Статті в журналах з теми "Теорія зображень"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Теорія зображень.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-43 статей у журналах для дослідження на тему "Теорія зображень".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Gorokhovatskyi, V., A. Vasylchenko, K. Manko та R. Ponomarenko. "ДОСЛІДЖЕННЯ МОДИФІКАЦІЙ МЕТОДУ ВСТАНОВЛЕННЯ РЕЛЕВАНТНОСТІ ЗОБРАЖЕНЬ ОБ’ЄКТІВ ЗА ОПИСАМИ У ВИГЛЯДІ МНОЖИНИ ДЕСКРИПТОРІВ КЛЮЧОВИХ ТОЧОК". Системи управління, навігації та зв’язку. Збірник наукових праць 5, № 51 (30 жовтня 2018): 74–78. http://dx.doi.org/10.26906/sunz.2018.5.074.

Повний текст джерела
Анотація:
Предметом досліджень статті є моделі для встановлення ступеня релевантності зображень у просторі дескрипторів ключових точок зображень для реалізації структурних методів розпізнавання зорових образів у системах комп’ютерного зору. Метою є проведення експериментального дослідження ефективних за параметром швидкодії модифікацій способів встановлення подібності описів у просторі дескрипторів ключових точок на підставі апарату аналізу бітових даних. Завдання: розроблення математичних та програмних моделей оброблення даних при обчисленні подібності структурних описів, вивчення властивостей та особливостей застосування цих моделей, оцінювання ефективності за результатами оброблення конкретних зображень. Застосовуваними методами є: детектор BRISK для формування дескрипторів ключових точок, інтелектуальний аналіз даних, метод кластеризації к-середніх, методи побітового оброблення та підрахунку частоти входження даних, теорія хешування бітових даних, програмне моделювання. Отримані такі результати. Методи класифікації зображень з використанням подібності описів у просторі дескрипторів ключових точок отримують подальший розвиток та застосування на підставі впровадження апарату аналізу бітових даних. Кластерне подання описів не тільки скорочує час оброблення, але й показує чутливість модифікації методу до незначних особливостей зображення і його можливість широкого застосування у системах комп’ютерного зору. Хешування опису без втрати даних суттєво прискорює (у експерименті у сотні разів) процес обчислення ступеня релевантності описів. Вибрана хеш-функція може впливати на результат і сприяти покращенню рівня розрізнення зображень. Побудова узагальненого опису у вигляді спільного дескриптора значно скорочує час обчислень, при цьому виникає потреба у попередньому обробленні опису з метою формування скороченого опису із списку значущих дескрипторів. Висновки. Наукова новизна дослідження полягає в удосконаленні методу структурного розпізнавання зображень на основі опису як множини дескрипторів ключових точок шляхом застосування апарату кластеризації, виявлення узагальнених властивостей та хешування даних для визначення модифікованих мір релевантності аналізованих та еталонних описів. Практична значущість роботи – досягнення суттєвого рівня підвищення швидкодії обчислення релевантності зображень, підтвердження результативності запропонованих модифікацій на прикладах зображень, отримання прикладних програмних моделей для дослідження та впровадження методів класифікації у системах комп’ютерного зору.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Makoviechuk, O., I. Ruban та G. Hudov. "ВИКОРИСТАННЯ ГЕНЕТИЧНИХ АЛГОРИТМІВ ДЛЯ ЗНАХОДЖЕННЯ ІНВЕРСНИХ ПСЕВДОВИПАДКОВИХ БЛОЧНИХ ПЕРЕСТАНОВОК". Системи управління, навігації та зв’язку. Збірник наукових праць 4, № 56 (11 вересня 2019): 72–81. http://dx.doi.org/10.26906/sunz.2019.4.072.

Повний текст джерела
Анотація:
Предметом вивчення в статті є метод знаходження інверсних псевдовипадкових блочних перестановок пікселів у зображенні. Метою є розробка "сліпого"методу знаходження інверсних псевдовипадкових блочних перестановок за допомогою генетичних алгоритмів. Завдання: провести аналіз факторів, що впливають на інверсні псевдовипадкові блочні перестановки на зображенні, розробити метод кодування перестановок в генетичних алгоритмах, обґрунтувати вибір цільової функції для оптимізації за допомогою генетичних алгоритмів. Використовуваними методами є: методи цифрової обробки зображень, теорії ймовірності, математичної статистики, криптографії та захисту інформації, математичний апарат теорії матриць. Отримані такі результати. Проведено аналіз факторів, що впливають на інверсні псевдовипадкові блочні перестановки на зображенні. Визначено фактори, що впливають на максимальний розмір блоку, при якому ще можливе знаходження інверсної перестановки. Розроблено метод знаходження інверсних псевдовипадкових блочних перестановок пікселів у пермутованому зображенні за допомогою генетичних алгоритмів. Висновки. Наукова новизна отриманих результатів полягає в наступному. Встановлено, що знаходження інверсних перестановок можливе лише при умові, що розмір блоку є менший за радіус кореляції зображення. Запропоновано ефективний спосіб кодування перестановок, при якому стандартні оператори генетичних алгоритмів будуть породжувати нові і тільки допустимі перестановки. Запропоновано у якості цільової функції використовувати суму квадратів градієнтів. Показано, що дана цільова функція має глобальний мінімум для коректної перестановки, що дозволяє знаходити інверсні блочні перестановки "всліпу" без додаткової апріорної інформації.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khudov, H., O. Makoveichuk, I. Khizhnyak, S. Berezina та Yu Solomonenko. "МЕТОД БАГАТОМАСШТАБНОГО ОБРОБЛЕННЯ ЗОБРАЖЕНЬ З БОРТОВИХ СИСТЕМ ОПТИКО-ЕЛЕКТРОННОГО СПОСТЕРЕЖЕННЯ ДЛЯ ВИЗНАЧЕННЯ ЕЛЕМЕНТІВ МІСЬКОЇ ІНФРАСТРУКТУРИ". Системи управління, навігації та зв’язку. Збірник наукових праць 3, № 55 (21 червня 2019): 3–7. http://dx.doi.org/10.26906/sunz.2019.3.003.

Повний текст джерела
Анотація:
Предметом вивчення в статті є метод багатомасштабного оброблення зображень з бортових систем оптикоелектронного спостереження для визначення елементів міської інфраструктури. Метою є розробка методу багатомасштабного оброблення зображень з бортових систем оптико-електронного спостереження для визначення елементів міської інфраструктури. Завдання: аналіз відомих методів оброблення багатомасштабної послідовності зображень, розробка методу багатомасштабного оброблення зображень з бортових систем оптико-електронного спостереження для визначення елементів міської інфраструктури, проведення оброблення зображення з бортової системи оптико-електронного спостереження. Використовуваними методами є: методи теорії імовірності, математичної статистики, методи оптимізації, математичного моделювання та цифрової обробки зображень, методи математичної логіки. Отримані такі результати. Встановлено, що відомі методи оброблення багатомасштабної послідовності зображень не можуть бути напряму застосовані до багатомасштабного оброблення зображень з бортових систем оптико-електронного спостереження. Запропоновано метод багатомасштабного оброблення зображень з бортових систем оптико-електронного спостереження для визначення елементів міської інфраструктури. В основі методу покладений двоетапний метод виділення об’єктів міської забудови на зображеннях бортових систем оптикоелектронного спостереження з використанням перетворення Хафа. Проведено оброблення зображення з бортової системи оптико-електронного спостереження методом багатомасштабного оброблення зображень з бортових систем оптико-електронного спостереження для визначення елементів міської інфраструктури. Висновки. Наукова новизна отриманих результатів полягає в наступному. Запропоновано метод багатомасштабного оброблення зображень з бортових систем оптико-електронного спостереження для визначення елементів міської інфраструктури. На відміну від відомих, передбачається використання двоетапного методу визначення елементів міської інфраструктури на зображеннях з різним значення масштабного коефіцієнта, перемасштабування оброблених зображень з різним значенням масштабного коефіцієнта до вихідного розміру та розрахунок зображення-фільтру, а результуюче оброблене зображення є попіксельним добутком вихідного зображення та зображення-фільтру.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khizhnyak, I., A. Makoveychuk та H. Khudov. "ІНФОРМАЦІЙНА РОЙОВА ТЕХНОЛОГІЯ ТЕМАТИЧНОГО СЕГМЕНТУВАННЯ ЗОБРАЖЕНЬ, ЩО ОТРИМАНІ З БОРТОВИХ СИСТЕМ ОПТИКО-ЕЛЕКТРОННОГО СПОСТЕРЕЖЕННЯ". Системи управління, навігації та зв’язку. Збірник наукових праць 3, № 49 (3 липня 2018): 26–32. http://dx.doi.org/10.26906/sunz.2018.3.026.

Повний текст джерела
Анотація:
Предметом вивчення в статті є інформаційні ройова технологія тематичного сегментування зображень, що отримані з бортових систем оптико-електронного спостереження. Метою є розробка інформаційної технології сегментування, в основу якої покладений ройовий метод тематичного сегментування оптико-електронного зображення. Завдання: аналіз рівнів технології дешифрування оптико-електронного зображення, аналіз основних етапів обробки оптико-електронного зображення та рівнів локалізації об’єктів інтересу на етапі розпізнавання, аналіз основних вимог до тематичних сегментів зображення, аналіз відомих методів та інформаційних технологій сегментування зображень, що отримані з бортових систем спостереження, обґрунтування цільової функції тематичного сегментування та вибору оптимального значення порогу сегментування, розробка інформаційної ройової технології тематичного сегментування зображень, що отримані з бортової системи оптико-електронного спостереження, наведення тестового прикладу тематичного сегментування кольорового зображення. Використовуваними методами є: методи теорії імовірності, математичної статистики, ройового інтелекту, кластерізації даних, еволюційних обчислень, методи оптимізації, математичного моделювання та цифрової обробки зображень. Отримані такі результати. Встановлено, що основним етапом обробки зображень, що отримані з бортових систем спостереження, є етап тематичного сегментування. Встановлено, що у теперішній час невелика кількість досліджень присвячена вирішенню задачі тематичного сегментування зображень, що отримані з бортових систем спостереження. Встановлено, що у якості цільової функції використовується функція, яка визначається як сума дисперсії інтенсивності пікселів в межах кожного тематичного сегменту, а оптимізація полягає у мінімізації цільової функції. В основу інформаційної ройової технології покладені удосконалені методи ройового інтелекту (штучної бджолиної колонії) тематичного сегментування оптико-електронного зображення та ройового інтелекту (штучної бджолиної колонії) тематичного сегментування багатомасштабної послідовності оптико-електронних зображень. Висновки. Наукова новизна отриманих результатів полягає в наступному: підвищення візуальної якості сегментованого зображення, що в подальшому суттєво впливає на вирішення завдання дешифрування зображення.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ткач, Дмитро Іванович. "Основи теоретико-методичної системи навчання нарисної геометрії майбутніх архітекторів". Theory and methods of learning mathematics, physics, informatics 13, № 2 (12 квітня 2018): 263–75. http://dx.doi.org/10.55056/tmn.v13i2.768.

Повний текст джерела
Анотація:
Робота присвячена розробці педагогічної технології подолання сучасного кризового стану геометрографічної освіченості студентів-першокурсників архітектурних факультетів шляхом впровадження в їх свідомість системного розуміння природи об’єкту та його зображення. Метою роботи є з’ясування необхідності і можливості побудови системи навчання майбутніх архітекторів на основі реалізації системної парадигми у вигляді системної нарисної геометрії. Об’єктом дослідження є процес навчання нарисної геометрії майбутніх архітекторів. Предметом дослідження є теоретико-методична система реалізації системного підходу до навчання нарисної геометрії як фундаментальної навчальної дисципліни. Завдання дослідження: 1) обґрунтування нагальної потреби розроблення концепції системності змісту нарисної геометрії; 2) розробка методичних підсистем геометричної і графічної підготовки майбутніх архітекторів, а також їх позиційних і метричних складових; 3) розробка методичної підсистеми навчання раціональній побудові наочних зображень архітектурних об’єктів; 4) доведення ефективності запропонованої педагогічної технології навчання. Методами педагогічного дослідження є: теоретичні, діагностичні і формувальні на діалектико-логічній основі. Результатами дослідження є коректне виконання його завдань. Висновки: 1. Впровадження системної парадигми розуміння природи об’єктів в теорію їх зображень перетворює традиційну нарисну геометрію як прикладну навчальну дисципліну в системну нарисну геометрію як фундаментальну математичну науку, яка повинна бути першою спеціальною, а не загальноосвітньою дисципліною для професійної геометрографічної підготовки майбутніх архітекторів. 2. Дидактичний зміст системної нарисної геометрії відзначає її як новий напрям подальшого розвитку теорії оборотних зображень, а педагогічна технологія її навчання студентів-архітекторів є інноваційною.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Khizhnyak, I., H. Khudov, I. Ruban, A. Makoveychuk, Yu Solomonenko та V. Khudov. "МЕТОД ТЕМАТИЧНОГО СЕГМЕНТУВАННЯ КОЛЬОРОВОГО ЗОБРАЖЕННЯ БОРТОВОЇ СИСТЕМИ ОПТИКО-ЕЛЕКТРОННОГО СПОСТЕРЕЖЕННЯ". Системи управління, навігації та зв’язку. Збірник наукових праць 5, № 51 (30 жовтня 2018): 13–19. http://dx.doi.org/10.26906/sunz.2018.5.013.

Повний текст джерела
Анотація:
Предметом вивчення в статті є метод тематичного сегментування кольорового зображення бортової системи оптико-електронного спостереження. Метою є розробка методу тематичного сегментування, в основу якого покладений ройовий метод штучної бджолиної колонії. Завдання: аналіз властивостей метаевристичних методів оптимізації, аналіз основних операцій метаевристичних методів оптимізації, формулювання оптимізаційної задачі вибору порогу тематичного сегментування оптико-електронного зображення при використанні ройового методу штучної бджолиної колонії, розробка схеми методу тематичного сегментування оптико-електронних зображень бортових систем оптико-електронного спостереження, отримання гістограм розподілу яскравості по кожному каналу яскравості кольорового зображення, викладення сутності методу тематичного сегментування кольорового зображення бортової системи оптико-електронного спостереження, аналіз ітераційного процесу пошуку оптимальних порогів тематичного сегментування в кольорових каналах оптико-електронного зображення, визначення оптимального значення порогового рівня для кожного каналу яскравості, отримання результату тематичного сегментування вихідного оптико-електронного зображення, візуальна оцінки якості сегментованого зображення. Використовуваними методами є: методи теорії імовірності, математичної статистики, ройового інтелекту, кластерізації даних, еволюційних обчислень, методи оптимізації, математичного моделювання та цифрової обробки зображень. Отримані такі результати. Встановлено, що для тематичного сегментування зображення бортової системи оптико-електронного спостереження доцільно використання метаевристичних методів оптимізації. Встановлено, що метод тематичного сегментування кольорового зображення заснований на ройовому методі штучної бджолиної колонії, у якості цільової функції використовується сума дисперсії тематичних сегментів, а оптимізаційна задача полягає в мінімізації цільової функції. Встановлено, що оптимальне значення порогового рівня для кожного каналу яскравості відповідає мінімуму цільової функції для кожного каналу яскравості. Висновки. Наукова новизна отриманих результатів полягає в наступному: підвищення візуальної якості сегментованого кольорового зображення, що в подальшому суттєво впливає на вирішення завдання дешифрування зображення.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Makoveychuk, O. "НАУКОВО-ПРИКЛАДНІ ОСНОВИ ПОБУДОВИ СТІЙКИХ МАРКЕРІВ ДОПОВНЕНОЇ РЕАЛЬНОСТІ". Системи управління, навігації та зв’язку. Збірник наукових праць 5, № 57 (30 жовтня 2019): 59–66. http://dx.doi.org/10.26906/sunz.2019.5.059.

Повний текст джерела
Анотація:
Предметом вивчення в статті є маркери доповненої реальності. Метою є розробка науково-прикладних основ побудови стійких маркерів доповненої реальності на основі системи моделей та методів стійкого формування, виявлення та декодування даних, що забезпечує відновлення зображення в умовах зовнішніх впливів. Завдання: аналіз переваг та недоліків існуючих маркерів доповненої реальності, формулювання основних вимог до маркера доповненої реальності, дослідження системи моделей та методів стійкого формування, виявлення та декодування даних, що забезпечує відновлення зображення в умовах зовнішніх впливів. Використовуваними методами є: методи цифрової обробки зображень, теорії ймовірності, математичної статистики, криптографії та захисту інформації, математичний апарат теорії матриць. Отримані такі результати. Визначені переваги та недоліки основних існуючих типів маркерів доповненої реальності. Сформульовано вимоги, яким повинні задовольняти маркери доповненої реальності. Запропоновано система моделей та методів стійкого формування, виявлення та декодування даних, що забезпечує відновлення зображення в умовах зовнішніх впливів. Висновки. Напрямками подальших досліджень є розробка методу формування стійкого маркеру доповненої реальності; розробка методу виявлення стійкого мозаїчного стохастичного маркеру доповненої реальності; розробка методу декодування мозаїчного стохастичного маркеру доповненої реальності; розробка методу проектування віртуальних об’єктів на площину маркеру доповненої реальності; розробка інформаційної технології використання мозаїчних стохастичних маркерів у системах доповненої реальності.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Makoveychuk, O. "МЕТОД ДЕКОДУВАННЯ МОЗАЇЧНОГО СТОХАСТИЧНОГО МАРКЕРА ДОПОВНЕНОЇ РЕАЛЬНОСТІ". Системи управління, навігації та зв’язку. Збірник наукових праць 6, № 58 (28 грудня 2019): 54–57. http://dx.doi.org/10.26906/sunz.2019.6.054.

Повний текст джерела
Анотація:
Предметом вивчення в статті є маркери доповненої реальності. Метою є розробка методу декодування мозаїчного стохастичного маркера доповненої реальності. Завдання: аналіз основних операцій у маркерних системах доповненої реальності, аналіз основних існуючих типів AR-маркерів, розробка методу декодування мозаїчного стохастичного маркера доповненої реальності. Використовуваними методами є: методи цифрової обробки зображень, теорії ймовірності, математичної статистики, криптографії та захисту інформації, математичний апарат теорії матриць. Отримані такі результати. Визначено, що однією з основних операцій у маркерних системах доповненої реальності є декодування маркерів у відео-потоці з метою вирізнення віртуальних об'єктів з реального світу. Розроблений метод декодування мозаїчного стохастичного маркера доповненої реальності. Висновки. Вперше отримано метод декодування мозаїчного стохастичного маркера доповненої реальності, який на підставі запропонованої системи показників визначає розміри матриці бітів маркера, із трансформованого зображення бітконтейнера будує матрицю бітів маркера, визначає зсув у повній матриці бітів, на основі застосування зворотньої перестановки до повної матриці бітів реалізує фільтрацію пермутованого зображення. Напрямками подальших досліджень є розробка методу проектування віртуальних об’єктів на площину маркеру доповненої реальності; розробка інформаційної технології використання мозаїчних стохастичних маркерів у системах доповненої реальності
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Огір, О. О. "ПРИНЦИПИ ДІАГНОСТИЧНОЇ ВІЗУАЛІЗАЦІЇ ОБ’ЄКТА АБО СЕРЕДОВИЩА". Таврійський науковий вісник. Серія: Технічні науки, № 1 (8 квітня 2022): 54–62. http://dx.doi.org/10.32851/tnv-tech.2022.1.6.

Повний текст джерела
Анотація:
Проведений аналіз дав змогу виявити відсутність чітких формулювань сутності понять «діагностична візуалізація» і «діагностичне зображення». Тож пропонується визначити, що діагностичне зображення – це графічна (двомірна або тримірна) модель аномалій досліджуваного об’єкта чи середовища, для якої може бути здійснена постановка і розв’язання задачі ідентифікації. Відповідно, діагностична візуалізація – це процес побудови такої моделі, і сам цей процес має вже усталену назву «реконструкція діагностичного зображення». Цей процес розглядається в контексті дослідження об’єктів та середовищ випромінюванням ультразвукових хвиль в досліджуваний об’єкт (або в середовище) з подальшим прийняттям і обробкою відбитих коливань з метою визначення наявності аномалій, що підпадає під визначення ідентифікацію в широкому розумінні (структурна ідентифікації), або їх форми, розміру, положення, глибини залягання тощо, що підпадає під визначення ідентифікації у вузькому розумінні (параметрична ідентифікація). В роботі увага сконцентрована на певному сегменті ідентифікації у вузькому розумінні – підвищенні якості моделі, де показником якості буде визначено розрізнювальну здатність діагностичного зображення. При цьому в контексті теорії ідентифікації відомими будуть вважатися вхідні і вихідні сигнали ультразвукового дослідження, а також загальний вид моделі аномалії, а невідомим залишається алгоритм ідентифікації. Вирішення завдання в УЗ візуалізації передбачається на основі аналізу фазових співвідношень, що відповідають побудованим за певними елементарними одновимірними голограмами. Мова йде про реконструкцію зображень на основі безлічі одновимірних елементарних голограм на площину, перпендикулярну площині запису елементарної голограми та визначається сукупністю акустичних осей зондуючого простору при русі суміщеного випромінювача – приймача уздовж лінії синтезованої апертури. Такий підхід повинен дати можливість розв’язувати сумарний по амплітуді ехосигнал, що отримується в точці зондування з різних точок глибини за рахунок різниці початкових фаз комплексних амплітуд окремих гідробіонтів, які мають свої координати в площині зондування і свої значення інтенсивності з урахуванням місця розташування. Щільність скупчення, що відображає інтенсивність окремих гідробіонтів на кольоровому моніторі може бути представлена відносними колірними моделями або іншим способом досить ефективної візуальної відмінності кожного гідробіонта окремо з властивим йому розміром і сукупність всіх гідробіонтів, які визначають щільність їх у зондуючих об’ємах. Слід зазначити, що розглянуті методи отримання зображень за сукупністю одновимірних елементарних голограм можуть бути використані і в інших положеннях по розробці техніки діагностування в медицині, будівництві і т. п.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Khudov, H., О. Makoveichuk, I. Khizhnyak, Y. Solomonenko та I. Yuzova. "МЕТОД ВИДІЛЕННЯ ОБ’ЄКТІВ МІСЬКОЇ ЗАБУДОВИ НА ЗОБРАЖЕННЯХ БОРТОВИХ СИСТЕМ ОПТИКО-ЕЛЕКТРОННОГО СПОСТЕРЕЖЕННЯ З ВИКОРИСТАННЯМ ПЕРЕТВОРЕННЯ ХАФА". Системи управління, навігації та зв’язку. Збірник наукових праць 6, № 52 (13 грудня 2018): 20–24. http://dx.doi.org/10.26906/sunz.2018.6.020.

Повний текст джерела
Анотація:
Предметом вивчення в статті є метод виділення об’єктів міської забудови на зображеннях бортових систем оптико-електронного спостереження. Метою є розробка методу виділення об’єктів міської забудови на зображеннях бортових систем оптико-електронного спостереження. Завдання: обґрунтування необхідності виділення об’єктів міської забудови на зображеннях бортових систем оптико-електронного спостереження; викладення сутності методу виділення об’єктів міської забудови на зображеннях бортових систем оптико-електронного спостереження; візуальна оцінка якості виділення об’єктів міської забудови на зображеннях бортових систем оптико-електронного спостереження. Використовуваними методами є: методи теорії імовірності, математичної статистики, методи оптимізації, математичного моделювання та цифрової обробки зображень. Отримані такі результати. Встановлено, що актуальним є питання виділення на зображеннях бортових систем оптико-електронного спостереження географічного ландшафту, будівель, культурних центрів і критичних елементів інфраструктури, типу підприємств, транспортних систем та інших важливих забудов. Встановлено, що об’єкти міської забудови (мости, дороги, будинки тощо) є досить контрастними і містять багато прямих ліній. Виділення об’єктів міської забудови розглядається як двоетапний метод, а саме, застосування деякого детектора границь та застосування безпосередньо перетворення Хафа. На першому етапі проводиться виділення границь, на другому – виділення прямих ліній. У якості детектору границь запропоновано використання детектору границь Канні. Висновки. Встановлено, що візуальна якість дозволяє виділити об’єкти міської забудови на обробленому зображенні, а запропонований метод може бути використано для знаходження об’єктів міської забудови. Напрямком подальших досліджень є використання багатомасштабного методу обробки зображень.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Mezentsev, A. V., S. V. Mironiuk, A. M. Sotnikov та V. A. Tarshyn. "Методика виділення інформативних ділянок зображень на основі теорії фрактального аналізу". Реєстрація, зберігання і обробка даних 17, № 2 (10 червня 2015): 29–38. http://dx.doi.org/10.35681/1560-9189.2015.17.2.100317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Ткач, Дмитро Іванович. "Принципи «Великої дидактики» Яна Амоса Коменського стосовно до системної теорії оборотних зображень". Theory and methods of learning fundamental disciplines in high school 8 (27 березня 2013): 32–38. http://dx.doi.org/10.55056/fund.v8i1.861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Hlavcheva, D., та V. Yaloveha. "КАПСУЛЬНІ НЕЙРОННІ МЕРЕЖІ". Системи управління, навігації та зв’язку. Збірник наукових праць 5, № 51 (30 жовтня 2018): 132–35. http://dx.doi.org/10.26906/sunz.2018.5.132.

Повний текст джерела
Анотація:
Предметом вивчення є історія становлення та розвиток теорії нейронних мереж, сучасні підходи до проблем розпізнавання та класифікації зображень. Особлива увага приділяється якісному огляду капсульних та згорткових нейронних мереж, принципів їх роботи та визначення основних відмінностей. Метою роботи є аналіз сучасного стану досліджень нейронних мереж та можливих перспектив розвитку цієї галузі. Завдання: проаналізувати історичний розвиток теорії нейронних мереж. Провести порівняння між типами нейронних мереж, що базуються на концепції глибокого навчання: згортковими та капсульними. Методом проведення дослідження є аналіз сучасної літератури та основних тенденцій розвитку глибокого навчання. Результатами проведеного дослідження є виявлення значущих відкриттів, що вплинули на розвиток нейронних мереж. Функціонування нейронних мереж базується на роботі нервової системи біологічних організмів. Зокрема, це принцип активності біологічного нейрону, ансамблі нейронів, виявлення «простих клітин» у зоровій корі мозку. На даний момент найбільший розвиток мають нейронні мережі, що засновані на концепції глибокого навчання, яка дозволяє багатошаровим обчислювальним моделям вивчати дані з кількома рівнями абстракції. Згорткові мережі, що використовують цю концепцію досягли значних успіхів у розпізнаванні зображень, відео та аудіо. Рекурентні мережі виявилися кращі у аналізі тексту та мови. Згорткові нейронні мережі маються низку недоліків, на яких наголошено у роботі. Капсульні нейронні мережі є вдосконаленням концепції згорткових нейронних мереж. В їх основі покладено «капсули», які призначені для виявлення характеристик об’єкта. Капсули як група нейронів характеризуються вектором активації. Запропонований відомими ученими векторний підхід дозволяє врахувати поворот та трансляцію об’єктів. Капсульні нейронні мережі потребують значно меншу навчальну вибірку, ніж згорткові. У висновках роботи визначаються основні перспективи розвитку теорії нейронних мереж, а також можливий стрімкий розвиток неконтрольованого навчання нейронних мереж. Наголошується на важливості критичного аналізу проблем нейронних мереж як вирішального фактору їх майбутнього розвитку.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Бортневська, Наталія Василівна. "Поетика психологізму чоловічих образів (на матеріалі оповідання Володимира Винниченка «Краса і сила»)". Літератури світу: поетика, ментальність і духовність 8 (30 січня 2017): 41–50. http://dx.doi.org/10.31812/world_lit.v8i0.1066.

Повний текст джерела
Анотація:
У статті розглядаються художні засоби зображення внутрішнього світу героїв-чоловіків в оповіднні Володимира Винниченка «Краса і сила». Покладаючись на теорію архетипів К. Г. Юнга, здійснено спробу простежити оприявлення Самості й Тіні героїв, що виходять назовні у конфліктних ситуаціях певних епізодів твору.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Млавець, Ю. Ю., та О. О. Синявська. "Умови рiвномiрної збiжностi вейвлет розкладiв випадкових процесiв iз просторiв Fψ(Ω)". Науковий вісник Ужгородського університету. Серія: Математика і інформатика, № 2(37) (25 листопада 2020): 82–90. http://dx.doi.org/10.24144/2616-7700.2020.2(37).82-90.

Повний текст джерела
Анотація:
Ця стаття присвячена знаходженню умов рiвномiрної збiжностi з ймовiрнiстю одиниця вейвлет розкладiв класу випадкових процесiв iз просторiв Fψ(Ω). Вивчення загальних властивостей таких випадкових процесiв, отримання оцiнок розподiлу функцiоналiв вiд процесiв з тих чи iнших просторiв випадкових величин, встановлення умов рiвномiрної збiжностi випадкових функцiональних рядiв є одними iз поширених задач теорiї випадкових процесiв. Вейвлет аналiз є достатньо молодою галуззю математики з багатьма цiкавими проблемами й задачами. Однак дану теорiю, зокрема вейвлет розклади функцiй, на даний час широко використовують як у теорiї випадкових процесiв, так i у рiзних областях науки. Наприклад, вейвлет аналiз активно застосовується для фiльтрацiї i попередньої обробки даних, аналiзу стану i прогнозування ситуацiї на фондових ринках, розпiзнавання образiв, при обробцi i синтезi рiзних сигналiв, зокрема при обробцi мовних сигналiв, бiомедичних сигналiв, для розв’язання завдань стиснення i обробки зображень, при навчаннi нейромереж i в багатьох iнших випадках. Тому є актуальною задача знаходження умов рiвномiрної збiжностi вейвлет розкладiв класу випадкових процесiв iз просторiв Fψ(Ω). У данiй роботi ми зосереджуємося на основних властивостях просторiв Fψ(Ω) та деяких елементах теорiї вейвлетiв. На початку статтi наведено основнi означення, теореми, приклади випадкових величин з просторiв Fψ(Ω) та поняття i властивостi мажоруючої характеристики цього простору. Далi подано необхiднi вiдомостi з вейвлет аналiзу, зокрема: означення f-, m-вейвлетiв та умови S, а також умови розкладу функцiй по цим базисам. Також наведено умови рiвномiрної збiжностi з iмовiрнiстю одиниця вейвлет розкладiв деяких функцiй. Основним результатом статтi є умови рiвномiрної збiжностi вейвлет розкладiв випадкових процесiв iз просторiв Fψ(Ω). Данi умови базуються на оцiнках розподiлу супремуму на R випадкових процесiв iз просторiв Fψ(Ω) та рiвномiрної неперервностi сепарабельного вимiрного випадкового процесу X = {X(t), t ∈ R} з простору Fψ(Ω) на деякому вiдрiзку. Також, наведено приклади функцiй, для яких виконується одна iз умов теореми про оцiнку мажоруючої характеристики κ(n) простору Fψ(Ω)
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Маханець, О. М., Н. Р. Цюпак та В. I. Гуцул. "Фононні спектри та електрон-фононна взаємодія у складній циліндричній напівпровідниковій нанотрубці". Ukrainian Journal of Physics 57, № 10 (5 грудня 2021): 1060. http://dx.doi.org/10.15407/ujpe57.10.1060.

Повний текст джерела
Анотація:
У моделі ефективних мас для електрона та діелектричного континууму для фононів розвинуто теорію електрон-фононної взаємодії у складнійциліндричній напівпровідниковій нанотрубці. Одержано аналітичні вирази для гамільтоніанів взаємодії електрона з обмеженими та інтерфейсними фононами у зображенні вторинного квантування за електронними і фононними змінними. Досліджено залежності фононних енергій та потенціалу поля поляризації інтерфейсних фононів від аксіального квазіімпульсу та геометричних параметрів складної нанотрубки на основі напівпровідників GaAs та Al0,4Ga0,6As.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Валько, Катерина, Валерій Кузьмич, Людмила Кузьмич та Олександр Савченко. "ІНТЕРПРЕТАЦІЯ ВЗАЄМНОГО РОЗМІЩЕННЯ ТОЧОК МЕТРИЧНОГО ПРОСТОРУ ЗА ДОПОМОГОЮ ГРАФІЧНИХ ЗАСОБІВ". Physical and Mathematical Education 34, № 2 (9 травня 2022): 7–11. http://dx.doi.org/10.31110/2413-1571-2022-034-2-001.

Повний текст джерела
Анотація:
Формулювання проблеми. У даній роботі розглядаються питання, що стосуються методики вивчення геометричних властивостей метричних просторів. Ці питання з необхідністю виникають під час засвоєння студентами основних понять теорії метричних просторів. Складність у розумінні цих понять виникає внаслідок відсутності, у більшості випадків, їх геометричної інтерпретації, або ж відповідної візуалізації. Для побудови геометричної інтерпретації понять прямолінійного та плоского розміщення точок метричного простору пропонується будувати відповідні аналоги у двовимірному та тривимірному арифметичних евклідових просторах. Для візуалізації цих понять пропонується використати динамічне геометричне середовище GeoGebra 3D. Такий підхід дозволяє продемонструвати як схожість окремих геометричних понять метричного простору з відповідними поняттями геометрії Евкліда, так і продемонструвати випадки їх «неевклідовості». Матеріали і методи. Для виконання дослідження використовувалось динамічне геометричне середовище GeoGebra 3D, програмний засіб обчислення об’єму тетраедра за довжинами його ребер, а також графічні засоби побудови зображень. Результати. Наведені у даній роботі приклади геометричної інтерпретації та візуалізації взаємного розміщення точок метричного простору сприяють більш глибокому та усвідомленому сприйняттю і розумінню студентами основ теорії метричних просторів. Висновки. Метрична геометрія дає можливість розглядати геометрію Евкліда та неевклідові геометрії з однієї точки зору. Аналогія окремих співвідношень між точками метричного простору з відповідними співвідношеннями у геометрії Евкліда дає можливість прослідкувати зміну характерних геометричних властивостей простору при зміні його метрики. Застосування спеціальних графічних можливостей відповідних програмних засобів дозволяє не лише візуалізувати взаємне розміщення точок метричного простору, але і прослідкувати його зміну при зміні точки спостереження цього розміщення. Візуалізація геометричних властивостей метричних просторів сприяє більш глибокому та усвідомленому сприйняттю і розумінню студентами основ теорії метричних просторів.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Didukh, V. D., Y. A. Rudyak, A. B. Horkunenko та I. P. Kuzmak. "ІСТОРІЯ СТАНОВЛЕННЯ ТА РОЗВИТКУ МЕДИЧНОЇ ФІЗИКИ (ОПТИКА) (ЧАСТИНА 4)". Медична освіта, № 2 (20 серпня 2019): 162–70. http://dx.doi.org/10.11603/me.2414-5998.2019.2.10359.

Повний текст джерела
Анотація:
У статті висвітлено історичні етапи розвитку оптики – розділу медичної фізики, в межах якої вивчається природа оптичного випромінювання (світла), досліджуються процеси випромінювання світла, його поширення в середовищі і взаємодія з речовиною, інтерференційні, дифракційні і поляриметричні явища. Розглянуто еволюцію знань людства про природу світла, фізичні основи дифракційних, інтерференційних, поляриметричних явищ, голографії, оптичні методи дослідження, а також світового значення відкриття, яке отримало назву «просвітлення оптики» українського фізика Олександра Смакули (1900–1983), уродженця с. Добриводи Збаразького району, що на Тернопільщині. Він винайшов спосіб покриття поверхні лінз оптичних пристроїв спеціальним тонким шаром певного матеріалу, що значно зменшував коефіцієнт відбитого світла від поверхні лінзи і набагато збільшував контрастність зображення. Середньовічний філософ Роджер Бекон стверджував: «Оптика – прикраса всієї філософії, через яку, а не без неї, можуть бути показані всі інші науки». Особливе місце в історії оптики займає вчення про зір. Давньоримський філософ Сенека писав: «Не все, однак, сягаємо оком, не все бачимо таким величним, яким воно є, але наш зір прокладає собі стежку для дослідження, закладає для нас підвалини пізнання правди, щоб від явного ми могли у своїх пошуках переходити до прихованого; віднаходити й те, що є давнішим від усього видимого світу». У даній праці розглянуто історичні шляхи вчення про зір, етапи розвитку геометричної і хвильової оптики, фізичну природу оптичних явищ, оптичні методи дослідження медико-біологічних систем. Відзначимо, що випромінювання і поглинання світла розглядалися як неперервні процеси, проте в області коротких довжин хвиль спостерігалася невідповідність між існуючими теоріями і фізики заговорили про так звану «ультрафіолетову катастрофу». Тому-то необхідна була теорія, яка усувала б відповідні суперечності. Але про це вже буде сказано у наступній публікації.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Irtyshcheva, I., A. Trushlyakova та D. Ryabets. "Демографічна ситуація України в системі виміру людського капіталу та охорони здоров’я". Bulletin of Sumy National Agrarian University, № 4 (82) (23 грудня 2019): 136–43. http://dx.doi.org/10.32845/bsnau.2019.4.26.

Повний текст джерела
Анотація:
Метою статті є проведення аналіз демографічної ситуації України в системі виміру людського капіталу та охорони здоров’я. Досліджено людський капітал у наукових теоріях соціально-економічного розвитку. Проаналізовано динаміку чисельності постійного населення України за 1991-2018 роки. Здійснено регіональний розріз чисельності наявного населення. Проаналізовано динаміку координаційного навантаження жінок на 1000 чоловіків для сільського населення. Відображено прогнозне зображення статево-вікового розподілу населення України Встановлено, що старіння населення України можливо розглядати як беззаперечний факт і результат об’єктивних демографічних процесів за рахунок довготривалих структурних змін вікового складу населення у бік переважання питомої ваги людей віком старше 60 років.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Соловйов, Володимир Миколайович, та Вікторія Володимирівна Соловйова. "Теорія складних систем як основа міждисциплінарних досліджень". Theory and methods of learning fundamental disciplines in high school 1 (2 квітня 2014): 152–60. http://dx.doi.org/10.55056/fund.v1i1.424.

Повний текст джерела
Анотація:
Наукові дослідження стають ефективними тоді, коли природу подій чи явищ можна розглядати з єдиних позицій, виробити універсальний підхід до них, сформувати загальні закономірності. Більшість сучасних фундаментальних наукових проблем і високих технологій тісно пов’язані з явищами, які лежать на границях різних рівнів організації. Природничі та деякі з гуманітарних наук (економіка, соціологія, психологія) розробили концепції і методи для кожного із ієрархічних рівнів, але не володіють універсальними підходами для опису того, що відбувається між цими рівнями ієрархії. Неспівпадання ієрархічних рівнів різних наук – одна із головних перешкод для розвитку дійсної міждисциплінарності (синтезу різних наук) і побудови цілісної картини світу. Виникає проблема формування нового світогляду і нової мови.Теорія складних систем – це одна із вдалих спроб побудови такого синтезу на основі універсальних підходів і нової методології [1]. В російськомовній літературі частіше зустрічається термін “синергетика”, який, на наш погляд, означує більш вузьку теорію самоорганізації в системах різної природи [2].Мета роботи – привернути увагу до нових можливостей, що виникають при розв’язанні деяких задач, виходячи з уявлень нової науки.На жаль, теорія складності не має до сих пір чіткого математичного визначення і може бути охарактеризована рисами тих систем і типів динаміки, котрі являються предметом її вивчення. Серед них головними є:– Нестабільність: складні системи прагнуть мати багато можливих мод поведінки, між якими вони блукають в результаті малих змін параметрів, що управляють динамікою.– Неприводимість: складні системи виступають як єдине ціле і не можуть бути вивчені шляхом розбиття їх на частини, що розглядаються ізольовано. Тобто поведінка системи зумовлюється взаємодією складових, але редукція системи до її складових спотворює більшість аспектів, які притаманні системній індивідуальності.– Адаптивність: складні системи часто включають множину агентів, котрі приймають рішення і діють, виходячи із часткової інформації про систему в цілому і її оточення. Більш того, ці агенти можуть змінювати правила своєї поведінки на основі такої часткової інформації. Іншими словами, складні системи мають здібності черпати скриті закономірності із неповної інформації, навчатися на цих закономірностях і змінювати свою поведінку на основі нової поступаючої інформації.– Емерджентність (від існуючого до виникаючого): складні системи продукують неочікувану поведінку; фактично вони продукують патерни і властивості, котрі неможливо передбачити на основі знань властивостей їх складових, якщо розглядати їх ізольовано.Ці та деякі менш важливі характерні риси дозволяють відділити просте від складного, притаманного найбільш фундаментальним процесам, які мають місце як в природничих, так і в гуманітарних науках і створюють тим самим істинний базис міждисциплінарності. За останні 30–40 років в теорії складності було розроблено нові наукові методи, які дозволяють універсально описати складну динаміку, будь то в явищах турбулентності, або в поведінці електорату напередодні виборів.Оскільки більшість складних явищ і процесів в таких галузях як екологія, соціологія, економіка, політологія та ін. не існують в реальному світі, то лише поява сучасних ЕОМ і створення комп’ютерних моделей цих явищ дозволило вперше в історії науки проводити експерименти в цих галузях так, як це завжди робилось в природничих науках. Але комп’ютерне моделювання спричинило розвиток і нових теоретичних підходів: фрактальної геометрії і р-адичної математики, теорії хаосу і самоорганізованої критичності, нейроінформатики і квантових алгоритмів тощо. Теорія складності дозволяє переносити в нові галузі дослідження ідеї і підходи, які стали успішними в інших наукових дисциплінах, і більш рельєфно виявляти ті проблеми, з якими інші науки не стикалися. Узагальнюючому погляду з позицій теорії складності властиві більша евристична цінність при аналізі таких нетрадиційних явищ, як глобалізація, “економіка, що заснована на знаннях” (knowledge-based economy), національні і світові фінансові кризи, економічні катастрофи і ряд інших.Однією з інтригуючих проблем теорії є дослідження властивостей комплексних мережеподібних високотехнологічних і інтелектуально важливих систем [3]. Окрім суто наукових і технологічних причин підвищеної уваги до них є і суто прагматична. Справа в тому, що такі системи мають системоутворюючу компоненту, тобто їх структура і динаміка активно впливають на ті процеси, які ними контролюються. В [4] наводиться приклад, коли відмова двох силових ліній системи електромережі в штаті Орегон (США) 10 серпня 1996 року через каскад стимульованих відмов призвели до виходу із ладу електромережі в 11 американських штатах і 2 канадських провінціях і залишили без струму 7 млн. споживачів протягом 16 годин. Вірус Love Bug worm, яких атакував Інтернет 4 травня 2000 року і до сих пір блукає по мережі, приніс збитків на мільярди доларів.До таких систем відносяться Інтернет, як складна мережа роутерів і комп’ютерів, об’єднаних фізичними та радіозв’язками, WWW, як віртуальна мережа Web-сторінок, об’єднаних гіперпосиланнями (рис. 1). Розповсюдження епідемій, чуток та ідей в соціальних мережах, вірусів – в комп’ютерних, живі клітини, мережі супермаркетів, актори Голівуду – ось далеко не повний перелік мережеподібних структур. Більш того, останнє десятиліття розвитку економіки знань привело до зміни парадигми структурного, функціонального і стратегічного позиціонування сучасних підприємств. Вертикально інтегровані корпорації повсюдно витісняються розподіленими мережними структурами (так званими бізнес-мережами) [5]. Багато хто з них замість прямого виробництва сьогодні займаються системною інтеграцією. Тому дослідження структури та динаміки мережеподібних систем дозволить оптимізувати бізнес-процеси та створити умови для їх ефективного розвитку і захисту.Для побудови і дослідження моделей складних мережеподібних систем введені нові поняття і означення. Коротко опишемо тільки головні з них. Хай вузол i має ki кінців (зв’язків) і може приєднати (бути зв’язаним) з іншими вузлами ki. Відношення між числом Ei зв’язків, які реально існують, та їх повним числом ki(ki–1)/2 для найближчих сусідів називається коефіцієнтом кластеризації для вузла i:. Рис. 1. Структури мереж World-Wide Web (WWW) і Інтернету. На верхній панелі WWW представлена у вигляді направлених гіперпосилань (URL). На нижній зображено Інтернет, як систему фізично з’єднаних вузлів (роутерів та комп’ютерів). Загальний коефіцієнт кластеризації знаходиться шляхом осереднення його локальних значень для всієї мережі. Дослідження показують, що він суттєво відрізняється від одержаних для випадкових графів Ердаша-Рені [4]. Ймовірність П того, що новий вузол буде приєднано до вузла i, залежить від ki вузла i. Величина називається переважним приєднанням (preferential attachment). Оскільки не всі вузли мають однакову кількість зв’язків, останні характеризуються функцією розподілу P(k), яка дає ймовірність того, що випадково вибраний вузол має k зв’язків. Для складних мереж функція P(k) відрізняється від розподілу Пуассона, який мав би місце для випадкових графів. Для переважної більшості складних мереж спостерігається степенева залежність , де γ=1–3 і зумовлено природою мережі. Такі мережі виявляють властивості направленого графа (рис. 2). Рис. 2. Розподіл Web-сторінок в Інтернеті [4]. Pout – ймовірність того, що документ має k вихідних гіперпосилань, а Pin – відповідно вхідних, і γout=2,45, γin=2,1. Крім цього, складні системи виявляють процеси самоорганізації, змінюються з часом, виявляють неабияку стійкість відносно помилок та зовнішніх втручань.В складних системах мають місце колективні емерджентні процеси, наприклад синхронізації, які схожі на подібні в квантовій оптиці. На мові системи зв’язаних осциляторів це означає, що при деякій критичній силі взаємодії осциляторів невелика їх купка (кластер) мають однакові фази і амплітуди.В економіці, фінансовій діяльності, підприємництві здійснювати вибір, приймати рішення доводиться в умовах невизначеності, конфлікту та зумовленого ними ризику. З огляду на це управління ризиками є однією з найважливіших технологій сьогодення [2, 6].До недавніх часів вважалось, що в основі розрахунків, які так чи інакше мають відношення до оцінки ризиків лежить нормальний розподіл. Йому підпорядкована сума незалежних, однаково розподілених випадкових величин. З огляду на це ймовірність помітних відхилень від середнього значення мала. Статистика ж багатьох складних систем – аварій і катастроф, розломів земної кори, фондових ринків, трафіка Інтернету тощо – зумовлена довгим ланцюгом причинно-наслідкових зв’язків. Вона описується, як показано вище, степеневим розподілом, “хвіст” якого спадає значно повільніше від нормального (так званий “розподіл з тяжкими хвостами”). У випадку степеневої статистики великими відхиленнями знехтувати вже не можна. З рисунку 3 видно, наскільки добре описуються степеневою статистикою торнадо (1), повені (2), шквали (3) і землетруси (4) за кількістю жертв в них в США в ХХ столітті [2]. Рис. 3. Системи, які демонструють самоорганізовану критичність (а саме такі ми і розглядаємо), самі по собі прагнуть до критичного стану, в якому можливі зміни будь-якого масштабу.З точки зору передбачення цікавим є той факт, що різні катастрофічні явища можуть розвиватися за однаковими законами. Незадовго до катастрофи вони демонструють швидкий катастрофічний ріст, на який накладені коливання з прискоренням. Асимптотикою таких процесів перед катастрофою є так званий режим з загостренням, коли одна або декілька величин, що характеризують систему, за скінчений час зростають до нескінченності. Згладжена крива добре описується формулою,тобто для таких різних катастрофічних явищ ми маємо один і той же розв’язок рівнянь, котрих, на жаль, поки що не знаємо. Теорія складності дозволяє переглянути деякі з основних положень ризикології та вказати алгоритми прогнозування катастрофічних явищ [7].Ключові концепції традиційних моделей та аналітичних методів аналізу і управління капіталом все частіше натикаються на проблеми, які не мають ефективних розв’язків в рамках загальноприйнятих парадигм. Причина криється в тому, що класичні підходи розроблені для опису відносно стабільних систем, які знаходяться в положенні відносно стійкої рівноваги. За своєю суттю ці методи і підходи непридатні для опису і моделювання швидких змін, не передбачуваних стрибків і складних взаємодій окремих складових сучасного світового ринкового процесу. Стало ясно, що зміни у фінансовому світі протікають настільки інтенсивно, а їх якісні прояви бувають настільки неочікуваними, що для аналізу і прогнозування фінансових ринків вкрай необхідним став синтез нових аналітичних підходів [8].Теорія складних систем вводить нові для фінансових аналітиків поняття, такі як фазовий простір, атрактор, експонента Ляпунова, горизонт передбачення, фрактальний розмір тощо. Крім того, все частіше для передбачення складних динамічних рядів використовуються алгоритми нейрокомп’ютинга [9]. Нейронні мережі – це системи штучного інтелекту, які здатні до самонавчання в процесі розв’язку задач. Навчання зводиться до обробки мережею множини прикладів, які подаються на вхід. Для максимізації виходів нейронна мережа модифікує інтенсивність зв’язків між нейронами, з яких вона побудована, і таким чином самонавчається. Сучасні багатошарові нейронні мережі формують своє внутрішнє зображення задачі в так званих внутрішніх шарах. При цьому останні відіграють роль “детекторів вивчених властивостей”, оскільки активність патернів в них є кодування того, що мережа “думає” про властивості, які містяться на вході. Використання нейромереж і генетичних алгоритмів стає конкурентноздібним підходом при розв’язанні задач передбачення, класифікації, моделювання фінансових часових рядів, задач оптимізації в галузі фінансового аналізу та управляння ризиком. Детермінований хаос пропонує пояснення нерегулярної поведінки і аномалій в системах, котрі не є стохастичними за природою. Ця теорія має широкий вибір потужних методів, включаючи відтворення атрактора в лаговому фазовому просторі, обчислення показників Ляпунова, узагальнених розмірностей і ентропій, статистичні тести на нелінійність.Головна ідея застосування методів хаотичної динаміки до аналізу часових рядів полягає в тому, що основна структура хаотичної системи (атрактор динамічної системи) може бути відтворена через вимірювання тільки однієї змінної системи, фіксованої як динамічний ряд. В цьому випадку процедура реконструкції фазового простору і відтворення хаотичного атрактора системи при динамічному аналізі часового ряду зводиться до побудови так званого лагового простору. Реальний атрактор динамічної системи і атрактор, відтворений в лаговому просторі по часовому ряду при деяких умовах мають еквівалентні характеристики [8].На завершення звернемо увагу на дидактичні можливості теорії складності. Розвиток сучасного суспільства і поява нових проблем вказує на те, що треба мати не тільки (і навіть не стільки) експертів по деяким аспектам окремих стадій складних процесів (професіоналів в старому розумінні цього терміну), знадобляться спеціалісти “по розв’язуванню проблем”. А це означає, що істинна міждисциплінарність, яка заснована на теорії складності, набуває особливого значення. З огляду на сказане треба вчити не “предметам”, а “стилям мислення”. Тобто, міждисциплінарність можна розглядати як основу освіти 21-го століття.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Федонюк, Л. Я., С. О. Ястремська, О. М. Ярема та Т. О. Рекун. "НАВЧАЛЬНІ МУЗЕЇ ТЕРНОПІЛЬСЬКОГО НАЦІОНАЛЬНОГО МЕДИЧНОГО УНІВЕРСИТЕТУ ІМЕНІ І. Я. ГОРБАЧЕВСЬКОГО МОЗ УКРАЇНИ ТА ЇХ РОЛЬ У ПРОЦЕСІ НАВЧАННЯ І ВИХОВАННЯ МАЙБУТНІХ СПЕЦІАЛІСТІВ МЕДСЕСТРИНСТВА". Медична освіта, № 3 (16 грудня 2021): 134–41. http://dx.doi.org/10.11603/m.2414-5998.2021.3.12613.

Повний текст джерела
Анотація:
Значне місце серед нових підходів до організації навчальної діяльності посідає музейна педагогіка, що має важливе значення в системі освіти, сприяючи всебічному розвитку особистості студента. Важливе значення для навчання мають натуральні об’єкти і їх зображення, які створюють найповніше уявлення будови організму людини. З огляду на це, певне місце в навчально-виховному процесі займають музеї. Метою навчальних музеїв є створення найповнішої уяви змісту оточуючої нас живої природи, морфології людини, тварин, рослин, а також як осередку освіти й виховання. У Тернопільському національному медичному університеті імені І. Я. Горбачевського МОЗ України є ряд музеїв навчального профілю: музей кафедри анатомії людини, музей кафедри патологічної анатомії з секційним курсом і судової медицини, навчально-біологічний музей імені І. І. Яременка. Музей кафедри анатомії містить унікальну колекцію анатомічних препаратів, які відображають форму органів, їх топографічні взаємовідносини, проекції судин і нервів, що служать невід’ємною теоретичною базою для студентів медичного, стоматологічного та фармацевтичного факультетів, а також для студентів Навчально-наукового інституту медсестринства. Досягти високого практичного рівня професійної підготовки неможливо і без вивчення музейних макропрепаратів кафедри патологічної анатомії з секційним курсом та судової медицини. Навчально-біологічний музей імені І. І. Яременка представляє натуральні об’єкти і їх зображення, які створюють найповніше уявлення взаємозв’язку людини з оточуючим навколишнім природним середовищем. Отже, музеї ТНМУ займають вагоме місце в навчально-виховному процесі, завдяки їм теорія і практика дають високий позитивний результат у формуванні професіоналізму лікаря.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Alpert, S. I. "The basic arithmetic operations on fuzzy numbers and new approaches to the theory of fuzzy numbers under the classification of space images." Mathematical machines and systems 3 (2020): 49–59. http://dx.doi.org/10.34121/1028-9763-2020-3-49-59.

Повний текст джерела
Анотація:
Classification in remote sensing is a very difficult procedure, because it involves a lot of steps and data preprocessing. Fuzzy Set Theory plays a very important role in classification problems, because the fuzzy approach can capture the structure of the image. Most concepts are fuzzy in nature. Fuzzy sets allow to deal with uncertain and imprecise data. Many classification problems are formalized by using fuzzy concepts, because crisp classes represent an oversimplification of reality, leading to wrong results of classification. Fuzzy Set Theory is an important mathematical tool to process complex and fuzzy da-ta. This theory is suitable for high resolution remote sensing image classification. Fuzzy sets and fuzzy numbers are used to determine basic probability assignment. Fuzzy numbers are used for detection of the optimal number of clusters in Fuzzy Clustering Methods. Image is modeled as a fuzzy graph, when we represent the dissimilitude between pixels in some classification tasks. Fuzzy sets are also applied in different tasks of processing digital optical images. It was noted, that fuzzy sets play an important role in analysis of results of classification, when different agreement measures between the reference data and final classification are considered. In this work arithmetic operations of fuzzy numbers using alpha-cut method were considered. Addition, subtraction, multiplication, division of fuzzy numbers and square root of fuzzy number were described in this paper. Moreover, it was illustrated examples with different arithmetic operations of fuzzy numbers. Fuzzy Set Theory and fuzzy numbers can be applied for analysis and classification of hyperspectral satellite images, solving ecological tasks, vegetation clas-sification, in remote searching for minerals.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Мізюк, Б. М. "ПОТЕНЦІАЛ ТУРИСТИЧНО-ГОТЕЛЬНИХ ПІДПРИЄМСТВ ТА КІНЕТИЧНИЙ МЕХАНІЗМ ЙОГО ПЕРЕТВОРЕННЯ". Herald of Lviv University of Trade and Economics Economic sciences, № 65 (28 січня 2022): 33–38. http://dx.doi.org/10.36477/2522-1205-2021-65-04.

Повний текст джерела
Анотація:
Мета статті - наукове обгрунтування теоретико-змістовних характеристик потенціалу підприємства чи організації, яке займається бізнесом в сфері обслуговування, що є основою їх ефективного управління. У статті розглянуто фундаментальний базис формалізації механізму формування та використання інструментарію управління. У дослідженні акцент на потенціал зроблено з енергетичної точки зору, коли ресурсна складова потенціалу, наряду з виробничим та економічним компонентом, перетворюється в кінетичну енергію за рахунок управлінської складової потенціалу. В статті увага звертається на те, що саме управлінська складова приводить у дію усю решту компонентів повного потенціалу за допомогою певного механізму. Його узагальнена модель являє собою взаємопов’язану сукупність ресурсної, виробничої та економічної складових, які через управлінський компонент перетворюють скриті потенційні можливості в бажані результати. Графічно зображено структурно-ієрархічну побудову такої моделі. Подальші дослідження повинні бути спрямовані на проектування побудови системи управління запропонованої моделі, пошук та використання ресурсів зовнішнього середовища, які б могли з успіхом використовуватись у веденні готельно-ресторанного бізнесу. При цьому заслуговує на увагу використання операційного підходу до побудови системи управління. Він дає можливість систематизувати знання стосовно теорії менеджменту і розробити алгоритми виконання завдань практичної управлінської діяльності туристично-готельних підприємств.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Бортош, М. Ю. "2-Спадкова звiднiсть циклiчних мономiальних матриць iз фiксованими визначальними послiдовностями над комутативним локальним кiльцем". Науковий вісник Ужгородського університету. Серія: Математика і інформатика 38, № 1 (27 травня 2021): 16–21. http://dx.doi.org/10.24144/2616-7700.2021.38(1).16-21.

Повний текст джерела
Анотація:
Властивості канонічно циклічних та ланцюгових мономіальних матриць над комутативними кільцями вивчалися в багатьох роботах, зокрема їх звідність та незвідність, розкладність і нерозкладність. Відомі критерії незвідності канонічно циклічних матриць малого порядку n над комутативним локальним кільцем K з радикалом R=tK≠0 (n<7 для R≠0 і n<5 для R2≠0), а також необхідна умова незвідності канонічно циклічних матриць довільної ваги, в якій основну роль відіграє зв'язок між порядком та вагою матриці. При дослідженні канонічно циклічних мономіальних матриць порядку $n$ розглядалися різні типи звідності: (*,2)-звідність, (*,3)-звідність та 2-спадкова звідність. В роботі розглядається комутативне локальне кільце K з ненульовим радикалом R=RadK і ненульовий нільпотентний елемент t∈R такий, що tm=0, де m - степінь нільпотентності елемента t. Для канонічно циклічних матриць визначені визначальні та вагові послідовності. Вивчаються достатні умови звідності канонічно циклічних матриць великої ваги над комутативним локальним кільцем K. Доведена 2-спадкова звідність канонічно (t,*)-циклічних мономіальних матриць великої ваги порядку n над комутативним локальним кільцем у випадку, коли їх визначальні послідовності містять в собі підпослідовності фіксованого вигляду. Під підпослідовністю послідовності завжди розуміється зв'язна (з точністю до циклічної перестановки послідовності) підпослідовність. Основними методами дослідження є методи теорії зображень та матричних задач, метод елементарних перетворень матриць з комбінаторними аспектами.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Федонюк, Л. Я., С. О. Ястремська, О. М. Ярема, І. Є. Герасимюк та Я. Я. Боднар. "Навчальні музеї Тернопільського національного медичного університету імені І. Я. Горбачевського МОЗ України та їх роль у процесі навчання і виховання майбутніх спеціалістів медсестринства". Вісник медичних і біологічних досліджень, № 4 (23 лютого 2022): 69–76. http://dx.doi.org/10.11603/bmbr.2706-6290.2021.4.12760.

Повний текст джерела
Анотація:
Резюме. Значне місце серед нових підходів до організації навчальної діяльності посідає музейна педагогіка, що має важливе значення в системі освіти, сприяючи всебічному розвитку особистості студента. Важливе значення для навчання мають натуральні об’єкти і їх зображення, які створюють найповніше уявлення будови організму людини. З огляду на це, певне місце в навчально-виховному процесі займають музеї. Мета дослідження – показати роль музеїв у навчально-виховному процесі студентів Тернопільського національного медичного університету імені І. Я. Горбачевського МОЗ України. Матеріали і методи. Зібрано інформацію про роль навчальних музеїв Тернопільського національного медичного університету імені І. Я. Горбачевського МОЗ України, використано архівні матеріали кафедр: анатомії людини, патологічної анатомії з секційним курсом і судової медицини, медичної біології. Результати. У Тернопільському національному медичному університеті імені І. Я. Горбачевського МОЗ України є ряд музеїв навчального профілю: музей кафедри анатомії людини, музей кафедри патологічної анатомії з секційним курсом і судової медицини, навчально-біологічний музей імені І. І. Яременка. Метою навчальних музеїв є створення найповнішої уяви змісту живої природи, морфології людини, тварин, рослин, що нас оточують, а також як осередку освіти й виховання. Музей кафедри анатомії містить унікальну колекцію анатомічних препаратів, які відображають форму органів, їх топографічні взаємовідносини, проекції судин і нервів, що слугують невід’ємною теоретичною базою для студентів медичного, стоматологічного та фармацевтичного факультетів, а також для студентів Навчально-наукового інституту медсестринства. Досягти високого практичного рівня професійної підготовки неможливо і без вивчення музейних макропрепаратів кафедри патологічної анатомії з секційним курсом та судової медицини. Навчально-біологічний музей імені І. І. Яременка представляє натуральні об’єкти і їх зображення, які створюють найповніше уявлення взаємозв’язку людини з навколишнім середовищем. Висновок. Музеї Тернопільського національного медичного університету імені І. Я. Горбачевського МОЗ України займають вагоме місце в навчально-виховному процесі, завдяки їм теорія і практика дають високий позитивний результат у формуванні професіоналізму лікаря.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Gubarev, Vyacheslav, Viktor Volosov, Nikolay Salnikov, Vladimir Shevchenko, Sergiy Melnychuk та Lyubov Maksymyuk. "СИСТЕМА ТЕХНІЧНОГО ЗОРУ ДЛЯ ВИЗНАЧЕННЯ ВЗАЄМНОГО ПОЛОЖЕННЯ КОСМІЧНИХ АПАРАТІВ ПРИ ЗБЛИЖЕННІ ТА СТИКУВАННІ". Science and Innovation 17, № 2 (27 квітня 2021): 50–63. http://dx.doi.org/10.15407/scine17.02.050.

Повний текст джерела
Анотація:
Вступ. У країнах-лідерах космічної галузі інтенсивно ведуться роботи зі створення сервісних космічних апаратів для інспекції та обслуговування некооперованих космічних апаратів, які не оснащено спеціальними засобами для стикування. Застосування оптичних систем, так званих систем технічного зору, визначення положення дозволяють здійснити автоматичне зближення і стикування з некооперованим космічним апаратом. Проблематика. На сьогодні проблема розпізнавання за відеозображенням взаємного положення космічних апаратів при зближенні і стикуванні, ще не має ефективного розв’язання. Під ефективністю розуміється виконання технічних вимог до бортової системи технічного зору за точністю та швидкодією при допустимих обсягах обчислень і збереження інформації. Тому актуальним є побудова системи технічного зору, створення відповідного математичного, алгоритмічного та програмного забезпечення з перевіркою запропонованих рішень у стендових випробуваннях. Систему призначено для автоматичного зближення і стикування з некооперованим космічним апаратом. Мета. Розробка науково-технічних основ побудови системи технічного зору та методів розв’язання задачі визначення положення космічного апарата відносно некооперованого космічного апарата, створення математичного опису процесу зближення та стиковки, а також програмно-алгоритмічного забезпечення системи технічного зору, що задовольняє задані вимоги. Матеріали й методи. Використано методи фільтрації та обробки цифрових зображень, комп’ютерної графіки, динаміки космічних апаратів, методи еліпсоїдального оцінювання стану нелінійних динамічних систем, методи розв’язування систем нелінійних рівнянь, методи теорії графів та навчання. Результати. Створено математичне, алгоритмічне та програмно-технічне забезпечення системи технічного зору для визначення положення та орієнтації космічного апарата відносно некооперованого космічного апарата, придатне для практичного застосування. Висновки. Проведені випробування системи технічного зору на стенді показали працездатність запропонованих науково-технічних рішень та можливість використання їх на практиці.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ленчук, Іван Григорович, та Анатолій Йосипович Щехорський. "МЕТОДОЛОГІЯ КОМП’ЮТЕРНОГО МОДЕЛЮВАННЯ ПЕРЕРІЗУ ПІРАМІДИ У ПРОГРАМНИХ СЕРЕДОВИЩАХ". Information Technologies and Learning Tools 86, № 6 (30 грудня 2021): 170–86. http://dx.doi.org/10.33407/itlt.v86i6.4565.

Повний текст джерела
Анотація:
Порушено проблему недостатньо розвинених у майбутніх учителів інформатики компетентностей з питань теорії та практики евклідової геометрії. Вивчення дисциплін програми актуалізується в статті з допомогою інноваційних освітніх інформаційно-комунікаційних технологій, у творчо-розвивальному, економному в часі візуальному демонструванні перетворювальних операцій із стереометричними фігурами та їх елементами. Запропонована методологія передбачає розробку алгоритмічних схем і програмного забезпечення графічного (графоаналітичного) вирішення стереометричних задач конструктивним методом на основі сучасних комп’ютерних технологій. Динамічні характеристики та властиві конструктивні можливості обраних у дослідженні програмно-педагогічних засобів гарантують високоточне візуальне відображення розумових уявлювано-логічних операцій з фігурами евклідової геометрії. Що стосується обчислювальних стереометричних задач, то переважна більшість програм візуалізації не може задовольнити алгоритмізований процес швидкого і результативного їх розв’язання без перезавантаження даних у роботі програми. Процес повинен йти, як це прийнято на уроках геометрії, за схемою – вхідні дані, результат. Неперервність процесу вирішення стереометричних задач, як показано в статті, забезпечується програмним середовищем комп’ютерної алгебри Mathcad Pro. На відміну від інших комп’ютерних засобів, обране програмне середовище з графічними редакторами, редакторами формул та тексту допускає безперервну побудову зображень багатокутних пірамід, перерізів і обчислення їх площ, побудову розгорток пірамід, бічної та повної поверхні зрізаних пірамід. На основі відомої процедури побудови багатокутної піраміди в Mathcad Pro, автори статті пропонують напрацьовані процедури побудови її елементів. Програмні коди для побудови елементів піраміди та її перерізів написані простою алгоритмічною мовою. Намічено шляхи і засоби інтерактивного методу роботи в навчанні інформатики й геометрії, характерними ознаками якого є отримання студентами змістових предметних знань, самопізнання і пізнання власної діяльності.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Мич, I. А., В. В. Нiколенко та О. В. Варцаба. "Дослiдження сигнатурного кубу унiверсальних булевих алгебр". Науковий вісник Ужгородського університету. Серія: Математика і інформатика, № 2(37) (25 листопада 2020): 157–67. http://dx.doi.org/10.24144/2616-7700.2020.2(37).157-167.

Повний текст джерела
Анотація:
У роботi розглядається теорiя булевих функцiй з точки зору унiверсальних булевих алгебр. Дана робота використовує термiнологiю вiдомих авторiв Куроша, Мальцева, Поста та iнших. Крiм цього у роботi введено новi поняття такi як унiверсальна булева алгебра, l−базиснi алгебри, вiльнi та канонiчнi алгебри. Також вивчається клас унiверсальних булевих алгебр M2, у сигнатуру яких входять всi одно та двомiснi операцiї двозначної логiки. Ввiвши поняття порядку порiвняння сигнатур алгебр, отримали представлення алгебр M2 у виглядi 11-мiсного сигнатурного кубу. У роботi виконано розбиття цього кубу на чотири дев’ятимiрнi куби M1 2 , M2 2 , M3 2 , M4 2 . У класi M1 2 знайдена множина функцiонально повних алгебр η0 i побудовано сигнатурний граф даної множини, проведено дослiдження цих алгебр. Множину всiх функцiонально повних алгебр розбито на п’ятнадцять класiв η1, η2, . . . , η15, побудованi сигнатурнi графи кожного з цих класiв. Вивчена структура i типи алгебр, якi входять до складу класiв η1, η2, . . . , η15. Всi функцiонально повнi алгебри класу M1 2 зображенi у виглядi сигнатурного графа. Встановлено потужнiсть класу M1 2 , побудовано сигнатурний граф канонiчних алгебр цього класу i визначено розподiл алгебр по ярусах цього графа. Наведено розподiл 259 вiльних алгебр по ярусах Ω-кубу i побудовано сигнатурний граф класу вiльних алгебр. Отриманi результати узагальнено на класи M2 2 , M3 2 , M4 2 . На основi цих результатiв виконано розподiл 2048 алгебр класу M2 вiдносно базисностi по ярусах Ω- кубу.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Povkhan, Igor. "ПИТАННЯ СКЛАДНОСТІ ПРОЦЕДУРИ ПОБУДОВИ СХЕМИ АЛГОРИТМІЧНОГО ДЕРЕВА КЛАСИФІКАЦІЇ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 3(21) (2020): 142–53. http://dx.doi.org/10.25140/2411-5363-2020-3(21)-142-153.

Повний текст джерела
Анотація:
Актуальність теми дослідження. На сучасному етапі розвитку інформаційних систем та технологій, які базуються на математичних моделях теорії штучного інтелекту (методах та схемах алгоритмічних дерев класифікації), виникає принципова проблема вузької спеціалізації наявних підходів та методів у соціально-економічних, екологічних та інших системах первинного аналізу та обробки великих масивів інформації. Задачі, які об’єднуються тематикою розпізнавання образів, дуже різноманітні та виникають у сучасному світі в усіх сферах економіки та соціального контенту діяльності людини, що приводить до необхідності побудови та дослідження математичних моделей відповідних систем. На сьогодні немає універсального підходу до їх розв’язання, запропоновано декілька досить загальних теорій та підходів, що дозволяють вирішувати багато типів (класів) задач, але їх прикладні застосування відрізняються досить великою чутливістю до специфіки самої задачі або предметної області застосування. Представлена робота присвячена проблемі моделей логічних та алгоритмічних дерев класифікації (схем ЛДК/АДК), пропонує оцінку складності структур алгоритмічних дерев (моделей дерев класифікації), які складаються з незалежних та автономних алгоритмів класифікації і будуть являти собою певною мірою новий алгоритм розпізнавання (зрозуміло, що синтезований із відомих схем, алгоритмів та методів). Постановка проблеми. Нині актуальні різні підходи до побудови систем розпізнавання у вигляді дерев класифікації (ЛДК/АДК), причому інтерес до методів розпізнавання, які використовують дерева класифікації, викликаний багатьма корисними властивостями, якими вони володіють. З одного боку, складність класу функцій розпізнавання у вигляді моделей дерев класифікації, при визначених умовах, не перевищують складності класу лінійних функцій роз-пізнавання (простішого з відомих). З іншого – функції розпізнавання у вигляді дерев класифікації дозволяють виділити в процесі класифікації як причинно-наслідкові зв’язки (та однозначно врахувати їх у подальшому), так і фактори випадковості або невизначеності, тобто врахувати одночасно і функціональні, і стохастичні відношення між властивостями та поведінкою всієї системи. При цьому відомо, що процес класифікації нових, таких, що досі не зустрічалися, об’єктів світу багатьох тварин і людей (за винятком об’єктів, інформація про які передається генетичним шляхом (наслідковим), а також в деяких інших випадках), відбувається за так званим логічним деревом рішень (у зв‘язку з нейромережевою концепцією). Зрозуміло, що доцільно не розробляти новий алгоритм, а запропонувати деяку концепцію раціонального використання вже накопиченого потенціалу алгоритмів та методів класифікації у вигляді моделей алгоритмічних дерев класифікації (структур АДК). Саме тому ця робота має намір хоча б частково подолати ці обмеження та присвячена оцінці складності процедури побудови моделей алгоритмічних (логічних) дерев класифікації в галузі задач розпізнавання. Аналіз останніх досліджень і публікацій. У дослідженні розглянуті останні наукові публікації у відкритому доступі, які присвячені загальній проблемі підходів, методів, алгоритмів та схем розпізнавання (моделей ЛДК/АДК) дискретних об’єктів (дискретних зображень) у задачах розпізнавання образів (теорії штучного інтелекту). Виділення недосліджених частин загальної проблеми. Можливість простого та економного методу побудови моделі алгоритмічного дерева класифікації (або структур АДК/ЛДК) та оцінка складності такої процедури (моделі структури АДК/ЛДК) на основі початкових масивів дискретної інформації великого об’єму. Постановка завдання. Дослідження актуального питання складності загальної процедури побудови алгоритмічного дерева класифікації (моделі АДК) на основі концепції поетапної селекції наборів незалежних алгоритмів класифікації (можливих їх різнотипних множин та сполучень), яке для заданої початкової навчальної вибірки (масиву дискретної інформації) будує деревоподібну структуру (модель класифікації АДК), з набору алгоритмів оцінених на кожному кроці схеми побудови моделі за даною початковою вибіркою. Виклад основного матеріалу. Пропонується оцінка складності процедури побудови алгоритмічного дерева класифікації для довільного випадку (для умов слабкого та сильного розділення класів навчальної вибірки). Розв’язок цього питання має принциповий характер, щодо питань оцінки структурної складності моделей класифікації (у вигляді деревоподібних конструкцій), структур АДК дискретних об’єктів для широкого класу прикладних задач класифікації та розпізнавання в плані розробки перспективних схем та методів їх фінальної оптимізації (мінімізації) конструкції. Це дослідження має актуальність не лише для конструкцій алгоритмічних дерев класифікації, але й дозволяє розширити саму схему оцінки складності і на загальний випадок структур логічних дерев класифікації. Висновки відповідно до статті. Досліджені питання структурної складності конструкцій ЛДК/АДК, запропонована верхня оцінка складності для процедури побудови алгоритмічного дерева класифікації в умовах слабкого та сильного розділення класів початкової навчальної вибірки.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Бiлецька, Д. Ю., та I. В. Шапочка. "Про центральнi ряди деяких чернiковських p-груп". Науковий вісник Ужгородського університету. Серія: Математика і інформатика, № 2(37) (22 листопада 2020): 36–44. http://dx.doi.org/10.24144/2616-7700.2020.2(37).36-44.

Повний текст джерела
Анотація:
В цій роботі досліджується структура центрального ряду черніковської \(p\)-групи \(G\), яка містить максимальну повну абелеву підгрупу \(M\) індексу \(p\). Добре відомо, що така група є гіперцентальною групою. З іншого боку із теорії розширень груп також добре відомо, що будову цієї групи можна визначити за допомогою певного цілочислового $p$-адичного матричного зображення $\Gamma$ фактор-групи $G/M$ та елементом із другої групи гомологій \(H^2(G/M,M)\). Якщо група \(G\) має центральний ряд\(Z_1\subset Z_2\subset \ldots \subset Z_{\omega}\subset \ldots \subset G\),який є композиційним рядом, то число трансфінітних чисел множини індексів членів цього ряду будемо називати трансфінітною довжиною цього композиційного ряду. Вважатимемо, що \(G\) є адитивною групою, а \(\Gamma\) --- матричне цілочислове \(p\)-адичне зображення фактор-групи \(G/M\), індуковане гомоморфізмом \(f:g\to f_g\), \(g\in G\), із групи \(G\) в групу автоморфізмів \(\mathrm{Aut}\,M\), де \(f_g(m)=-g+m+g\), \(m\in M\). Нами показано, що трансфінітна довжина композиційного ряду групи \(G\) дорівнює кратності незвідної компоненти \(g+M\to 1\) зображення \(\Gamma\), якщо \(G\) є абелевою групою, і на одиницю більше цього числа, якщо ж \(G\) --- неабелева група.Нехай $\mathbb{C}_{p^\infty}$ --- адитивна квазіциклічна $p$-група, а $\mathbb{C}_{p^\infty}^n$ --- зовнішня пряма сума $n$ екземплярів квазіциклічної $p$-групи $\mathbb{C}_{p^\infty}$ для деякого натурального числа $n$. Добре відомо \cite{Kurosh}, що група$\mathrm{Aut}\,\mathbb{C}_{p^\infty}^n$ ізоморфна повній лінійній групі $\mathrm{GL}(n,\mathbb{Z}_p)$, де $\mathbb{Z}_p$ --- кільце цілих $p$\nobreakdash-адичних чисел. Тому надалі для довільної матриці $A\in \mathrm{GL}(n,\mathbb{Z}_p)$ та довільного елемента $c\in \mathbb{C}_{p^\infty}^n$ через $A(c)$ позначатимемо образ елемента $c$ при автоморфізмі, що відповідає матриці $A$. Нехай $\{a_r\:|$ $r\in\mathbb{N}_0\}$ --- множина всіх твірних елементів групи $C_{p^\infty}$, де $\mathbb{N}_0=\mathbb{N}\cup \{0\}$, причому $pa_0=0$, $pa_r=a_{r-1}$ для довільного $r\in\mathbb{N}$.Розглянемо циклічну адитивну групу $H$ порядку $p$ з твірним елементом $h$ і деяке матричне зображення $\Gamma$ цієї групи степеня $n$ над кільцем $\mathbb{Z}_p$. Образ будь-якого елемента $h'$ групи $H$ позначатимемо через $\Gamma_{h'}$. Визначимо дію $\cdot$ групи $H$ на групі $\mathbb{C}_{p^\infty}^n$ за правилом \(h'\cdot c=\Gamma_{h'}(c)\) для довільних елементів $h'\in H$ і $c\in \mathbb{C}_{p^\infty}^n$.Підкреслимо, що ядро $\mathrm{Ker}\,\Gamma$ є підгрупою стабілізатора кожного елемента із $\mathbb{C}_{p^\infty}^n$.Нескладно переконатися, що множина \[\mathfrak{z}(\Gamma)=\{c\in\mathbb{C}_{p^\infty}^n\:|\:h\cdot c=c\}\]є підгрупою групи $\mathbb{C}_{p^\infty}^n$. Для матричного зображення $\Gamma$ групи $H$ та деякого елемента $c\in\mathfrak{z}(\Gamma)$ побудуємо групу $G(\Gamma, c)$ наступним чином:\[G(\Gamma, c)= H\times \mathbb{C}_{p^\infty}^n,\]а бінарна операція $+$ задається так\[(ih,c_1)+(jh,c_2)=((i+j)h,\; \mu_{i,j}c+jh\cdot c_1+c_2),\]де $i$, $j\in\{0,1,\ldots,p-1\}$, $c_1, c_2\in \mathbb{C}_{p^\infty}^n$, \[\mu_{i,j}=\left\{\begin{array}{ll}0,&\text{якщо } i+j<p,\\1,&\text{якщо } i+j\ge p.\end{array}\right.\]В \cite{Hall} доведено, що таким чином побудована група є циклічним розширенням групи $\mathbb{C}_{p^\infty}^n$ за допомогою групи $H$, а як наслідок, є черніковською $p$-групою.В [1] описані з точністю до ізоморфізму всі черніковські $p$-групи, фактор-група яких за максимальною повною абелевою підгрупою є циклічною групою порядку $p$. Вони вичерпуються наступними групами:\[G(n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3,0), \quad G(\Gamma_1+n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3,\mathfrak{c}^{(n_1(p-1)+n_2+n_3p)})\]де\[\Gamma_1:h\to\tilde\varepsilon,\qquad \Gamma_2:h\to 1,\qquad \Gamma_3:h\to\begin{pmatrix}\tilde\varepsilon&\langle1\rangle\\0&1\end{pmatrix}\]--- всі попарно нееквівалентні нерозкладні матричні зображення циклічної групи \(H\) над кільцем \(\mathbb{Z}_p\);\(\tilde\varepsilon\), \(\langle1\rangle\) --- відповідно \((p-1)\times(p-1)\)- та \((p-1)\times 1\)-матриці над кільцем \(\mathbb{Z}_p\) вигляду:\[\tilde\varepsilon=\begin{pmatrix}0&0&\ldots&0&-1\\1&0&\ldots&0&-1\\0&1&\ldots&0&-1\\\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&\ldots&1&-1\end{pmatrix},\quad\langle1\rangle= \begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix};\]\(n_1\), \(n_2\), \(n_3\in\mathbb{N}_0\); \(n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3\) --- розкладне матричне зображення групи \(H\) з \(n_i\) екземплярами нерозкладного зображення \(\Gamma_i\) для \(i\in\{1,2,3\}\);\[\mathfrak{c}^{(k)}=((p-1)a_0,(p-2)a_0,\ldots,a_0,\underbrace{0,\ldots,0}_{k\text{ раз}}),\quad k \in\mathbb{N}_0.\]В роботі для кожної з груп \[G(n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3,0),\quad G(\Gamma_1+n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3,\mathfrak{c}^{(n_1(p-1)+n_2+n_3p)})\] побудовано композиційний центральний ряд.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Філєр, Залмен Юхимович, та Олександр Миколайович Дрєєв. "Міжпредметні зв’язки у розвитку алгоритмічного мислення". New computer technology 5 (10 листопада 2013): 92–93. http://dx.doi.org/10.55056/nocote.v5i1.100.

Повний текст джерела
Анотація:
Математика розвиває алгоритмічне мислення. До Фалеса математика була рецептурно-догматичною, набором алгоритмів для розв’язання типових задач. Давньогрецька математика виробила систему аксіом й методи логічного виведення з них теорем. Рецептура замінювалася доказовими алгоритмами, одним з яких був алгоритм Евкліда. Знаходження найбільшого спільного дільника, який дає й розвинення звичайного дробу в ланцюговий і побудову двосторонніх наближень.У школі некваліфіковані вчителі не дають чітких алгоритмів розв’язання типових задач, хоча не всі діти здатні до швидких “творчих” знахідок й тому не вміють самі знайти шлях до розв’язку. Але математика засобами алгебри дає змогу узагальнення числової задачі до типової з розробкою алгоритму її розв’язання. Фіксація алгоритму у вигляді послідовності операцій, обумовленої й результатами проміжних дій, веде до необхідності введення операції умовногопереходу й циклічних гілок. Одним з корисних прикладів є знаходження квадратного кореня. На жаль, зараз цей алгоритм не вивчають, бо будують приклади-завдання так, щоби відповідь можна було знайти “в умі”. Це відноситься й до розв’язання квадратних рівнянь. Значно більше, ніж треба, вчителі приділяють увагу вгадуванню коренів за теоремою Вієта, хоча її бажано застосовувати для перевірки знайдених коренів.Вища математика дає змогу широкого використання комп’ютера. Деякі студенти мають комп’ютер або змогу користуватися ним у батьків чи друзів; дехто вже має й деякі навички. Тому можна пропонувати їм використовувати комп’ютер для обчислень і для побудови графіків. Це сприяє кращому розумінню поняття функції та її границі, а далі й дослідженню властивостей функції. Бажано використовувати можливості збірника типових задач (Кузнєцова, Чудесенка та ін.), розробляючи разом із студентами алгоритми розв’язання задач, можливо з доведенням їх до комп’ютерних програм. Ми маємо досвід розробки програми DIFF аналітичного диференціювання у 1978 р., ще до появи сучасних математичних пакетів типу Maple. Вона стала основою програми Lagr для побудови рівнянь Лагранжа електромеханічних систем, а студенти Донецької політехніки І. Кирютенко та В. Карабчевський стали учасниками розробки пакета програм VIBRO для динамічного аналізу вібраційних систем за замовленням проектного інституту в м. Луганську. Один із студентів, який отримав дозвіл працювати над курсом “Диференціальні рівняння” (ДР) за індивідуальним планом, розробив програми для розв’язання 16 типових задач. Реалізація операцій алгебри логіки на контактних схемах із демонстрацією діючих моделей, розроблених студентами минулих років, сприяє виробленню уявлень про корисність абстрактно-математичних теорій. Побудова точкових графіків послідовностей (1+1/n)n та (1–1/n)–n дає уявлення про графік функції y=(1+1/x)x та про вивчення неперервних величин за допомогою їх дискретизацій на ЦЕОМ. Побудова графіка функції y=sin(x)/x пояснює не тільки першу чудову границю, а й усувний характер розриву при х=0 та парність цієї функції.Можливість використання мультімедіа-ефектів та використання варіації параметрів особливо корисні при вивченні розділу ДР, де розв’язок визначається початковими чи граничними умовами; їх зміна дає наочне уявлення про різницю між частинним та загальним розв’язками та ілюструє метод “стрільби” тощо. Теж саме відноситься до курсу “Теорія ймовірностей та математична статистика”. Вивчення методу найменших квадратів знаходження середнього та дисперсії, регресійних рівнянь тощо, дозволяє уяснити можливості прогнозу – екстраполяції. Збільшення числа n у схемі послідовних випробувань з імовірністю Pn(m) показує природність нормального закону розподілу ймовірностей. При цьому багатокутник розподілу наочно перейде у криву густини.Викладання комп’ютерних наук з орієнтацією на міжпредметний комплекс задач. Усі завдання повинні бути складовими частинами основного завдання, яке повинен розв’язати колектив студентів. У свою чергу, завдання для одного чи групи студентів повинне паралельно розвиватися по різним дисциплінам. Наприклад, для спеціальності “Системне програмування” проектування частини графічного редактора, містить підзадачу пакування зображення для архівації, що використовує знання предметів: комп’ютерна графіка, обробка цифрових сигналів, архітектура операційних систем, архітектура ЕОМ тощо. Комплекс завдань з окремого предмета призводить до прогресу у вирішенні завдання в цілому. При цьому виникають труднощі перевірки та контролю якісного виконання завдань, бо результат праці студента є складовою загального проекту і може виникнути ситуація обмеженого самостійного функціонування. Тут виникає потреба в механізмі доведення коректності виконаного завдання, що у свою чергу доповнить знання студентів щодо засобів перевірки та діагностування, розробки тестових прикладів та правила їх складання. Для впровадження комплексу задач необхідно використання централізованого контролю та міжпредметних зв’язків. Централізований контроль можливо автоматизувати, використавши готовий проект, де кожен модуль студент може тимчасово замінити на власний і отримати від системи оцінку ефективності нової розробки. Це може бути використане й до колективних курсових та дипломних робіт.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Havrysh, V. I., O. S. Korol, O. M. Ukhanska, I. G. Kozak та O. V. Kuspysh. "Математична модель визначення температурних режимів у біпластині, зумовлених точковим джерелом тепла". Scientific Bulletin of UNFU 29, № 3 (25 квітня 2019): 104–7. http://dx.doi.org/10.15421/40290322.

Повний текст джерела
Анотація:
Розроблено математичну модель визначення температурних режимів у ізотропній двошаровій пластині, яка нагрівається точковим джерелом тепла, зосередженим на поверхнях спряження шарів. Для цього з використанням теорії узагальнених функцій коефіцієнт теплопровідності матеріалів шарів пластини зображено як єдине ціле для всієї системи. З огляду на це, замість двох рівнянь теплопровідності для кожного із шарів пластини та умов ідеального теплового контакту, між ними отримано одне рівняння теплопровідності в узагальнених похідних із сингулярними коефіцієнтами. Для розв'язування крайової задачі теплопровідності, що містить це рівняння та крайові умови на межових поверхнях пластини, використано інтегральне перетворення Фур'є, внаслідок чого отримано аналітичний розв'язок задачі в зображеннях. До цього розв'язку застосовано обернене інтегральне перетворення Фур'є, яке дало змогу отримати остаточний аналітичний розв'язок вихідної задачі. Отриманий аналітичний розв'язок подано у вигляді невласного збіжного інтегралу. За методом Сімпсона отримано числові значення цього інтегралу з певною точністю для заданих значень товщини шарів, просторових координат, питомої потужності точкового джерела тепла і коефіцієнта теплопровідності конструкційних матеріалів пластини. Матеріалом першого шару пластини є мідь, а другого – алюміній. Для визначення числових значень температури в наведеній конструкції, а також аналізу температурних режимів, що виникають через нагрівання точковим джерелом тепла, зосередженим на поверхнях спряження шарів пластини, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, що відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розробленої математичної моделі аналізу температурних режимів у двошаровій пластині з точковим джерелом тепла, зосередженим на поверхнях спряження її шарів, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду неоднорідні середовища щодо їх термостійкості. Як наслідок, можливо її підвищити і цим самим захистити від перегрівання, яке може спричинити руйнування як окремих елементів, так і всієї конструкції загалом.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Havrysh, V. I., O. S. Korol, I. G. Kozak, O. V. Kuspish та V. U. Maikher. "Математична модель аналізу теплообміну між двошаровою пластиною з локально зосередженим джерелом тепла та навколишнім середовищем". Scientific Bulletin of UNFU 29, № 5 (30 травня 2019): 129–33. http://dx.doi.org/10.15421/40290526.

Повний текст джерела
Анотація:
Розроблено математичну модель аналізу теплообміну між ізотропною двошаровою пластиною, яка нагрівається точковим джерелом тепла, зосередженим на поверхнях спряження шарів, і навколишнім середовищем. Для цього з використанням теорії узагальнених функцій коефіцієнт теплопровідності матеріалів шарів пластини зображено як єдине ціле для всієї системи. З огляду на це, замість двох рівнянь теплопровідності для кожного із шарів пластини та умов ідеального теплового контакту, між ними отримано одне рівняння теплопровідності в узагальнених похідних із сингулярними коефіцієнтами. Для розв'язування крайової задачі теплопровідності, що містить це рівняння та крайові умови на межових поверхнях пластини, використано інтегральне перетворення Фур'є і внаслідок отримано аналітичний розв'язок задачі в зображеннях. До цього розв'язку застосовано обернене інтегральне перетворення Фур'є, яке дало змогу отримати остаточний аналітичний розв'язок вихідної задачі. Отриманий аналітичний розв'язок подано у вигляді невласного збіжного інтегралу. За методом Сімпсона отримано числові значення цього інтегралу з певною точністю для заданих значень товщини шарів, просторових координат, питомої потужності точкового джерела тепла, коефіцієнта теплопровідності конструкційних матеріалів пластини та коефіцієнта тепловіддачі з межових поверхонь пластини. Матеріалом першого шару пластини є мідь, а другого – алюміній. Для визначення числових значень температури в наведеній конструкції, а також аналізу теплообміну між пластиною та навколишнім середовищем, зумовленим різними температурними режимами завдяки нагріванню пластини точковим джерелом тепла, зосередженим на поверхнях спряження шарів, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, що відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розробленої математичної моделі аналізу теплообміну між двошаровою пластиною з точковим джерелом тепла, зосередженим на поверхнях спряження шарів і навколишнім середовищем, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду неоднорідні середовища щодо їх термостійкості під час нагрівання. Як наслідок, стає можливим її підвищити і захистити від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Назарець, В. М., та В. М. Миронюк. "КОНЦЕПЦІЇ ЖАНРОВОЇ ОРГАНІЗАЦІЇ ЛІРИКИ В ЛІТЕРАТУРОЗНАВСТВІ ХХ СТОЛІТТЯ". Collection of scientific works "Visnyk of Zaporizhzhya National University Philological Sciences", № 2 (9 квітня 2021): 184–88. http://dx.doi.org/10.26661/2414-9594-2020-2-26.

Повний текст джерела
Анотація:
У статті досліджено основні концепції жанрової організації лірики в літературознавстві ХХ ст. Установлено, що на сучасному етапі розвитку літературознавства однією з найбільш актуальних є проблема теоретичного осмислення жанрової природи ліричного твору, розроблення принципів класифікації ліричних жанрів. На основі опрацювання фахової літератури з аналізованої проблеми з’ясовано дискусійність не лише питання визначення чітких критеріїв жанрового виокремлення типів ліричних творів, а й проблеми функціонування в ліриці такої цілком усталеної теоретичної категорії, як жанр. Проблематичність чіткої жанрової ідентифікації ліричних творів полягає й у тому, що дослідницькі уявлення про них не є сталими, а історично змінними – не лише через ускладнення парадигми їхньої теоретичної рецепції, але, насамперед, з огляду на історичну рухомість категорії жанру, специфіку його комунікативних настанов та естетичних стратегій, внутрішніх смислових взаємозв’язків між елементами його художньої структури та тематичної спрямованості. Унаслідок вивчення художньої практики поетів ХІХ–ХХ ст. спостережено використання авторською індивідуальністю, попри теоретичні аргументи прибічників концепції жанрової атрофії лірики та, відповідно, авторитарний диктат жанрових вимог, певних жанрових стратегій, що полягають у модифікації відповідно до власних творчих настанов усталених канонів жанрового мислення. Простежено відродження з огляду на зміну теоретичної парадигми літературознавства останніх десятиліть активного інтересу до теорії ліричного жанру, характеру та форм його художньої трансформації в минулій та сьогоденній поетичній практиці. Сучасними літературознавцями розроблено шість основних концепцій, які зумовлюють жанрову специфіку художнього твору особливостями його: 1) форми, 2) змісту, 3) змістово-формальної єдності, 4) історичної ґенези, 5) літературного функціонування, 6) феноменології сприйняття. Найбільш усталеною сьогодні концепцією класифікації ліричних творів визнано концепцію їх тематичної класифікації (за характером проблематики, що домінує у творі) та диференціації за ознакою специфіки форми зображення, яку запропонував ще у 70-х роках ХХ ст. відомий російський літературознавець Г. Поспєлов. У концепції передбачено розмежування таких п’яти типів лірики: 1) медитативної, 2) медитативно-зображальної, 3) описово- зображальної, 4) «персонажної», 5) розповідної. Зазначено, що у цій концепції не відображено жанрової специфіки художньої організації ліричного твору.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Кухаренко, Володимир Миколайович. "Сучасне проектування дистанційних курсів". Theory and methods of e-learning 4 (28 лютого 2014): 154–64. http://dx.doi.org/10.55056/e-learn.v4i1.385.

Повний текст джерела
Анотація:
Вступ Сучасні методи проектування дистанційних курсів базуються на розвинених інформаційних освітніх ресурсах і, в першу чергу, відкритих освітніх ресурсах. Кожен університет має концепцію розвитку своїх інформаційних освітніх ресурсів, які полегшують викладачеві використання технологій дистанційного навчання у навчальному процесі, як очному, так і заочному.Інформаційний освітній простір забезпечує:– доступність інформаційних ресурсів університету, системну інтеграцію;– комунікації між студентами, викладачами, науковим співтовариством;– створення інформаційного співтовариства;– інформаційну підтримку прийняття рішень, функціонування органів управління університету.Велику роль у формуванні інформаційного освітнього простору відіграють відкриті освітні ресурси ‑ навчальні або наукові ресурси, які розміщені у вільному доступі, або мають ліцензію, яка дозволяє їх вільне використання або переробку.До відкритих освітніх ресурсів можна віднести навчальні курси, окремі матеріали курсу і модулі курсу, посібники, навчальне відео, програмне забезпечення та інші засоби, матеріали або технології.Використання відкритих освітніх ресурсів зменшує вартість доступу до навчальних матеріалів, підвищує активність учасників навчального процесу, створює ефективну навчальне середовище, розвиває компетенції викладачів при підготовці навчальних матеріалів та проведенні навчального процесу.Відкриті освітні ресурси забезпечують прозорість прав інтелектуальної власності та авторських прав, забезпечують високу якість авторських робіт, сприяють підвищенню ефективності управління системою зберігання даних для освітніх ресурсів університету.Рівень розвитку інформаційних освітніх ресурсів університетів України можна оцінити за досягненнями у міжнародному рейтингу сайтів університетів Webometrics (http://webometrics.info). На жаль, сайти університетів України в цьому рейтингу розташовуються в кінці першої тисячі і нижче. Це створює великі проблеми при розвитку дистанційного навчання.Для успішного проведення навчального процесу кожен університет на базі інформаційних освітніх ресурсів повинен мати кампус, який іноді називають мобільним кампусом. Мобільний кампус ‑ це, насамперед, можливість бути частиною навчального співтовариства в будь-який час і в будь-якому місці. Він потрібен для того, щоб створити в навчальному закладі колективно-рефлексивний вимір неформальної навчальної діяльності, опосередкованої мобільними технологіями.У такому мобільному кампусі процес навчання може починатися коли завгодно; тривати скільки завгодно; він може бути раптово припинений або перерваний і може бути продовжений з будь-якого місця. Це дозволяє встановлювати індивідуальний розклад, створює ефект присутності і породжує явище віртуального університету.Педагогічне проектуванняВ останній час відбулися великі зміни в дистанційному навчанні, зокрема, з’явилися нові педагогічні теорії, соціальні сервіси, методи навчання і масові відкриті он-лайн курси (МВОК), тому необхідно переглянути методи проектування дистанційних курсів.Перш за все, проектування ‑ це процес створення нового об’єкта для задоволення потреб особистості. Мета проектування ‑ започаткувати зміни у навколишньому штучному середовищі людини.У техніці існують неформальні визначення «проектування» [1]:Цілеспрямована діяльність по розв’язанню задач (Арчер).Прийняття рішень в умовах невизначеності з тяжкими наслідками в разі помилки (Азімов).Моделювання передбачуваних дій до їх здійснення до тих пір, поки не з’явиться повна упевненість в кінцевому результаті (Букер).Здійснення дуже складного акту інтуїції (Джонс).Натхненний стрибок від фактів сьогодення до можливостей майбутнього (Пейдж).Проектування – це процес, а методи проектування ‑ це методологія, яка вимагає комплексного застосування різних наукових напрямків та теорій.З інших робіт з проектування слід звернути увагу на роботи Я. Дітріхса і Г. С. Альтшуллера.Г. С. Альтшуллер розглядав проектування як алгоритм розв’язання винахідницьких задач (АРВЗ – http://www.triz-ri.ru/triz/triz02.asp#a4), пізніше сформувавши теорію розв’язання винахідницьких задач (ТРВЗ). АРВЗ ‑ це інструмент для мислення і вирішення нестандартних задач. Наступні роботи І. Л. Вікентьєва з розвитку ідей Г. С. Альтшулера показали, що ці підходи добре працюють в бізнесі, журналістиці, освіті та інших напрямках.АРВЗ орієнтований на вирішення нестандартних, новаторських задач, які зараз дуже потрібні в освіті і складається з етапів:Аналіз задачі;Аналіз моделі задачі;Визначення ідеального кінцевого результату і фізичного протиріччя (ФП);Мобілізація та застосування ресурсів;Застосування інформаційного фонду;Зміна чи заміна задачі;Аналіз способу усунення ФП;Застосування отриманої відповіді;Аналіз ходу рішення.Педагогічне проектування ‑ це застосування та розвиток ідей технічного проектування на педагогічну діяльність з використанням усіх існуючих педагогічних теорій.Педагогічне проектування ‑ це методологія створення новаторських освітніх ресурсів.Традиційно педагогічне проектування базується на ADDIE: аналіз (Analyzing) потреб організації; проектування (Designing) системи для потреб організації; розвиток (Developing) системи з використанням аналізу вихідних даних; виконання (Implementing) процесів системи; оцінка (Evaluating) проекту створення та виконання.Комплексне застосування педагогічного проектування та методології АРВЗ дозволить створювати унікальні дистанційні курси, наприклад, МООК.Методи навчанняПоява нових соціальних сервісів впливає на розвиток освіти і, зокрема, на дистанційне навчання. Переглядаються психолого-педагогічні підходи до навчання, особливо, якщо вони мають відношення до корпоративного навчання. Не залишилися без уваги і формальне, неформальне, інформальне і соціальне навчання.Розгляд видів робіт спеціаліста дозволяє визначити співвідношення формального і неформального навчання [2]. При виконанні рутинних робіт частка неформального навчання мінімальна і зростає до видів діяльності, що потребують вирішення варіативних (творчих) завдань (рис. 1).Формальне навчання (відповідно до визначення CEDEFOP [3]) ‑ це структуроване (з точки зору цілей і часу) навчання, яке зазвичай надається навчальним закладом і призводить до сертифікації. Формальне навчання є навмисним, з точки зору учня. Рис. 1 Формальне та неформальне навчання Інформальне (informal) навчання [3] ‑ це щоденне навчання, пов’язане з роботою, сім’єю або відпочинком, не організоване і не структуроване (з точки зору мети, часу та підтримки). Інформальне навчання в більшості випадків ненавмисне з точки зору учня і не призводить до сертифікації.Неформальне (non-formal) навчання (автором є Малкольм Ноулз 1970 р.) [3] ‑ це навчання, яке вбудовано в заплановані заходи, але явно не призначено (з точки зору цілей, часу та підтримки) і містить важливий елемент навчання. Неформальне навчання є навмисним з точки зору учня і приводить до сертифікації.В даний час спостерігається підйом неформального навчання [4], що пов’язано з бурхливим розвитком е-Learning ‑ предтечею неформального навчання, збільшенням інновацій в бізнесі, підвищенням продуктивності. Неформальне навчання, яке можна відстежувати і вимірювати, забезпечує рентабельність передачі знань, компетенції, сприяє підвищенню організаційної ефективності. Дослідження показують, що 70% навчання є неформальним, а 30% формальним. Внаслідок цього створюється думка, що при правильній організації неформального навчання можна скоротити витрати на навчання.Поява соціальних сервісів і розвиток теорій навчання показує, що поєднання формального і неформального навчання дозволяє зробити процес навчання успішним, коли [5]:– не все навчання організоване у курсі;– існує безліч підходів для доставки курсів;– при необхідності використовуються змішані рішення;– навчання вбудовано в процес роботи;– тренери виконують функції «керівництво на стороні», а не «мудреці на сцені».При цьому необхідно передбачати неформальне (non-formal) навчання на робочому місці [6]:– моделювання соціальної поведінки, обміну;– моделювання корпоративного зв’язку;– створення простої в освоєнні і використанні системи;– інтеграція використання системи в робочий процес співробітника;– заохочення обміну інформацією;– створення почуття гумору.Модель підтримки неформального навчання (OODA) [7] включає спостереження, орієнтацію, прийняття рішення, дію. Реалізується ця модель через персональне навчальне середовище (ПНС), яка дозволяє інтегрувати формальне і неформальне навчання. На першому етапі через різні канали йде сканування навколишнього середовища з використанням різних фільтрів. Організація може створювати інформаційні портали для різних категорій службовців і сприяти формуванню у них ПНС.На другому етапі виконується цикл синтезу даних та інформації у якийсь уявний образ з урахуванням старих образів. Це найбільш складний етап. Проблемами на цьому етапі можуть бути знання бізнесу, глибина сканування інформації і культура організації, тому важливо організувати зворотний зв’язок. На третьому етапі, використовуючи можливості ПНС, розглядаються всі можливі варіанти рішень, які реалізуються на останньому, четвертому, етапі.Соціальне навчання [3] ‑ це придбання знань у соціальній групі або процес, в якому люди спостерігають за поведінкою інших людей і її наслідками, і відповідним чином змінюють свою поведінку.Соціальне навчання базується на соціальній теорії навчання А. Бандури [8] і включає спостереження, моделювання поведінки, ставлення і емоційну реакцію. До елементів навчання можна віднести увагу, закріплення, активне самостійне відтворення, мотивацію, характеристику спостерігача. Остання включає [9] автономність, самостійність, самоорганізацію, самоврядування і самоконтроль.Основними принципи теорії А. Бандури є: кодування змодельованої поведінки; змодельована поведінка дає цінний результат; модель зрозуміла і близька студенту та має функціональну цінність.Теорія соціального навчання Бандури дає наступні рекомендації:– вчити зразковим пізнавальним процесам і поведінці, які базуються на реальних проблемах;– використовувати прості приклади та порівняння для вивчення послідовності процесів сприйняття і засвоєння;– використовувати робочі приклади як метод моделювання процесу розв’язання проблеми;– повторення виконання з варіаціями.Численні дослідження показують, що соціальне навчання [10] здійснюється на роботі ‑ 70%, в спілкуванні з колегами і керівниками ‑ 20% і від вивчення курсів та книг ‑ 10%. Для реалізації цього принципу необхідна підтримка навчального процесу на робочому місці, поліпшення навичок навчання співробітників та створення сприятливої організаційної культури.Навчанню на робочому місці сприяє застосування нових знань і навичок в реальних ситуаціях, виділення нових робіт в рамках існуючої ролі, збільшення кола обов’язків та сфери контролю, завдання, спрямовані на нові ініціативи, робота в складі невеликої групи, можливість проводити дослідженні та експертизу.Навчанню у спілкуванні з колегами сприяють зворотний зв’язок для нових підходів до старої проблеми, участь у формальному і неформальному наставництві, заохочення до участі у дискусіях, висловлювання думок, роботи у команді, побудови навчальної культури.Куратор змістуУ даний час спостерігається невпинне зростання інформації в мережі: кожну хвилину завантажується на YouTube 72 годин відео, щодня створюється 340 млн. твітів, кожен місяць на Facebook створюються 25000 млн. одиниць контенту [11], і таких прикладів можна наводити безліч. Тому з’явилася потреба в новій діяльності в мережі, яку здійснює куратор контенту або куратор змісту ‑ людина, яка дає користувачеві повну інформацію для певної теми з коментарями на вимогу. Ця назва походить від Сontent сurator ‑ хранитель музею. Куратор змісту забезпечує зберігання вмісту (content curation) ‑ процес категоризації великої кількості контенту та подання її в організаційній функції для конкретної предметної області.Термін «куратор змісту» з’явився кілька років тому і привернув увагу користувачів Інтернет. З одного боку ‑ це кваліфікація, з іншого, можливо, спеціальність. Одне зрозуміло, фахівців цього профілю зараз обмаль і їх необхідно готувати.Зберігання змісту відіграє велику роль у розвитку сучасного інформаційного суспільства [12]. Оцінки показують, що понад 90% навчання на робочому місці відбувається за рамками формальної програми. Зберігання змісту ‑ це не кількість ресурсів, а їх якість. Куратор змінює шум на прозорість і ясність. Обмін вмістом може бути більш важливим і ефективним для вашої аудиторії, ніж створення контенту.Робота куратора змісту не може бути ефективною, якщо він не знайомий особливостями побудови сучасної електронної бібліотеки, наукометричними продуктами. В даний час в Інтернет можна знайти (http://www.scopus.com/) понад 19 тис. поточних журналів та 45 млн. публікацій з журналів (87%) і конференцій (11%). Поповнення складає понад 2 млн. публікацій щорічно.Робота куратора змісту можлива тільки, якщо у нього сформовано ПНС, в яке входять найбільш поширені соціальні сервіси, що охоплюють усі сфери його діяльності. Класифікація соціальних сервісів дозволяє визначити, які сервіси необхідно засвоїти для успішного курування змісту. Куратор змісту повинен уміти використовувати соціальні сервіси мобільних пристроїв.Наявність у куратора ПНС дозволяє сформувати персональну навчальну мережу, яка включає всі можливі зв’язки куратора змісту.Функції куратора змісту [13]:– оптимізує, редагує назви;– форматує зміст;– вибирає і додає відповідне зображення;– коментує текст для його розуміння;– додає вступ для конкретної аудиторії;– класифікує з використанням метаданих;– інтегрує посилання;– перевіряє першоджерела;– фільтрує вхідний зміст;– пропонує елементи інших кураторів;– шукає новий відповідний зміст і джерела;– дає поради та інформацію з краудсорсингу.Ефективне курування передбачає управління увагою, візуалізацію матеріалу, встановлення ритуалів, рефлексію, управління поштою, управління фізичним простором і багато іншого.Інструменти куратора: Twitter, Facebook, Google +, Paper.li, Scoop.it, Netvibes.com, RSS reader, DIIGO та багато інші.Курування змісту може бути використане в маркетингу, бізнесі, бібліотечній справі. В освіті ‑ це професійна і педагогічна діяльність викладача, навчальна діяльність студента.Проектування масового відкритого онлайн курсуВ теперішній час поширюються масові відкриті онлайн курси (МВОК), але поки дуже мало публікацій про особливості їх проектування. В роботі [14] відзначається, що у таких курсах цільова група невизначена та головна увага приділяється технологічним особливостям проектування курсу: реєстрації, вибору хештегу, сайту, агрегатора, форуму.Більше інформації про проектування курсу можна знайти в роботі С. Даунса [15]. Він зазначає, що МВОК ‑ це курс без змісту і важливо створити надлишкову інформацію. Кількість посилань до кожної теми повинно перевищувати число Данбара (зазвичай 100-230, приймається 150) (http://en.wikipedia.org/wiki/Dunbar’s_number/). Число Данбара ‑ це когнітивні обмеження на кількість людей, з якими можна підтримувати стабільні соціальні відносини. Вибір такої кількості джерел змушує слухача вибірково читати запропоновані матеріали.Розробник повинен вміти вибирати зміст, брати уча
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Крохмаль, Тетяна Миколаївна, та Олександр Миколайович Нікітенко. "Використання системи комп’ютерної математики Maple в курсі «Технічна електродинаміка»". Theory and methods of e-learning 3 (10 лютого 2014): 148–52. http://dx.doi.org/10.55056/e-learn.v3i1.332.

Повний текст джерела
Анотація:
Інтенсивне впровадження електротехніки, радіотехніки й електроніки майже у всі галузі народного господарства, науку, техніку, медицину, побут поставило перед широким колом фахівців (радіоінженери, інженери з прискорювальних установок, з ядерної техніки, електроніки, автоматики тощо) завдання активного освоєння методів розрахунків електродинамічних задач. Створення та експлуатація новітніх радіоелектронних пристроїв та приладів визначають зростаючу потребу у добре підготованих фахівцях радіотехнічного напряму.У сучасній радіотехніці й зв’язку широке застосування знаходять електромагнітні хвильові процеси і різноманітні пристрої, у яких ці процеси відіграють суттєву роль: передавальні лінії й хвилеводи, випромінювачі й приймальні антени, об’ємні резонатори й фільтри, невзаємні пристрої з феритами, елементи обчислювальних машин і комутаційних пристроїв, що працюють у сантиметровому або оптичному діапазоні.Курс «Технічна електродинаміка» та подібні до нього є обов’язковими для вивчення під час підготовки фахівців. Крім того, електродинаміка є важливою частиною теоретичної фізики, тому курси з електродинаміки читаються у переважній більшості університетів, й, у тій або іншій формі, і в ряді вищих технічних навчальних закладів.За програмою цього курсу найчастіше розглядаються наступні теми:1. Елементи векторного аналізу та математичної теорії поля2. Рівняння Максвелла3. Пласкі електромагнітні хвилі4. Відбиття та переломлення пласких електромагнітних хвиль5. Стале електричне поле6. Стале магнітне поле7. Поширення електромагнітних хвиль8. Хвилеводи9. Об’ємні резонаториВивчення вище перелічених тем вимагає використовувати такі операції з математичної теорії поля, як градієнт, ротор, дивергенція, скалярний та векторний добуток векторів тощо, розв’язувати рівняння у частинних похідних за методами Д’Аламбера (поширення хвиль), відокремлення змінних (рівняння Лапласа, Пуассона, Гельмгольця), визначати структури полів (типи хвиль) у хвилевідних лініях та об’ємних резонаторахЗ іншого боку, чільне місце у підготовці майбутнього фахівця посідає місце вміння використовування систем комп’ютерної математики (СКМ). Підготовка майбутнього фахівця до використання інформаційно-комунікаційних технологій має відбуватися не тільки на заняттях з дисциплін природничо-наукового циклу, а насамперед під час вивчення фундаментальних дисциплін.До простих і відносно нескладних систем комп’ютерної математики, щоправда з дещо обмеженими можливостями, відносять системи Derive та різні версії системи Mathcad. Система Derive вважається навчальною СКМ початкового рівня. Вона функціонує на основі мови штучного інтелекту (MuLisp) і є найменш вимогливою до апаратних можливостей персональних комп’ютерів: це єдина система, яка здатна працювати навіть на комп’ютерах раритетного класу IBM PC ХТ без жорсткого диску. Проте за можливостями вона не може конкурувати з системами більш високого класу ані у чисельних розрахунках, ані у символьних перетвореннях, ані у графічній візуалізації результатів обчислень.До середнього рівня СКМ відносять системи класу Mathcad. Ця СКМ має висококласну систему чисельних обчислень, проте дещо обмежену систему символьних перетворень, що реалізовано системою MuPAD (достатньо сказати, що лише 300 функцій ядра MuPAD доступні у Mathcad). Втім, графічні можливості різних версій Mathcad мало чим поступаються графіці більш складних СКМ.Більшість перших CKM призначалася для чисельних розрахунків. Їх результат завжди конкретний – це або число, або набір чисел, що зображується у вигляді таблиці, матриці або точок графіків. Однак вони не надавали можливості одержати загальні формули, що описують розв’язок задач. Як правило, з результатів чисельних обчислень неможливо було зробити загальні теоретичні, а часом і практичні висновки. Символьні (чи, інакше, аналітичні) операції – це якраз те, що кардинально відрізняє системи класу Maple та Mathematica (і подібні їм символьні математичні системи) від систем для виконання чисельних розрахунків. Під час виконання символьних операцій завдання на обчислення складаються у вигляді символьних (формульних) виразів, і результати обчислень також подаються у символьному вигляді. Числові результати при цьому є окремими, частковими випадками символьних.Вирази, що зображено у символьному вигляді, відрізняються високим ступенем загальності.Maple та Mathematica мають приблизно однакові можливості як в галузі символьних обчислень, так і в галузі числових розрахунків. Варто відзначити, що інтерфейс Maple є більш інтуїтивно зрозумілим, ніж у більш строгої системи Mathematica. Обидві системи в останніх реалізаціях зробили якісний стрибок у напрямі ефективності розв’язання задач в числовому вигляді, зокрема через підвищення швидкості виконання матричних операцій або застосування СКМ Matlab.Як ілюстрацію застосування СКМ Maple до курсу технічної електродинаміки розглянемо кілька прикладів розв’язання типових задач.1. Визначити дивергенцію і ротор векторного поля , яке має в декартовій системі координат єдину складову .with(VectorCalculus):F := VectorField(<20*sin(x/Pi),0,0>, ’cartesian’[x,y,z]); div := Divergence(F); rot := Curl(F); 2. Визначити дивергенцію і ротор векторного поля , яке характеризується такими складовими в циліндричній системі координат: , Аφ = 0, Аz = 0.F := VectorField(<10/r^2,0,0>, ’cylindrical’[r,phi,z]); div := Divergence(F); rot := Curl(F); 3. Визначити дивергенцію і ротор векторного поля , яке має в сферичній системі координат єдину складову Аθ = 8r ехр (– 10r).F := VectorField( <0,0,8*r*exp(-10*r)>, ’spherical’[r,phi,theta] ); div := Divergence(F); rot := Curl(F); 4. Побудувати структуру поля для хвилі типу Н12 у прямокутному хвилеводіcontourplot(H0*cos(m1*Pi*x/a)*cos(n1*Pi*y/b), x=0..a, y=0..b, contours=30, numpoints=2000, coloring=[white,white], filled=true, labels=["a","b"], title="Структура поля класу H (TE)"); 5. Побудувати структуру поля для хвилі типу Е21 у прямокутному хвилеводіcontourplot(E0*sin(m*Pi*x/a)*sin(n*Pi*y/b), x=0..a, y=0..b, contours=30, numpoints=2000, coloring=[white,white], filled=true, labels=["a","b"], title="Структура поля класу Е (TM)"); 6. Побудувати структуру поля для хвилі типу Е21 у круглому хвилеводіcontourplot([r,phi,E0*(epsilonmn/R)^2*BesselJ(m,r*epsilonmn/R)* sin(m*phi)], r=0..R, phi=0..2*Pi, coords=cylindrical, contours=30, numpoints=2000, coloring=[white,white], filled=true, title="Структура поля класу Е (TM)"): З вище викладеного та проілюстрованого випливає, що систему комп’ютерної математики Maple доцільно використовувати під час викладання курсу «Технічна електродинаміка» або подібні до нього, особливо на практичних заняттях або під час самостійної підготовки студентів, щоб суттєво зменшити час на непродуктивні дії обчислень чи графічних побудов.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

A.T., Malynovsky. "POETICS OF HISTORY: FORMS OF REPRESENTATION, IMAGOLOGICAL PROJECTIONS, GENRE SPECIFICS (E. HREBINKA’S STORY “COLONEL ZOLOTARENKO OF NIZHYN”)." South archive (philological sciences), no. 87 (September 29, 2021): 21–26. http://dx.doi.org/10.32999/ksu2663-2691/2021-87-3.

Повний текст джерела
Анотація:
The article deals with a romantic interpretation of national history in E. Hrebinka’s novel “Colonel Zolotarenko of Nizhyn”. The methodology of the historical school “Annals” is applied, the coverage of the past from the standpoint of its experience by the subject of the story. The purpose of the study is to analyze the text in the plane of postcolonial theory, to find out the role of the genre-creating factor and the Walter-Scottish tradition in the emergence of original historical writing on national soil. Investigate the constructive role of ethnostereotypes in the internalization of history, the intellectual transfer of its images in the plane of internal behavior, emotional experience. Methods is related to the substantiation of alternative reading of historical events in the context of cultural anthropology, ethnoimagology, transfer of other people’s models into one’s environment.The results of the study illustrate the connection between the author’s concept of history and national memory, selection, archiving of past events in the emotional experience of the people, subjective interpretation and even mythologizing of facts, sources, figures. It is a new type of historicism that contributes to the modernity of historical writing and acquires an international character. The connection with ballad as a special genre, stylistic factor, which appears in the mediating function, emphasizes the European tradition of literary historiography. The mechanisms of transformation of the epic principle are analyzed, which obeys the image of private, everyday life, reproduces more or less chamber situations.Special attention is paid to ethnostereotypes, conditions and factors of their formation under the influence of the historical situation, political situation, psychologization of ideas about the Other. Emphasis is placed on the close connection between stereotypes and the so-called post-historical situation, national memory.Conclusions. The poetics of history appears as a set of paths capable of reproducing the past in its subjective emotional refraction, in individual interpretation and the controversial concept of the historical process.Key words: ballad, gothic tradition, interiorization, historiography, xenophobia, stereotype, topos, transfer. У статті йдеться проромантичну інтерпретацію національної історії у повісті Є. Гребінки «Нежинский полковник Золотаренко». Застосовано методологію історичної школи «Анналів», висвітлення минулого з позицій його переживання суб’єктом оповіді. Мета дослідження – проаналізувати текст у контексті постколоніальної теорії, з’ясувати роль жанротворчого чинника і вальтер-скоттівської традиції в постанні самобутнього історичного письма на національному ґрунті; дослідити конструктивну роль етностереотипів в інтеріоризації історії, інтелектуальному перенесенні її образів у сферу внутрішньої поведінки, емоційного переживання. Методологія дослідження пов’язана з обґрунтуванням альтернативного прочитання історичних подій у контексті культурної антропології, етноімагології, трансферу чужих моделей у своє середовище. Продуктивним є застосування нового історизму як наукової моделі прочитання історичної нарації Гребінки крізь призму чутливості, етностереотипів, приватного життя. З цього погляду методологія французької історичної школи «Анналів» дозволяє побачити в тексті альтернативну, контроверсійну концепцію історії. Її інтерпретація увиразнюється методами літературної імагології, жанрової типології, культурного трансферу. Результати дослідження ілюструють зв’язок між авторською концепцією історії і національною пам’яттю, селекцією, архівуванням подій минулого в емоційному досвіді народу, суб’єктивною інтерпретацією і навіть міфологізацією фактів, джерел, постатей. Йдеться про новий тип історизму, що сприяє модерності історичного письма й набуває інтернаціонального характеру. Простежено зв’язок з баладністю як особливим жанровим, стилетворчим чинником, що постає у посередницькій функції, увиразнює європейську традицію літературного історіописання. Проаналізовано механізми трансформації епічного начала, яке підкоряється зображенню приватного, побутового життя, відтворює камерні ситуації. Окрему увагу приділено етностереотипам, умовам і факторам їхнього утворення під впливом історичної ситуації, політич-ної кон’юнктури, психологізації уявлень про Іншого. Наголошено на щільному зв’язку стереотипів і так званої постісторичної ситуації, національної пам’яті. Простежено способи трансформації історичної правди, шляхи її трансферу у сферу приватного, камерного простору. Висновки. Поетикаісторії постає сукупністю тропів, здатних відтворити минуле в його суб’єктивно емоційному заломленні, в індивідуальній інтерпретації і контроверсійній концепції історичного процесу. Ключові слова: баладність, готична традиція, історіописання, ксенофобія, стереотип, трансфер.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Борщевич, Лариса Вікторівна, та Надія Вікторівна Стець. "Мультимедійні засоби в науці та освіті". Theory and methods of e-learning 4 (13 лютого 2014): 13–18. http://dx.doi.org/10.55056/e-learn.v4i1.363.

Повний текст джерела
Анотація:
Серед пріоритетних напрямів розвитку галузі освіти, визначених у «Національній доктрині розвитку освіти», важливе місце займає застосування освітніх інновацій, інформаційних технологій, створення індустрії сучасних засобів навчання та виховання. Комп’ютеризація та інформатизація є новітніми процесами, що впроваджуються у сферу навчання, набуваючи статус не лише об’єкта вивчення, але й засобу навчання тієї чи іншої дисципліни, зокрема хімії.Мультимедійні технології є на сьогоднішній день найбільш необхідним та новим напрямом використання інформаційно-комп’ютерних технологій у сфері освіти. Мультимедійному навчанню присвячений багато фундаментальних досліджень [1; 2] як в теорії педагогіки, так і в частинних методиках викладання окремих навчальних дисциплін. Однак, незважаючи на це, проблема використання мультимедіа, як в теорії навчання, так і в реальній педагогічній практиці залишається дуже актуальною і викликає гострі дискусії.З 2012-2013 навчального року на хімічному факультеті Дніпропетровського національного університету ім. О. Гончара введена нова дисципліна «Мультимедійні засоби в науці та освіті». Вона викладається студентам ІІІ курсу (34 години лекційні та 34 години відведено на практичні заняття) та IV курсу (відповідно 32 та 16 годин).Цілями даної дисципліни є застосування знань у сфері комп’ютерних технологій при проведенні наукових досліджень та в освітньому процесі. Завданнями вивчення дисципліни є формування загальнотеоретичного кругозору, професійних знань і практичних навичок, необхідних бакалавру, спеціалісту та магістру напряму підготовки «Хімія» для успішної професійної діяльності в інформаційному суспільстві.Дисципліна «Мультимедійні засоби в науці та освіті» належить до вибіркової частини загальнонаукового циклу. Вона базується на знанні наступних предметів, що викладаються в рамках бакалаврату: педагогіка, інформатика, методологія наукових досліджень, методика викладання хімії тощо. Ця дисципліна носить узагальнюючий характер. Знання та навички, отримані при вивченні дисципліни, сприяють більш успішній роботі над дипломними та магістерськими роботами.У результаті освоєння дисципліни «Мультимедійні засоби в науці та освіті» студент повинен знати базис сучасних комп’ютерних технологій, основи організації сучасних інформаційних мереж, перспективи розвитку комп’ютерних технологій в науці та освіті. Студенти повинні вміти використовувати мережні та мультимедіа-технології в освіті і науці, виконувати підготовку документів (тези доповідей, реферати, аналітичні довідки, плани-конспекти уроків, лекцій та практичних занять, науково-дослідні роботи), використовуючи різні методи обробки інформації.Після вивчення даної дисципліни студенти володітимуть методами розв’язування спеціальних завдань із застосуванням комп’ютерних та мультимедіа-технологій у професійній і науковій діяльності з хімії, термінологією сучасних інформаційних технологій та навичками забезпечення інформаційної безпеки науково-технічної та освітньої інформації. Засоби мультимедіа сприяють:– стимулюванню когнітивних аспектів навчання, таких як сприйняття та усвідомлення інформації;– підвищенню мотивації студентів до навчання;– розвитку навичок самостійної роботи студентів;– глибшому підходу до навчання, формуванню глибшого розуміння навчального матеріалу [3].У широкому сенсі «мультимедіа» означає спектр інформаційних технологій, що використовують різноманітні програмні та технічні засоби з метою найбільш ефективного впливу на користувача. Завдяки застосуванню в мультимедійних продуктах і послугах одночасної дії графічної, аудіо (звукової) і візуальної інформації, ці засоби мають великий емоційний заряд і активно включають увагу користувача.Засобами мультимедіа можна осмислено і гармонійно інтегрувати різні види інформації. Це дозволяє за допомогою комп’ютера подавати інформацію в різноманітних формах: зображення, включаючи відскановані фотографії, креслення, карти і слайди; звукозапис, звукові ефекти і музику; відео, складні відеоефекти; анімації та анімаційне імітування [4].До засобів мультимедіа можна віднести практично будь-які засоби, здатні привнести в навчання та інші види освітньої діяльності інформацію різних видів. В даний час широко використовуються:– засоби для запису і відтворення звуку (електрофони, магнітофони, CD-програвачі);– системи та засоби телефонного, телеграфного та радіозв’язку (телефонні апарати, факсимільні апарати, телетайпи, телефонні станції, системи радіозв’язку);– системи та засоби телебачення, радіомовлення (теле- та радіоприймачі, навчальне телебачення і радіо, DVD-програвачі);– оптична та проекційна кіно- і фотоапаратура (фотоапарати, кіно-камери, діапроектори, кінопроектори, епідіаскопи);– поліграфічна, копіювальна, розмножувальна та інша техніка, призначена для документування і розмноження інформації (ротапринти, ксерокси, різографи, системи мікрофільмування);– комп’ютерні засоби, що забезпечують можливість електронного подання, обробки і зберігання інформації (комп’ютери, принтери, сканери, графічні пристрої), телекомунікаційні системи, що забезпечують передачу інформації по каналах зв’язку (модеми, мережі дротових, супутникових, радіорелейних та інших видів каналів зв’язку, призначених для передачі інформації) [5].Про всі ці мультимедійні засоби навчання студенти отримують інформацію під час вивчення дисципліни «Мультимедійні засоби в науці та освіті».Крім того, вони знайомляться з різноманітними програмними продуктами, що використовуються при викладанні хімічних дисциплін та в хімічних наукових дослідженнях. Ці продукти можна умовно класифікувати за основним призначенням (рис. 1) [6].Рис. 1. Програми, що використовуються при викладанні хімічних дисциплін Значна частина курсу «Мультимедійні засоби в науці та освіті» присвячена застосуванню мультимедійних засобів навчання у викладанні хімічних дисциплін, оскільки випускники хімічного факультету отримують після закінчення університету спеціальність «хімік, викладач хімії».Головним питанням сьогодення в системі нової освіти є опанування учнями вмінь і навичок саморозвитку особистості, що значною мірою досягається шляхом впровадження інноваційних технологій, організації процесу навчання. Нові форми розвитку вимагають нових правил і нових шляхів досягнення результатів. Така позиція вимагає від сучасної освіти реформаційних кроків щодо оновлення її змісту та застосування нових педагогічних підходів, впровадження інформаційних і комунікаційних технологій, що модернізують навчальний процес. У зв’язку з цим студенту, як майбутньому вчителю, слід вміти застосовувати інформаційні технології у викладанні хімії. Ці вміння вони формують при вивченні дисципліни «Мультимедійні засоби в науці та освіті».Мультимедійні засоби навчання є універсальними, оскільки можуть бути використані на різних етапах заняття:– під час мотивації як постановка проблеми перед вивченням нового матеріалу;– у поясненні нового матеріалу як ілюстрації;– під час закріплення та узагальнення знань;– для контролю знань.Майбутнім учителям та викладачам слід дати уявлення стосовно методичних аспектів застосування мультимедійних засобів на різних етапах викладання хімії. Студенти повинні засвоїти, що використання засобів мультимедіа з метою повторення, узагальнення та систематизації знань не тільки допомагає створити конкретне, наочно-образне уявлення про предмет, явище чи подію, які вивчаються, але й доповнити відоме новими даними. При цьому відбувається не лише процес пізнання, відтворення та уточнення вже відомого, але й поглиблення знань. Студенти повинні усвідомлювати, що під час роботи з навчальною програмою важливо зосередити увагу учнів на найбільш складну для засвоєння частину, активізувати самостійну пошукову діяльність учнів [7].Метою застосування відеоматеріалів та інших мультимедійних засобів є ліквідація прогалин у наочності викладання хімії в середніх загальноосвітніх та вищих навчальних закладах. На одному з практичних занять з дисципліни «Мультимедійні засоби в науці та освіті» студенти створюють відеофрагменти хімічних демонстраційних дослідів, які можна використовувати на уроках хімії в середніх навчальних закладах та на лекціях з курсу «Загальна та неорганічна хімія». При розробці та виготовленні відеофрагментів студенти застосовують основні принципи створення відеоматеріалів з демонстраційного експерименту:– ілюстративність (надають можливість ілюструвати матеріал, що викладається, не розкриваючи зміст теми замість викладача);– фрагментарність (надають можливість дозовано викладати матеріал, залежно від швидкості сприйняття учнями та студентами);– методична інваріантність (відео фрагменти можна використовувати на розсуд викладача на різних етапах заняття);– лаконічність (ефективного викладення більшої кількості інформації за короткий час);– евристичність (подання нового матеріалу настільки зрозуміло, щоб нові знання виявились доступними для свідомого засвоєння учнями та студентами).Створені студентами відео продукти розглядаються на узагальнюючому занятті, обговорюються всіма членами групи та викладачем, що проводить практичне заняття. Найкращі з них застосовуються під час проведення педагогічного практикуму та на заняттях з «Методики викладання хімії».Використовуючи мультимедійні засоби навчання, можна проводити повноцінні уроки і заняття з хімії поза кабінетом хімії або в кабінетах без спеціального обладнання: витяжної шафи, демонстраційного стола, водопроводу тощо. Це дає змогу розширити можливості проведення уроків хімії в інших навчальних кабінетах, забезпечуючи мобільність.Засоби мультимедіа дозволяють одночасно використовувати різні канали обміну інформацією між комп’ютером і навколишнім середовищем. Одним із достоїнств застосування засобів мультимедіа в освіті є підвищення якості навчання.Розвиток сучасної освіти дозволяє чітко визначити місце та роль мультимедійних технологій у системі засобів навчання. Викладачі різних дисциплін використовують мультимедійні засоби в процесі відбору й накопичення інформації з даного предмету, систематизації й передачі знань, організації навчальної діяльності, створення різних її видів і форм. Це сприяє розробленню різноманітних мультимедійних навчальних продуктів та методичних рекомендацій щодо їх застосування в загальноосвітній та вищій школі. Модернізація системи освіти, яка характеризується впровадженням мультимедійних технологій у навчальний процес, призводить до значної корекції навчальних планів, програм, підручників, методичних розробок. Усвідомлення особливої ролі мультимедійних технологій приведе до ще більшої суттєвої інтеграції навчальних дисциплін. У зв’язку із зростаючим значенням комп’ютеризації виникає потреба в усвідомленому використанні цього потужного інтелектуального засобу. А це під силу буде лише досвідченому кваліфікованому спеціалісту-викладачу. Саме введення нової дисципліни «Мультимедійні засоби в науці та освіті» дозволить майбутнім фахівцям з хімії набути відповідних знань і вмінь.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Вакула, Аліса Юріївна, та Вікторія Олександрівна Стороженко. "Організація самостійної роботи студентів за допомогою системи дистанційного навчання". Theory and methods of e-learning 3 (5 лютого 2014): 40–44. http://dx.doi.org/10.55056/e-learn.v3i1.314.

Повний текст джерела
Анотація:
Аналіз різних варіантів організації навчання у ВНЗ дозволяє зробити висновки, що самостійна робота студентів (СРС) має велике значення у оволодінні знань та навичок для подальшого використання у професійній діяльності. Для досягнення мети якості навчання зможуть допомогти ІКТ у комплексі з традиційними засобами навчання.На наш погляд, можна виділити декілька напрямків самостійної роботи студентів:– організація самостійного вивчення учбового матеріалу та підготовка до здачі заліків із предметів, для яких не проводяться практичні заняття;– консультації викладачів у режимі on-line при виконанні студентами індивідуальних завдань, рефератів, доповідей на конференції, підготовки творчих робіт на конкурси, тощо;– виконання контрольних робіт студентами-заочниками між сесіями;– підготовка студентів-заочників до контролю знань в наступній сесії, що значно підвищує рівень підготовки та якості отриманих знань.Слід відмітити, що поширення засобів організації самостійної роботи для студентів-заочників потребує значної уваги внаслідок того, що така форма навчання передбачає отримання основної частини знань самостійно у відповідності з учбовими планами дисциплін в період між учбовими сесіями. А якщо студент навчиться оволодівати знаннями самостійно, то він зможе й у своїй подальшій діяльності приймати рішення самостійно.Режим on-line у такому випадку відіграє важливу роль в освоєнні навчальних дисциплін, тому що студент може завчасно, не чекаючи чергової сесії, отримати необхідну консультацію у викладача.Для вирішення проблем організації самостійної роботи студентів (СРС) в нашому університеті використовується система дистанційного навчання MOODLE – це середовище, яке дозволяє створити єдиний навчальний простір для студентів і викладачів електронних курсів. Система MOODLE є програмним комплексом для організації дистанційного навчання в мережі Internet. MOODLE розповсюджується безкоштовно як Open Source-проект за ліцензією GNU GPL.В цій системі використовуються наступні елементи курсу: Wiki; глосарій; завдання (відповідь у вигляді файлу); лекція; опитування; тест; форум; чат; анкета та інші.Розглянемо більш докладно елементи курсу.Інтерактивний елемент курсу – модуль «Wiki» – дозволяє будь-якому користувачеві внести на web-сторінку свої доповнення або зміни, додати коментарії, які будуть доступні всім, хто після нього відкриє цю ж сторінку. Студентам, наприклад, пропонується для вивчення і обговорення якийсь блок навчального матеріалу. Кожен студент може вносити зміни, додавати матеріал, коментувати запропоноване іншими студентами. Тобто Wiki – загальне окремо організоване середовище для обговорення якогось питанняГлосарій – форма подання визначень термінів, з якими доведеться працювати. Словник може оновлюватися в міру вивчення курсу і бути єдиним у курсі. А можна зробити окремий для кожної теми. Визначення у глосарії, залежно від його налаштувань, може вносити тільки викладач або можна дозволити студентам доповнювати і уточнювати терміни, додавати свої.Елемент курсу «Глосарій» функціонально пропонує для студентів і викладачів наступні можливості:– терміни в словнику групуються за категоріями;– студент може додавати коментар до запису словника;– коментарі можуть бути оцінені викладачем.Елемент курсу «Завдання» дозволяє організовувати відповідь у вигляді файлу, тексту, поза сайту. Способи подання завдань, їх форми і зміст визначаються тільки викладачем. Ніяких обмежень MOODLE в цьому питанні не визначає. Але їх застосування робить роботу з курсом більш особистою, розширює комунікативні можливості використання Курсу і індивідуалізує роботу студента.«Урок (Лекція)» – інтерактивний виклад навчального матеріалу. Тема розбивається на маленькі блоки і пропонується студентові в «покроковому режимі». В кінці кожного блоку – питання, відповідь на яке відкриває наступну сторінку. Цей модуль дає можливість викласти матеріал під постійним контролем засвоєння. Тому й називаємо цю форму проміжною між елементом і ресурсом – і з теорією познайомили, і отримані знання перевірили.«Опитування» – своєрідна форма для голосування. Питання з декількома варіантами відповідей. Студентові пропонується вибрати, який, на його погляд, правильний, або з яким він згоден. Опитування може бути індивідуальним або анонімним. Залежно від цілей опитування, відповіді студентів можуть показуватися відразу або після того, як на питання дадуть відповідь всі.Від створюваного інтерактивного електронного навчального курсу ми чекаємо можливості отримати зворотний зв’язок. Нам важливо не просто дати студенту певну інформацію, але і знать, як вона засвоєна. Одна з можливостей, що забезпечують зворотний зв’язок (тільки одна з багатьох), це тестування.Модуль «Тест» дозволяє викладачеві проектувати і складати тест із набору питань. Питання тесту і відповіді на них можуть бути перетасовані (розташованими випадковим чином), щоб знизити шахрайство. Питання можуть містити код HTML і зображення. Питання вибираються у випадковий спосіб з наборів (категорій) питань. Викладачі можуть встановити, які питання можуть бути використані в декількох тестах. Питання зберігаються в категоріях для легшого доступу, і категорії можуть бути доступні з будь-якого курсу сайту. Тести автоматично оцінюються і можуть бути переоцінені, якщо питання змінюються. Тести можуть мати термін здачі, після якого вони стають недоступними. Число спроб здачі тесту визначається інструктором. Кожна спроба може залежати від результатів попередньою.Метод виставляння відмітки може використати найвищий бал, останній результат, нижній бал або середній бал.Студенти можуть отримувати відгук на виконаний тест і/або правильні відповіді. Студентам може бути дозволено проглянути результати останньої спроби або не дозволено.Питання можуть вводитися вручну через інтерфейс в MOODLE або імпортуватися в різних форматах.Доступними є такі типи питань: питання з декількома відповідями може підтримувати одну правильну відповідь або декілька; коротка відповідь(слово або фраза); питання, що передбачають відповідь типу «Так/ні»; питання на зіставлення; довільні питання; питання з числовою відповіддю (вказується інтервал); питання із уписуваними відповідями в тексті на місці пропусків.«Форум» – організовано як і будь-який форум в Інтернет – спілкування з авторами. У курсі може бути необмежена кількість форумів. Доступ до них може бути відкритим, а може бути обмеженим. Можна, наприклад, створити окремо форум для викладачів курсу. В кожному форумі – окремі теми для відкритого обговорення різних питань. Теми у форумі створює викладач, якщо в налаштуваннях не обумовлена така можливість для студентів. Кожен запис у форумі – повідомлення із зазначенням автора і часу, коли воно написано. Кожен форум може існувати обмежений проміжок часу або протягом усього курсу. У форумі можуть бути теми для обговорення навчальних питань і просто для спілкування за інтересами.«Чат» схожий на форум, але для обміну повідомленнями користувачі повинні одночасно перебувати на сайті курсу в чаті – спеціально організованому просторі. Своєрідне спілкування в реальному часі багатьох користувачів одночасно. Якщо деяке питання потрібно обговорити всім разом, призначаємо дату і час, коли всі студенти одночасно будуть в курсі – тобто зустрічаємося в чаті.«Анкета» – аркуш із питаннями, що дозволяє отримати інформацію про всіх студентів одночасно. За допомогою цього модуля можна зібрати попередні відомості одразу про всіх студентів на початку навчання і на підставі отриманих даних розділити студентів на групи. У навчальних темах використовується рідко, хоча це хороший спосіб з’ясувати, наприклад, рівень засвоєння матеріалу всіма студентами одночасно, або отримати інформацію про ступінь задоволеності формою викладу матеріалу. Анкети можуть бути персональними і анонімними. Типово в системі тільки одна анкета, питання якої звичайним способом не редагуються. Тому і використовується дуже рідко.Курс «Комп’ютерний навчальний практикум», який у нас викладається на 2 курсі, має деякі особливості викладання – всього 20 аудиторних годин, а СРС – 50 годин, тому ми створили електронний курс в системі дистанційного навчання. Цей курс містить наступні елементи: опорні конспекти лекцій у вигляді навчальних презентацій, методичні вказівки для виконання індивідуальних робіт, самі завдання, тести і елемент курсу «Відповідь у вигляді файлу», за допомогою якого студенти можуть надіслати свої виконанні завдання. Елемент курсу «Форум» дозволяє студенту задати питання викладачу і отримати відповідь.В свою чергу, викладачу система надає наступні можливості:– основний викладач має повний контроль над налаштуваннями курсу, включаючи права доступу для інших учителів курсу;– вибір форматів проходження курсу, наприклад, за тижнями, за темами;– гнучкий комплект функцій – форуми, робочі зошити, тести, ресурси, опитування, анкети, завдання, чати і практикуми;– публікація на домашній сторінці курсу останніх змін;– усі оцінки для форумів, робочих зошитів, тестів і завдань можна проглянути на одній сторінці (і завантажити файл у форматі MS Excel);– повні відомості про входи користувача і відвідування елементів курсу – повний звіт по кожному студентові доступний з діаграмами відвідуваності і деталями по кожному модулю;– використання пошти – копії повідомлень на форумі, відгуки викладачів можуть бути відправлені електронною поштою у форматі HTML або текстовому;– шкала оцінок – учителі можуть самі визначати шкалу оцінок (систему оцінювання) для оцінювання повідомлень на форумах, завдань і робочих зошитів.При роботі з курсом студент має наступні можливості:– отримати звіт про діяльність;– доступ до лекційних матеріалів;– пройти тестування;– отримати результати тестів;– можливість відправити завдання у вигляді файлів;– участь у форумі по дисципліні і можливість поставити питання викладачеві у будь-який час;– можливість побачити оцінку за завданням і коментарі викладача.З досвіду проведення такого курсу можна зробити висновки:студент може вільно розпоряджатися своїм часом;має доступ до лекційних і інших навчально-методичних матеріалів;має можливість відправити «чернетку» завдання для перевірки і отримати попередню оцінку і коментар викладача;викладач має можливість перевірити витрачений час студента на вивчення матеріалів курсу;викладач має можливість попередньо перевірити роботи і не витрачати на це час при прийомі заліку;відгук викладача та отриману оцінку на завдання студент може знайти на своїй сторінці завданняотримана оцінка автоматично заноситься у відомість оцінок.Безумовно, дистанційний курс не в змозі замінити живе спілкування студента і викладача, але допомагає в процесі навчання.Якість дистанційного навчання безпосередньо залежить від компетенції викладача, а також ресурсного рівня (як матеріально-технічної і інформаційно-комунікативної бази, так і кадрового потенціалу – рівня підготовки викладачів для роботи в дистанційних формах навчання). Крім того, важливим показником якості дистанційного навчання є якість учбового матеріалу. Потрібна розробка нових програм курсу інформатики і перегляд концепцій вивчення цього предмета. Необхідно вирішувати проблему технічного оснащення, постачання програмним забезпеченням і підготовки кадрів на державному рівні. Потрібна розробка технологій використання комп’ютерів в учбовій діяльності і суворе дотримання технологічної дисципліни.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Черній, Владислав, та Вікторія Творонович. "КОМБІНОВАНИЙ ПІДХІД ВПРОВАДЖЕННЯ МАРКЕТИНГОВОЇ ТА ЕКОНОМІЧНОЇ СТРАТЕГІЇ РОЗВИТКУ ПІДПРИЄМСТВА МУНІЦИПАЛЬНОГО ТРАНСПОРТУ". Економіка та суспільство, № 22 (15 грудня 2020). http://dx.doi.org/10.32782/2524-0072/2020-22-94.

Повний текст джерела
Анотація:
У статті доведено, що подальші дослідження мають бути спрямовані на кількісну оцінку таких критеріїв, як економічна, організаційна та соціальна ефективність стратегічного розвитку. Сучасний етап соціально-економічного розвитку розглядається як цифрова економіка, в якій інноваційний сектор відіграє важливу роль. Сьогодні економічне зростання та конкурентоспроможність території все більше залежить від її здатності використовувати трансформаційні можливості Інтернету, комп’ютерів та даних для створення своїх цифрових зображень. Незважаючи на фундаментальний внесок у розробку проблеми практичного стратегічного планування на підприємствах муніципального транспорту, питання організації реалізації маркетингової та економічної стратегії розвитку цих підприємств та методологічних інструментів їх реалізації залишаються невирішеними. Метою статті є обґрунтування організаційних заходів щодо впровадження інтегрованих маркетингових та економічних стратегій розвитку комунальних транспортних підприємств шляхом оцінки існуючих підходів та на основі постулатів теорії організації.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Асауленко, Н. В. "Особливості інноваційного процесу на підприємствах індустрії гостинності". Food Industry Economics 12, № 3 (14 жовтня 2020). http://dx.doi.org/10.15673/fie.v12i3.1819.

Повний текст джерела
Анотація:
В статті проведений аналіз поняття інноваційного процесу та інновацій, з’ясовано їхню сут-ність, починаючи від перших згадувань у науковій літературі. Зображена проблематика інновацій векономічній теорії та практиці управління підприємствами. Представлено особливості інновацій в про-цесі реалізації на підприємствах саме індустрії гостинності як одного з найперспективніших напряміврозвитку економіки країни. Виділено головну їхню особливість - сервісний характер. Зазначено важли-вість і доцільність поділу інновацій на сервісні та виробничі. Показано, що поняття «сервісні інновації»означає інновації сфери послуг. Виявлено, що науковці щодо поглядів на інноваційні особливостісфери послуг поділяються на дві групи: які не розмежовують сервісні і виробничі інновації та абсолют-но відрізняють їх. Саме прихильники розмежувального підходу формують специфічний характер сер-вісних інновацій. Це дозволило виділити особливості сервісних інновацій, які застосовуються підпри-ємствами індустрії гостинності. На основі проведеного дослідження запропоновано напрями розвиткуінновацій підприємствами індустрії гостинності.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

"Лохман Н.В. МОДЕЛЬ РОЗВИТКУ ІННОВАЦІЙНОГО ПОТЕНЦІАЛУ НАЦІОНАЛЬНОЇ ЕКОНОМІКИ". TRADE AND MARKET OF UKRAINE, № 48 (2) 2020 (23 грудня 2020): 9–14. http://dx.doi.org/10.33274/2079-4762-2020-48-2-9-14.

Повний текст джерела
Анотація:
Мета. Мета статті — обґрунтування моделі розвитку інноваційного потенціалу національної економіки та систематизація її основних елементів. Методи. У процесі дослідження використано методи: абстракції та логічного аналізу — для формування моделі розвитку інноваційного потенціалу національної економіки; аналізу та синтезу — для уточнення основних наукових категорій теорії інноваційного потенціалу; розрахунково-аналітичні й порівняльні методи — для визначення комплексних та інтегральних індексів інтенсивності інноваційного потенціалу України; графічного зображення — для наочного подання відображення індексного аналізу інтенсивності інноваційного потенціалу. Результати. Розвиток інноваційного потенціалу передбачає взаємодію напрямків (динаміка кількісного і якісного складу наукових працівників, збільшення витрат на виконання наукових досліджень і розробок, підвищення інноваційної активності окремих суб’єктів національної економіки, пошук і долучення джерел фінансування інноваційної діяльності, забезпечення впровадження інновацій на підприємствах) та етапів (оцінювання конкурентного статусу підприємства, вибір напрямів розвитку, планування і регулювання процесу розвитку інноваційного потенціалу) розвитку, на які впливають фактори стримування (відсутність попиту на продукцію, відсутність ефективного організаційно-економічного механізму управління, нестача фінансових коштів, відсутність методики комплексного оцінювання інноваційного потенціалу, підвищена ризикованість, недосконалість мотивації персоналу) та проблеми (зміна структури наукового потенціалу, незбалансованість напрямів наукових досліджень, принципова зміна умов фінансування наукових досліджень, нерозвиненість ринку інновацій, відсутність належної ринкової інфраструктури), також мають місце стимули (технологічні трансферти; мотивація розвитку інноваційних структур; реалізація цільових програм, прямі державні субсидії; податкові пільги) що сприяють його розвитку. Ступінь інтенсивності інноваційного потенціалу, визначений на основі статистичних даних за визначеними етапами шляхом розрахунку комплексного індексу, свідчить про стрибкоподібний характер зміни інноваційного потенціалу національної економіки. Ключові слова: інноваційний потенціал, національна економіка, модель, інтенсивність інноваційного потенціалу, розвиток, індекс.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Гулєвiч, О. В. "СИМВОЛIЗМ ОПОВIДАННЯ В. НАБОКОВА «РIЗДВО», ПРЕДСТАВЛЕНИЙ ОСОБЛИВОСТЯМИ АВТОПЕРЕКЛАДУ ТВОРА (НА МАТЕРИЯЛI АНГЛОМОВНОЇ ТА РОСIЙСЬКОМОВНОЇ ВЕРСIЙ ОПОВIДАННЯ)". Наукові записки Харківського національного педагогічного університету ім. Г. С. Сковороди "Літературознавство", 2019, 66–82. http://dx.doi.org/10.34142/2312-1076.2019.1-2.91-92.06.

Повний текст джерела
Анотація:
Мета дослідження – виявити роль символів і дослідити особливості перекладу оповідання В. Набокова «Різдво» на матеріалі англомовної та російськомовної версій оповідання. Порівняльний аналіз техніки перекладу Набокова, представленої англомовною та російськомовною текстовими версіями, виявляє особливості стратегії та технік перекладу Набокова як перекладача своїх оповідань. У той же час, досліджуючи техніку перекладу, використану Набоковим при створенні російськомовної версії оповідання «Різдво», ми можемо виявити глибокий філософський підтекст твору. Новинку дослідження зумовлює недостатнє вивчення автоперекладних прозаїчних текстів Набокова, представлених у порівняльному аспек-ті. Актуальність роботи обумовлена інтересом сучасних учених до літературної техніки перекладу художніх творів, тісними міжкультурними таAlena Hulevich мiжлiтературними контактами, а також появою нових підходів у сфері теорії літературного перекладу. Практичне значення дослідження полягає у тому, що техніка перекладу Набокова демонструє високий рівень художньої та перекладацької майстерності Набокова. Техніки, застосовані Набоковим при перекладі оповідань, входять у програму курсу «Художній переклад», який займає важливе місце в учбовому плані підготовки спецiалiстiв-перекладачів у вищих навчальних закладах. Оповідання Набокова «Різдво» надзвичайно символічне, тому передати при перекладі усю глибину підтексту є досить складним завданням. Літературна геніальність та художня майстерність Набокова виявилася у тому, що він зумів створити російськомовну версію оповідання, яка є семантичним i контекстуальним еквівалентом оригінальної англомовної версії. Набокову вдалося передати найменші семантичні нюанси та відтворити у перекладі інтонацію оригінальної версії завдяки тому, що він враховував особливості національного менталітету i культурного фону читача тієї мови, на яку здійснювався переклад. Набоков також зумів створити необхідне візуаль-не зображення у свідомості реципієнта перекладної версії оповідання. Набоков-перекладач застосував механізм культурної адаптації національних особливостей світосприйняття читача приймаючої культури, що забезпечило успіх оповідання. Набоков застосовував описові й пояснювальні техніки перекладу. Незважаючи на те, що оригінально версією розповіді є англомовна, коментарі та необхідні короткі текстові доповнення представлені саме в ній. Це пояснюється тим, що, оскільки дія оповідання відбувається в Росії, Набоков намагався зробити російську реальність ближче до американського читача. Можна припустити, що Набоков хотів дати західному читачеві можливість відчути національно-обумовлені особливості життя в Росії кінця XVIII в.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії