Добірка наукової літератури з теми "Теплоутилізаційні системи"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Теплоутилізаційні системи".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Теплоутилізаційні системи"

1

Navrodska, R. А. "ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ТЕПЛОУТИЛІЗАЦІЙНИХ ТЕХНОЛОГІЙ ДЛЯ КОТЕЛЬНИХ УСТАНОВОК КОМУНАЛЬНОЇ ТЕПЛОЕНЕРГЕТИКИ". Scientific Bulletin of UNFU 25, № 9 (25 листопада 2015): 225–29. http://dx.doi.org/10.15421/40250935.

Повний текст джерела
Анотація:
Проаналізовано сучасні теплоутилізаційні технології для газоспоживальних котельних установок комунальної теплоенергетики і виявлено шляхи підвищення їхньої ефективності. Запропоновано вдосконалену технологію утилізації теплоти відхідних газів із використанням комбінованої теплоутилізаційної системи, призначеної для нагрівання зворотної тепломережної води і холодної води системи хімічного водоочищення. Досліджено теплову ефективність цієї системи і визначено рівні підвищення коефіцієнта використання теплоти палива КВП котельної установки протягом опалювального періоду.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fialko, N. N., A. I. Stepanova, R. A. Navrodskaya, S. I. Shevchuk та G. A. Gnedash. "Ексергетичні втрати в повітронагрівачі теплоутилізаційної системи котельної установки". Scientific Bulletin of UNFU 29, № 3 (25 квітня 2019): 76–80. http://dx.doi.org/10.15421/40290316.

Повний текст джерела
Анотація:
Однією з причин зниження ефективності теплоутилізаційних систем та їх окремих елементів є втрати ексергетичної потужності. Такі втрати пов'язані з гідродинамічним опором при русі теплоносіїв, з незворотними процесами при теплообміні між теплоносіями, з процесами теплопровідності. Зниження втрат ексергетичної потужності дає змогу підвищити ефективність теплоутилізаційних систем. Це визначає актуальність робіт, присвячених вирішенню зазначеної проблеми. Для розрахунку втрат ексергетичної потужності в теплоутилізаційних системах та їх окремих елементах розроблено комплексну методику, яка поєднує ексергетичні методи з методами, побудованими на розрахунку дисипаторів ексергії. Розроблена методика дає змогу розділити втрати ексергетичної потужності згідно з причинами та зонами їх локалізації і виявити умови, за яких ці втрати будуть мінімальними. Основні етапи методики включають розробку математичної моделі досліджуваних процесів на основі рівняння ексергії, рівнянь балансів ентропії і ексергії, рівняння нерозривності, рівняння для внутрішньої енергії. У межах розробленої математичної моделі отримано диференціальні рівняння ентропії та ексергії і формули для розрахунку дисипаторів ексергії, що характеризують гідродинамічні втрати і втрати ексергетичної потужності внаслідок нерівноважного теплообміну між теплоносіями. Визначено значення дисипаторів ексергії для пластинчастого повітронагрівача теплоутилізаційної системи котельної установки за різних режимів роботи котла. Встановлено внесок кожного виду втрат у сумарні втрати ексергетичної потужності у повітронагрівачі і визначено область максимальних втрат цієї потужності.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fialko, N. M., G. O. Gnedash, R. O. Navrodska, G. O. Presich та S. I. Shevchuk. "Підвищення ефективності комбінованих теплоутилізаційних систем газоспоживальних котельних установок". Scientific Bulletin of UNFU 29, № 6 (27 червня 2019): 79–82. http://dx.doi.org/10.15421/40290616.

Повний текст джерела
Анотація:
Викладено результати досліджень ефективності використання в теплоутилізаційних технологіях газоспоживальних опалювальних котелень удосконалених комбінованих систем утилізації теплоти, призначених для нагрівання води систем теплопостачання та хімічного водоочищення і повітря на горіння. Дослідження виконано для водогрійного котла ТВГ-8 за різних режимів його роботи згідно з тепловим графіком котельні залежно від температури навколишнього середовища в опалювальний період. Визначено в розглянутих умовах для відповідних теплообмінників-теплоутилізаторів такі основні параметри, як: теплопродуктивність, приріст коефіцієнта використання теплоти палива КВТП котла та кількість утвореного в системі конденсату за нормованих значень витрати води на підживлення теплових мереж. За отриманими основними показниками проведено порівняльний аналіз пропонованих систем теплоутилізації та відомих комбінованих систем з нагріванням тільки зворотної тепломережної води та дуттьового повітря. Показано, що доповнення відомої системи додатковим теплообмінником, призначеним для попереднього нагрівання холодної води на хімводоочищення (ХВО), дає змогу шляхом глибшого охолодження вихідних газів котельної установки підвищити її КВТП максимально на 9,4 %, що на 0,5 % більше порівняно з відсутністю нагрівання води на ХВО.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Фіалко, Наталія Михайлівна, Алла Ісаївна Степанова, Раїса Олександрівна Навродська, Георгій Олександрович Гнєдаш та Світлана Іванівна Шевчук. "КОМПЛЕКСНІ МЕТОДИКИ АНАЛІЗУ ЕФЕКТИВНОСТІ ТА ОПТИМІЗАЦІЇ ТЕПЛОУТИЛІЗАЦІЙНИХ СИСТЕМ". Science and Innovation 17, № 4 (9 серпня 2021): 11–18. http://dx.doi.org/10.15407/scine17.04.011.

Повний текст джерела
Анотація:
Вступ. Вирішення загальної проблеми енергозбереження в Україні пов'язано з необхідністю підвищення ефективності енергетичних установок. На сьогодні можливими є дослідження окресленого питання для систем утилізації теплоти відхідних газів паливоспоживальних теплових установок різного призначення з позицій сучасних комплексних підходів.Проблематика. Однією з причин, що гальмує широке використання теплоутилізаційних систем для зазначених енергетичних установок, є низька ефективність цих систем через недосконалість наявних методів їхнього аналізу та обладнання, що застосовується.Мета. Створення комплексних методик аналізу ефективності та оптимізації теплоутилізаційних систем простої структури та їхніх окремих елементів.Матеріали й методи. Використано комплексні підходи на основі методів ексергетичного аналізу, статистичних методів планування експерименту та сучасних методів теплового розрахунку теплообмінного обладнання систем теплоутилізації.Результати. Розроблено методики аналізу ефективності та оптимізації для теплоутилізаційних систем газоспоживальних теплових установок із застосуванням двох способів отримання функціональних залежностей для оптимізації простих теплоутилізаційних систем або їхніх окремих елементів. Наведено приклади використання запропонованих методик для вдосконалення водо- та повітрогрійних теплоутилізаторів у системах утилізації теплоти відхіднихгазів скловарної печі.Висновки. На основі методів ексергетичного аналізу, статистичних методів планування експерименту та сучасних методів теплового розрахунку теплообмінного обладнання систем теплоутилізації розроблено комплексні підходищодо аналізу ефективності та оптимізації теплоутилізаційних систем простої структури та їхніх окремих елементів. Отримані результати вирішення оптимізаційних завдань дозволяють підвищувати ефективність теплоутилізаційних систем газоспоживальних енергетичних установок різного типу і будуть використані при проектуванні цих систем.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Navrodska, R. А. "ЗАПОБІГАННЯ КОНДЕНСАТОУТВОРЕННЮ У ДИМОВИХ ТРУБАХ ЗА ЗНИЖЕННЯ ТЕПЛОВОГО НАВАНТАЖЕННЯ КОТЕЛЕНЬ". Scientific Bulletin of UNFU 25, № 9 (25 листопада 2015): 307–12. http://dx.doi.org/10.15421/40250948.

Повний текст джерела
Анотація:
Проаналізовано тепловологісний стан у димових трубах комунальних котелень у разі застосування сучасних теплоутилізаційних технологій зі системами антикорозійного захисту газовідвідних трактів за умов зменшення відносно проектних теплових навантажень цих котелень. Наведено результати досліджень щодо використання у теплоутилізаційних схемах таких теплових методів запобігання конденсатоутворенню у газовідвідних трактах як: байпасування частини відхідних газів котла повз теплоутилізатор, підсушування охолоджених у теплоутилізаторі газів у поверхневому теплообміннику та теплоізоляція корпусу димової труби. Визначено безпечні для експлуатації димових труб різного типу режими роботи котелень та основні характеристики вказаних систем захисту.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fialko, N. M., A. I. Stepanova, R. O. Navrodskaya та G. O. Sbrodova. "ЕФЕКТИВНІСТЬ ПЛАСТИНЧАТИХ ТЕПЛОУТИЛІЗАТОРІВ ТЕПЛОУТИЛІЗАЦІЙНИХ СИСТЕМ". Scientific Bulletin of UNFU 28, № 2 (29 березня 2018): 115–19. http://dx.doi.org/10.15421/40280221.

Повний текст джерела
Анотація:
Розроблено методику розрахунку втрат ексергетичної потужності у процесах теплопровідності під час передачі теплоти через поперечний переріз пластини газоповітряного пластинчастого теплоутилізатора за граничних умов третього роду. Методику засновано на комплексному підході, що поєднує ексергетичні методи з методами термодинаміки незворотних процесів. Математична модель досліджуваних процесів включає рівняння ексергії, рівняння балансу ексергії та ентропії, рівняння нерозривності трифазної термодинамічної системи при зміні концентрації однієї з фаз, рівняння руху фаз, рівняння енергій, рівняння балансу ентальпій, рівняння Гіббса і рівняння теплопровідності за граничних умов третього роду. Для отримання формул для розрахунку втрат ексергетичної потужності використано локальне диференціальне рівняння балансу ексергії. У цьому рівнянні одна зі складових визначає втрати ексергетичної потужності, зумовлені незворотністю процесів і пов'язані з теплопровідністю, в'язкістю фаз, міжфазним теплообміном і тертям між фазами. На підставі цього рівняння і рішення рівняння теплопровідності за граничних умов третього роду для необмеженої пластини, якою моделювалася пластина газоповітряного пластинчастого теплоутилізатора, отримано формули для розрахунку втрат ексергетичної потужності. Виконано розрахунки загальних втрат ексергетичної потужності в газоповітряному пластинчастому теплоутилізаторі за різних режимів роботи котла і втрат ексергетичної потужності у процесах теплопровідності. Встановлено, що втрати ексергетичної потужності у процесах теплопровідності в газоповітряному пластинчатому теплоутилізаторі становлять 8,6-11,6 % від загальних втрат ексергетичної потужності і залежать від режиму роботи котла.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fialko, N. M., R. O. Navrodska, S. I. Shevchuk та G. O. Presich. "АНАЛІЗ ЕФЕКТИВНОСТІ СИСТЕМ ЗАХИСТУ ГАЗОВІДВІДНИХ ТРАКТІВ КОТЕЛЬНИХ УСТАНОВОК ПРИ ЗАСТОСУВАННІ ТЕПЛОУТИЛІЗАЦІЙНИХ ТЕХНОЛОГІЙ". Industrial Heat Engineering 38, № 1 (20 лютого 2016): 47–53. http://dx.doi.org/10.31472/ihe.1.2016.06.

Повний текст джерела
Анотація:
Проведено аналіз ефективності застосування ряду теплових методів відвернення конденсатоутворення у газовідвідних трактах котельних установок з димовими трубами різного типу при використанні теплоутилізаційних технологій з глибоким охолодженням відхідних газів.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fialko, N. M., R. O. Navrodska, S. I. Shevchuk, G. O. Gnedash та O. Yu Glushak. "Зменшення вологовмісту димових газів у конденсаційних теплоутилізаторах котельних установок". Scientific Bulletin of UNFU 29, № 8 (31 жовтня 2019): 116–19. http://dx.doi.org/10.36930/40290821.

Повний текст джерела
Анотація:
Викладено результати розрахункових досліджень щодо тепловологісного стану відхідних димових газів газоспоживальних котельних установок під час використання сучасних теплоутилізаційних технологій з глибоким охолодженням газів. Застосування зазначених технологій розглянуто як захід, що відповідає осушуванню димових газів внаслідок теплоутилізації завдяки зменшенню їхнього вологовмісту (абсолютної вологості), а відтак і зниженню точки роси водяної пари, що міститься в газах. Наведено дані досліджень стосовно зменшення вологовмісту димових газів у теплоутилізаційних системах котельних установок під час виробництва теплової енергії для опалення, технологічних потреб, потреб систем гарячого водопостачання тощо. Визначено рівні зменшення цього вологовмісту в теплоутилізаційному устаткуванні зазначених систем. У цьому устаткуванні, в так названих конденсаційних теплоутилізаторах, реалізується глибоке охолодження димових газів під час конденсації з них водяної пари. Встановлено залежності від режимних параметрів котлоагрегатів та теплоутилізаційного устаткування відносної величини β, яка характеризує рівень осушування димових газів у цьому устаткуванні і є відношенням абсолютної величини зменшення вологовмісту до його початкового значення. Показано, що за умов глибокої утилізації теплоти димових газів опалювальних котелень, зокрема внаслідок нагрівання зворотної води теплових мереж, абсолютна вологість газів за невисоких відносних навантажень котла може зменшуватися у 3-4 рази, що відповідає зниженню їхньої точки роси від 58-54 ºС до 35 ºС. Показано також, що під час використання утилізованої теплоти для технологічних потреб та гарячого водопостачання рівень зменшення абсолютної вологості димових газів істотно підвищується завдяки зниженню температури нагріваної в теплоутилізаторі води tв. Так, під час нагрівання холодної води з початковою температурою tв < 5 ºС зневоднення димових газів є досить значним і може досягати 90 %, що відповідає зниженню точки роси газів до 22 ºС.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fialko, N. M., R. O. Navrodska, S. I. Shevchuk, G. O. Gnedash та G. O. Sbrodova. "Застосування повітряного методу за¬побігання конденсатоутворенню в газовідвідних трактах котелень". Scientific Bulletin of UNFU 28, № 10 (29 листопада 2018): 76–80. http://dx.doi.org/10.15421/40281016.

Повний текст джерела
Анотація:
Викладено результати дослідження ефективності використання в теплоутилізаційних технологіях газоспоживальних опалювальних та промислових котелень повітряного методу відвернення конденсатоутворення у газовідвідних трактах. Розглянуто котельні установки з глибоким охолодженням відхідних газів, оснащені водогрійними теплоутилізаторами, призначеними для нагрівання зворотної тепломережної води та води іншого призначення. Досліджено за різних режимів котлів тепловологісний стан у димових трубах різного типу під час використання для зниження вологості та підвищення температури вихідних газів сухого та нагрітого повітря від повітронагрівача котла. Визначено в розглянутих умовах основні параметри систем антикорозійного захисту димових труб, що забезпечують відвернення в них конденсатоутворення за дотримання нормативних режимів експлуатації цих труб. За значеннями одержаних параметрів виконано порівняльний аналіз ефективності застосування розглянутого методу антикорозійного захисту газовідвідних трактів для різних теплоутилізаційних установок. Показано, що використання в теплоутилізаційних технологіях котлів методу підмішування нагрітого повітря забезпечує відвернення конденсатоутворення в димових трубах з різною часткою цього повітря у вихідних газах. Величина цієї частки залежить від режиму роботи котла, призначення утилізованої теплоти, характеристики димової труби тощо.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

FIALKO, N., A. STEPANOVA, and R. NAVRODSKAYA. "Efficiency of combined heat-utilization systems of boiler installations (part 2)." Energy and automation 2018, no. 3 (July 23, 2018): 34–48. http://dx.doi.org/10.31548/energiya2018.03.034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Теплоутилізаційні системи"

1

Єфімов, Олександр В'ячеславович, та Олександр Леонідович Гончаренко. "Розробка математичної моделі теплоутилізаційної системи "котел – обертовий повітропідігрівач – конденсаційний теплообмінний апарат"". Thesis, НТУ "ХПІ", 2011. http://repository.kpi.kharkov.ua/handle/KhPI-Press/5405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Єфімов, Олександр В'ячеславович, та Олександр Леонідович Гончаренко. "Метод розрахунку вологовмістів димових газів при конденсації водяної пари з них в теплоутилізаторах". Thesis, НТУ "ХПІ", 2013. http://repository.kpi.kharkov.ua/handle/KhPI-Press/5414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Єфімов, Олександр В'ячеславович, Олександр Леонідович Гончаренко, Олег Вікторович Касілов, Леонід Васильович Гончаренко та Тетяна Олексіївна Єсипенко. "Дослідження впливу параметрів теплоносіїв на характеристики теплоутилізаційної системи". Thesis, НТУ "ХПІ", 2014. http://repository.kpi.kharkov.ua/handle/KhPI-Press/20505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Єфімов, Олександр В'ячеславович, та Олександр Леонідович Гончаренко. "Розробка термосифонного теплообмінника для використання у теплоутилізаційній системі". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/46445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Єфімов, Олександр В'ячеславович, Олександр Леонідович Гончаренко, Олег Вікторович Касілов та Леонід Васильович Гончаренко. "Розрахункове дослідження характеристик системи глибокої утилізації теплоти відхідних газів котлів при її експлуатації на часткових навантаженнях". Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/20530.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії