Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Розчин електроліту.

Статті в журналах з теми "Розчин електроліту"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-26 статей у журналах для дослідження на тему "Розчин електроліту".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Булавін, Л. А., О. М. Алєксєєв, Ю. Ф. Забашта та С. Ю. Ткачов. "Механізм частотно-незалежної електропровідності водних розчинів електролітів". Ukrainian Journal of Physics 56, № 6 (10 лютого 2022): 547. http://dx.doi.org/10.15407/ujpe56.6.547.

Повний текст джерела
Анотація:
Показано, що поведінка залежності опору комірки з водним розчином NaCl від частоти змінного струму в вибраному наближенні не може бути пояснена тільки поляризаційними явищами в граничних областях електрод–електроліт. Запропоновано фізичний механізм, що пояснює монотонне зростання питомої електропровідності розчину при зростаннічастоти, коли частота менша за 104 Гц, і сталість питомої електропровідності розчину при частотах в інтервалі (104–105) Гц. Розраховано температурні залежності коефіцієнта дифузії іонів Na+ і Cl– у водних розчинах NaCl та розміру фізичного нескінченно малого об'єму (області встановлення локальної рівноваги) для такого електроліту. Проведено аналіз просторової та часової ієрархії у водному розчині NaCl та показано зв'язок співвідношення періоду змінного струму та певних характерних часів з частотною залежністю питомої електропровідності цього електроліту.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Писарєв, А. В., І. О. Радченко, А. Ф. Лазутський, С. А. Тузіков, С. А. Писарєв та В. А. Молодцов. "Аналіз способів дезактивації елементів озброєння обмеженого розміру з використанням електричного поля". Збірник наукових праць Харківського національного університету Повітряних Сил, № 4(70) (25 листопада 2021): 125–31. http://dx.doi.org/10.30748/zhups.2021.70.18.

Повний текст джерела
Анотація:
В даній статті авторами розглянуто актуальне питання збільшення ефективності дезактивації зразків озброєння і військової техніки при використанні рідинних способів за умови застосування спільної дії електричного поля і хімічних реагентів, що утворюють дезактивуючий розчин. Проведений детальний аналіз та теоретичні розрахунки результатів занурення зразків озброєння в дезактивуючий розчин, що значно підвищує ефективність обробки у порівнянні з водним середовищем, електрохімічна дезактивація призводить до подальшого зростання ефективності обробки. Описаний зв’язок між витратами електроліту, напругою між електродами та питомою швидкістю розчинення верхнього забрудненого шару обладнання. Проведений порівняльний аналіз ефективної дезактивації в залежності від щільності струму та тривалості обробки, наведені переваги використання електрохімічної дезактивації. Зроблено висновки про можливе поєднання дії електричного поля і іонообмінної адсорбції, електричного поля і механічних зусиль, використання імпульсного реверсного і особливо знакозмінного струму.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

В. Гиренко, Дмитро, Олександр Б. Веліченко та Олеся Б. Шмичкова. "ЕЛЕКТРОЛІЗ РОЗЧИНІВ NaCl В ПРОТОЧНИХ СИСТЕМАХ". Journal of Chemistry and Technologies 29, № 1 (25 квітня 2021): 31–41. http://dx.doi.org/10.15421/082111.

Повний текст джерела
Анотація:
Досліджено електроліз розчинів NaCl у проточних системах. Показано, що для мінімізації перетворення гіпохлориту в хлорат на аноді та відновлення іонів гіпохлориту на катоді слід проводити електроліз з мінімальною швидкістю перемішування розчину відносно електродів. Видалення мембрани з комірки приводить лише до незначного зниження виходу за струмом гіпохлориту натрію в межах 1–3 % і незначного підвищення рН розчину, що позитивно впливає стабільність розчину. Вихід за струмом хлоратів не змінюється. Позитивним ефектом є зменшення напруги на комірці, що покращує енергетичну ефективність синтезу натрію гіпохлориту. В разі сили струму 2 А і використання двох проточних комірок за об'ємної швидкості потоку 8.7 л/год можна синтезувати високочистий розчин натрію гіпохлориту, що містить 500 мг/л NaClO і 0.6 мг/л NaClO3. Виходи за струмом натрію гіпохлориту та хлорату становлять 78 та 0.2 % відповідно. Електрохімічний реактор з трьома проточними елементами ємністю 9.2 л/год за струму 3 А дозволяє постійно отримувати розчин, що містить 1000 мг/л NaClO і не більше 6 мг/л NaClO3. Розроблені прототипи електролізерів успішно пройшли етапи лабораторних та експериментальних випробувань.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

En-Din, Kim, N. S. Nadyrkhanova, R. A. Tkachenko, Yu V. Kulichkin, F. P. Nishanova, K. D. Mikirtichev, and I. I. Dzhatdaev. "Anesthetic management for Placenta Accreta." Pain medicine 6, no. 2 (August 28, 2021): 29–36. http://dx.doi.org/10.31636/pmjua.v6i2.3.

Повний текст джерела
Анотація:
Дослідження виконані у 82 вагітних і породіль при кесаревому розтині з приводу передлежання плаценти з вростанням на 37–38 тижні. Органозберігаюча операція була виконана за такою методикою: лапаротомія за Джоель Кохен, донний кесарів розтин з залишенням плаценти, перев’язка трьох пар магістральних маткових судин і внутрішніх клубових артерій з обох сторін (поетапна деваскуляризація матки) з подальшим видаленням стінки матки (метропластика) при вростанні плаценти. Операції виконані в умовах спінальної анестезії (Сан) 0,5 % гіпербаричним розчином бупівакаїну. Інфузійна програма будувалася відповідно до рекомендацій з обмежувальної інфузії. Преінфузію проводили збалансованим кристалоїдом Реосорбілакт (10–15 мл/кг) з подальшим введенням на етапах операції збалансованого кристалоїду і компонентів крові за необхідності. Оцінювали гемодинаміку, КОР та електроліти крові. Оцінку крововтрати проводили гравіметричним способом. Дослідження показали, що Сан і Реосорбілакт у програмі малооб’ємної інфузійної терапії зберігають доставку кисню на фізіологічному рівні, стабілізують гемодинамічний профіль і КОР. При вростанні плаценти використання сучасних технологій в анестезіології реаніматології та акушерстві, з мультидисциплінарним підходом, дозволяють реалізувати органозберігаючу тактику у цієї категорії жінок
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yegorov, S. V., L. S. Koriashkina та I. Yu Symonets. "КОМПЛЕКСНИЙ СТАТИСТИЧНИЙ АНАЛІЗ ДАНИХ МЕДИЧНИХ СПОСТЕРЕЖЕНЬ ЗА ДІТЬМИ З ГОСТРОЮ ХІРУРГІЧНОЮ ПАТОЛОГІЄЮ". Medical Informatics and Engineering, № 3 (30 вересня 2019): 69–78. http://dx.doi.org/10.11603/mie.1996-1960.2019.3.10434.

Повний текст джерела
Анотація:
Запропонована методика комплексного статистичного аналізу даних спостережень за станом дітей із хірургічною патологією двох вікових груп. Представлено результати програмної реалізації розробленого алгоритму. Виявлений терапевтичний ефект від застосування кожного з трьох лікарських засобів — розчину на основі глюкози з додаванням електролітів, кри-сталоїдних розчинів Рінгера лактат та малат. Наведено порівняльну характеристику дії лікарських засобів у різних вікових групах пацієнтів.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Гнатів, Ю. В., та М. М. Корда. "Синдром гіперосмолярної гіпогідратації в експерименті: особливості порушень вітальних функцій щурів при розладах гомеостазу різного ступеня тяжкостІ". Вісник медичних і біологічних досліджень, № 4 (23 лютого 2022): 13–18. http://dx.doi.org/10.11603/bmbr.2706-6290.2021.4.12754.

Повний текст джерела
Анотація:
Резюме. У нейрохірургічних хворих ураження гіпоталамо-гіпофізарної ділянки у 30 % випадків ускладнюється розвитком центрального нецукрового діабету, який проявляється грубими розладами водно-сольового балансу, що призводить до функціональних порушень і структурних ушкоджень органів і тканин, та може завершитися смертю. Моделювання в експерименті гіперосмолярної гіпогідратації, що розвивається при нецукровому діабеті, допомогло б сприяти вивченню біохімічних та патофізіологічних процесів, які відбуваються при цьому. Мета дослідження – змоделювати в експерименті синдром гіперосмолярної гіпогідратації, дослідити особливості змін поведінки, фізичного стану та біохімічних показників тварин залежно від рівня осмолярності плазми крові. Матеріали і методи. В експерименті використали статевозрілих щурів – самок (n=62) масою (242,0±15,0) г. Для моделювання гіперосмолярної гіпогідратації їм внутрішньочеревно вводили розчинн фуросеміду (5,0 мг∙кг-1), та під наркозом із застосуванням натрію тіопенталу (50 мг мг∙кг-1) внутрішньовенно – гіпертонічні (від 1,8 до 9 %) розчини натрію хлориду (по 2,0 мл). Досліджували темп діурезу, шільність сечі, обчислювали осмотично-об’ємний індекс сечі та ступінь гіпогідратації організму, фізичний стан і тривалість наркозу (коми), електроліти плазми крові (Na+, K+), її осмолярність, а також летальність тварин залежно від ступеня тяжкості змодельованої гіперосмолярної гіпогідратації. Результати. В експерименті на щурах змодельовано гіпертонічну (гіперосмолярну) гіпогідратацію різного ступеня тяжкості, яка виникає у хворих на центральний нецукровий діабет; відображено клініко-лабораторні особливості, які спостерігаються при цьому, та вивчено механізми організму, які задіяні на її подолання. Висновки. При втраті води експериментальними тваринами в об’ємі ˃5 % від маси тіла тривалість наркотичної дії натрію тіопенталу (50 мг∙кг-1) подовжується у понад 2 рази. При внутрішньовенному введенні зневодненим (5,2 % від маси тіла) щурам гіпертонічних розчинів розвивається гіперосмолярна кома, тривалість якої корелює із величиною осмолярності плазми. Потенційно небезпечним для життя щурів є зростання натрію плазми крові понад 180 ммоль∙л-1 або її осмолярності˃360 мосм∙л-1. Осмотично-об’ємний індекс сечі – ефективний неінвазивний діагностичний критерій порушень водно-сольового обміну та ефективності його корекції в експериментальних тварин. У нормі в щурів цей показник становить 910,2±28,4, різко знижується (у понад 10 разів) при стимуляції діурезу салуретиками та може зростати до 5061,3±54,2 при нирковій компенсації гіперосмолярного синдрому.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Булавін, Л. А., І. В. Жиганюк, М. П. Маломуж та К. М. Панкратов. "Особливості руху катіонів і аніонів в розчинах електролітів". Ukrainian Journal of Physics 56, № 9 (8 лютого 2022): 893. http://dx.doi.org/10.15407/ujpe56.9.893.

Повний текст джерела
Анотація:
Досліджено фізичну природу рухливості іонів і молекул води у розбавлених водних розчинах електролітів, коли на один іон припадає не більше п'ятнадцяти молекул води. Показано, що поведінка коефіцієнтів рухливості молекул води і іонів, а також коефіцієнтів самодифузії молекул води вирішальним чином визначається радіусами їх твердих оболонок, а не впливом сітки водневих зв'язків у системі. Встановлено, що вплив гідратаційних ефектів на значення густини системи і коефіцієнтів самодифузії молекул води не перевищує кількох відсотків. На основі мікроскопічних уявлень показано, що відмінна поведінка катіона K+ та аніона F–, що мають однакові жорсткі радіуси, добре узгоджується з особливостями міжмолекулярної взаємодії, яка описується узагальненим потенціалом Стілінджера–Девіда [1, 2].
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Даценко, Віта В., Еліна Б. Хоботова, Олена А. Беліченко та Олександр В. Ванькевич. "БАГАТОФУНКЦІОНАЛЬНІСТЬ КОМПОЗИТНОГО МАТЕРІАЛУ НА ОСНОВІ МІДНО-ЦИНКОВОГО ФЕРИТУ". Journal of Chemistry and Technologies 29, № 4 (21 січня 2022): 476–84. http://dx.doi.org/10.15421/jchemtech.v29i4.240173.

Повний текст джерела
Анотація:
Мета. Вивчення властивостей композитного матеріалу (КФМ), що містить ферит, отриманого методом співосадження при додаванні FeSO4·7Н2О до сульфатного мідно-цинкового електроліту при нагріванні, послідовному введенні розчину NaOH до рН 10-10.5 і окисника К2S2O8. Методи. Мінеральний склад КФМ визначали методом рентгенофазового аналізу, а елементний склад – методом електронно-зондового мікроаналізу. ІЧ спектри отримані в таблетках KBr на Фур'є ІЧ-спектрофотометрі. Намагніченість зразків КФМ визначали методом Фарадея на балістичному магнітометри. Фотокаталітичні і сорбційні властивості КФМ вивчали спектрофотометрично при очищенні розчинів від органічних барвників метилвіолету МВ, метиленового синього МС і Конго червоного КЧ. Результати. Основною фазою КФМ є ферит Zn1.66Cu0.448Fe3.77О4, а додатковими фазами: Fe2O3 і CuO. Поверхневі функціональні групи Fe–О–Н, Zn–O–H і О–Н визначають негативний заряд поверхні феритної фази і вибір сорбату при адсорбційному очищенні вод. Наночастинки фериту суперпарамагнітні при питомій намагніченості насичення 19.5 emu/г. КФМ проявляє фотокаталітичну активність по відношенню до органічних барвників, яка зменшується в часі в результаті адсорбції барвників. КФМ діє як адсорбент, найбільш ефективно при відношенні «феррит: барвник МВ» 500 з сорбційною обмінною ємністю 1.9 мг/г. Висновки. КФМ проявляє властивості суперпарамагнетіка, адсорбенту і фотокаталізатора. Очищення вод від органічних барвників пов'язана з одночасним протіканням процесів фотокаталітичної деградації барвників і їх адсорбції на поверхні фериту.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kurapov, Ye P., O. G. Kalinkin, Ye I. Gridasova та V. A. Gridasov. "Інфузійно-трансфузійна терапія у хворих із синдромом посттравматичної жирової емболії". TRAUMA 15, № 5 (1 вересня 2014): 75–78. http://dx.doi.org/10.22141/1608-1706.5.15.2014.81775.

Повний текст джерела
Анотація:
У роботі визначені основні пункти інфузійно-трансфузійної терапії (ІТТ) у хворих із синдромом посттравматичної жирової емболії (СЖЕ), направлені на корекцію ряду патогенетичних ланцюгів його формування.Проаналізовано результати клініко-лабораторного обстеження (3-тя — 7-ма доба) 48 хворих із травмою нижніх кінцівок і таза, ускладненою підгострою формою СЖЕ. Проведені дослідження та аналіз літературних джерел дозволили визначити основні патогенетичні ланки СЖЕ. В сукупності з характером і тяжкістю травматичних пошкоджень ці моменти регламентували склад, об’єм та темп інфузійно-трансфузійної терапії у хворих із СЖЕ. Задачі, які вирішувались за допомогою ІТТ — це підтримка водно-електролітного балансу, усунення порушень метаболізму, корекція анемії, поліпшення мікроциркуляції крові, забезпечення ефективноrо транспорту кисню та метаболітів, дезінтоксикація, корекція гіповолемії, гіпоксії та синдрому системної запальної відповіді, які лежать в основі формування поліорганної недостатності у цієї категорії хворих. До складу ІТТ включали розчини електролітів, крохмалів, амінокислот, альбуміну, реамберину, тівортіну та багатоатомних спиртів. Обмежували інфузії розчинів глюкози, трансфузії компонентів крові та плазми. Вилучали із складу ІТТ жирові емульсії.Наведена програма ІТТ використовувалась у всіх хворих із СЖЕ, що сприяло зниженню летальності у цієї категорії хворих (з 27,8 % у 2001–2004 рр. до 7,7 % у 2005–2011 рр.).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Czech, Alexander, та Olga Bordunova. "ЗАХИСНІ ПОКРИТТЯ НА ОСНОВІ ХІТОЗАНУ ВІД ПАТОГЕННОЇ МІКРОФЛОРИ ХАРЧОВИХ ЯЄЦЬ". Bulletin of Sumy National Agrarian University. The series: Livestock, № 3 (42) (30 листопада 2020): 87–92. http://dx.doi.org/10.32845/bsnau.lvst.2020.3.15.

Повний текст джерела
Анотація:
Проводились дослідження розробки композиції для обробки харчових яєць курей на основі хітозану у поєднанні з потужними дезінфектантами з групи органічних перекисних сполук надоцтовою кислотою (НОК) та перекисом водню, яка піддана електроактивуванню у водному розчині з використанням електродів з титану у комплексі заходів із захисту від патогенної мікрофлори, бактеріального і вірусного походження протягом усього терміну зберігання яєць шляхом нанесення на поверхню біоцидної і водночас екологічно безпечної нетоксичної захисної плівки. Встановлено вплив на шкаралупу яєць технічного кислоторозчинного хітозану, розчину надоцтової кислоти, які піддавали електролізу у реакторі, протягом 30 хв, за температури 60-70о С. Формували дві партії яєць – контроль та дослід. Дослідну групу обробляли шляхом нанесення на поверхню яєць біоцидної і екологічно безпечної нетоксичної захисної плівки. «Штучна кутикула», до складу якої входять речовина природного походження хітозан у поєднанні з потужними речовинами з групи органічних перекисних сполук надоцтовою кислотою (НОК) та перекисом водню, була піддана електроактивуванню у водному розчині з використанням електродів з титану. На 14, 19, 28 і 33 добу з поверхні шкаралупи харчових яєць робили змиви, які досліджували на БГКП, стафілокок, сальмонели та спороутворюючі бактерії. Наведений склад композиції для обробки харчових яєць курей у комплексі заходів із захисту від патогенної мікрофлори бактеріального і вірусного походження протягом усього терміну зберігання достовірно гальмує збільшення кількості патогенної мікрофлори на поверхні харчових яєць. Рівень мікробної контамінації харчових яєць курей протягом зберігання зменшується. Так у контролі (харчові яйцях без обробки) на 14 добу з’являються бактерії групи кишкової палички (БГКП), - 15%, на 19 добу 20%, на 28 добу 40% і на 33 добу 65 %. Також кількість спороутворюючих бактерій, становить 10% і стафілококу 5%. При обробці харчових яєць курей композицією на основі хітозану рівень контамінації менший: на 14 і 19 добу БГКП не виявлено, на 28 добу становить 5 % і на 33добу 10 %, а спороутворюючі бактерії на рівні 5 %. Хітозан в комплексі з іншими дезінфікуючими речовинами дозволяє запобігти контамінації поверхні харчових яєць патогенною мікрофлорою протягом зберігання їх за підвищених рівнів температури і вологи.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Roshchin, H. H., V. O. Kryliuk, V. Yu Kuzmin, A. A. Hudyma, V. I. Ivanov, M. A. Maksymenko та O. O. Penkalskyi. "Вплив інфузійної терапії на редокс-баланс оксидант-антиоксидантних систем у тканині легенів при тяжкій поєднаній травмі в експерименті". EMERGENCY MEDICINE, № 4.67 (17 липня 2015): 39–44. http://dx.doi.org/10.22141/2224-0586.4.67.2015.78491.

Повний текст джерела
Анотація:
На фоні експериментальної тяжкої поєднаної травми вивчено вплив інфузійної терапії на цитотоксичність прооксидантних систем (малонового діальдегіду та дієнових кон’югат) і активність антиоксидантної ланки ферментів (супероксиддисмутази та каталази) у тканині легень піддослідних тварин. Встановлено, що на фоні ранньої інфузійної терапії вже через 6 годин перебігу травматичного процесу настає зниження активності цих показників та встановлення редокс-балансу оксидант-антиоксидантних систем у тканині легень. Отримано кращі результати виживання упродовж доби тварин, яким уводили препарат комбінованої інфузійної терапії (HAES-LX-5%) на основі 5% ГЕК 130/0,4, 5% ксилітолу, 1,5% натрію лактату та збалансованого розчину електролітів.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Малишев, Віктор Володимирович, Ангеліна Іванівна Габ, Дмитро Борисович Шахнін, Тетяна Миколаївна Нестеренко, Володислав Ростиславович Румянцев та Наталія Володимирівна Лічконенко. "ПОРІВНЯЛЬНА ХАРАКТЕРИСТИКА МЕТОДІВ СИНТЕЗУ ТУГОПЛАВКИХ СПОЛУК". Scientific Journal "Metallurgy", № 2 (22 лютого 2022): 35–43. http://dx.doi.org/10.26661/2071-3789-2021-2-05.

Повний текст джерела
Анотація:
На основі аналізу класифікацій методів синтезу тугоплавких сполук та відповідності принципів адекватності вихідних компонентів і типу хімічних реакцій (кінетичного механізму. Запропоновано класифікацію методів синтезу таких сполук. Вона включає шість методів: прямий синтез з елементів; синтез з розчинів у розплавах; металотермічне відновлення оксидів металів; відновлення оксидів та інших сполук неметалами та їхніми сполуками; газофазний синтез; електроліз розплавів і розчинів у розплавах. Виокремлено сутність, переваги та недоліки кожного методу. Головними перевагами прямого синтезу з елементів є можливість одержання значної кількості вогнетривких сполук і коротка тривалість процесу, а недоліком – складність одержання точного складу сполуки. Головними перевагами синтезу з розчинів у розплавах є простота процесу синтезу та можливість одержання сполук певного внеску, а недоліками – низький вихід продукту та вартість коштовних розчинників.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Atamas, N. A., L. A. Bulavin, and D. Vasyl’eva. "Structure of Aqueous Monovalent Electrolyte Solutions." Ukrainian Journal of Physics 60, no. 12 (December 2015): 1218–23. http://dx.doi.org/10.15407/ujpe60.12.1218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Makhlaichuk, V. M. "Kinematic Shear Viscosity of Water, Aqueous Solutions of Electrolytes, and Ethanol." Ukrainian Journal of Physics 60, no. 9 (September 2015): 854–60. http://dx.doi.org/10.15407/ujpe60.09.0854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Galushko, O. A. "Сучасні аспекти лікування ішемічного інсульту у хворих на цукровий діабет". EMERGENCY MEDICINE, № 5.68 (8 жовтня 2015): 92–96. http://dx.doi.org/10.22141/2224-0586.5.68.2015.78547.

Повний текст джерела
Анотація:
Стаття присвячена аналізу літератури з питань лікування ішемічного інсульту у хворих на цукровий діабет. Існує значний збіг симптомів, ознак і результатів лабораторних досліджень при інсульті й діабетичному кетоацидозі, що часто ускладнює діагностику цих станів. Із метою точної й своєчасної діагностики ускладнень у всіх хворих на гострий інсульт із супутнім цукровим діабетом при надходженні потрібно вимірювати рівень рН сироватки, бікарбонат, гази крові та аніонну різницю. Інфузійна підтримка повинна проводитися ретельно й малими порціями, із постійним контролем артеріального тиску, гематокриту, рівня електролітів та показників кислотно-лужного стану. У програмі інфузійної терапії слід використовувати розчини кристалоїдів та сучасні штучні колоїди — похідні гідроксіетилкрохмалю та желатину. Потрібні подальші дослідження для визначення рекомендацій та алгоритмів лікування ішемічного інсульту у хворих на цукровий діабет.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Струтинська, Н. Ю., А. B. Співак, В. М. Баумер та М. С. Слободяник. "Синтез і будова складних фосфатів Na3,5MIІ 0,5Fe1,5(PO4)3 (MII — Mg, Ni), одержаних в умовах кристалізації багатокомпонентних розчин-розплавів". Reports of the National Academy of Sciences of Ukraine, № 2 (30 квітня 2021): 100–107. http://dx.doi.org/10.15407/dopovidi2021.02.100.

Повний текст джерела
Анотація:
Досліджено формування складних фосфатів у системі Na2O—P2O5—Fe2O3—MIIO (MII — Co, Mg, Ni) в умо вах кристалізації багатокомпонентних розчин-розплавів у розрізах мольних співвідношень: Na/P = 1,3, Fe/P = 0,3, Fe/MII = 2, у температурному інтервалі 1000—650 °С та одержано монокристали Na3,5MIІ0,5Fe1,5(PO4)3 (MII — Mg, Co, Ni) розмірами до 5 мм. В ІЧ-спектрах синтезованих складних фосфатів Na3,5MIІ0,5Fe1,5(PO4)3 (MII — Mg, Co, Ni) коливальні моди в частотних діапазонах 900—1200 см–1 (суперпозиція симетричних і асиметричних валентних коливань РO4-тетраедрів) та 400—600 см–1 (відповідні деформаційні коливання) підтверджують присутність ортофосфатного типу аніона в їх складі. Розраховані параметри комірок синтезованих фосфатів (тригональна сингонія, просторова група R-3c) знаходяться в межах значень (а, b) = 8,68 ÷ 8,80 Å і c = 21,47 ÷ 21,58 Å та залежать від розмірів двовалентного металу. В основі кристалічних каркасів фосфатів Na3,5MIІ0,5Fe1,5(PO4)3 (MII — Mg, Co, Ni) є фрагмент [(MІІ/Fe)2 (PO4)3], побудований з двох змішаних (MІІ/Fe)O6-поліедрів і трьох PO4-тетраедрів, а катіони натрію частково заселяють два типи позицій, що розміщені в порожнинах каркаса. Присутність вакансій у катіонній підґратці складних фосфатів зі структурою типу NASICON у подальшому будуть впливати на іонпровідні властивості твердих електролітів.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Свередюк, Ю. А., В. Є. Пелих, С. М. Чарнош та О. В. Денефіль. "ЗМІНИ ВМІСТУ НІТРИТ-АНІОНА В МІОКАРДІ ШЛУНОЧКІВ ТА ПЕРЕДСЕРДЬ ЩУРІВ ЗА УМОВ РОЗВИТКУ ЕЛЕКТРОЛІТНО-СТЕРОЇДНОЇ КАРДІОМІОПАТІЇ". Medical and Clinical Chemistry, № 3 (14 грудня 2021): 84–88. http://dx.doi.org/10.11603/mcch.2410-681x.2021.i3.12586.

Повний текст джерела
Анотація:
Вступ. Артеріальна гіпертензія і метаболічні порушення часто є наслідком тривалого лікування стероїдними препаратами. Харчування з високим вмістом NaCl у раціоні здатне значно збільшити цей ризик. Серйозним ускладненням на основі вказаних порушень часто є розвиток кардіоміопатії. До превентивних у даному випадку належить система монооксиду азоту. L-карнітин, який є антиоксидантом, має здатність впливати на енергетичний обмін, процеси апоптозу, транскрипцію ДНК і може бути перспективним засобом корекції порушень у системі монооксиду азоту. Мета дослідження – вивчити вміст нітрит-аніона в серці щурів при довготривалій дії дексаметазону, підвищеному вмісті NaCl (4 %) у питній воді та корекції L-карнітином. Методи дослідження. Експеримент виконано на 96 білих нелінійних щурах з дотриманням норм біо­етики. Вміст нітрит-аніона визначали в гомогенатах передсердь і шлуночків за методом Гріса. Сте­роїдну кардіоміопатію моделювали шляхом щоденного застосування дексаметазону протягом 15 днів. Половина тварин для пиття отримувала 4 % розчин NaCl у водопровідній воді. Корекцію проводили за допомогою L-карнітину per os. Результати й обговорення. Встановлено, що тривале застосування дексаметазону і високий вміст солі у питній воді призводять до зниження рівня нітрит-аніона в шлуночках серця щурів обох статей (24 %, p<0,05). L-карнітин продемонстрував здатність відновлювати рівень метаболіту. Різниця між статями проявлялася у тварин з нормальним рівнем NaCl у питній воді. При високому рівні солі у воді негативні зміни інтенсивніші й різниця між статями вже не така виражена. У передсердях виявлено лише різницю у вмісті нітрит-аніона між статями (на 13 % (p<0,05), нижчий рівень у самців порівняно із самками на всіх етапах дослідження. Дексаметазон чи сіль не впливає на досліджуваний метаболіт у цій тканині. Висновки. Стероїдно-електролітне пошкодження серця супроводжується зниженням вмісту нітрит-аніона в міокарді шлуночків, L-карнітин ефективно нівелює ці зміни. У міокарді передсердь виявлено різницю у вмісті нітрит-аніона лише залежно від статі, дексаметазон чи високий вміст солі не впливає на даний показник.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ненастіна, Т., М. Ведь, М. Сахненко, С. Зюбанова та І. Черепньов. "Електродні матеріали для водневої енергетики". Науковий журнал «Інженерія природокористування», № 1(15) (26 жовтня 2020): 6–12. http://dx.doi.org/10.37700/enm.2020.1(15).6-12.

Повний текст джерела
Анотація:
Електроосадження сплавів молібдену, вольфраму і цирконію з кобальтом з білігандних електролітів на імпульсному струмі дозволило отримати композиційні покриття з унікальним поєднанням фізико-хімічних властивостей, недосяжних при використанні інших методів нанесення. Окрім складу отриманих композиційних електролітичних покриттів на каталітичне виділення водню впливають характеристики їх поверхні, зокрема рельєф і морфологія. Дослідження топографії поверхні проводили за допомогою сканівного атомно-силового мікроскопа контактним методом. Порівняно топографію поверхні осаджених покриттів і показано, що найбільш рівномірно розвиненими і мікроглобулярними є композити складу Со-Мо-WOx і Со-Мо-ZrО2. Електролітична реакція виділення водню є багатостадійним процесом, тому для встановлення каталітичної активності композиційних сплавів на основі кобальту необхідно визначити механізм за яким відбувається даний процес. Оцінку електрокаталітичних властивостей композиційних електролітичних покриттів на основі сплавівкобальту різного складу здійснювали на підставі аналізу кінетичних параметрів модельної реакції виділення водню з розчинів електролітів різної кислотності. Визначено постійні Тафеля, коефіцієнти переносу, густину струму обміну для електрохімічного виділення водню на композиційних електролітичних покриттях сплавами кобальту. За величиною струму обміну електрохімічної реакції виділення водню на покриттях Со-Мo-WОх, Со-Мо-ZrО2, Co-W-ZrО2 встановлено їх високу електрокаталітичну активність порівняно із індивідуальними металами і бінарними сплавами. Встановлено, що електровідновлення водню на композиційних сплавах кобальту протікає за механізмом Фольмера-Тафеля з уповільненою стадією рекомбінації. Запропоновано схеми реакцій, за якимипротікає відновлення водню, якщо проміжним продуктом загального процесу є гідриди металів.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Pushkar'ov, O., A. Zubko, I. Sevruk, and V. Dolin. "ELECTRO-OSMOTIC FRACTIONATION OF HYDROGEN ISOTOPES IN ELECTROLYTIC SOLUTIONS USING COMPOSITE PROTON-PERMEABLE MEMBRANES." Visnyk of Taras Shevchenko National University of Kyiv. Geology, no. 1 (92) (2021): 11–16. http://dx.doi.org/10.17721/1728-2713.92.02.

Повний текст джерела
Анотація:
Based on the analysis of the features of electroosmotic processes that are implemented in proton-conducting membranes, the possibility of fractioning hydrogen isotopes in electrolytes formed using tritiated water (HTO) is estimated. The interaction of the solution with the membranes in their channels leads to polarization and partial dissociation of the electrolyte molecules. In water molecules, when protium is replaced by a heavy isotope of hydrogen, the energy of breaking of hydrogen bonds increases and the process of their dissociation proceeds predominantly according to the scheme: HTO ↔ H+ + TO—. A part of the released protons can join water molecules to form the H3O+ ion. H3O+ and TO— ions are more mobile than other singly charged ions. The main characteristic that determines the suitability of electroosmotic membranes to the fractionation of hydrogen isotopes is proton conductivity. The released protons have anomalously high mobility due to their small size, tunnel and relay movement through hydrogen bonds between adjacent polar groups in the channels of the proton-conducting membranes. To ensure high proton conductivity in the pores and channels of the membranes, modifying substances are fixed, which contain the groups: –ОН- , –NH2, –NH, –SH, –COOH, –SO3H, acid salts and oxides, containing surface proton-conducting groups. To create proton-conducting membranes, it is possible to use surface-modified β-alumina (β-Al2O3(H3O+)) and protonated (H3O+) montmorillonite with ionic conductivity (5х103 – 4х104 Ohm х cm–1). The most effective are surface modifiers with negatively charged sulfonic groups. The imposition of an external electric field leads to the movement of ions in the electrolyte, which leads to a redistribution of the isotope ratio in the near-anode and cathode spaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Нечипуренко, Павло Павлович. "Деякі аспекти імітації реальних хімічних процесів та систем у віртуальних хімічних лабораторіях". Theory and methods of e-learning 3 (11 лютого 2014): 238–44. http://dx.doi.org/10.55056/e-learn.v3i1.344.

Повний текст джерела
Анотація:
Перехід сучасного суспільства до інформаційної епохи свого розвитку висуває як одне з основних завдань, що стоять перед системою освіти, завдання формування основ інформаційної культури майбутнього фахівця. Процеси модернізації та профілізації вітчизняної шкільної освіти так само, як і модернізації вищої освіти (участь у створенні єдиного європейського простору, впровадження дистанційної освіти тощо) ведуться на базі інформаційно-комунікаційних технологій навчання. Метою даної статті є обговорення ролі сучасних комп’ютерних моделей у навчанні хімії, та проблеми якості відображення реальних хімічних процесів у комп’ютерних моделях, якими є віртуальні хімічні лабораторії.Дидактична роль нових інформаційних технологій полягає, перш за все, в активізації пізнавальної діяльності і творчого потенціалу учнів [5]. Необхідно створювати умови, аби учень став активним учасником навчального процесу, а вчитель був організатором пізнавальної діяльності учня. Адже вивчення будь-якої навчальної дисципліни – не мета, а засіб розвитку особистості. Ефективність застосування комп’ютерів у навчальному процесі залежить від багатьох чинників, у тому числі й від рівня самої техніки, від якості навчальних програм і від методики навчання, що застосовується вчителем. Більшість педагогів переконані в тому, що комп’ютер є потужним засобом для творчого розвитку дітей, дозволяє звільнитися від багатьох рутинних видів роботи і розробити нові ідеї в методиці навчання, дає можливість вирішувати більш цікаві і складні проблеми [5].Будь-який ілюстративний матеріал (мультимедійні й інтерактивні моделі в тому числі) значно розширюють можливості навчання, роблять зміст навчального матеріалу більш наочним, зрозумілим, цікавим. Не можна скидати з рахунків і психологічний чинник: сучасному учневі чи студенту набагато цікавіше сприймати інформацію саме в інтерактивній формі, ніж за допомогою застарілих схем і таблиць. Використання комп’ютерних моделей, комп’ютерних засобів візуалізації значно підвищує ефективність засвоєння матеріалу[5].Сучасні школярі, які здебільшого є представниками «покоління відеоігор», орієнтовані на сприйняття високоінтерактивного, мультимедіа насиченого навчального середовища. Згаданим вище вимогам якнайкраще відповідають освітні програми, що моделюють об’єкти і процеси реального світу і системи віртуальної реальності. Прикладом таких навчальних систем є віртуальні лабораторії, які можуть моделювати поведінку об’єктів реального світу в комп’ютерному освітньому середовищі і допомагають учням опановувати нові знання й уміння в науково-природничих дисциплінах, таких як хімія, фізика і біологія [3].Хімія – наука експериментальна, її завжди викладають, супроводжуючи демонстраційним експериментом. Ні для кого не є секретом, що матеріальний стан більшості шкіл в Україні є, м’яко кажучи, неідеальним. Дуже часто для демонстрації хімічного досліду не вистачає необхідних реактивів чи обладнання, тому доводиться обходитись теоретичним розглядом лабораторної роботи або проводити один дослід на весь клас. У такому випадку на допомогу вчителеві приходять саме спеціалізовані комп’ютерні програми, на кшталт віртуальних хімічних лабораторій, що дозволяють провести (саме провести, а не спостерігати) дослід у наближених до реальності умовах. Також, наприклад, при вивченні токсичних речовин, зокрема галогенів, віртуальне середовище надає можливість проводити хімічний експеримент без ризику для здоров’я учнів [4].На даний момент розроблена велика кількість навчальних програм для шкільного курсу хімії. Жодна з цих програм не є досконалою, проте сам факт їх створення свідчить про те, що в них існує потреба і вони мають безперечну цінність. Для того, щоб у дитини виник інтерес до співпраці з комп’ютером і в процесі цієї спільної творчості стійка пізнавальна мотивація до вирішення освітніх, дослідницьких завдань, необхідне створення таких умов, при яких учень стає безпосереднім учасником подій, що розвиваються на екрані монітора, тобто умов для повноцінного діяльнісного підходу до навчання.Умова успішного застосування комп’ютерних моделей в освітньому процесі сучасної школи закладена в добре відомих принципах педагогіки співпраці, які можна перефразовувати так: «не до комп’ютера за готовими знаннями, а разом з комп’ютером за новими знаннями» [3].Головна перевага віртуальних хімічних лабораторій полягає в тому, що віртуальні хімічні експерименти безпечні навіть для непідготовлених користувачів. Учні можуть також проводити такі досліди, виконання яких в реальній лабораторії може бути небезпечне або коштує надто дорого. Звичайно, за допомогою віртуальних дослідів не можна опанувати навички реального хімічного експерименту, але віртуальні досліди можуть застосовуватися, наприклад, для ознайомлення учнів з технікою виконання експериментів, хімічним посудом і устаткуванням перед безпосередньою роботою в лабораторії. Це дозволяє учням краще підготуватися до проведення цих або подібних дослідів в реальній хімічній лабораторії. Також проведення віртуальних експериментів допомагає учням та студентам засвоїти навички запису спостережень, складання звітів та інтерпретації даних в лабораторному журналі. Іще слід наголосити на тому, що комп’ютерні моделі хімічної лабораторії за певних умов можуть спонукати учнів експериментувати і отримувати задоволення від власних відкриттів [3].За способом візуалізації розрізняються лабораторії, в яких використовується двовимірна, тривимірна графіка і анімація. Крім того, віртуальні лабораторії можна поділити на дві категорії залежно від способу представлення знань у предметній області. Віртуальні лабораторії, в яких представлення знань у предметній області засновано на окремих фактах, обмежені набором заздалегідь запрограмованих експериментів. Цей підхід використовується при розробці більшості сучасних віртуальних лабораторій. В таких програмах змінити умови проведення експерименту і одержати якісь інші результати неможливо. Інший підхід дозволяє учням проводити будь-які експерименти, не обмежуючись заздалегідь підготовленим набором результатів. Це досягається за допомогою використання математичних моделей, що дозволяють визначити результат будь-якого експерименту і відповідний візуальний супровід. На жаль, подібні моделі поки що можливі тільки для обмеженого набору дослідів [3]. Переваги і недоліки вищезгаданих програмних продуктів достатньо повно були висвітлені Т. М. Деркач, яка, до речі, пропонує використовувати термін «імітаційні хімічні лабораторії» [1; 2].Суттєвою перевагою таких віртуальних лабораторій як ChemLab (виробник: Model Science Software), Croсоdile Chemistry (Crocodile Clips Ltd), Virtual Lab (The ChemCollective) є можливість активного втручання учня у хід роботи, а не пасивне спостерігання за відеофрагментом чи анімацією, що запрограмовані заздалегідь. При виконанні лабораторної роботи за допомогою вищезгаданих програм учень може повторити її безліч разів, при цьому щоразу змінюючи один чи декілька параметрів на власний вибір. В більшості випадків (якщо дії учня не суперечать логіці і можливі для виконання і у реальній лабораторії) учень отримає правильні результати, що лише підкреслить ті закономірності, виявлення яких і було метою роботи. Скажімо у лабораторній роботі «Гравіметричне визначення хлорид-йонів» («Gravimetric Analysis of Chloride») у віртуальній лабораторії ChemLab учень чи студент може замість запропонованих в інструкції 5 г речовини, що містить хлорид-йони, взяти 3, чи 6, чи 10 г її. Але в кожному випадку він отримає і відповідну масу осаду арґентум хлориду, за якою, при виконанні обчислень, прийде до одних і тих самих результатів і висновків.Подібний підхід, коли учень може проявити власну ініціативу при виконанні роботи, дуже позитивно відбивається і на навчальних досягненнях і на зацікавленості учнів. Але разом з ініціативою учні можуть також підключити і власну фантазію – спробувати виконати такі дії, які не були передбачені сценарієм проведення даної роботи (наприклад, нагріти розчин до кипіння, або навпаки охолодити його до температури замерзання) просто із цікавості, тим більше, що у ChemLab можна використовувати обладнання, застосування якого не передбачалось сценарієм виконання роботи. Результати таких незапланованих дій можуть переноситись учнями і на відповідні об’єкти та процеси реального світу, а тому до віртуальних лабораторій завжди висувалась жорстка вимога суворої відповідності віртуальних об’єктів та процесів реальним об’єктам і процесам.Тут доводиться констатувати протиріччя, яке існує в середовищі користувачів віртуальних хімічних лабораторій: методистів, розробників, вчителів, учнів тощо. Справа в тому, що немає і, мабуть, не може бути єдиної думки з приводу того, наскільки повно віртуальні процеси повинні відтворювати об’єктивну реальність. З одного боку, чим більше віртуальний світ схожий на реальний, тим нібито краще – в такому випадку навчання хімії за допомогою віртуальних комп’ютерних лабораторій виходить на якісно новий, більш високий рівень, з’являється набагато більше можливостей і форм застосування навчальних лабораторій у навчанні хімії, зникають передумови для одержання хибних висновків при їх використанні. Але, з іншого боку, врахування найменших дрібниць і максимальної кількості можливих варіантів розвитку подій неминуче призведе до значного ускладнення комп’ютерних програм, суттєвого збільшення баз даних і, як наслідок, подорожчання та подовження часу на розробку відповідних програмних продуктів, та, скоріш за все, суттєво ускладнить використання таких програм людьми без спеціальної підготовки. Не кажучи вже про те, що передбачити всі можливі варіанти дій користувача у віртуальній лабораторії просто неможливо.Інша точка зору полягає в тому, що віртуальні хімічні лабораторії в першу чергу є моделями, тобто системами, що відтворюють, імітують, відображають принципи внутрішньої організації або функціонування, певні властивості, ознаки чи характеристики об’єкта дослідження (оригіналу). Модель завжди є спрощеною версією модельованого об’єкта або явища (прототипу), що в достатній мірі повторює властивості, суттєві для цілей конкретного моделювання (опускаючи несуттєві властивості, в яких вона може відрізнятися від прототипу).Подібне визначення поняття «модель» фактично означає, що такі програми як віртуальні хімічні лабораторії, не повинні перевантажуватись «зайвими дрібницями» – несуттєвими для виконання певної роботи чи досліду зовнішніми ознаками, фактами і процесами. Окрім того, так само як викладач не залишить без догляду учнів у реальній лабораторії, так і викладач, що застосовує віртуальну лабораторію на занятті, повинен бути постійно поруч з учнями, надаючи їм відповідних порад або роз’яснюючи результати спостережень, що викликали питання або сумніви. Таким чином, можна попередити формування в учнів хибних уявлень, неправильних висновків тощо.У представників обох точок зору є свої аргументи. Наприклад, при виконанні стандартної лабораторної роботи в середовищі програми ChemLab «Фракційне розділення солей» («Fractional Crystallization»), сутність якої полягає в тому, що учневі пропонується розділити суміш солей (натрій хлориду та калій дихромату), використовуючи їх різну розчинність у воді за різних температур. Подібні процеси досить поширені як в промисловості (виробництво калійних добрив), так і в лабораторії (перекристалізація солей з метою їх очищення), хоча і в більш складному вигляді. Хід роботи включає в себе такі стадії: відбір наважок солей певної маси; їх розчинення у воді кімнатної температури; нагрівання розчину до повного розчинення калій дихромату; охолодження розчину до 0оС; відділення осаду калій дихромату; зважування калій дихромату, що випав в осад, та відповідні розрахунки.Якщо прискіпливо проаналізувати дану роботу, в ній можна знайти ряд неточностей або спрощень:1) при розчиненні калій дихромату у воді розчин залишається безбарвним;2) відсутній тепловий ефект при розчиненні обох солей;3) не враховано взаємний вплив солей на їх розчинність;4) розчин солей при охолодженні до температури замерзання не кристалізується;5) температура кипіння розчину солей дорівнює температурі кипіння ізомолярного з ним розчину будь-якого неелектроліту;6) зважування одержаного калій дихромату можна провести з високою точністю без попереднього промивання і висушування;7) відсутність допоміжного лабораторного обладнання (штативів, тримачів, шпателів, вакуум-насосу тощо) та можливість відбору наважок речовин без використання терезів.Подібні неточності можна знайти і у всіх інших лабораторних роботах програми ChemLab, але в більшості випадків ці неточності неочевидні, і, найголовніше, не відбиваються ані на одержанні результатів експерименту, ані на їх інтерпретації.Крім того, застосовуючи інструментарій майстра LabWіzard, що дозволяє користувачу створювати власні лабораторні роботи у ChemLab, певну кількість подібних невідповідностей можна заздалегідь передбачити й усунути у створених власноруч лабораторних проектах.[2; 4]Викладач, що використовує віртуальні хімічні лабораторії, обов’язково повинен наголосити на тому, що у віртуальній хімічній лабораторії присутні певні спрощення та невідповідності з об’єктивною реальністю. У групі учнів, що мають високий рівень знань і хімічного мислення, можна навіть побудувати роботу на тому, щоб знайти і обговорити подібні неточності. Наприклад, в рамках курсу «Комп’ютерне моделювання хімічних процесів», що викладається на ІІІ курсі спеціальності «Хімія» у Криворізькому педагогічному інституті, при розгляді особливостей віртуальної лабораторії ChemLab перед студентами була поставлена задача обґрунтовано довести наближений характер розрахунку температури початку кипіння розчину натрій хлориду у даній програмі (в межах лабораторної роботи «Fractional Crystallization»). Студенти на основі другого закону РауляΔtкип=kеб*b – для розчинів речовин-неелектролітів (1)Δtкип=i*kеб*b – для розчинів речовин-електролітів; (2)де kеб – ебуліоскопічна константа розчинника, b – моляльна концентрація розчиненої речовини (моль/кг), і – ізотонічний коефіцієнт, обчислювали температуру початку кипіння для розчину натрій хлориду тієї концентрації, яку вони самі створили у віртуальній хімічній лабораторії. Далі утворений віртуальний розчин нагрівали до кипіння і зазначали температуру початку кипіння. Вона збігалась із розрахованою за формулою (1), тобто без урахування ізотонічного коефіцієнту, який для розчину натрій хлориду повинен наближатись до 2. Значить реальна Δtкип розчину майже вдвічі повинна була б перевищувати Δtкип розчину у віртуальній лабораторії. Висновок зроблений студентами: в даній лабораторній роботі з метою спрощення не враховувався процес іонізації солі, оскільки для моделювання процесів розчинення солей за різних температур він особливого значення не має.Подібний недолік комп’ютерної програми може створити незручності з одного боку, але може бути перевагою з іншого: на основі розгляду подібних фактів можна в цікавій і нестандартній формі залучити групу студентів до повторення навчального матеріалу з різних розділів хімії та розв’язку розрахункових задач.Таким чином, можна зробити висновок про те, що віртуальні хімічні лабораторії є безумовно ефективним інструментом в руках вчителя або викладача хімії. Кожна з віртуальних хімічних лабораторій є моделлю, що описує реальні явища і процеси, а тому неминуче містить ряд спрощень і неточностей, як в плані графічного відображення об’єктів, так і в плані причинно-наслідкових зв’язків між діями користувача та їх результатами у віртуальному середовищі. Головною метою проведення дослідів у віртуальних комп’ютерних лабораторіях є усвідомлення самої сутності явища, що вивчається, його головних закономірностей, а недосконалість візуальних чи інших ефектів має другорядне значення. Подальший розвиток і вдосконалення віртуальних хімічних лабораторій, скоріш за все, буде відбуватись у напрямку збалансування простоти представлення моделі та максимальної її реалістичності.Враховуючи все, сказане вище, можна з упевненістю сказати, що розробка і впровадження віртуальних хімічних лабораторій залишається одним з пріоритетних напрямків у процесі вдосконалення навчання хімії у середній та вищій школі.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Корнієнко, М. Є. "Квантові закономірності в водних розчинах електролітів 2. Збільшення розчинності кількох речовин, утворення нових сполук і раціональні відношення концентрацій іонів у максимумах розчинності". Вісник Київського національного університету імені Тараса Шевченка. Серія "Фізико-математичні науки", Вип. 4 (2009): 217–24.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

В. Титаренко, Валентина, Едуард П. Штапенко, Євген О. Воронков, Аруна Вангара, Володимир А. Заблудовський, Войцех Колоджейчик, Каріна Капуста та Сергій І. Оковитий. "АДСОРБЦІЯ ИОНОВ МЕТАЛІВ Co, Ni, Cu, Zn НА ФУЛЕРЕНІ C60 І НА ОДНОСТІННІЙ ВУГЛЕЦЕВІЙ НАНОТРУБЦІ C48 ЯК ДІЮЧА СИЛА ЕЛЕКТРООСАДЖЕННЯ КОМПОЗИЦІЙНИХ ПОКРИТТІВ". Journal of Chemistry and Technologies 29, № 1 (30 квітня 2021): 42–54. http://dx.doi.org/10.15421/082108.

Повний текст джерела
Анотація:
Досліджено композиційні плівки, осаджені у водних розчинах електролітів, що містять іони металів і частинки вуглецевих наноматеріалів, таких як фулерен C60. Результати дослідження катодних поляризаційних кривих показали збільшення опору переносу заряду. Аналіз фазового складу металевих плівок показав наявність вуглецевих наночастинок (ВНЧ) всередині металевої матриці і значні зміни у кристалічній решітці. З результатів дослідження мікрофотографій слідує, що додавання ВНЧ змінює структуру росту металевих плівок від стовбчатої ​​до мікрошаруватої через пасивацію поверхні. У даній роботі теорія функціонала густини (ТФГ) була використана для розрахунку термохімічних, електронних і структурних властивостей комплексів іонів металів з ВНЧ. Результати розрахунків енергії зв'язку комплексів ВНЧ- Me2+ дозволяють припустити, що адсорбція іонів Co2+, Ni2+, Cu2+ та Zn2+ на поверхні фулерену C60 і одностінної вуглецевої нанотрубки (ОВНТ) C48 можлива і термодинамічно вигідна. Було виявлено, що енергія зв'язку більша у разі адсорбції іона металу на поверхні ОВНТ C48, у порівнянні з адсорбцією на фулерені C60. Оскільки комплекси Cu2+ були найбільш термодинамічно стабільними, енергія зв'язку зростала у такій послідовності Co2+<Zn2+<Ni2+<Cu2+. Результати розрахунків вільної енергії зв'язку показали хорошу кореляцію з шириною забороненої зони, відстанями між іоном металу і поверхнею ВНЧ, дипольними моментами, делокализацією заряду у методі природних орбіталей (МПO) і другим потенціалом іонізації іонів металів.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Chekh, Oleksandr, Olga Bordunova та Vadym Chivanov. "ВПЛИВ ОБРОБКИ ЗАХИСНИМИ ПРЕПАРАТАМИ НА ОСНОВІ КОМПЛЕКСІВ «ХІТОЗАН-МІДЬ» НА ЗМЕНШЕННЯ МАСИ ХАРЧОВИХ КУРЯЧИХ ЯЄЦЬ ПРОТЯГОМ ЗБЕРІГАННЯ". Bulletin of Sumy National Agrarian University. The series: Livestock, № 4(43) (25 грудня 2020): 122–27. http://dx.doi.org/10.32845/bsnau.lvst.2020.4.18.

Повний текст джерела
Анотація:
У роботі представлено способи обробки харчових курячих яєць. Відбиралися свіжі знесені яйця категорії С0 65-75 г породи «Декалб-Уайт». Зберігали в чистих лотках по 30 штук у кожному. Яйця були розділені на VII груп і зберігалися при температурі 21°С. Зберігання яєць при кімнатній температурі призводить до погіршення якісних органолептичних показників вмісту яйця, збільшення швидкості проникнення і розмноження Escherichia coli, Staphylococcus aureus, Salmonella enterica, БГКП (бактерій групи кишкових паличок) у порівнянні з яйцями, що зберігалися у холодильних камерах при температурі до 8º С. Метою роботи було визначення впливу обробки харчових яєць курей захисними препаратами на основі комплексів «хітозан-мідь» на зменшення маси харчових курячих яєць протягом зберігання. Формували сім партій курячих яєць по 30 шт. в кожній. Дослідні партії обробляли захисними препаратами комплексів «Хітозан-мідь», приготованими різними способами. Дослід проводився протягом 30 днів. Яйця курячі розподіляли на окремі групи. З метою ізоляції вмісту яєць курячих харчових від впливу зовнішнього середовища, зменшення втрат маси та запобігання мікробного забруднення нами було застосовано обробку поверхні шкаралупи кожного яйця різними речовинами. Наведений склад композиції для обробки харчових курячих яєць на основі комплексів «Хітозан-мідь» із захисту від патогенної мікрофлори бактеріального і вірусного походження гальмує втрату маси яєць протягом усього терміну зберігання. В дослідній групі, де курячі яйця обробляли Розчином (5), до складу якого входять водний хітозан (2-5%) з додаванням надоцтової та оцтової кислоти (1:1 за об’ємом) і підданий електролізу із застосуванням титану у якості аноду та катоду, вага яєць зменшилася на 1,3 %, 2,4 % на 14 день, 3,1 % на 21 день, 7,5% на 30 добу, що показало найкращий результат. Таким чином на зменшення маси курячих яєць впливає не тільки температура зберігання, а й захисні препарати на основі комплексів «хітозан-мідь», що показали зменшення швидкості втрати ваги і псування яєць під час зберігання при температурі 21ºС. Розроблена «зелена» електрохімічна технологія синтезу захисних покрить для харчових яєць для подовження терміну зберігання/транспортування на основі комплексів типу «хітозан-мідь»; 2) Експериментально доведено, що використання технології захисту харчових яєць курей, що базується на утворенні на поверхні яєць тонкошарового покриття з екологічно безпечного хітозану, до складу якого входять іони міді, не здійснюють статистично вірогідного впливу на зменшення маси яєць у порівнянні з контролем.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Оленович, О. А. "ВПЛИВ ХРОНІЧНОЇ ГІПЕРГЛІКЕМІЇ НА РОЗВИТОК ТУБУЛОІНТЕРСТИЦІЙНОГО СИНДРОМУ ЗА ЕКСПЕРИМЕНТАЛЬНОГО ЦУКРОВОГО ДІАБЕТУ". Вісник медичних і біологічних досліджень, № 1 (22 травня 2021): 80–86. http://dx.doi.org/10.11603/bmbr.2706-6290.2021.1.12091.

Повний текст джерела
Анотація:
Резюме. Діабетична хвороба нирок (ДХН) – одне з найбільш тяжких ускладнень цукрового діабету, головну роль у розвитку та прогресуванні якого відіграє нелікована чи недостатньо коригована гіперглікемія, тривалість та величина якої добре корелюють зі ступенем та швидкістю розвитку діабетичного ураження нирок. Тривала гіперглікемія запускає низку метаболічних порушень і, в решті решт, призводить до прогресуючого зниження маси діючих нефронів. Мета дослідження – вивчити механізми формування тубулоінтерстиційного синдрому на тлі хронічної алоксаніндукованої гіперглікемії. Матеріали і методи. Дослідження проведено на 20 статевозрілих нелінійних самцях білих щурів, у 10 з яких викликали експериментальний цукровий діабет (ЕЦД) шляхом одноразового внутрішньочеревного введення розчину алоксану в дозі 160 мг/кг маси тіла, 10 щурів увійшли до контрольної групи. Через 45 діб після уведення діабетогенної речовини тварин виводили з експерименту. Статистичну обробку отриманих даних здійснювали із визначенням середньої величини, стандартних відхилень. Для оцінки вірогідності різниці між дослідними групами застосовували непараметричний ранговий критерій Манна – Уїтні за алгоритмами, що реалізовані в комп’ютерній програмі «Statistica for Windows», «Version 8.0». Дослідження проводили з дотриманням положень Директиви ЄЕС № 609 (1986) та наказу МОЗ України № 690 від 23.09.2009 р. «Про заходи щодо подальшого удосконалення організаційних норм роботи з використанням експериментальних тварин». Результати. Встановлено, що сосочково-кірковий та мозково-кірковий концентраційні градієнти іонів натрію істотно зростали, тоді як сосочково-мозковий натрієвий градієнт достовірно зменшувався. Аналогічні зміни стосувалися концентраційних ниркових градієнтів іонів калію. При цьому концентрація іонів натрію і калію в сечі алоксандіабетичних тварин та інтенсивність їх екскреції зростала. Збільшене фільтраційне завантаження нирок іонами натрію супроводжувалося збільшенням проксимальної реабсорбції іонів натрію, однак її стандартизований за об’ємом клубочкового фільтрату показник, так само як і дистальне надходження катіону, були меншими за показник контрольної групи. І хоча відносна реабсорбція іонів натрію залишалася практично незмінною, вона супроводжувалась значним зростанням кліренсу катіону. В пробах сечі та плазми крові визначали рівень глюкози, а також концентрацію іонів натрію та калію з наступним розрахунком (з урахуванням водного індукованого 2-годинного діурезу та кліренсу ендогенного креатиніну) показників екскреції електролітів, інтенсивності їх фільтрації, абсолютної та відносної реабсорбції, кліренсу та концентраційного індексу, їх проксимального та дистального ниркового надходження. Вилучені після декапітації щурів нирки розшаровували на 3 частини – кіркову та мозкову речовину, сосочок нирки, у водному екстракті відповідної частини ниркової паренхіми визначали концентрацію іонів натрію та калію, обчислювали сосочково-кірковий, сосочково-мозковий та мозково-кірковий концентраційні іонні градієнти. Висновки. Хронічна алоксаніндукована гіперглікемія спричиняє розвиток тубулоінтенстиційних порушень, прояви яких спостерігаються задовго до маніфестації гломерулопатії. Викликане гіперперфузійно-гіперфільтраційним перевантаженням нирок виснаження реабсорбційної потужності канальцевого апарату нирок відображається як на проксимальних, так і на дистальних канальцях, та ініціює порушення процесів реабсорбції та іоноурез. Саме розлади канальцевого надходження іонів натрію та калію, перерозподіл їх вмісту між судинним, тубулярним та інтерстиційним компартментами нирок, призводять до порушення місцевої гемодинаміки у нирках, зміни гідрофільності та осмолярності інтерстицію, обмеження регулюючого впливу поворотно-множильної системи нирок, порушення механізмів концентрування сечі та системи регуляції водно-осмотичної рівноваги.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Кочкодан, Ольга Дмитрівна. "Реалізація особистісно-орієнтованого підходу в системі дистанційного навчання". Theory and methods of e-learning 3 (10 лютого 2014): 131–36. http://dx.doi.org/10.55056/e-learn.v3i1.329.

Повний текст джерела
Анотація:
Одним із основних завдань вищої школи, що знайшли відображення в Законах України «Про освіту», «Про вищу освіту», є формування особистості, здатної до самостійного вирішення проблем, самовизначення і творчого саморозвитку. Реалізація цього стратегічного завдання неможлива без модернізації навчального процесу з метою розвитку обдарувань, здібностей, індивідуальності студентів.Нові орієнтири розвитку вищої освіти – здійснення інноваційного підходу до освіти, оновлення її змісту, пошук нових методів підготовки, організації практики, засобів навчання тощо [1; 2].Сучасне суспільство, з одного боку, потребує дедалі глибшого особистісного розвитку людини, а з іншого – створює дедалі кращі передумови для цього. Процес глобалізації, який супроводжується розвитком сучасних інформаційних технологій, значно розширює комунікаційне середовище, в якому живе і функціонує людина, і разом з тим розширює можливості навчання.Особистісно-орієнтований підхід «передбачає нову педагогічну етику, визначальною рисою якої є взаєморозуміння, взаємоповага, співробітництво. Ця етика ... зумовлює моделювання життєвих ситуацій, включає спеціально сконструйовані ситуації вибору, авансування успіху, самоаналізу, самооцінки, самопізнання ... Основою всіх перетворень має бути реальне знання дитячих можливостей, прогнозування потреб найближчого розвитку особистості»[3].Особистісно-орієнтований підхід в навчанні, по-перше, сприяє формуванню особистості майбутнього фахівця; по-друге, є одним із факторів підвищення якості та ефективності навчання.При організації навчального процесу за особистісно-орієнтованими технологіями основними орієнтирами мають бути наступні:відмова від абсолютизації моделі навчання і реалізація її індивідуалізованого варіанту;планування цілей навчання має бути комплексним, орієнтованим на особистість кожного студента;урахування рівня складності матеріалу та реальних навчальних можливостей студента;розвиток внутрішньої мотивації;стимулювання особистісного сенсу засвоюваних знань та умінь;розвиток пізнавальної та творчої активності;залучення до діалогу, організації і планування власної навчальної діяльності;відбір таких способів навчально-пізнавальної діяльності студента, які стимулюють розвиток його творчих здібностей;збагачення змісту навчання супутніми знаннями про навколишній світ;організація процесу самостійного навчання та саморозвитку.Тільки комплексне застосування вищезазначених принципів в освітньому процесі забезпечує досить високу його ефективність та особистісний розвиток студента.В Національному університеті біоресурсів і природокористування України загальну та неорганічну хімію студенти вивчають на першому курсі, тому в першу чергу виникає необхідність забезпечення їх адаптації до навчального процесу. Студенти з різним рівнем шкільної підготовки, різними здібностями та здатністю до сприйняття навчального матеріалу. Щоб визначити рівень шкільної підготовки студентів з дисципліни, ми проводимо невелику за обсягом та часом контрольну роботу «Збереження знань». Її результати допомагають спланувати подальшу роботу зі студентами. На підставі цих результатів, застосовуючи індивідуально-диференційований підхід, можна проводити корекцію знань студентів.У навчальних програмах усіх дисциплін за вимогами Болонського процесу збільшується частка самостійної роботи студентів, яка в умовах особистісно-орієнтованої освіти виступає як спосіб формування самостійної особистості [3].Організація самостійної роботи починається з ґрунтовного інструктажу, при якому кожен студент отримує індивідуальне завдання, що враховує його схильності, рівень знань та загальну ерудицію і т.д. Виконання завдання передбачає особисту ініціативу і самостійність виконавця.Так, індивідуальні завдання для самостійної роботи з хімії різного рівня складності:Перший рівень оволодіння знаннями – рівень знайомства з предметом. Це запам’ятовування і розпізнавання інформації, розрізнення об’єктів та їх властивостей. Він розрахований на студентів з невисокою успішністю. Наприклад, тестові завдання з теми «Розчини. Електролітична дисоціація та гідроліз солей»:1. Запишіть формули та розташуйте в порядку зростання сили кислоти: карбонатна, сульфатна, фосфатна, хлорна.2. Які з наведених електролітів у водному розчині дисоціюють ступінчасто (записати формули): сульфітна кислота, хром (ІІІ) сульфат, кальцій гідроксид, калій дигідрогенфосфат?3. Які з наведених солей гідролізують: магній нітрат, манган (ІІ) нітрат, барій нітрат, ферум (ІІІ) нітрат?Другий рівень оволодіння знаннями - рівень умінь. Це здатність самостійно виконувати дії на деякій множині об’єктів. Він розрахований на основну масу студентів із середньою успішністю. Приклади тестових завдань:1. Які йони можуть одночасно міститися в розчині:а) Fe2+ i SO42-; б) Ca2+ i SO42-; в) Cu2+ i SO42- ; г) Pb2+ i SO42 ?2. Які реакції проходять до кінця:а) CaCl2 + (NH4)2SO4; б) Al(NO3)3 + K2SO4; в) (NH4)2SO4 + Na2CO3;г) Ba(CH3COO)2 + Na2CO3?3. Вкажіть продукти гідролізу солі калій фосфату за першим ступенем (записати формули та рівняння реакцій).Третій рівень оволодіння знаннями - рівень творчості. Це продуктивна діяльність на багатьох об’єктах на основі свідомо використаної інформації про ці об’єкти, тобто розуміння діяти творчо. Третій варіант завдань розрахований на успішних студентів. Приклади тестових завдань:1. Під час розчинення у воді не змінюють реакцію розчину солі (записати формули): кобальт (ІІ) сульфіт; кальцій нітрит; алюміній бромід; літій карбонат.2. Скорочене йонне рівняння Zn2+ + CO32- → ZnCO3 відповідає реакції між: а) цинк хлоридом і кальцій карбонатом; б) цинк нітратом і калій карбонатом; в) цинк сульфідом і калій гідрогенкарбонатом; г) цинк нітратом і карбонатною кислотою.3. Встановіть відповідність між значенням рН та водними розчинами солей: А.рН  71.Zn(NO3)2;4.(NH4)3PO4;Б.рН  72.FeCl3;5.KNO3;В.рН  73.Rb2SiO3;6.SnCO3Завдання повинні враховувати майбутню спеціалізацію студентів, тобто бути професійно орієнтованими, а також міжпредметні зв’язки хімії з іншими дисциплінами. Метою самостійної роботи є формування самостійної особистості. Продуктивна особистісно-орієнтована самостійна робота стимулює креативний потенціал студента. Вона сприяє не тільки якісному запам’ятовуванню і засвоєнню навчального матеріалу, а й спонукає студентів до пошуку наукової інформації, а деяких - до самостійної наукової діяльності.Студенти, що добре навчаються, за бажанням мають можливість відвідувати наукові студентські гуртки, що працюють на кафедрі за різними напрямами, зокрема гурток «Чиста вода». Під керівництвом викладача вони вчаться працювати з науковою літературою, готують виступи на цікаві теми, доповіді на студентські конференції, проводять експериментальну роботу. Щорічно проводиться конкурс «Хімічний кросворд», круглі столи та ін.Дистанційні технології навчання дають змогу забезпечити студентів електронними навчальними ресурсами для самостійного опрацювання, завданнями для самостійного виконання, реалізувати індивідуальний підхід до кожного студента тощо. Використання таких технологій у навчальному процесі вищого навчального закладу вносить зміни в елементи традиційної системи освіти. Перш за все – у методику викладання всіх дисциплін. Це пов’язано з тим, що викладач перестає бути для студента єдиним джерелом отримання знань. Багато інформації можна знайти в мережі Інтернет та за її допомогою. Посилюється роль методів активного пізнання та дистанційного навчання. Доступність інформації сприяє розвитку умінь співставлення, синтезу, аналізу та ін. Використання дистанційних технологій змінює методику проведення аудиторних занять та організації самостійної роботи студентів.Існуючий в даний час рівень розвитку інформаційно-телекомунікаційних систем дозволяє реалізувати на практиці всі вищезазначені принципи особистісно-орієнтованого підходу в дистанційному навчанні.Доступність дистанційного навчання визначає глибину проникнення особистісно-орієнтованого підходу в освітній процес. Вона забезпечується: можливістю реалізації освітнього процесу у зручний для студента час; навчання може виконуватися дистанційно в повному обсязі, незважаючи на територіальну віддаленість; контролем освітнього процесу в режимі реального часу; можливістю створити для кожного студента персональний інформаційний навчальний простір.Така програма навчання складається з урахуванням особистісної мотивації студента. Її позитивні сторони та переваги:навчальна інформація може подаватися в різній формі: мовній, письмовій, візуальній та ін.;з урахуванням індивідуальних особливостей сприйняття того, хто користується нею;є можливості достатньо об’єктивно оцінити результати навчання на всіх його етапах;можна коректувати програму індивідуально в ході навчання з метою підвищення ефективності освітнього процесу.Для реалізації особистісно-орієнтованого підходу в дистанційному навчанні необхідно:Адаптувати існуючі методики застосування особистісно-орієнтованого підходу до сучасних комп’ютерних технологій введення, обробки, аналізу та подання інформації.Розробити інтелектуальну систему формування персонального інформаційно-навчального простору.Розробити методи динамічної адаптації програми навчання, що засновані на аналізі результатів проміжного контролю знань.Забезпечити постійно захищений доступ до персонального інформаційно-навчального простору на базі існуючих комунікацій.Опрацювати правовий статус оцінки результатів навчання.Таким чином, для ефективного використання дистанційних технологій у навчальному процесі потрібен системний підхід, який забезпечує вирішення завдань із технічним, програмним, навчально-методичним, кадровим, нормативно-правовим забезпеченням, управлінням процесом дистанційного навчання та розвитком дистанційних технологій [4].Інформаційні технології розвиваються дуже динамічно, так само динамічно має розвиватися і методика їх використання в навчальному процесі.Автори [4 ] виділяють чотири моделі використання інформаційно-комунікаційних та дистанційних технологій у навчальному процесі вищого навчального закладу:Моделі, що передбачають інтеграцію денної форми, інформаційно-комунікаційних та дистанційних технологій навчання.Моделі, що передбачають інтеграцію заочної форми навчання, інформаційно-комунікаційних та дистанційних технологій навчання.Заняття в он-лайн режимі з використанням відеоконференцсистеми (центральний офіс-регіональний офіс).Електронне спілкування, електронні варіанти друкованих посібників, електронні підручники (посібники), комп’ютерні презентації, навчальні компакт-диски, комп’ютерні програми навчального призначення.Для забезпечення студентів денної форми навчання електронними навчальними матеріалами, організації та керування самостійною роботою студентів, автоматизованого тестування використовють модель інтеграції денної форми навчання з інформаційно-комунікаційними та дистанційними технологіями навчання. У Національному університеті біоресурсів і природокористування України створено навчально-інформаційний портал на базі платформи дистанційного навчання Moodle.Електронні навчальні курси, які розробляються на платформі дистанційного навчання Moodle, складаються з електронних ресурсів двох типів: а) ресурси, призначені для подання студентам змісту навчального матеріалу, наприклад, електронні конспекти лекцій, мультимедійні презентації лекцій, методичні рекомендації тощо; б) ресурси, що забезпечують закріплення вивченого матеріалу, формування вмінь та навичок, самооцінювання та оцінювання навчальних досягнень студентів, наприклад, завдання, тестування, анкетування.Особистісно-орієнтований підхід забезпечує індивідуальний розвиток кожного, сприяє успішному навчанню, максимальному розвитку здібностей та обдарувань. Він забезпечує більш високі загальні та індивідуальні результати пізнавальної діяльності; активно впливає на розвиток пізнавальних здібностей, створює умови для того, щоб кожен міг успішно виконувати вимоги навчальної програми, подолати наявні недоліки та розвинути індивідуальні інтереси; забезпечити максимально продуктивну роботу всіх студентів.Однак в реальному навчальному процесі обставини змушують працювати не строго індивідуально, а з групою подібних студентів. Застосування дистанційних технологій дає можливість більше уваги приділяти індивідуальним потребам кожного студента, але відсутність живого спілкування ускладнює завдання викладача, тому що йому важче визначити індивідуальні потреби кожного студента. Тому необхідно поєднувати особливості та переваги особистісно-орієнтованого навчання із комп’ютерними технологіями, що дасть змогу уникнути деяких недоліків.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Вакуленко, Анна, та Микола Гомеля. "Високоефективна переробка розчинів хлориду натрію з отриманням коагулянтів на основі хлориду заліза та хлориду алюмінію". Матеріали міжнародної науково-практиченої конференції "Екологія. Людина. Суспільство", 20 травня 2021, 103–5. http://dx.doi.org/10.20535/ehs.2021.233201.

Повний текст джерела
Анотація:
У роботі досліджені процеси електрохімічної переробки розчинів хлориду натрію з отриманням хлориду алюмінію, хлориду заліза і лугу в трикамерному електролізері з аніонообмінною мембраною МА-41 і катіонообмінною мембраною МК-40. Представлений спосіб переробки сольових концентратів із застосуванням розчинного алюмінієвого аноду є економічно доцільним, так як у результаті електролізу одночасно відбувається демінералізація рідких відходів до рівня нормативних вимог та виробництво з вихідних концентратів товарної продукції. Недоліком представленого способу отримання коагулянту є взаємодія алюмінію із водою. Проте, доведено, що із підвищенням анодної щільності струму під час електролізу вихід хлориду алюмінію практично повністю обумовлений електрохімічним розчиненням аноду, а хімічне розчинення алюмінію майже відсутнє. Стабільність отриманих розчинів коагулянтів протягом тривалого часу підтримується низькими значеннями реакції середовища (рН ≤ 3). Так, при силі струму 1 А (щільність струму 8,34 А/дм2 ) та вихідній концентрації хлориду натрію 1655 мг-екв/дм3 сумарна концентрація іонів алюмінію в отриманому розчині досягає 2278 мг-екв/дм3 . В цілому було досягнуто концентрації гідроксохлориду та хлориду алюмінію на рівні 130.85 г/дм3 тобто 13.085 %. На хімічно розчинений алюміній припадає не більше 12 %. За даних вихідних параметрів вихід іонів алюмінію з урахуванням хімічного розчинення аноду складає 100–108 %. Одночасно в катодній камері відбувається концентрування лугу. Його вихід за струмом при цьому сягає 92 - 94 %. Для отримання коагулянту на основі хлориду заліза в процесі досліджень використовувався катод із нержавіючої сталі та залізний анод. Були використані модельні розчини каустичної соди з концентрацією 50 мг-екв/дм3 (катодна область), солі хлористого натрію з концентрацією 100г/дм3 (середня область) та підкисленою соляною кислотою дистильованої води (рН на рівні 1-2, анодна область). В результаті проведення експериментів в катодній області утворюється розчин гідроксиду натрію, а в анодній при концентруванні іонів Cl- та розчинення залізного аноду утворюється розчин хлориду заліза (ІІІ).
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії