Зміст
Добірка наукової літератури з теми "Теплота системи охолодження"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Теплота системи охолодження".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Теплота системи охолодження"
Бошкова, І. Л., А. С. Тітлов, Н. В. Волгушева, Н. О. Колесніченко та Т. А. Сагала. "Модернізація системи охолодження магнетронів малої потужності". Refrigeration Engineering and Technology 55, № 3 (1 липня 2019): 158–64. http://dx.doi.org/10.15673/ret.v55i3.1573.
Повний текст джерелаДем'яненко, Ю. І., О. В. Дорошенко та М. І. Гоголь. "Система кондиціювання повітря на основі випарного охолодження і відкритого абсорбційного циклу". Refrigeration Engineering and Technology 56, № 1-2 (4 липня 2020): 11–18. http://dx.doi.org/10.15673/ret.v56i1-2.1824.
Повний текст джерелаТітлов, О. С., Є. О. Осадчук та О. П. Цой. "Розробка автономних систем охолодження з урахуванням відновлювальних і непридатних джерел теплової енергії". Refrigeration Engineering and Technology 55, № 2 (30 квітня 2019): 84–96. http://dx.doi.org/10.15673/ret.v55i2.1357.
Повний текст джерелаFialko, N. M., G. O. Gnedash, R. O. Navrodska, G. O. Presich та S. I. Shevchuk. "Підвищення ефективності комбінованих теплоутилізаційних систем газоспоживальних котельних установок". Scientific Bulletin of UNFU 29, № 6 (27 червня 2019): 79–82. http://dx.doi.org/10.15421/40290616.
Повний текст джерелаБошкова, І. Л., Н. В. Волгушева, І. І. Мукмінов, О. С. Бондаренко та О. А. Паскаль. "Вивчення перспектив застосування цеолітів для теплових акумуляторів". Refrigeration Engineering and Technology 57, № 3 (15 жовтня 2021): 196–205. http://dx.doi.org/10.15673/ret.v57i3.2171.
Повний текст джерелаТрушляков, Е. І., М. І. Радченко, А. А. Зубарєв та В. С. Ткаченко. "Підхід до визначення складових теплового навантаження систем кондиціонування припливного повітря". Refrigeration Engineering and Technology 54, № 5 (30 жовтня 2018): 17–22. http://dx.doi.org/10.15673/ret.v54i5.1245.
Повний текст джерелаОсадчук, Є. О., та О. С. Тітлов. "Пошук енергоефективних режимів роботи систем отримання води з атмосферного повітря на базі абсорбційних водоаміачних термотрансформаторів тепла і сонячних колекторів". Refrigeration Engineering and Technology 56, № 3-4 (11 січня 2021): 78–91. http://dx.doi.org/10.15673/ret.v56i3-4.1951.
Повний текст джерелаFialko, N. M., R. O. Navrodska, S. I. Shevchuk, G. O. Gnedash та O. Yu Glushak. "Зменшення вологовмісту димових газів у конденсаційних теплоутилізаторах котельних установок". Scientific Bulletin of UNFU 29, № 8 (31 жовтня 2019): 116–19. http://dx.doi.org/10.36930/40290821.
Повний текст джерелаBordakov, M. "ОСОБЛИВОСТІ КОНСТРУКЦІЇ ЧАСТИНИ СИЛОВОЇ ЕЛЕКТРОНІКИ В СОНЯЧНИХ МЕРЕЖЕВИХ ІНВЕРТОРАХ". Vidnovluvana energetika, № 1(60) (30 березня 2020): 23–28. http://dx.doi.org/10.36296/1819-8058.2020.1(60).23-28.
Повний текст джерелаKuzyayev, Ivan, Olexander Mitrokhin та Igor Kazivirov. "МОДЕЛЮВАННЯ ПРОЦЕСІВ ОХОЛОДЖЕННЯ ПОЛІМЕРНИХ ЛИСТІВ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 3(21) (2020): 60–71. http://dx.doi.org/10.25140/2411-5363-2020-3(21)-60-71.
Повний текст джерелаДисертації з теми "Теплота системи охолодження"
Хамза, Хамза Алі Адел. "Вибір та обґрунтування параметрів дизель-електричної станції з системою утилізації теплоти". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/31934.
Повний текст джерелаDissertation for the degree of candidate of technical sciences in specialty 05.05.03 – engines and power plants. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2017. The dissertation is devoted to the choice and substantiation of parameters of a diesel power plant with heat recovery system of recycling the secondary heat from diesel engine using the Rankin cycle, which uses the heat of exhaust gases and cooling water systems. As a result of the analysis of the features of a promising power plant with a Hyundai 25/33 engine for the production of electric power at a plant in Iraq, a technological scheme of a comprehensive system for recycling diesel fuel from an electric power station with the additional generation of electricity, heat for heating heavy fuel, condensing technical water from exhaust gases. As a working fluid in the Rankin cycle, it is advisable to use the hot water from the engine cooling system. Using the developed mathematical model of the distillation circuit of the diesel power plant, the design-experimental study of the influence of the ambient temperature on the indicators of the efficiency of heat recovery was performed. When the ambient temperature changes from 0 ° C to 40 ° C, the amount of electric energy generated by the Rankin cycle for the Hyundai H25 / 33 engine increases to 10%. With a single cogeneration unit with a Hyundai H25 / 33 engine and a recycling complex developed, it is possible to get up to 2300 kg of water vapor condensate per day, which is very valuable in Iraq. Based on the results of the study, two variants of the technological scheme (projects A and B) were developed for the modernization of Hyundai diesel power plants. The feasibility study for the NPV method has shown that after the full recovery equipment is put into operation, the maximum achievable profit will be about 1 406 219 $ /year.
Хамза, Хамза Алі Адел. "Вибір та обґрунтування параметрів дизель-електричної станції з системою утилізації теплоти". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/31663.
Повний текст джерелаDissertation for the degree of candidate of technical sciences in specialty 05.05.03 – engines and power plants. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2017. The dissertation is devoted to the choice and substantiation of parameters of a diesel power plant with heat recovery system of recycling the secondary heat from diesel engine using the Rankin cycle, which uses the heat of exhaust gases and cooling water systems. As a result of the analysis of the features of a promising power plant with a Hyundai 25/33 engine for the production of electric power at a plant in Iraq, a technological scheme of a comprehensive system for recycling diesel fuel from an electric power station with the additional generation of electricity, heat for heating heavy fuel, condensing technical water from exhaust gases. As a working fluid in the Rankin cycle, it is advisable to use the hot water from the engine cooling system. Using the developed mathematical model of the distillation circuit of the diesel power plant, the design-experimental study of the influence of the ambient temperature on the indicators of the efficiency of heat recovery was performed. When the ambient temperature changes from 0 ° C to 40 ° C, the amount of electric energy generated by the Rankin cycle for the Hyundai H25 / 33 engine increases to 10%. With a single cogeneration unit with a Hyundai H25 / 33 engine and a recycling complex developed, it is possible to get up to 2300 kg of water vapor condensate per day, which is very valuable in Iraq. Based on the results of the study, two variants of the technological scheme (projects A and B) were developed for the modernization of Hyundai diesel power plants. The feasibility study for the NPV method has shown that after the full recovery equipment is put into operation, the maximum achievable profit will be about 1 406 219 $ /year.
Hamza, Hamza Ali Adel. "Selection and justification the parameters of diesel power plant with heat recovery system." Thesis, NTU "KhPI", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/31664.
Повний текст джерелаДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.03 – двигуни та енергетичні установки. – Національний технічний університет "Харківський політехнічний інститут". – Харків, 2017. Дисертація присвячена вибору і обґрунтуванню параметрів дизель-електричної станції з системою утилізації вторинної теплоти дизеля з використанням циклу Ренкіна, що використовує теплоту відпрацьованих газів та системи охолодження. В результаті аналізу особливостей перспективної енергетичної установки з двигуном Hyundai 25/33 для виробництва електричної енергії на заводі в Іраку розроблена технологічна схема комплексної системи утилізації вторинної теплоти дизель-електричної станції з додатковим отриманням електроенергії, теплоти для підігріву важкого палива, конденсації технічної води з відпрацьованих газів двигуна. Для утилізації вторинної теплоти двигуна Hyundai H25/33 запропоновано утилізаційний контур установки, який працює за органічним циклом Ренкіна (ОЦР). В якості робочого тіла в циклі Ренкіна доцільно використовувати воду системи охолодження двигуна. З використанням розробленої математичної моделі утилізаційного контуру дизель-електростанції виконане розрахунково-експериментальне дослідження впливу температури навколишнього середовища на показники ефективності утилізаційного контуру. При зміні температури навколишнього середовища від 0 ° С до 40 ° С кількість електроенергії, виробленої за циклом Ренкіна для двигуна Hyundai H25/33 збільшується до 10%. При роботі однієї когенераційної установки з двигуном Hyundai H25/33 та розробленим утилізаційним комплексом можна отримати на добу до 2300 кг конденсату водяної пари, що є дуже цінною в Іраку. На основі результатів дослідження було розроблено два варіанта технологічної схеми (проекти "А" та "Б") модернізації дизельних електростанцій компанії Hyundai Heavy Industries. Виконана техніко-економічна оцінка проектів за метод NPV показала, що після того, як обладнання утилізаційного контуру в повному обсязі буде введено у експлуатацію, максимально досяжний прибуток складе близько 1 406 219 дол. США/рік.
Сікорака, Р. В., та Анатолій Костянтинович Бабіченко. "Адаптивна система управління процесом резервування холодильних систем блоку вторинної конденсації виробництва аміаку". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40128.
Повний текст джерелаНаумова, Альона Миколаївна. "Теплопередаючі характеристики пульсаційних капілярних теплових труб, призначених для малогабаритних систем охолодження". Thesis, НТУУ "КПІ", 2016. https://ela.kpi.ua/handle/123456789/14940.
Повний текст джерелаThe dissertation is dedicated to the heat transfer characteristics of pulsating capillary heat pipes (PHP) depending on the regime and operational parameters. The experiments were conducted with glass and copper PHP with the internal diameter, respectively, 3,8mm and 1mm; number of turns 4 and 7. The water was used as a heat carrier; the filling ratio was approximately 50% of the internal volume. Cooling of the glass PHP was carried out by free air convection, and cooling of the copper one was carried out by forced convection of the liquid with different values of temperature and flow rate. The inclination angle of the copper PHP varied from -90° to + 90° in increments of 45 °. The PHP operation can be conditionally divided into two modes of heat transfer that are: convection-conductive mode that corresponds to small values of input heat power and pulsation mode that corresponds to middle and high of input heat power and to the heat carrier boiling. The heat flux called transient takes place at the transition from one mode of heat transfer to another. As a result of experimental studies the temperature of the PHP heating, transport, and condensation areas as well as thermal resistance and heat transfer coefficients are presented depending on the input heat flux and parameters of the cooling fluid. The dependence of the PHP heat transfer characteristics on external mechanical vibrations and PHP orientation in space was researched. The simplified semi-empirical formula for transient heat flux calculating is obtained. Given dissertation also presents a constructional calculation of the PHP number of loops when manufactured depending on the geometry of the capillary tube, and the lengths of the heater and the condenser. On the basis of the pulsation heat transfer mechanism some new heat transfer devices were designed, such as pulsating thermosyphon radiator with PHP. Comparing of the PHP with other cooling systems has shown that it is most effective for rejection of the heat fluxes over 6 W/cm2.
Диссертация посвящена исследованию теплопередающих характеристик пульсационных капиллярных тепловых труб (ПТТ) в зависимости от режимных и эксплуатационных параметров. Исследования проводились со стеклянной и медной ПТТ с внутренним диаметром, соответственно, 3,8мм и 1мм; количество петель 4 и 7. Теплоносителем служила вода с коэффициентом заполнения примерно 50% от внутреннего объема. Охлаждение стеклянной ПТТ осуществлялось за счет свободной конвекции воздуха, медной – за счет принудительной конвекции жидкости с разными значениями температуры и расхода. Угол наклона медной ПТТ к горизонту изменялся от -90° до +90° с шагом 45°. Работа ПТТ условно разделена на два режима передачи тепла: конвективно-кондуктивный, соответствующий малым значениям подведенной тепловой мощности, и пульсационный, соответствующий средним и высоким значениям подведенной тепловой мощности и началу кипения теплоносителя. Величина теплового по- тока, при котором происходит переход от одного режима передачи тепла к другому, называется переходным QПЕРЕХ. В результате экспериментальных исследований представлены зависимости температур в зонах нагрева (ЗН), транспорта (ЗТ) и конденсации (ЗК) ПТТ от времени и подведенного теплового потока. Показано влияние параметров охлаждающей жидкости – расхода и температуры – на величину QПЕРЕХ. Для медной ПТТ стабильный пульсационный режим теплопередачи устанавливается при 30-50 Вт в зависимости от параметров эксперимента. Величина термического сопротивления ПТТ различается только в области конвективно-кондуктивного режима теплопередачи и достигает значений 4-5 °С/Вт, после начала кипения эта цифра снижается на порядок и составляет примерно 0,3-0,6 °С/Вт. Влияние режима теплопередачи сказывается и на величину средних коэффициентов теплоотдачи в ЗН и ЗК ПТТ. Если для конвективно-кондуктивного режима теплопередачи средние коэффициенты теплоотдачи для ЗН составляют 400-450 Вт/(м2·К), а для ЗК – 200-250 Вт/(м2·К), то для пульсационного режима передачи тепла в ПТТ средние коэффициенты теплоотдачи в ЗН достигают 3,5-4 кВт/(м2·К), а в ЗК – 1,8 кВт/(м2·К), т.е. почти в 9 раз больше. Впервые исследована зависимость теплопередающих характеристик ПТТ от внешних механических колебаний. Эксперименты показали, что вибрации практически не оказывают влияния на величину термического сопротивления, однако способствуют тому, что QПЕРЕХ наступает при меньших значениях подведенной мощности. Например, если без вибраций QПЕРЕХ = 45-50 Вт, то для частоты 10 Гц это значение снижается до 40 Вт, а для частоты порядка 40 Гц – до 20-25 Вт. Приведена физическая модель процессов, возникающих в ЗН в момент начала кипения теплоносителя. На основе теплового баланса построена математическая модель, учитывающая зарождение, рост и дальнейший отрыв парового пузырька в ЗН. В результате решения математической модели получена упрощенная полуэмпирическая формула для расчета QПЕРЕХ. Расчетные значения величины QПЕРЕХ превышают экспериментальные данные в среднем на 21%, что не уменьшает работоспособности формулы. В работе представлен конструктивный расчет количества петель ПТТ при её изготовлении в зависимости от геометрии капиллярной трубки, а также длин ЗН и ЗК. Приведена методика инженерного расчета ПТТ. Зная максимальную температуру и геометрические параметры теплонагруженного элемента, а также отводимую мощность и условия охлаждения, можно рассчитать среднюю температуру и термическое сопротивление ПТТ. На основе пульсационного механизма передачи тепла разработаны новые конструкции теплопередающих устройств: пульсационный термосифон и радиатор с ПТТ.
Кошельнік, Олександр Вадимович, та Євген Валерійович Хавін. "Водневий енергоперетворювальний комплекс з використанням пари систем випарного охолодження доменних печей". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/46438.
Повний текст джерелаРадченко, А. М., Є. І. Трушляков, Б. С. Портной, С. Г. Фордуй, С. А. Кантор, A. M. Radchenko, E. I. Trushliakov, B. S. Portnoi, S. G. Forduy та S. A. Kantor. "Проектне навантаження градирень систем охолодження відповідно до поточних кліматичних умов". Thesis, 2019. http://eir.nuos.edu.ua/xmlui/handle/123456789/4329.
Повний текст джерелаАнотація. Розглянуто двоступеневе охолодження повітря із застосуванням двоступінчастої тепловикористовуючої абсорбційно-ежекторної холодильної машини комбінованого типу, до складу якої входять абсорбційна бромистолітієва та хладонова ежекторна холодильні машини як ступені трансформації скидної теплоти в холод. За результатами моделювання роботи охолоджувального комплексу визначено раціональний розподіл проектних теплових навантажень на абсорбційний та ежекторний ступені тепловикористовуючої холодильної машини комбінованого типу, що забезпечує скорочення теплового навантаження на градирні. Показано, що завдяки такому підходу до визначення раціонального теплового навантаження на градирні системи оборотного охолодження, який полягає в урахуванні перерозподілу теплового навантаження між абсорбційним бромистолітієвим і хладоновим ежекторним ступенями охолодження з різною ефективністю трансформації скидної теплоти (різними тепловими коефіцієнтами) відповідно до поточних кліматичних умов експлуатації, можна звести до мінімуму кількість градирень відведення теплоти від холодильних машин з відповідним скороченням капітальних витрат на комплекс охолодження повітря в цілому.
Abstract. Two-stage air cooling is considered using a two-stage combined type waste heat recovery chiller, which includes absorption lithium-bromide and refrigerant ejector chillers as steps to convert waste heat into cold. Based on the results of modeling the operation of the cooling complex a rational distribution of the project heat loads on the absorption and ejector stages of a combined type waste heat recovery chiller that provides reduce heat load on cooling towers. It is shown that due to this approach to determining the rational heat load on the cooling towers of the circulating cooling system whith taking into account the redistribution of heat load between the absorption lithiumbromide and refrigerant ejector cooling stages with different efficiency and transformation of waste heat (different heat coefficients) in accordance with current climate conditions, it is possible to minimize the number of cooling towers for the circulating cooling system for chillers with a corresponding reduction in capital expenditures on the cooling complex as a whole.
Аннотация. Рассмотрено двухступенчатое охлаждение воздуха с применением двухступенчатой теплоиспользующей абсорбционно-эжекторной холодильной машины комбинированного типа, в состав которой входят абсорбционная бромистолитиевая и хладоновая эжекторная холодильные машины как ступени трансформации сбросной теплоты в холод. По результатам моделирования работы охладительного комплекса определено рациональное распределение проектных тепловых нагрузок на абсорбционную и эжекторную ступени теплоиспользующей холодильной машины комбинированного типа, которое обеспечивает сокращения тепловой нагрузки на градирни. Показано, что благодаря такому подходу к определению рациональной тепловой нагрузки на градирни системы оборотного охлаждения, который состоит в учете перераспределения тепловой нагрузки между абсорбционной бромистолитиевой и хладоновой эжекторной ступенями охлаждения с разной эффективностью трансформации сбросной теплоты (разными тепловыми коэффициентами) в соответствии с текущими климатическими условиями эксплуатации, можно свести к минимуму количество градирен отведения теплоты от холодильных машин с соответствующим сокращением