Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Статор турбогенератора.

Статті в журналах з теми "Статор турбогенератора"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-26 статей у журналах для дослідження на тему "Статор турбогенератора".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ezovit, G., N. Vlasenko, V. Uglyarenko, S. Burlaka, I. Balamadgi, F. Krasnogorov, P. Zanyborshch, I. Slivinsky та S. Orinin. "Оптимізація режимів роботи турбогенераторів потужністю 1000 МВт типу ТВВ-1000-4УЗ з метою продовження експлуатації понад призначений термін служби". Nuclear and Radiation Safety, № 4(56) (16 грудня 2012): 27–29. http://dx.doi.org/10.32918/nrs.2012.4(56).06.

Повний текст джерела
Анотація:
Розглянуто методичний підхід до оцінки технічного стану потужного турбогенератора (ТГ), який відпрацював призначений термін служби, з метою визначення можливості продовження його експлуатації. Особливу увагу звернено на зміну нагріву основних вузлів ТГ (обмоток статора і ротора, сердечника статора) і охолоджуючих середовищ (водень і дистилят) за весь період його роботи. Для ілюстрації використано технічні матеріали для ТГ типу ТВВ-1000-4УЗ потужністю 1000 МВт Запорізької АЕС.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ледуховский, Г. В., Ю. Е. Барочкин, В. П. Жуков, В. Н. Виноградов та И. А. Шатова. "Деаэрация воды в системах водяного охлаждения обмотки статора турбогенератора с водородно-водяным охлаждением". Теплоэнергетика, № 10 (2018): 89–95. http://dx.doi.org/10.1134/s0040363618100041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Строкоус, А. В. "Определение механических напряжений в элементах крепления сердечников статоров турбогенераторов". Системи обробки інформації, № 4(155) (18 грудня 2018): 35–40. http://dx.doi.org/10.30748/soi.2018.155.05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Levytskyi, A. S., Ye O. Zaitsev, and M. V. Panchyk. "Assembly Defects Detection in the Stator Core of a Powerful Turbine Generator." Visnyk of Vinnytsia Politechnical Institute 156, no. 3 (2021): 47–53. http://dx.doi.org/10.31649/1997-9266-2021-156-3-47-53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

GRIGOR’YEV, Anatolii V. "Influence of the operating parameters on the vibration of the stator of a turbogenerator." Elektrichestvo, no. 9 (2017): 65–69. http://dx.doi.org/10.24160/0013-5380-2017-9-65-69.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kensytskiy, O. G., V. A. Kramarskiy, K. O. Kobzar, and D. I. Hvalin. "STUDY OF EFFICIENCY THE DESIGN OF A STATOR CORE END ZONE OF TURBOGENERATOR." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2018, no. 50 (July 18, 2018): 56–62. http://dx.doi.org/10.15407/publishing2018.50.056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Titko, V., L. Ostapchuk, M. Hutorova, and A. Melnyk. "PHYSICAL MODELING OF TOOTH PRESSING DEFECTS STATORS OF THE TURBOGENERATOR." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2019, no. 54 (November 18, 2019): 75–79. http://dx.doi.org/10.15407/publishing2019.54.075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Levitskyi, A. S., Ie O. Zaitsev, and M. V. Panchik. "AUTOMATED DEVICE FOR MONITORING THE STATOR CORE OF POWERFUL TURBOGENERATOR." Tekhnichna Elektrodynamika 2021, no. 5 (August 16, 2021): 83–87. http://dx.doi.org/10.15407/techned2021.05.083.

Повний текст джерела
Анотація:
A device for automated control by the stator core of a powerful turbine generator (TG) during assembly and pressing at the manufacturing plant is proposed. Using the device, places in the core with a weakened solidity are determined. For this, at N points evenly spaced along the cross section of the stator core, the specific pressing pressure of special plastic elements, which are installed in the control cells of the additional pressure ring of the press, on which the core is assembled, is measured. During pressing, the elements are deformed, and their deformation depends on the degree of core defect (decrease in solidity) in the zone of which they are located. The sample will be deformed less, located in the zone of the largest defect, and most of all - in the zone where the defect is minimal. The pressure is measured using a flat metal membrane with a rigid center on which strain gauges are located at selected points. It is shown that the relative deformations in a flat membrane, which are measured by strain gages, depend on the value of the specific pressing pressure. Analytical relationships between the relative radial and tangential deformations and the specific pressing pressure have been determined. References 20, figures 5.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kensytskyi, О. H., D. I. Khvalin, and N. L. Sorokina. "REDUCTION OF HEATING NON-UNIFORMITY FOR LAMINATED STATOR CORE END OF HIGH-POWER TURBO-GENERATOR." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2018, no. 49 (March 9, 2018): 27–32. http://dx.doi.org/10.15407/publishing2018.49.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ryzhov, Vitaliy V., Pavel A. Dergachev, Ekaterina P. Kurbatova, Oleg N. Molokanov, and Pavel A. Kurbatov. "Development of a Turbine Generator Stator 3D Thermal Model Taking into Account Gas Dynamics." Vestnik MEI, no. 5 (2021): 75–82. http://dx.doi.org/10.24160/1993-6982-2021-5-75-82.

Повний текст джерела
Анотація:
The construction of a thermal model of a fully air cooled turbine generator stator with taking into account gas dynamics is considered. The complete mathematical model includes various physical subsystems with multiphysical relationships. The study is based on accurate 3D models with the use of the modern and proven COMSOL Multiphysics software, in which the finite element method is used for calculation. The equivalent thermal conductivity of the gap between the winding bar copper conductors and stator iron is studied. The gap in question consists of the winding bar main insulation and a gap filled with additional semiconducting gaskets or similar materials. The above-mentioned physical parameter has a strong influence on the temperature distribution, because the main part of the heat releasing in the bar is transferred to the stator core through these elements. The optimal minimum equivalent thermal conductivity coefficient is analyzed and selected. A model of a turbine generator stator symmetric element together with a turbulent cooling air flow is developed and analyzed. The development of such integrated models will make it possible not only to simplify the design process, but also to analyze various insulation systems. For example, air-cooled turbine generators initially use the Global VPI insulation system; however, after replacing---for economic reasons---the stator winding, another insulation system is used, namely, the Resin Rich system. For correctly making a transition to another insulation system, integrated calculations, including thermal ones, should be carried out. In practice, after changing the insulation system, which may entail certain thermal limitations, it may be necessary to decrease the turbine generator rated power output for its further operation without overheating the stator winding, which can be obtained on the basis of simulation. In this regard, the equivalent thermal conductivity coefficient also plays an important role; its value can be preliminarily analyzed to select the necessary materials in terms of their thermal properties, and their filling factor to retain the turbine generator nominal parameters after its rewinding.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Khvalin, D. I. "A New Shielding Efficiency of Stator Core End Packets of a Powerful Turbogenerator." Nuclear Power and the Environment 21, no. 2 (2021): 28–38. http://dx.doi.org/10.31717/2311-8253.21.2.3.

Повний текст джерела
Анотація:
On the basis of complex research the electromagnetic and heat processes by means of mathematical and physical simulation, the efficiency for a new constructive solution of stator core end zone of powerful turbogenerator is proved. A design that allows maximum reducing temperature of the stator end packet is proposed. In order to increase reliability of experimental data obtained with the help of scale physical model, as well as testing of constructed mathematical model, using the latest one “adjusted” to physical model, the numerous experiments for studying effectiveness of a tooth-slot configuration shields were carried out. The small difference of magnetic flux density values obtained by means of mathematical simulation from the experimental ones allows drawing a conclusion about the reliability of result. It is shown that use of physical simulation permits investigate the appropriateness of electromagnetic field distribution without exact quantitative indices of parameters and can be applied to research the quality comparison under certain changes of model. When constructing a mathematical model, an approach was used with the help of a consecutive logic transition from a simple model of machine central part to more difficult one of end zone, using the previous results in next allows obtaining the temperature distribution in difficult areas. The heat calculation for rated load condition of turbogenerator type TGV-500 with the help of mathematical model as well as comparison of these results with experimental data for a real generator analogous type and power are made. The differences of calculated and experimental values not exceed 7%. All data obtained by means of both simulation and natural experiment are corresponded to the same turbogenerator that in total makes reliability results of mathematical simulation not obtained in a real object by various reasons of objective and subjective nature.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Zaitsev, Ie O., and M. V. Panchyk. "REVIEW THERMOMETRIC METHODS CONTROL COMPRESSION STATOR CORE STATE OF POWERFUL TURBOGENERATORS." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2021, no. 59 (September 20, 2021): 86–92. http://dx.doi.org/10.15407/publishing2021.59.086.

Повний текст джерела
Анотація:
The article is devoted to the analysis of thermometric methods of control and diagnosis of the state of compression of the stator core of the turbogenerator (TG), which have found the greatest application. It is shown that ensuring effective and high-quality control of powerful electric machines, especially power plant generators, today is an integral part of ensuring the reliability and trouble-free operation of their work. As a result of the analysis, it is shown that ensuring high reliability of operation of the generating equipment is practically impossible without their equipping with modern means of control capable to work in real-time. Bibl. 34, fig. 4.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kuchynskyi, K. A., V. A. Kramarsky, and A. V. Khudyakov. "EXPERIMENTAL RESEARCH OF HEAT EXCHANGE IN AXIAL CHANNELS OF TEETH OF THE CORE OF THE STATOR OF A TURBOGENERATOR." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini, no. 53 (August 28, 2019): 35–38. http://dx.doi.org/10.15407/publishing2019.53.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Kuchynskyi, K. A., V. O. Titko, M. S. Hutorova, and V. A. Mystetskyi. "MECHANICAL AND VIBROMECHANICAL CHARACTERISTICS OF THE PRESSURE FINGERS AND PLATES OF THE STATOR CORE OF THE TURBOGENERATOR." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2017, no. 48 (November 1, 2017): 82–87. http://dx.doi.org/10.15407/publishing2017.48.082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Levytskyi, A. S., I. O. Zaitsev, and A. M. Smyrnova. "ELASTIC SENSITIVE ELEMENT FOR FORCE TRANSDUCERS OF THE EFFORT IN THE POWERFUL TURBOGENERATORS STATOR TIGHTENING PRISMS CORE." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2018, no. 49 (March 9, 2018): 32–39. http://dx.doi.org/10.15407/publishing2018.49.032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Kensytskiy, O. G., V. A. Kramarskiy, K. O. Kobzar, and D. I. Hvalin. "STUDY OF DISTRIBUTION THE ELECTROMAGNETIC FIELD AND TEMPERATURE IN A STATOR CORE END ZONE OF TURBOGENERATOR." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2018, no. 51 (October 24, 2018): 47–53. http://dx.doi.org/10.15407/publishing2018.51.047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kuchynskyi, K. A., V. A. Kramarskyi, D. I. Hvalin, and V. A. Mystetskyi. "STUDY OF PHYSICAL PROCESSES IN A TURBOGENERATOR END ZONE AT THE MECHANICAL DAMAGES OF STATOR CORE FASTENING." Praci elektrodinamiki Nacionalanoi akademii nauk Ukraini Institutu 2020, no. 57 (December 2, 2020): 65–72. http://dx.doi.org/10.15407/publishing2020.57.065.

Повний текст джерела
Анотація:
With the help of mathematical simulation of mechanical processes in the stator core fastening system of a powerful turbogenerator end zone obtained appropriateness of basic parameters changes at the break of clamp prisms heads of the stator core. It is determined that the sudden break of one or more clamp prisms leads to longitudinal oscillation of their other working heads and stiff connected with them press plate, accordingly. Although such oscillation is insignificant but propagates along the entire surface of the press plate with a maximum value in the break zone and subsequent decrease with distance from this zone and therefore can be detected with the help of existing vibration sensors by installing them on the press plate. It is possible to use a limited number of sensors due to the propagation of vibration along the entire surface of the plate. But because the vibration changes are insignificant, in this case, there is a complexity of control that requires the use of high-sensitivity sensors and great informative computing equipment. According to the sensors indices, it is possible to determine the number of breaks for clamp prisms heads of the stator core and the number of them working heads, accordingly. Besides, this effect can be used to diagnose the un-compression of the stator core tooth zone. Since one of the important ways to improve the control and diagnostics of turbogenerators is the detection, the presence of such knowledge will allow making the optimal decision for further measures. References 8, figures 8, tables 2.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Vaskovskyi, Yu M., and A. M. Melnyk. "THE ELECTROMAGNETIC VIBRATION DISTURBING FORCES IN TURBOGENERATOR WITH A GLANCE OF CURRENT ASYMMETRY OF STATOR WINDING." Tekhnichna Elektrodynamika 2017, no. 1 (January 15, 2017): 52–57. http://dx.doi.org/10.15407/techned2017.01.052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Levytskyi, A. S., A. I. Novik, and Ye O. Zaitsev. "CAPACITY TRANSDUSER OF EFFORTS IN TURBOGENERATOR STATOR TIGHTING PRISMS CORE WITH COMPENSATION OF INFLUENCE OF OUT-OF-PARALLELISM ELECTRODES." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2017, no. 48 (November 1, 2017): 126–32. http://dx.doi.org/10.15407/publishing2017.48.126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Titko, O. I., N. D. Myshasty, A. I. Voronin, and D. I. Hvalin. "EXPERIMENTAL STUDIES OF THE EFFECTIVENESS OF TOOTH-SLOT DESIGN SCREENS OF TURBO GENERATORS STATORS." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2017, no. 46 (April 28, 2017): 34–42. http://dx.doi.org/10.15407/publishing2017.46.034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Kuchynskyi, K. A. "INFLUENCE OF THE DEGREE OF FIXING THE WINDING AT THE END OF THE SLOT OF THE TURBOGENERATOR STATOR ON THERMOMECHANICAL CHARACTERISTICS OF ITS CORE ISOLATION." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini, no. 61 (May 25, 2022): 31–36. http://dx.doi.org/10.15407/publishing2022.61.031.

Повний текст джерела
Анотація:
Based on the finite element method, a numerical method for calculating thermomechanical movements and stresses of the components of the stator winding of a powerful turbogenerator is proposed, taking into account its regime and structural factors. The results of studies of these characteristics in insulation along the length of the core in radial and axial directions in different variants of fixing the winding in the end zone of the core are presented. The regularities of distribution of maximum and average values of thermomechanical parameters in the groove and frontal parts with the traditional method of fastening and the presence of a free section of the core in the end zone of the stator in the nominal mode of operation of the generator are determined. Ref. 12, fig. 4.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Kuchynskyi, K. A., V. A. Kramarsky, V. A. Titko, and M. S. Hutorova. "MECHANICAL CHARACTERISTICS OF THE TURBOGENERATOR STATOR OUTHANG AT VARIOUS OPTIONS OF FIXING AT A CORE END ZONE." Tekhnichna Elektrodynamika 2019, no. 2 (February 19, 2019): 34–37. http://dx.doi.org/10.15407/techned2019.02.034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Vygovskiy, O. V., D. I. Hvalin, and V. A. Mystetskyi. "THE CALCULATION OF REDISTRIBUTION A MECHANICAL FORCES AND VIBRATIONS IN STATOR CORE FASTENING SYSTEM OF NUCLEAR AND THERMAL POWER PLANTS TURBOGENERATORS." Problems of nuclear power plants' safety and of Chornobyl 30 (2018): 51–59. http://dx.doi.org/10.31717/1813-3584.18.30.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Vygovskyi, О. V. "Diagnostic Features of the Technical Condition of Turbogenerators Stator Winding of Ukrainian Nuclear Power Plants." Nuclear Power and the Environment 16, no. 1 (2020): 19–30. http://dx.doi.org/10.31717/2311-8253.20.1.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Kensytskiy, O. G., and D. I. Hvalin. "A HEATING OF STATOR WINDING TURBOGENERATOR FOR FAILURE THE CIRCULATION OF REFRIGERANT." Problems of nuclear power plants' safety and of Chornobyl, 2018, 31–35. http://dx.doi.org/10.31717/1813-3584.18.31.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Тітко, Владислав, та Вікторія Березниченко. "АНАЛІЗ ВІБРАЦІЙНИХ ПРОЦЕСІВ ВУЗЛІВ ТУРБОГЕНЕРАТОРІВ З УРАХУВАННЯМ РЕЖИМІВ ЇХ ЕКСПЛУАТАЦІЇ". InterConf, 18 серпня 2021, 306–15. http://dx.doi.org/10.51582/interconf.19-20.08.2021.030.

Повний текст джерела
Анотація:
Розробка засобів on-line діагностування у всіх складових енергетичних об’єктів реалізованих відповідно до концепцій Smart Grid є актуальних питанням, вирішення якого дозволить реалізувати діагностування енергетичних об'єктів за їх фактичним технічним станом використовуючи ретроспективну інформацію, що містить данні про експлуатацію електричної машини. Показано, що перспективним для отримання діагностичної інформації є використання параметрів вібраційних процесів виміряних за допомогою вимірювальних перетворювачів на основі ємнісних сенсорів. Для отриманих даних побудовані статистичні моделі вібраційних процесів при неробочому ході в залежності від часу, а також в залежності від часу і для різних активних навантажень з урахуванням динаміки їх зміни в процесі експлуатації, які є чутливі й значимі до зміни фактичним технічним стану досліджуваного об'єкту.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії