energy effect achieved by integration of storage systems at the stage of designing new power units.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Estakhr, Javad, Mohsen Simab, and Taher Niknam. "Security Analysis of Hybrid Multi-Carrier Energy Systems." Sustainability 13, no. 6 (March 12, 2021): 3102. http://dx.doi.org/10.3390/su13063102.

Повний текст джерела
Анотація:
Multi-carrier energy systems (MCESs) provide collaboration between various kinds of energy carriers to supply the electricity, heating, and cooling demands. With the widespread use of MCESs in recent years, the security assessment of energy systems has attracted the attention of many contemporary researchers. However, the complexity of an MCES, including electrical, natural gas, and district heating networks, and different uncertainties imposes vast challenges to keep a safe operation energy supply. In this paper, a systematic methodology for the security analysis of MCESs is presented. For this purpose, considering electrical, natural gas, and district heating networks, an integrated model of energy systems is introduced. The security analysis of this framework is evaluated using some indices. In this approach, two well-known performance indices, including power performance index (PIP) and voltage performance index (PIV), are used to analyze the electrical networks’ security. Besides, the concept of Energy not supplied (ENS) is used for natural gas and district heating networks. In this regard, security analysis of a typical MCES including the IEEE 14-bus electrical network, the IEEE 30-bus electrical network, 20-node Belgian natural gas network, and 14-node district heating network is examined. The applicability of the proposed technique will be proven using comprehensive simulation analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Wall, Göran. "Life Cycle Exergy Analysis of Renewable Energy Systems." Open Renewable Energy Journal 4, no. 1 (January 1, 2011): 72–77. http://dx.doi.org/10.2174/1876387101004010072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

MATSUMOTO, Shigeyuki, and Kazuo YAMAMOTO. "Evaluation of water recycle systems by energy analysis." ENVIRONMENTAL SYSTEMS RESEARCH 21 (1993): 355–63. http://dx.doi.org/10.2208/proer1988.21.355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії