Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Установка газотурбінна.

Статті в журналах з теми "Установка газотурбінна"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-17 статей у журналах для дослідження на тему "Установка газотурбінна".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Лавренченко, Г. К. "Використання кисню і природного газу для підвищення ефективності паротурбінних установок". Refrigeration Engineering and Technology 57, № 3 (15 жовтня 2021): 189–95. http://dx.doi.org/10.15673/ret.v57i3.2169.

Повний текст джерела
Анотація:
Паротурбінні установки становлять основу теплоенергетики. Незважаючи на їх поширеність, вони потребують вдосконалення із залученням результатів новітніх досліджень. При цьому в першу чергу фахівці повинні звертати увагу на те, що максимальна температура пари в цих установках не перевищує 550 °С через низьку корозійну стійкість і недостатню міцність трубок котельних агрегатів, що працюють при високій різниці тисків (до 25 МПа) всередині та зовні трубок. У той же час у сучасних газотурбінних установках температура робочого тіла при вході в турбіну високого тиску становить 1400-1500 °С. Цього досягають тим, що лопатки турбін, які виготовлені із жароміцної сталі, здатні витримувати температуру, що істотно перевищує максимальну межу, встановлену в даний час для паротурбінних установок. Лопатки турбін, до того ж, не схильні до впливу такої великої різниці тисків, як трубки котельних агрегатів. Для підвищення ефективності паротурбінних установок запропоновано новий спосіб підвищення температури пари перед турбіною. В його основі лежить використання кисню та природного газу. Підвищення максимальної температури циклу від 540 до 800 °С дозволяє збільшити термічний ККД на 8,1 %, а ефективність – на 6,4 %. Описується нетрадиційний спосіб підвищення макси­мальної температури циклу паротурбінної установки К-1200-240 до 800 °С, що дозволяє суттєво підвищити її термічний та ефективний ККД. Сутність способу полягає у змішуванні перегрітої пари, що виходить з пароперегрівача котла, з продуктами згоряння вуглеводневого палива в кисні. Таке рішення дозволяє уникнути проблеми механічної міцності і корозійної стійкості трубок пароперегрівача при високих температурах. Одним із наслідків застосування способу є отримання значної кількості чистого діоксиду вуглецю (340 т/добу в установці потужністю 1200 МВт), який можна утилізувати або поховати з метою зниження викидів в атмосферу
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Урум, Н. С., Р. М. Гімпель, В. В. Ліганенко, О. І. Рященко та О. С. Бабере. "Аналіз досліджень щодо використання альтернативних видів палива для газотурбінних енергетичних установок на морських суднах сигналів". Системи озброєння і військова техніка, № 3(67) (24 вересня 2021): 119–23. http://dx.doi.org/10.30748/soivt.2021.67.16.

Повний текст джерела
Анотація:
На даний час морська транспортна галузь переживає ряд проблем, пов'язаних з використанням традиційного палива для морських суден, наприклад, дизельного палива. Так, дизельне паливо вважається основним компонентом, що викликає як екологічні, так і економічні проблеми, особливо в зв'язку з постійним зростанням вартості палива. Метою статті є вибір найбільш ефективних з екологічної та економічної точок зору видів палива для морських суден за результатами аналізу досліджень з використання альтернативних видів палива. Зокрема, в даній статті досліджується можливість використання природного газу і водню в якості альтернативного палива замість дизельного палива для газотурбінних енергетичних установок. Розглянуто вплив альтернативного палива на термодинамічні характеристики газотурбінних енергетичних установок. Результати показали, що природний газ і водень можуть бути успішно використані в якості альтернативи для заміни використовуваного в даний час дизельного палива в морських газотурбінних енергетичних установках.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Кравченко, В. П., М. П. Галацан та В. А. Отрода. "Підвищення ресурсу АЕС за рахунок комбінування з газотурбінною установкою". Refrigeration Engineering and Technology 57, № 1 (11 лютого 2021): 55–62. http://dx.doi.org/10.15673/ret.v57i1.1979.

Повний текст джерела
Анотація:
В Україні у більшості блоків АЕС закінчився проектний термін експлуатації. У зв’язку з цим запропоновано продовжити термін експлуатації АЕС за рахунок комбінування з газотурбінною установкою (ГТУ), а саме, використання котла-утилізатора (КУ) на відпрацьованих газах для виробництва 20% номінальної витрати пари. При цьому потужність реакторної установки знижується до 80%, що дає можливість збільшити ресурс роботи реактора за рахунок зменшення швидкості накопичення флюенсу, а парова турбіна буде працювати при номінальному режимі. До того ж ГТУ може використовуватися у якості резервного джерела енергії для реакторної установки. В представлених в літературі схемах комбінування паротурбінних установок (ПТУ) АЕС з ГТУ розглядаються варіанти збільшення потужності парової турбіни. З проведеного аналізу видно, що це завжди призводить до непроектного режиму, який характеризується зниженням ефективності роботи ступенів та турбіни в цілому. В запропонованій схемі ПТУ працює в номінальному режимі з проектним ресурсом та ефективністю. В роботі розглянуто методику розрахунку запропонованої схеми ком­бінування ГТУ з АЕС та проведено оптимізацію основних параметрів (ступінь стиснення газу, температура газу після КУ, температурний напір в КУ) відносно максимуму електричного ККД ГТУ та ядерно-енергетичного комплексу (ЯЕК) (ηГТУ = 40,79%; ηЯЕК = 41,19%). Проаналізовано схему з про­міжним перегрівом газу в КУ. В результаті визначено, що проміжний перегрів газу в дозволяє підвищити ККД ГТУ до 45,44% (Т0 = 1350 ºС, ступінь стиснення 25 та температура газу на виході КУ 903 К). При цьому ККД ЯЕК ηЯЕК = 42,9%. Такий режим роботи протягом 20 років дає можливість продовжити термін експлуатації АЕС на 5 років, що достатньо для будівництва нового блоку. В автономному режимі, при байпасі КУ та нагріві повітря в регенеративному підігрівачі, ηГТУ = 50,87%
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Литвяк, О. М., та С. В. Комар. "Обгрунтування законів регулювання гідрогальмівної установки для наземних випробувань турбовальних ГТД". Збірник наукових праць Харківського національного університету Повітряних Сил, № 1(63), (7 квітня 2020): 96–102. http://dx.doi.org/10.30748/zhups.2020.63.13.

Повний текст джерела
Анотація:
У статті розглядаються проблеми, що виникають при наземних випробуваннях авіаційних турбовальних газотурбінних двигунів на гідрогальмівних установках. Представлені експериментальні завантажувальні характеристики гідрогальма і несучого гвинта вертольота. Показано, що невідповідність завантажувальних характеристик гідрогальма відповідним характеристикам несучого гвинта може призвести до незадовільної роботи регулятора частоти обертання ротора вільної турбіни двигуна. Дано обґрунтування закону регулювання завантаженням гідрогальма, що забезпечує завантажувальні характеристики близькі до завантажувальних характеристик несучого гвинта вертольота. Показано, що гідрогальмівна установка з системою автоматичного керування завантаженням дозволяє наблизити динамічні характеристики гідрогальма до динамічних характеристик несучого гвинта вертольота і забезпечити коректні наземні випробування турбовальних ГТД.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Литвяк, О. М., та С. В. Комар. "Проблеми наземних випробувань турбовальних газотурбінних двигунів типу ТВ3-117". Наука і техніка Повітряних Сил Збройних Сил України, № 1(42,) (21 січня 2021): 61–70. http://dx.doi.org/10.30748/nitps.2021.42.07.

Повний текст джерела
Анотація:
При наземних випробуваннях газотурбінних двигунів ТВ3-117 на гідравлічних гальмівних установках часто реєструють автоколивання частоти обертання ротора вільної турбіни і параметрів турбокомпресора в області роботи регулятора обертів вільної турбіни. Однією з причин розвитку автоколивань в системі автоматичного регулювання вільної турбіни є невідповідність завантажувальних характеристик гідрогальмівної установки завантажувальним характеристикам несучого гвинта вертольота. При наземних випробуваннях об'єктом регулювання є вільна турбіна з підключеним ротором гідрогальма. При роботі двигуна в складі силової установки вертольота об'єктом регулювання є вільна турбіна з підключеним ротором несучого гвинта. Зміна параметрів об'єкта регулювання без відповідної корекції параметрів регулятора може призводити до незадовільної динаміки системи автоматичного регулювання. Іншою причиною розвитку автоколивань є нелінійність характеристик елементів системи автоматичного регулювання. Розроблено математичну модель системи автоматичного регулювання обертів вільної турбіни, що враховує нелінійні особливості характеристик реальних регуляторів. Проведено розрахункові дослідження впливу розриву статичної характеристики і зони нечутливості регулятора на розвиток автоколивань в системі автоматичного регулювання обертів вільної турбіни при наземних випробуваннях вертолітного двигуна. Дано рекомендації щодо вибору параметрів регулятора обертів вільної турбіни для запобігання виникненню і розвитку автоколивань обертів турбокомпресора і вільної турбіни.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Радченко, А. М., Я. Зонмін, С. А. Кантор та Б. С. Портной. "Аналіз паливної ефективності глибокого охолодження повітря на вході газотурбінної установки в різних кліматичних умовах". Refrigeration Engineering and Technology 54, № 6 (30 грудня 2018): 23–27. http://dx.doi.org/10.15673/ret.v54i6.1258.

Повний текст джерела
Анотація:
Проаналізовано паливну ефективність глибокого охолодження повітря на вході газотурбінної установки (ГТУ) при для кліматичних умов півдня України (регіон м. Одеса) та субтропічного клімату КНР (на прикладі м. Чженьцзян, провінція Цзянсу). Досліджено ефективність двоступеневого охолодження повітря на вході газотурбінної установки: попереднього охолодження зовнішнього повітря холодною водою з температурою 7ºС від абсорбційної бромистолітієвої холодильної машини (АБХМ) до температури 15ºС у першому високотемпературному ступені повітроохолоджувача та наступного більш глибокого його доохолодження до температури 10ºС у другому низькотемпературному ступені киплячим хладоном від ежекторної холодильної машини (ЕХМ), як конструктивно найбільш прості і надійні в експлуатації. При цьому як абсорбційна бромистолітієва холодильна машина, так і хладонова ежекторна машина використовують для отримання холоду теплоту відпрацьованих газів газотурбінної установки. В якості критерія застосовано питому витрату палива. Ефективність глибокого охолодження повітря на вході газотурбінної установки аналізували як за поточними величинами зменшення питомої витрати палива упродовж року при змінних кліматичних умовах експлуатації, так і за накопиченням щомісячно та за рік. Показано, що більш глибоке охолодження повітря на вході ГТУ до температури 10 ºС в ЕХМ забезпечує зменшення витрати палива у півтора-два рази завдяки взаємно пов’язаному подвійному ефекту: збільшенню самої величини зниження температури повітря Dt10 до 10 ºС за рахунок обумовленого нею ж зростання тривалості охолоджувального сезону на 20…30 % порівняно з традиційним охолодженням повітря до температури 15 ºС в АБХМ. Результати аналізу паливної ефективності застосування двоступеневого охолодження повітря в украй напружених тепловологісних умовах, зокрема субтропічного клімату, дають підстави для розширення географії застосування глибокого охолодження повітря й на регіони, в яких найбільш поширене традиційне охолодження повітря в АБХМ, а застосування контактних методів зниження температури повітря упорскуванням води не дає бажаного ефекту через високу вологість повітря.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Коновалов, Дмитро Вікторович, та Галина Олександрівна Кобалава. "ПРОМІЖНЕ ОХОЛОДЖЕННЯ ЦИКЛОВОГО ПОВІТРЯ В ГАЗОТУРБІННИХ УСТАНОВКАХ АЕРОТЕРМОПРЕСОРАМИ". Aerospace technic and technology, № 1 (25 лютого 2018): 29–36. http://dx.doi.org/10.32620/aktt.2018.1.02.

Повний текст джерела
Анотація:
Existing technologies to improve the fuel and energy efficiency of gas turbine plants due to intercooling of the cycle air are analyzed. One of the promising ways for increasing the efficiency of such technologies is using thermogasdynamic compression in the heat recovery processes of secondary energy resources. A feature of this process is the pressure rate increase due to the instant evaporation of a finely dispersed liquid is injected into the air stream which accelerated to the speed of sound. When the pressure of the boiling liquid is increased, the power consumption for compressing the working fluid (cyclic air) is reduced, the efficiency is increased and the consumption of the fuel and energy resources of the gas turbine plant is reduced.The advantages of cooling technology with an aerothermopressor are outlined in the article. The aerothermopressor is a multifunctional jet apparatus, whose work consists in injecting water into the stream of cyclic air when it is compressed in the gas turbine plant compressor. If this apparatus is used for cooling of cycle air, it will be compensate for aerodynamic losses along the air path and it will reduce compression work in the compressor, increase the consumption of the working fluid and, as a result, increase the gas turbine plant power. The basic schemes of the aerothermopressor installation between the stages of low and high pressure compressors are considered. Theoretical thermodynamic cycles of such gas turbine plants are presented and the advantage of using a contact cooler for intercooling of the cyclic air in comparison with surface air coolers for intercooling is defined in this paper.The proposed cooling technology makes it possible using low-potential heat of secondary energy resources of gas turbine plants (heat of cyclic air), the utilization of which by traditional methods is problematic because the temperature of waste heat sources is low.The tasks are determined, the solution of which will ensure the possibility of rational organization of cooling processes in the aerothermopressor, which in turn will allow achieving optimal parameters for increasing the efficiency of the gas turbine plant and reducing the specific fuel consumption in relation to the variable climatic conditions of operation
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Коновалов, Д. В., та Г. О. Кобалава. "Застосування контактного охолодження повітря аеротермопресором в циклі газотурбінної установки". Refrigeration Engineering and Technology 54, № 5 (30 жовтня 2018): 62–67. http://dx.doi.org/10.15673/ret.v54i5.1248.

Повний текст джерела
Анотація:
Проведено аналіз існуючих газотурбінних установок (ГТУ) із застосуванням проміжного охолодження циклового повітря різних фірм-виробників, визначені основні технічні характеристики та головні параметри роботи цих ГТУ. Розглянуто основні шляхи реалізації проміжного охолодження циклового повітря ГТУ, а саме охолодження в поверхневому теплообміннику та контактне охолодження при упорскуванні диспергованої води. Перспективним способом зволоження робочого середовища ГТУ може бути застосування аеротермопре-сорного апарату, в основу роботи якого покладено процес термогазодинамічної компресії (термопресії). Особливістю цього процесу є підвищення тиску в результаті миттєвого випаровування рідини, що упорскується в повітряний потік, який прискорений до швидкості близько звуковій. При цьому на випаровування води відводиться теплота від газу, в результаті чого знижується його температура. В роботі проведено порівняльний аналіз існуючих та аеротермопресорних технологій для проміжного охолодження повітря ГТУ. Виявлено, що аеротермопресор дозволяє підвищити тиск циклового повітря між ступенями компресора на 2…9 %, що призводить до зменшення роботи на стиснення в ступенях компресора, а упорскування води, відповідно, до збільшення кількості робочого тіла в циклі на 2…5 %, і, як наслідок, збільшується питома потужність на 3…10 % та ККД ГТУ на 2…4 %.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Радченко, Андрій Миколайович, Ян Зонмін, Сергій Анатолійович Кантор та Богдан Сергійович Портной. "ЕФЕКТИВНІСТЬ ОХОЛОДЖЕННЯ ПОВІТРЯ НА ВХОДІ ГАЗОТУРБІННОЇ УСТАНОВКИ В УМОВАХ ПОМІРНОГО І СУБТРОПІЧНОГО КЛІМАТУ". Aerospace technic and technology, № 6 (20 грудня 2018): 34–38. http://dx.doi.org/10.32620/aktt.2018.6.05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Радченко, Андрій Миколайович, Ян Зонмін, Микола Іванович Радченко, Сергій Анатолійович Кантор, Богдан Сергійович Портной та Юрій Георгійович Щербак. "ВИЗНАЧЕННЯ ВСТАНОВЛЕНОЇ ХОЛОДОПРОДУКТИВНІСТІ СИСТЕМИ ОХОЛОДЖЕННЯ ПОВІТРЯ НА ВХОДІ ГАЗОТУРБІННОЇ УСТАНОВКИ ЗА ПОТОЧНИМ ТЕПЛОВИМ НАВАНТАЖЕННЯМ". Aerospace technic and technology, № 2 (22 квітня 2019): 56–60. http://dx.doi.org/10.32620/aktt.2019.2.07.

Повний текст джерела
Анотація:
Significant fluctuations of the current temperature and relative humidity of the ambient air lead to significant changes in the thermal load on the cooling system at the inlet of gas turbine units (GTU), which acutely raises the problem of choosing their installed (design) thermal load. Calculations of ambient air cooling processes were carried out for different climatic conditions, for example, southern Ukraine (Mykolaiv) and Central China (Beijing). It is analyzed two methods of determination of the installed (design) cooling capacity of the ambient air cooling system at the GTU inlet according to the maximum current reduction of fuel consumption and according to the maximum rate (increase) of annual reduction of fuel consumption following to increasing of the installed cooling capacity, calculated by summarizing the current values of fuel consumption reduction. It is shown that the values of the installed cooling capacity of the air cooling system at the GTU inlet, determined by both methods, are close enough but differ significantly for different climatic conditions. The advantage of the method of calculating the installed cooling capacity of the air cooling system at the GTU inlet according to the maximum rate of annual reduction in fuel consumption is the possibility of a more precise definition of it due to the absence of significant fluctuations in the annual reduction in fuel consumption, calculated by summarizing the current values of fuel consumption reduction. Since the maximum reduction in fuel consumption per year is achieved with some decrease in the rate of its increment at high values of the design cooling capacity, required in the hottest hours in the summer and excessive in somewhat cool periods (at night and in the morning even in the summer), the installed cooling capacity, determined according to the maximum rate of the reduction of fuel consumption, will be insufficient in times of increased thermal loads above their design value. In such cases, the elimination of the deficit in cooling capacity is possible by using an excess of cold accumulated during reduced thermal loads
Стилі APA, Harvard, Vancouver, ISO та ін.
11

LYUBIMENKO, E., and A. A. SHTEPA. "Study of operating conditions and consumption fuel for a gas turbine plant." Journal of Electrical and power engineering 23, no. 2 (December 23, 2020): 65–69. http://dx.doi.org/10.31474/2074-2630-2020-2-65-69.

Повний текст джерела
Анотація:
Carrying out research work to determine the working conditions and determine the fuel consumption in a gas turbine installation. The descriptions of a gas turbine unit operating on gaseous fuel are presented: in normal and standby operating modes. The optimal operating mode of the gas turbine plant is combined: the production of heat and electricity. A study of the operating mode of a gas turbine unit at a constant pressure of 0.1 MPa and a temperature when air enters the compressor of a gas turbine unit with fuel combustion has been carried out. The features of the use of an energy carrier in a gas turbine unit during the year are highlighted and analyzed. The structure and current consumption of natural gas in a gas turbine unit for accounting for the consumption of energy carriers is described. As a result of the study, a substantiation of the concept of calculating the predictive function for accounting for the costs of non-renewable energy resources for a gas turbine plant, used natural gas, is proposed. This, in turn, ensures effective planning and increasing the economic efficiency of the enterprise. All this makes it possible to regulate the modes and costs of using fuel during the operation of a gas turbine unit. A study of the operating mode of the gas turbine unit at a constant pressure of 0.1 MPa and a temperature of 10 ° C was carried out, when the optimal operating mode of the gas turbine unit is the combined production of thermal and electrical energy. The choice of the predicting function by which it is better to forecast the use of the energy carrier for the current year has been proposed and substantiated. The scientific novelty of the research lies in the formulation of the substantiation of the conceptual principles for the construction of a mathematical model of the use and accounting of energy consumption based on the use of predictive functions and recommendations are provided on how to rationally use natural resources. The practical significance of the work lies in forecasting and calculating the volume of natural gas consumption (thousand m3) by the enterprise for the next year, and this, in turn, allows us to adjust the gas consumption for the future and make informed decisions on how it is possible to reduce fuel consumption or use it as efficiently as possible.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Радченко, Микола Іванович, Ян Зонмін, Сергій Анатолійович Кантор та Богдан Сергійович Портной. "ОЦІНКА ЕФЕКТИВНОСТІ ГЛИБОКОГО ОХОЛОДЖЕННЯ ПОВІТРЯ НА ВХОДІ ГАЗОТУРБІННИХ УСТАНОВОК В РІЗНИХ КЛІМАТИЧНИХ УМОВАХ". Aerospace technic and technology, № 1 (7 березня 2019): 48–52. http://dx.doi.org/10.32620/aktt.2019.1.05.

Повний текст джерела
Анотація:
The efficiency of deep air cooling at the inlet of gas turbine units of a simple scheme has been investigated for changed climatic conditions of operation during the month. For air cooling, the application of waste heat recovery chiller has been proposed, which transform the heat of exhaust gases of gas turbine units into the cold. The efficiency of air cooling at the inlet of gas turbine units to different temperatures has been analyzed: to 15°C – an absorption lithium-bromide chiller, which is used as the first high-temperature pre-cooling stage of ambient air and down to 10°C – a combined absorption-ejector chiller, which acts as the second low-temperature stage. The air cooling efficiency is compared for different climatic conditions using the example of Yuzhnoukrainsk (Ukraine) and Shanghai (China). The climate peculiarity of Shanghai is the high relative humidity of the air, respectively, and its moisture contents at the same time its high temperatures. As indicators for assessing the effectiveness of air cooling at the inlet of gas turbine units down to 15°C in an absorption lithium-bromide chiller and deep air cooling to 10ºС, in a combined absorption-ejector chiller used an increase in useful power and a reduction in specific fuel consumption. It is shown that, through extremely different thermal and humidity parameters of ambient air, it is cooling at the inlet of gas turbine units for the climatic conditions of Ukraine provides the current increase in useful power by 10...15%, and for the climatic conditions of China – 18…22%. However, it should be noted that deeper air cooling at the inlet of the gas turbine unite to a temperature of 10°C in a combined absorption-ejector chiller compared to its traditional cooling to 15°C in an absorption lithium-bromide chiller provides an increase in useful power for a temperate climate of Ukraine (for example, Yuzhnoukrainsk) by 70...90%, whereas for tropical climatic conditions of China (Shanghai) – by 30...35%.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Портной, Богдан Сергійович. "КОМП’ЮТЕРНЕ МОДЕЛЮВАННЯ ПРОЦЕСІВ ОХОЛОДЖЕННЯ ПОВІТРЯ НА ВХОДІ ГАЗОТУРБІННОЇ УСТАНОВКИ З ВИЗНАЧЕННЯМ ЙОГО РАЦІОНАЛЬНОЇ ШВИДКОСТІ В ПОВІТРООХОЛОДЖУВАЧІ". RADIOELECTRONIC AND COMPUTER SYSTEMS, № 3 (30 жовтня 2018): 29–33. http://dx.doi.org/10.32620/reks.2018.3.04.

Повний текст джерела
Анотація:
It is proposed to determine the rational velocity of air flow through the air coolers of a stepped a waste heat-recovery absorption-ejector chiller utilizing the heat of exhaust gases of a gas turbine unit to cool the air at the inlet, by computer simulation of air processes processing. Whereas the result of air cooling depends on the efficiency of the air coolers at the inlet of the gas turbine unit, it is proposed to determine it as an increase in the specific fuel economy, which consider both the cooling depth (the magnitude of the temperature decrease) of the air and the air resistance of the air cooler, which significantly affects the efficiency of operation cooling devices. On the example of air cooling at the inlet of a gas turbine unit has been analyzed the value of specific fuel economy by cooling the air at the inlet to a temperature of 10 °C in a two-stage absorption-ejector chiller, depending on the rational airflow rate through the cooling units (air coolers). The efficiency of the air coolers at different air flow rates has been analyzed.It is shown that proceeding from the different rate of increment in the specific fuel economy caused by the change in the rational velocity of air flow through the air coolers of chillers, it is necessary to choose a design (rational) the rational velocity of air flow that ensures the achievement of a maximum or close to the maximum increase in the specific fuel economy at relatively high rates increments. In order to determine the established the rational velocity of air flow through the air coolers, which provides the maximum increment of the specific fuel economy, the dependence of the increment of the specific fuel economy on the airflow velocity is analyzed. Based on the results of modeling air cooling processes at the inlet of the gas turbine unit, using software from firms that produce heat exchange equipment, it is proposed to determine the rational velocity of air through the air coolers, which ensures a close maximum specific fuel economy at relatively high rates of its increment
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Shraiber, O. A. "Determination of the optimal conditions of implementing the process of thermochemical recuperation for using the heat of exhaust gases of a gas-turbine plant." Problems of General Energy 2015, no. 3 (October 30, 2015): 36–49. http://dx.doi.org/10.15407/pge2015.03.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Shraiber, O. A., and V. B. Redkin. "Determination of the expedient volume of using the technology of thermochemical recuperation for gas turbine plants of Ukrainian gas-pumping stations." Problems of General Energy 2018, no. 4 (December 21, 2018): 47–50. http://dx.doi.org/10.15407/pge2018.04.047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Міlovanov, V. І., V. M. Yarochenko, and А. А. Yabs. "TECHNOLOGY UTILIZATION OF HEAT EXHAUST GASES GAS TURBINE COMPRESSOR STATION AS ONE METHOD OF IMPROVING THE EFFICIENCY OF COMPRESSOR STATIONS." Key title Zbìrnik naukovih pracʹ Odesʹkoï deržavnoï akademìï tehnìčnogo regulûvannâ ta âkostì -, no. 1(6) (2015): 94–101. http://dx.doi.org/10.32684/2412-5288-2015-1-6-94-101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Арсеньев, В. М., Владимир Валерьевич Мирошниченко та Николай Анатольевич Борисов. "ЕКСЕРГЕТИЧНА ЕФЕКТИВНІСТЬ ТЕХНОГЕННОГО ОХОЛОДЖЕННЯ ЦИКЛОВОГО ПОВІТРЯ ГАЗОТУРБІННОЇ УСТАНОВКИ". Refrigeration Engineering and Technology 51, № 6 (22 грудня 2015). http://dx.doi.org/10.15673/0453-8307.6/2015.50896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії