Зміст
Добірка наукової літератури з теми "Тиск імпульсний"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Тиск імпульсний".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Тиск імпульсний"
Зубков, С., та М. Козій. "Підвищення точності неінвазивного вимірювання артеріального тиску осцилометричним методом". Біомедична інженерія і технологія, № 6 (18 грудня 2021): 147–51. http://dx.doi.org/10.20535/2617-8974.2021.6.247777.
Повний текст джерелаKorsunov, V. A. "Спланхнічний кровообіг, кисневий бюджет та їх зв’язок із вмістом оксиду азоту при сепсисі у дiтей". EMERGENCY MEDICINE, № 1.64 (15 березня 2015): 152–57. http://dx.doi.org/10.22141/2224-0586.1.64.2015.79626.
Повний текст джерелаPodpriatov, S. S., S. Ye Podpryatov, S. G. Gichka, V. G. Hetman, A. V. Makarov, G. S. Marinsky, V. A. Tkachenko та ін. "ПОРІВНЯЛЬНЕ ВИПРОБУВАННЯ ОРГАННОЇ МОДЕЛІ ДЛЯ ДОСЛІДЖЕННЯ ЕЛЕКТРОЗВАРНОГО МІЖКИШКОВОГО АНАСТОМОЗУ В ЛАБОРАТОРНОМУ ЕКСПЕРИМЕНТІ". Здобутки клінічної і експериментальної медицини, № 3 (23 липня 2018): 117–24. http://dx.doi.org/10.11603/1811-2471.2018.v0.i3.9256.
Повний текст джерелаДисертації з теми "Тиск імпульсний"
Щукіна, Людмила Павлівна, Володимир Федорович Болюх, Ігор Сергійович Щукін та Артем Вячеславович Захаров. "Магнітно-імпульсне пресування грубодисперсних глиновмісних порошків". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/22142.
Повний текст джерелаБарилко, О. В., та В. Г. Здоренко. "Безконтактний метод контролю однорідності структури матеріалів". Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/6732.
Повний текст джерелаХудін, М. В. "Удосконалення технічних засобів імпульсно-хвильової дії на нафтогазоносні пласти". Thesis, Івано-Франківський національний технічний університет нафти і газу, 2013. http://elar.nung.edu.ua/handle/123456789/4647.
Повний текст джерелаДиссертация посвящена проблеме усовершенствования и исследования технических средств импульсно-волнового воздействия на нефтегазоносные пласты. В работе проведено исследование современного состояния методов и средств повышения производительности нефтегазовых скважин в целом и технологии импульсно-волнового воздействия на пласт в частности. В диссертационной работе решена научно-техническая задача в области разработки и исследования специального технологического оборудования -разработана новая конструкция технического средства импульсно-волнового воздействия на нефтегазоносные пласты, которое дает возможность сделать управляемым процесс импульсно-волнового воздействия на пласт и повысить производительность нефтегазовых скважин. Описана работа гидравлического генератора в скважине. Основное влияние на продуктивный пласт осуществляет энергия гидродинамических пульсаций жидкости, в связи с чем гидравлический генератор размещается в зоне перфорации. При этом отверстия перфорации снижают звуковой сопротивление конструкции. В результате моделирования процессов, возникающих в гидравлическом генераторе импульсно-волнового воздействия при его работе (акустические, гидродинамические и тепловые процессы), предложено при расчете звукового сопротивления системы «скважина - продуктивный пласт» учитывать наличие отверстий перфорации. Соответствующие изменения внесены в формулу для расчета суммарного звукового сопротивления конструкции. На частоту и амплитуду работы генератора влияет значительное количество факторов, аналитически связать которые между собой достаточно сложно, поэтому исследование рабочих характеристик генератора осуществлено экспериментальным путем с применением теории планирования эксперимента. Разработана экспериментальная установка для исследования рабочих характеристик генератора при изменении геометрических размеров его элементов. Разработана методика проведения исследований генератора непосредственно в трубе и при воздействии на пласт с использованием имитатора пласта. Разработана измерительная схема экспериментальной установки. На экспериментальной установке измерялись: температура рабочей жидкости; акустический отзыв (вибрация) внешней поверхности рабочей камеры, в которой находился рабочий элемент гидравлического генератора; перепад давления на рабочей камере; расход рабочей жидкости; колебания давления жидкости в трубопроводе после рабочей камеры; уровень в емкости для подачи фильтровальной жидкости; электронные весы для взвешивания емкости с фильтровальной жидкостью. Кроме того, во времени снималась общая тепловая картина экспериментальной установки. Для измерения акустического отзыва (вибрации) использовался электретный микрофон цифрового диктофона и пьезомикрофон. Полученные данные с микрофонов, для извлечения полезных данных, обрабатывались с помощью быстрого преобразования Фурье. Спектральные составляющие акустических сигналов от гидравлического генератора импульсно-волнового воздействия имели частоты от 10 Гц до 8 кГц. При этом частоты от 10 до 60 Гц отвечают за частоту опрокидывания клапана, а высокие частоты - это субгармонических составляющие, которые сопровождают процесс опрокидывания. Их амплитуда зависит от имеющихся резонансов в конструкции генератора. Из анализа изменения температуры определена эффективность гидравлического генератора при нагревании жидкости. За нулевой уровень эффективности выбрано изменение температуры при движении жидкости без размещения генератора в трубопроводе. Эффективность работы генератора было видно в течение всего времени его работы, поскольку разница температур постоянно росла. Для оценки гидродинамических пульсаций использовано датчик давления ИДТ-8. Датчик давления работл в комплекте с генератором сигналов (синусоидального типа), усилителем мощности и трансформаторным блоком, который согласовывал входное сопротивление датчика и выходное сопротивление усилителя. Гидродинамические пульсации также на чисто качественном уровне фиксировались двумя пружинными манометрами. При изменении расхода частотный спектр гидродинамических пульсаций генератора составлял от 25 до 100 Гц. В результате исследований были получены типичные графики акустического давления, температуры и гидравлических колебаний при работе генератора, приведены зависимости, характеризующие изменение этих параметров. Получены аналитические зависимости частоты и амплитуды импульсов генератора от физических параметров генератора (длины клапана и веса кривошипа). Полученные расчеты по разработанным аналитическим зависимостям имеют высокую степень корреляции с результатами экспериментов (более 0,85). Усовершенствованная конструкция импульсно-волнового воздействия на нефтегазоносные пласты успешно прошла опытно-промышленные испытания на скважинах Яксманица-33, 8-Старый Самбир, 1-Семакивська и др. как при освоении скважин, так и при интенсификации добычи углеводородов. Приведенные схемы, на которых показано широкие возможности при применении данной технологии: работа на скважинах под давлением, с использованием колонны гибких труб, насосных агрегатов или компрессорных установок. Как показала практика, использование струйных насосов сразу после обработки пласта гидравлическим генератором значительно повышает эффективность проводимых работ. Промышленные испытания разработанного гидравлического генератора подтвердили его эффективность и перспективность широкого внедрения в нефтегазодобывающей практике.
The thesis is devoted to the study and improvement of pulse-wave action devices on the oil and gas saturated layers. Justified the development and new design of hydraulic generator pulse-wave impact on oil and gas saturated layers was proposed. As the result of processes simulation occurring in the generator when it is operating, the dependence of the total sound resistance in generator with the holes on the values of its structural and mechanical parameters was developed. An experimental setup for studying the performance of the generator in case of changing physical parameters of its work items was developed. The method of the directly generator research in the well and when exposed to formation using the layer simulator was developed. The acoustic pressure, temperature and hydraulic vibration during generator operation was obtained, the dependences describing the variation of these parameters. Obtained analytical dependence of the frequency and amplitude of the pulse generator on its physical parameters (length and weight of the valve rod) was obtained. Calculations by the developed analytical dependences have a high correlation degree with the experimental results (more than 0.85). The new design of hydraulic pulse-wave action generator on the oil and gas saturated layers has been successfully pilot-scale tested on wells Yaksmanitsa-33, 8-Staryj Sambir, 1-Semakivska and others as well development and the intensification of the hydrocarbons production.
Гутак, О. І. "Удосконалення технології інтенсифікації видобутку вуглеводнів шляхом різночастотного імпульсно-хвильового впливу на нафтогазонасичені породи". Thesis, Івано-Франківський національний технічний університет нафти і газу, 2013. http://elar.nung.edu.ua/handle/123456789/4449.
Повний текст джерелаДиссертация посвящена проблеме усовершенствования технологии интенсификации добычи углеводородов импульсно-волновыми методами воздействия на нефтегазонасыщенные породы. В работе проведено исследование механизма распространения акустических волн различных частот в насыщенных средах, характерных для месторождений нефти и газа. Получено уравнение разночастотной суперпозиции цилиндрических упругих волн, описано явление образования разностной низкочастотной волны биения и проведена оценка их влияния на продуктивный пласт в зависимости от частот и расстояния между излучателями. Экспериментально подтверждено образование низкочастотной волны вследствие взаимодействия высокочастотных волн диапазона 50 Гц - 20 кГц с разницей в частоте до 5% в условиях насыпной насыщенной модели пласта. Акустические сигналы получали одновременно двумя способами с помощью геофона и сейсмодатчика типа СВ 5 по двухканальной линии и регистрировали на персональном компьютере программой SpectraPLUS. Проведена оценка градиента давления при волновом воздействии, который возникает в призабойной зоне пласта в процессе фильтрации флюида. Нефти многих месторождений характеризуются повышенным содержанием высокомолекулярных парафиновых углеводородов, которые с изменением термобарических условий кристаллизируются в твердую фазу, в результате чего образуются сложные коллоидно-дисперсные системы, которые приобретают вязкопластические свойства. Установлено, что одновременное действие гидродинамического градиента давления и акустического градиента давления, приводит к преодолению предельного напряжения сдвига коллоидно-дисперсных систем, причём, при длительном волновом воздействии частично разрушается их структура и снижается предельное напряжение сдвига. Исследовано характер изменения мениска на границе двух фаз вследствие воздействия упругих колебаний, проведено теоретическую оценку их влияния на динамическое изменение капиллярного давления. Установлено, что влияние упругими колебаниями интенсивностью 0,01 Вт/см2 при фильтрации нефтеводяной смеси в насыпной модели пласта приводит к увеличению фазовой проницаемости для нефти вязкостью 50 мПа•с на 25 %, а после полного обводнения продукции, действие такими колебаниями приводит к дополнительному извлечению остаточной нефти на 5-11%. Теоретическими и экспериментальными исследованиями установлено, что периодическое увеличение и уменьшение давления в пласте, которое возникает вследствие воздействия упругими колебаниями, приводит к дополнительному разгазированию нефти, в том числе при условии полного выделения газа при текущем пластовом давлении. Установлено, что влияние упругими колебаниями на процесс движения жидкости в капилляре приводит к увеличению скорости движения, что даёт основания предполагать аналогичный эффект в пористой среде. Получено зависимости между расходом жидкости через капилляр диаметром 4 мм и частотой упругих колебаний диапазона 22-45 Гц на стенки капилляра для воды и водных растворов КМЦ с вязкостью от 1 до 10 мПа•с. Разработаны технологии разночастотного импульсно-волнового воздействия на нефтегазонасыщенные породы с использованием устройств с несколькими излучателями, в том числе разночастотными, которые позволят дифференцированно обрабатывать ближнюю и отдаленную зоны пласта, достигая при этом дополнительного разгазирования и увеличение фазовой проницаемости для нефти в условиях обводнения пласта. Промышленные испытания разработанных технологий подтвердили их эффективность и перспективность широкого внедрения в нефтегазодобывающих скважинах.
The thesis is devoted to the problem of improvement enhanced hydrocarbons recovery technology using the pulse-wave treatments in the oil and gas saturated rocks. Evaluation study of the different frequencies acoustic waves propagation mechanism in saturated environments typical for oil and gas was presented in the paper. The equation of different frequency interference of cylindrical elastic waves in the reservoir and an assessment of their impact was obtained. The phenomenon of the difference low-frequency waves beating formation and assessed their impact on the productive layer, depending on the frequency and distance between the emitters, was described. The formation of low-frequency waves by the interaction of high-frequency waves in the range of 50 Hz - 20 kHz with a difference in the frequency of 5% in sand packed saturated model was experimentally confirmed. The variation of the meniscus on the two phase border due to the impact of elastic vibrations was investigated. Was determined the effect of elastic vibration treatment with intensity 0.01 W/cm2 at filtering oil-and-water mixture in the sand packed model leads to increasing oil relative permeability at 25% for oil with viscosity of 50 mPa•s, and in case of full watering leads to additional remaining oil recovery at 5-11%. Theoretical and experimental evaluations shows that as a result of elastic vibration treatment the effect of repetitive pressure increasing and decreasing leads to the additional oil degasification, including completely degassing at the current reservoir pressure. Effect of the elastic vibration treatment to the fluid flow process in the capillary leads to the velocity increasing was experimentally founded. It allows suggesting that similar effects take place in porous media. The different frequencies pulse wave treatment technology on oil and gas saturated rocks using devices with several emitters, including different frequencies emitters, that will differentially handle near and remote well bore zone, which allows achieving additional degasification and oii relative permeability increasing in case of watering. Industrial tests of the developed technologies proved their effectiveness and promising wide introduction into the oil and gas wells.
Кісєльов, І. О. "Тepмoгaзoдинaмiчний aнaлiз зaпipнoгo iмпульснoгo ущiльнeння для СO2 туpбoмaшин". Master's thesis, Сумський державний університет, 2018. http://essuir.sumdu.edu.ua/handle/123456789/71737.
Повний текст джерелаКороль, Наталія Валентинівна. "Удосконалення системи управління процесом компенсації зміни обсягу води у замкненому контурі енергоблоку ВВЕР-1000 для умов ВП «Запорізька АЕС»". Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/1635.
Повний текст джерелаUA : Король Н.В. Удосконалення системи управління процесом компенсації зміни обсягу води у замкненому контурі енергоблоку ВВЕР-1000 для умов ВП «Запорізька АЕС». Кваліфікаційна робота для здобуття ступеня вищої освіти магістра за спеціальністю 151 – Автоматизація та комп’ютерно-інтегровані технології, науковий керівник Н.О. Міняйло. Інженерний інститут Запорізького національно університету. Факультет металургії, кафедра автоматизації та комп’ютерно-інтегрованих технологій, 2020. На основі аналізу фізичних процесів розроблено структурно-параметричну схему, на підставі якої створена математична модель, проведено її дослідження на адекватність з метою подальшого синтезу системи керування. Використавши програмний пакет MatLab Simulink в системі і математичну модель, отримано перехідні процеси регулювання тиску у компенсаторі тиску. Розроблена АСУ ТП за допомогою SCADA-системи Trace Mode 6.05. з урахуванням критерій проектування системи компенсації тиску.
EN : Korol N.V. Improvement the control system of process compensation change the volume of water in the closed circuit of the unit VVER-1000 for the conditions of the Zaporizhzhia Nuclear Power Plant. Qualifying work for obtaining a master's degree in higher education by specialty 151 - Automation and computer integrated technologies, scientific supervisor N.A. Minayailo Engineering Institute of Zaporizhzhia State National University. Faculty of Metallurgy, Department of Automation and computer integrated technologies, 2020. Structural-parametric scheme was developed based on the analysis of physical processes, on the basis of which a mathematical model is created а study on adequacy with the aim of further synthesis of the control system Using the software package MatLab Simulink in a system and mathematical model, are obtained transition process of pressure regulation in the pressure compensator. An automatic process control system was developed using SCADA system Trace Mode 6.05 taking into account the design criteria of the pressure compensation system.
RU : Король Н.В. Совершенствование системы управления процессом компенсации изменения объёма воды в замкнутом контуре энергоблока ВВЭР-1000 для условий ОП «Запорожская АЭС». Квалификационная работа для получения степени высшего образования магистра по специальности 151 – Автоматизация и компьютерно-интегрированные технологии, научный руководитель Н.А. Миняйло. Инженерный институт Запорожского национального университета. Факультет металлургии, кафедра автоматизации и компьютерно-интегрированных технологий, 2020. На основе анализа физических процессов разработана структурно-параметрическая схема, на основании которой создана математическая модель, проведено ее исследование на адекватность с целью дальнейшего синтеза системы управления. Использовав программный пакет MatLab Simulink в системе и математическую модель, получены переходные процессы регулирования давления в компенсаторе давления. Разработана АСУ ТП при помощи SCADA-системы Trace Mode 6.05. с учетом критерий проектирования системы компенсации давления.