Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Розрахунок магнітного поля.

Статті в журналах з теми "Розрахунок магнітного поля"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-17 статей у журналах для дослідження на тему "Розрахунок магнітного поля".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Skidan, E., та А. Kulabukhov. "БЛОК КЕРУВАННЯ ВИПРОБУВАЛЬНОГО СТЕНДУ ЕЛЕКТРОМАГНІТНИХ СИСТЕМ ОРІЄНТАЦІЇ І СТАБІЛІЗАЦІЇ КОСМІЧНИХ АПАРАТІВ". Journal of Rocket-Space Technology 29, № 4 (17 листопада 2021): 138–43. http://dx.doi.org/10.15421/452115.

Повний текст джерела
Анотація:
Запропоновано блок управління і методичне забезпечення випробувального стенду. Завданням стенду є імітація зміни магнітного поля Землі під час руху КА по орбіті для відпрацювання алгоритмів роботи системи кутової орієнтації і стабілізації космічного апарату. У статті наведено модель магнітного поля Землі, а також матриці переходу в оскулюючу систему координат. У статті описаний розрахунок керуючих струмів для підтримки потрібної кількості ампер-витків, алгоритм управління включає в себе 2 ПІД регулятора, а також описана структурна схема блоку управління. Блок управління має захист по перевищенню струму і напруги, а також захист від короткого замикання. Для підвищення точності підтримки потрібної напруженості магнітного поля реалізований алгоритм, який використовує датчики струму і трьохвісьовий магнітометр, який встановлюється в центр системи кілець Гельмгольца. Для управління реалізований стандартний інтерфейс USB, для підключення до персонального комп'ютера. Вихідні каскади блоку управління реалізовані за схемою Н-моста. Блок управління має шість незалежних каналу управління, які мають однакові технічні характеристики. Інтерфейс програмного забезпечення чисельно і графічно показує величину магнітного поля по трьох осях. Також інтерфейс показує величину струму в котушках і поправочні коефіцієнти ПІД-регулятора, а також вхідні значення напруженості поля моделі магнітного поля Землі, яку можна завантажити в програму клікнувши кнопку «завантажити модель». Програмне забезпечення дозволяє управляти блоком управління в ручному і в автоматичному режимі, використовуючи модель магнітного поля Землі, тим самим імітуючи магнітне поле з огляду на характер руху космічного апарату, що дозволяє більш точно визначити характеристики системи кутової орієнтації і стабілізації.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Азімов, О. Т. "Аналітичний розрахунок аномалій магнітного поля від покладів нафти і газу". Вісник Київського національного університету імені Тараса Шевченка. Геологія, Вип. 38/39 (2006): 90–93.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Чернецька-Білецька, Н. Б., А. С. Роговий та М. В. Мірошникова. "Втрати тиску під час течії електропровідної рідини місцевими опорами трубопроводу". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 5 (269) (10 вересня 2021): 69–75. http://dx.doi.org/10.33216/1998-7927-2021-269-5-69-75.

Повний текст джерела
Анотація:
На основі чисельного моделювання течії електропровідної рідини в трубопроводі з місцевими опорами визначено залежності коефіцієнтів втрат тиску під час течії в раптовому розширенні та раптовому звуженні. Розрахунок здійснено на основі вирішення рівнянь Нав’є-Стоксу осереднених за Рейнольдсом із SST (ShearStressTransport) моделлю турбулентності. Верифікацію програмного продукту проведено шляхом порівняння результатів експериментів з результатами чисельного моделювання.Дія магнітного поля приводить до зниження середньої та максимальної швидкостей, до збільшення швидкості в прикордонному шарі для течії електропровідної рідини в раптовому розширенні. На відміну від раптового звуження, в раптовому розширенні можна спостерігати відмінність картин течії за дії поперечного магнітного поля. Як для раптового звуження, та і для раптового розширення залежності відносних втрат повного тиску від числа Гартмана мають квадратичну залежність.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Glyva, V., О. Khodakovskyy та L. Levchenko. "ЗАСАДИ ПРОЕКТУВАННЯ ОБЛИЦЮВАЛЬНИХ МАТЕРІАЛІВ ГРАДІЄНТНОГО ТИПУ ДЛЯ ЕКРАНУВАННЯ ЕЛЕКТРОМАГНІТНИХ ПОЛІВ". Системи управління, навігації та зв’язку. Збірник наукових праць 3, № 61 (11 вересня 2020): 111–14. http://dx.doi.org/10.26906/sunz.2020.3.111.

Повний текст джерела
Анотація:
У роботі розглянуто основні принципи проектування та вироблення матеріалів для екранування електромагнітних полів широко частотного діапазону. Призначення таких матеріалів - облицювання поверхонь великих площ. Сформульовано головні вимоги до таких матеріалів. Головними з них є: лицьова поверхня повинна мати електрофізичні властивості (діелектричну та магнітну проникності), мінімально можливі для забезпечення низьких коефіцієнтів відбиття електромагнітних хвиль. При цьому обов'язковим є одночасне забезпечення міцнісних характеристик, вогнестійкості, нетоксичності тощо. Вміст радіопоглинальної субстанції у прошарку шарової структури й закономірності зростання ефективної діелектричної (магнітної) проникності у бік підкладинки повинні забезпечувати широкосмуговість та ефективність матеріалу. Дисперсійна залежність повинна забезпечити рівномірне у заданому діапазоні частот поглинання електромагнітної енергії та її проходження від вхідної поверхні до підкладинки. Надано розрахунок необхідної товщини градієнтного матеріалу за заданого коефіцієнта відбиття, виходячи з максимальної та мінімальної довжин хвиль екранованого поля, магнітних проникності та товщин окремих шарів. Показано можливість виготовлення монолітного металополімерного екрана з поверхневим шаром з малою діелектричною проникністю за рахунок термооброблення поверхні матеріалу під час виготовлення. Показано можливість та надано технологічні рішення щодо створення монолітного металополімерного екрана з керованим градієнтом феромагнітної дрібнодисперсної субстанції у напрямку від лицьової поверхні до нижньої. Такий матеріал можливо застосовувати для керування співвідношень коефіцієнтів екранування високочастотних електромагнітних полів, електричних та магнітних полів наднизьких частот і супутнього екранування природного магнітного поля
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Моркун, В. С., Н. В. Моркун, В. В. Тронь, О. Ю. Сердюк, І. А. Гапоненко та А. А. Гапоненко. "Попереднє оброблення пульпи ультразвуком для очищення рудних зерен та дезінтеграції флокулоутворень на основі ефектів кавітації". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 1(271) (8 лютого 2022): 24–35. http://dx.doi.org/10.33216/1998-7927-2022-271-1-24-35.

Повний текст джерела
Анотація:
Метою роботи є підвищення ефективності флотаційного доведення магнетитових концентратів шляхом дезінтеграції рудних флокулоутворень та очищення поверхні часток. Запропоновано застосовувати нелінійні ефекти поля високоенергетичного ультразвуку та дослідити особливості формування кавітаційних режимів у залізорудній пульпі для дезінтеграції рудних флокулоутворень та очищення поверхні часток рудної сировини. На основі узагальненої моделі динаміки руху повітряних бульбашок, представленої у вигляді рівняння Релея-Плессета, розраховано параметри ультразвукового впливу для формування і підтримання у залізорудній пульпі кавітаційних процесів і акустичних течій. На підставі дослідження закономірностей протікання кавітаційних процесів одержано залежності, які дозволяють визначити оптимальну частоту високоенергетичного ультразвуку для підтримання кавітаційних процесів у залізорудній пульпі у залежності від параметрів її складових. Для моделювання процесу поширення ультразвукового сигналу в рідкому середовищі в умовах зміни швидкості поширення звуку та зміни щільності використовують метод k-space першого й другого порядку, заснований на системі лінійних рівнянь першого порядку. Розрахунок потужності високоенергетичного ультразвуку, що дозволяє підтримувати кавітаційні режими у залізорудній пульпі, здійснювався на основі результатів дослідження поширення фронту ультразвукового імпульсу за допомогою комп’ютерного моделювання. На основі результатів моделювання встановлено, що для підвищення якості очищення часток руди перед флотацією доцільно здійснювати просторовий вплив на залізорудну пульпу, який включає комбінацію високоенергетичного ультразвуку з частотою 20 кГц в кавітаційному режимі, модульованого високочастотними імпульсами з частотою від 1 до 5 МГц та імпульсного магнітного поля спадної напруженості. При дослідженні процесу флокулоутворення та дефлокуляції враховано залежність величини магнітної сприйнятливості часток рудної сировини від тривалості намагнічування.Результати експериментальних досліджень використання пристрою розмагнічування часток залізорудної пульпи, одержані із застосуванням ультразвукового гранулометра «Пульсар».
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Volkanin, Yevhen, Serhii Boiko, Oleksiy Gorodny, Oksana Borysenko та Andrii Dymerets. "АВТОМАТИЗАЦІЯ ПРОЦЕСУ МАГНІТНОЇ СЕПАРАЦІЇ НАНОЧАСТИНОК". TECHNICAL SCIENCES AND TECHNOLOG IES, № 4 (14) (2018): 169–77. http://dx.doi.org/10.25140/2411-5363-2018-4(14)-169-177.

Повний текст джерела
Анотація:
Актуальність теми дослідження. Актуальним науково-практичним завданням є розробка автоматизованої системи управління сепаратора, з метою точного підтримання режимних параметрів. Постановка проблеми. Головна мета цієї роботи полягає в розробці методів контролю магнітних і режимних параметрів системи магнітної сепарації за фракціями наночастинок у ліпідних оболонках. Аналіз останніх досліджень і публікацій. Для магнітного поділу магнітно-сприйнятливих частинок (молекул, колоїдних частинок) у потоці рідини застосовується технологія Mаgnеtiс Split-flоw thin Frасtiоnаtiоn (SPLITT) [9]. SPLITT – технологія магнітної сепарації в тонких каналах (<0,5 мм) з розсікачем потоків, орієнтованих перпендикулярно магнітному полю. Удосконалення технології поділу можливо шляхом заміни магнітної системи, традиційної для SPLITT, магнітною системою, яка використовується у ферогідростатичних сепараторах, з більшою областю однорідного градієнта в робочому проміжку. Виділення недосліджених частин загальної проблеми. Виробництво нанопрепарату для цільової доставки лікарських засобів і візуалізації (діаметр магнітних наночастинок 20…80 нм) передбачає виділення із вихідного препарату наночастинок середньої фракції. Існуючі на сьогодні магнітні методи сепарації не дозволяють цього зробити. Одним із рішень є удосконалення магнітної системи Фарадея, з метою отримання великої області однорідного градієнта магнітного поля в робочому проміжку. Це дає можливість розмістити в зазначеній області сепараційний канал, конструкція якого дозволяє розділити вихідний препарат на три фракції. Розроблена магнітна система, яка створює в робочій області високоградієнтне магнітне поле, яке впливає на траєкторії руху магнітних наночастинок, що рухаються в потоці рідини в сепараційному каналі. Також розроблена конструкція сепараційного каналу, яка дозволяє розділяти потоки рідини, які несуть наночастинки різних фракцій. Запропонована система призначена розділяти вихідний нанопрепарат на наступні фракції: дрібні наночастинки з розміром магнітного ядра 20 нм і менше (у тому числі порожні ліпідні оболонки); середні наночастинки (діаметр ядра 20...80 нм); великі наночастинки (діаметр ядра 81…100 нм). На сьогодні завдання полягає у створенні методів розрахунку автоматизованої системи, що забезпечить необхідні магнітні й режимні параметри сепараційної системи. Мета дослідження. Метою цієї роботи є розробка методів моніторингу магнітних та режимних параметрів системи магнітної сепарації для фракцій наночастинок у ліпідних оболонках. Виклад основного матеріалу. Для поділу наночастинок фракціями необхідно, щоб частинки різних розмірів рухалися вздовж різних траєкторій під дією магнітних та гідродинамічних сил. На траєкторію частинок впливає її розмір, магнетизація та градієнт поля. Щоб максимізувати відхилення намагнічених частинок від спрямування потоку випарного продукту, конструкція системи розділення передбачає генерацію магнітної сили, напрямок якої перпендикулярний напрямку потоку відокремленого продукту. Для забезпечення необхідних експлуатаційних параметрів процесу поділу пропонується використовувати автоматизовану систему керування з використанням нейроконтролера. Висновки відповідно до статті. Розроблена система сепарації дозволяє розділяти фракції наночастинок у потоці рідини, що підтверджується чисельним моделюванням. Без застосування автоматизованої системи управління режимними параметрами процесу магнітної сепарації неможливо забезпечити поділ фракцій наночастинок, оскільки навіть незначне відхилення від розрахункових параметрів призведе до спотворення профілю швидкостей рідини. Одним із найбільш перспективних підходів реалізації автоматизованого управління є застосування нейроконтролера. Подальша робота в зазначеному напрямку буде полягати у формуванні алгоритму управління на базі нейроконтролера. Підтвердженням достовірності отриманих методів будуть результати експериментальних досліджень.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Сівак, Вадим, Олег Воробйов, Ігор Власов та Вікторія Воробйова. "ОБҐРУНТУВАННЯ ПІДХОДІВ ЩОДО ПІДВИЩЕННЯ РЕСУРСУ ВІЙСЬКОВИХ МАШИН ЗА ДОПОМОГОЮ МАГНІТНИХ ПОЛІВ". Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: військові та технічні науки 84, № 1 (12 вересня 2021): 240–53. http://dx.doi.org/10.32453/3.v84i1.813.

Повний текст джерела
Анотація:
Підвищення ресурсу технічних систем, у тому числі й військових машин в сучасних умовах стає все більш актуальним. Це пов’язано з наявністю у складі ЗС України досить великої частки техніки, що вичерпала свій ресурс та, необхідністю підвищення ресурсу для перспективних зразків машин і тих, що нещодавно поставлені у війська. З метою розв'язання цих проблем визначені фактори, які суттєво впливають на функціонування систем живлення та змащування двигунів і взагалі на технічний стан військових машин та технічних систем. На основі визначених факторів запропоновані підходи щодо підвищення ресурсу військових машин за допомогою магнітних полів. На погляд авторів, найбільш доцільно застосовувати магнітні поля в системах змащування транспортних засобів військового призначення у відстійниках під час очищення змащувальних, охолоджувальних і робочих рідин (масла в гідроприводах). Це пояснюється порівняно невеликою кількістю рідин у відповідних системах військових транспортних машин та відповідно малими робочими об’ємами апаратів очищення (фільтри, циклони, відстійники), у яких є можливість вмонтувати джерело магнітного поля. Використовуючи останні здобутки у галузі досліджень процесів кінетики коагуляції феромагнітних частинок в магнітному полі, встановлені основні закономірності впливу магнітного поля на змащувальні та робочі матеріали запропоновано порядок розрахунку обґрунтування основних параметрів до проєктування електромагнітних фільтрів у системах живлення та змащування двигунів військових машин. Запропоновані моделі можуть бути використані для розробки технологій і технологічного обладнання очищення газів і рідини, що містять феромагнітні компоненти. У матеріалах статті встановлені основні закономірності впливу магнітного поля на змащувальні та робочі матеріали та визначені основні підходи (порядок розрахунку) для обґрунтування основних параметрів до проєктування електромагнітних фільтрів в системах живлення та змащування двигунів транспортних засобів військового призначення. Це дозволить надалі шляхом очищення робочої рідини в системах гідроприводу машин, мастила в системах змащування двигунів, повітря в системах живлення повітрям від феромагнітних частинок та забруднень, що значно зменшить знос поверхонь в трибосистемах транспортних засобів військового призначення і підвищить загальний ресурс приведених технічних засобів.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Petukhov, I. S. "COMPUTATION OF PERIODIC MAGNETIC FIELD IN FERROMAGNETIC CONDUCTIVE MEDIUM AND SUPPLY CURRENT HARMONICS BY USING HARMONIC BALANCE FINITE ELEMENT METHOD." Tekhnichna Elektrodynamika 2017, no. 5 (August 10, 2017): 18–22. http://dx.doi.org/10.15407/techned2017.05.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Співак, О. М., В. П. Ткаченко та І. В. Мелконова. "Особливості розрахунку параметрів магнітного поля відкритих осесиметричних магнітних систем". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 8(264) (12 січня 2021): 46–50. http://dx.doi.org/10.33216/1998-7927-2020-264-8-46-50.

Повний текст джерела
Анотація:
У статті розглянуті дослідження розподілу магнітного поляв міжполюсному проміжку відкритих вісесиметричних магнітних систем. Отримано рівняння з граничними умовами, рішення якого дозволяє скоротити обсяг подальших чисельних методів розрахунків.Для ряду нестійких завдань математичної фізики Р.Латтесом і Ж.Лионсом розроблений метод квазізвернення, який може бути застосований як для еволюційних завдань, так і стаціонарних. Основна ідея методу квазізвернення полягає в належній зміні диференціальних операторів, що входять в завдання. Ця зміна робиться введенням додаткових диференціальних членів. Застосування цього методу дозволяє ефективно використати чисельні методи розрахунку крайового завдання для відкритих осесиметричних систем.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Podoltsev, O. D., and I. M. Kucheriava. "THREE-DIMENSIONAL MODEL FOR COMPUTATION OF MAGNETIC FIELD OF UNDERGROUND CABLE LINE." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2020, no. 56 (August 6, 2020): 16–19. http://dx.doi.org/10.15407/publishing2020.56.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Jartovsky, Oleksandr, Valeriy Kravchenko, Oleksii Larichkin та Zhan Karyahin. "АВТОМАТИЗОВАНА СИСТЕМА ВИМІРУ ТА РОЗРАХУНКУ ПАРАМЕТРІВ ІМПУЛЬСНОГО ЕЛЕКТРИЧНОГО СТРУМУ". TECHNICAL SCIENCES AND TECHNOLOG IES, № 2 (12) (2018): 167–75. http://dx.doi.org/10.25140/2411-5363-2018-2(12)-167-175.

Повний текст джерела
Анотація:
Актуальність теми дослідження. Імпульсні технології застосовуються в різноманітних технологічних процесах обробки матеріалів [1–3], наприклад, у зміцненні металевих поверхонь за допомогою імпульсного магнітного поля [4–7] або електричного струму для зміцнення поверхні за допомогою модифікування [8], а також у екологічних проектах [9]. Постановка проблеми. Для розробників технологічних процесів важливим є дотримання параметрів енергетичних показників імпульсного електричного струму. У процесі розроблення технологій вирішується питання суперечностей між можливостями технологічного обладнання та складністю виміру та дотримання необхідних параметрів. Тому для дослідників потрібні надійні системи виміру й розрахунку показників параметрів імпульсного електричного струму. Аналіз останніх досліджень і публікацій. Публікації про автоматизовані системи для виміру й розрахунку енергетичних показників імпульсного електричного струму обмежені за обсягом і напрямками. Наявні підходи [10–12] до створення обладнання не пропонують комп’ютеризованих методів обліку й розрахунку показників параметрів імпульсного електричного струму. Виділення недосліджених частин загальної проблеми. Тому розробки автоматизованих систем вимірювання енергетичних показників імпульсного електричного струму для технологічних процесів актуальні. Постановка завдання. Метою роботи є розробка автоматизованої системи вимірювання та створення програмного забезпечення для автоматизованого виміру й розрахунку енергетичних показників імпульсів електричного струму. Завдання роботи передбачає: - розроблення керованого генератора імпульсів електричного струму; - розроблення програмного забезпечення для автоматизованого виміру і розрахунку параметрів енергетичних показників імпульсів електричного струму. Виклад основного матеріалу. Була розроблена автоматизована система вимірювання та розрахунку, створено програмний продукт для автоматизованого виміру енергетичних показників імпульсів електричного струму. Для цього розроблено схему автоматизованої системи, керований генератор імпульсів електричного струму і програмне забезпечення для автоматизованого виміру й розрахунку енергетичних показників імпульсів електричного струму. Висновки відповідно до статті. Була розроблена автоматизована система вимірювання й розрахунку, створено програмний продукт для автоматизованого виміру та розрахунку енергетичних показників імпульсів електричного струму.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Panova, E., O. Tykhenko, O. Khodakovsky та O. Sapelnikova. "ДОСЛІДЖЕННЯ ЗАХИСНИХ ВЛАСТИВОСТЕЙ МЕТАЛЕВИХ ЕЛЕКТРОМАГНІТНИХ ЕКРАНІВ ТА ВИЗНАЧЕННЯ УМОВ ЇХ МАКСИМАЛЬНОЇ ЕФЕКТИВНОСТІ". Системи управління, навігації та зв’язку. Збірник наукових праць 5, № 57 (30 жовтня 2019): 103–7. http://dx.doi.org/10.26906/sunz.2019.5.103.

Повний текст джерела
Анотація:
Захисні властивості сплавів у різних частотних діапазонах екрануючих матеріалів мають складний характер. Предмет дослідження даної роботи – визначення амплітудно-частотних залежностей коефіцієнта екранування електромагнітних полів сучасними металевими сплавами. Досліджено: традиційні матеріали; електротехнічні сталі різного класу та алюмінієвого сплаву, які мають різну ширину захисного екрану; металовмісні шнури різного (двошарового та тришарового) сплетіння. Досліджено залежності захисних екранувальних властивостей магнітного поля за рахунок відбиття для електротехнічної сталі класу 121 та сплаву з дюралюмінію та електротехнічної сталі. Мета роботи – визначення коефіцієнтів екранування у низькочастотній та середньо-частотній областях електромагнітного спектра на основі вимірювання коефіцієнтів екранування найбільш поширених металевих захисних матеріалів та надати обґрунтовані рекомендації щодо їх найбільш ефективного використання у робітничих умовах для захисту від електромагнітних полів та випромінювань працюючих та сумісності електричного та електронного технічного обладнання. Розроблено амплітудно-частотні залежності коефіцієнта екранування електромагнітних полів сучасними стандартними металевими сплавами для захисту людей і для забезпечення електромагнітної сумісності електричного та електронного технологічного обладнання. Запропоновано захисні заходи захисту від впливу від електромагнітних полів та випромінювань, що засновані на принципах розумної достатності, з урахуванням мінімальних витрат. Доведено експериментально та економічно обґрунтовано, що найбільш ефективним засобом захисту від електромагнітної безпеки на підприємствах в умовах складної дії різноманітних електромагнітних полів, є електротехнічні сталі. В результаті отриманих співвідношень захисних властивостей (за рахунок електромагнітної енергії та відбиття електромагнітних хвиль) раціоналізовано захисні модифікаційні конструкції з мінімальним коефіцієнтом відбиття електромагнітних хвиль у небажаному напрямку в різному частотному діапазоні. Такі висновки надали змогу запропонувати методологію розрахунку щодо необхідної оптимальної товщини захисного магнітного екрана найбільш сприятливої ефективності у даних умовах. Це дозволяє мінімізувати обсяг довідникових та експериментальних даних та однозначно визначити товщину екрана необхідної ефективності, а також зменшує загальну вартість захисної конструкції.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Філіпенко, Ірина Іванівна. "Модульні технології навчання та методичне забезпечення контроля якості спеціалістів". Theory and methods of learning fundamental disciplines in high school 1 (3 квітня 2014): 171–79. http://dx.doi.org/10.55056/fund.v1i1.427.

Повний текст джерела
Анотація:
У сучасній вищий школі циклічний ритм навчального процесу з екзаменаційною сесією як формою підсумкового контролю практично вичерпав себе. Це пов’язано в основному зі зміною мотиваційних стимулів навчання, істотним зменшенням часу, що затрачується на самостійну роботу, і тим самим, зниженням рівня системності вивчення предмету. Крім того, принципово змінилися можливості інформаційних технологій. Це дозволяє поставити на зовсім інший рівень самостійну роботу з використанням контролюючо-навчальних програм і експрес-тестування з розділів курсу, що вивчаються.Тенденції удосконалення навчального процесу у вищий технічній школі, що стимулюють систематичність навчання й елементи змагальності, виявлено в розвитку модульно-рейтингової системи, впроваджуваної останнім часом у ряді ВНЗ. Упровадження нової системи супроводжується переоглядом технології навчання.Технологія навчання – це системний, упорядкований набір дидактичних методів, прийомів, елементів, а також зв’язків і залежностей між ними, що становлять собою єдність, націлену на досягнення кінцевих результатів навчання.Проблемно-модульна технологія навчання базується на чотирьох основних принципах:– проблемний виклад навчального матеріалу;– самостійність вивчення;– індивідуалізація навчання;– безперервність і об’єктивність самооцінки й оцінки знань.Основними засобами навчання в новій технології є модуль і модульна програма.Модуль – це об’єднана логічним зв’язком, завершена сукупність знань, умінь і навичок, що відповідає фрагменту освітньої програми навчального курсу.Модульна програма – система засобів, прийомів, за допомогою яких досягається кінцева мета навчання.Таким чином, модульна програма містить у собі елементи управління пізнавальною діяльністю і разом з викладачем допомагає більш ефективно використовувати навчальний час.Технологія модульного навчання – одна з технологій, що, по суті будучи особисто орієнтованою, дозволяє одночасно оптимізувати навчальний процес, забезпечити його цілісність у реалізації цілей навчання, розвитку пізнавальної й особистісної сфери учнів, а також, сполучити тверде управління пізнавальною діяльністю студента з широкими можливостями для самоврядування.Систематизація і структуризація модуля. Однією з особливостей нової технології навчання з’явилася поява можливості управління процесом засвоєння знань на основі чіткої систематизації і структуризації курсу. Такий підхід дозволив закласти в кожну складову частину навчальної програми модуля її ваговий коефіцієнт і поширити такий підхід до системи оцінки і самооцінки знань.Важливою особливістю даної технології є її інтеграційна якість. Модуль, як цілісна єдність змісту і технології його вивчення, реалізується через комплекс інтегрованих технологій: проблемного, алгоритмічного, програмованого та поетапного формування розумових дій.Завдяки відкритості методичної системи, закладеної у модулі, добровільності поточного і гласності підсумкового контролю, можливо вільно здійснювати самоконтроль і вибирати рівень засвоєння, відсутності твердої регламентації темпу вивчення навчального матеріалу. У такий спосіб створюються сприятливі морально-психологічні умови, в яких студент відчуває себе упевненим у своїх силах.Усвідомлення студентами особистісної значимості досліджування і потреби в досягненні визначених навчальних результатів мотивується чітким описом комплексної якісної мети. Реальний результат цілком залежить від самого учня. Потреба в самореалізації задовольняється, по-перше, можливістю за допомогою модуля навчатися завжди успішно і, по-друге, волею вибору творчої діяльності і нестандартних завдань.Упровадження інтерактивних методів навчання в навчальний процес поряд з чисто технічними складностями обмежено відсутністю простих у застосуванні й однозначних методик оцінки результатів комп’ютерного тестування. Більшість тестів засновано на використанні альтернативного опитування, що фактично становить собою угадування правильної відповіді з декількох запропонованих варіантів. Навіть не з огляду на високу імовірність угадування при будь-якому розумному обсязі вибірки [1], така методика тестування може використовуватися лише як попередня оцінка і не дозволяє одержати інформацію про глибину і детальність засвоєння досліджуваного матеріалу. Студенти перших двох курсів інженерних спеціальностей технічних ВНЗ навичок програмування не мають, що створює значні труднощі у застосуванні безальтернативного тестування.Запропонований метод безальтернативного тестування принципово відрізняється як від альтернативних методів цілком, крім імовірності угадування, так і пропонує оригінальний підхід у постановці тестуючуго завдання, системи внесення відповідей і системного підходу в оцінці ступеня засвоєння вивченого матеріалу. Розроблені тести являють собою набір напівякісних завдань, підібраних за наростаючою складністю, тематично зв’язаних матеріалом розділу виучуваного курсу. Таке компонування тесту дозволяє охопити широкий спектр досліджуваних питань і диференціювати якість засвоєння матеріалу. Новим є також розроблена адаптована система контролю результатів тестування, у якому передбачене внесення відповіді в тестовий файл у спрощеному виді – числа, простої формули або малюнка. У структурі модульного посібника відбиті вимоги і правила конструювання модуля:– комплексна мета, у якій надані якісні характеристики (пізнавальні й особистісні) результату вивчення модуля;– конкретизація мети в предметних "навчальних елементах", заданих стандартом утворення;– програма і рекомендації технологічних прийомів її вивчення;– конкретизація мети в еталонах і критеріях рівнів засвоєння, у завданнях підсумкового контролю;– еталони рішень для організації самоконтролю і взаємоконтролю.Пропонований метод тестування органічно вливається в методику модульно-рейтингової системи .Особливості пропонованої безальтернативної системи тестування розглянемо на прикладі тестів, складених з теми „Електромагнитні коливання та хвилі” . Нами розроблені тести по восьми розділах курсу фізики [ 2 ],. Кожний розділ містить у собі двадцять п’ять варіантів завдань, розрахованих на те, щоб кожний студент мав можливість працювати самостійно. Приклад тесту приведений у тексті разом з відповідями, що повинні вводитися студентами в спеціально підготовлені файли.Однією з особливостей тесту в структурі поданих завдань є те, що вони розбиті на три рівні зі зростаючою ступінню складності.Особливість і новизна пропонованих тестів пов’язана також з розробкою завдань, що припускають одержання рішення у вигляді відносних величин, що можуть бути зведені до відношення простих чисел. Ця особливість формулювання завдань має переваги, зв’язані з багатоваріантністю постановки, що суттєво при розробці масиву різних тестів однієї тематики, і, що є найбільш важливим, дозволяє вносить відповідь у відповідний файл тестуючої програми у вигляді числа, що доступно студентам з мінімальними навичками роботи на комп’ютері.Перший рівень включає три завдання, які розраховані на досить формальне засвоєння основних положень тестуючого розділу – знання рівняння фронту хвилі, частоти электромагнітних коливань та вміння знайти швидкість фронту хвилі, а також, знаючи зв’язок діелектричної та магнітної проникності та показник заломлення середовища, знайти швидкість поширення хвилі в середовищі.Відповідь на кожне з завдань оцінюється в один бал, а в цілому при повній відповіді на завдання І рівня можна вважати, що основні положення теми засвоєні і знання студента відповідають оцінці «задовільно».Другий рівень тестування включає завдання, що вимагають при їх розв’язуванні визначеного осмислювання законів електромагнітної індукції та застосувати методи розрахунку ЕРС індукції в контурі, та в постійному магнітному полі, а також уміння знаходити опір кола, та ємність конденсатора. Кожне завдання оцінюється двома балами.Розв’язування завдання ІІІ рівня припускає глибоке оволодіння матеріалом і володіння нетрадиційними методами рішення. Оцінюється кожне завдання трьома балами. У цілому тестування дозволяє перевірити готовність студентів на різних рівнях – від задовільного до відмінного.Приклади файлів для відповідей (вікна відповідей) приведені на прикладі тесту.Наприклад, по темі „Електромагнітні коливання та хвилі” один з варіантів тесту має такий вигляд: ЗавданняI рівня1) Відкритий коливальний контур містить ємність С0 = пФ та індуктивність L0 = нГн. Знайдіть довжину хвилі електромагнітного поля, яке випромінює цей вібратор.2) Знайдіть швидкість фронту електромагнітної хвилі, якщо задана довжина хвилі l = 1 мм і частота коливань v = 3×1011 Гц.3) Діелектрична сприйнятливість середовища лінійно залежить від напруженості електричного поля c = 10-2Е. Знайдіть показник заломлення середовища, якщо магнітна проникність m = 1, а напруженість поля дорівнює Е = 0,1 Н/Кл. Вікна відповідей 1)l =2)Vф =3)n = Завдання II рівня4) Трикутна дротяна рамка має рухому перемичку, яка переміщується з постійною швидкістю V. Рамка знаходиться в перпендикулярному магнітному полі В = В0t. Знайдіть відношення ЕРС індукції, яка виникає в контурі, та ЕРС у постійному полі В0. 5) При перемиканні в колі ключа в положення 2 (рис.) виникає розряд конденсатора. За час t = 1 с заряд конденсатора зменшився в число разів q/q0 = 2, де q0 – початковий заряд, q(t) = q – заряд у момент часу, що дорівнює t. Опір R = 1 Ом. Знайдіть час релаксації цього контуру tр і ємність С.Вікна відповідей4) 5) tр = С = З Вікна відповідей6)L = авданняIII рівня 6) Добротність резонансного контура Q = 0,01. Ємність С = 100 мкФ і опір R = 1 Ом. Зайдіть індуктивність контура.Алгоритм розв’язування задач. Перший рівень ступені складності.1. Розв’язокЗв’язок довжини хвилі та частоти має вигляд, Тоді, .2. Розв’язокРівняння фронту хвилі : ,звідси швидкість фронту хвилі :,де k – хвильове число , а кругова частота .Тоді, .3. Розв’язокПоказник заломлення середовища : ,де і  – діелектрична і магнітна проникності,, а = 1,то показник заломлення дорівнює .Швидкість поширення в середовищі ,де с – швидкість світла у вакуумі.Другий рівень складності.4. Розв’язокПотік магнітного поля, який пронизує систему, дорівнює,де S – площа замкненого контура в момент часу t, що дорівнює площі трикутника,де , , тобто Потік поля :ЕРС індукції : ЕРС індукції в постійному полі :.Відношення ЕРС дорівнює :.5 Розв’язокЗаряд (струм) в колі при замикании ключа змінюється за законом.Отже, . Логарифмуючи вираз, маємо , Враховуючи, що в колі, яке розглядається Для ємності маємо виразТретій рівень складності6. Розв’язок,де – власна частота,– напівширина контура.Звідси маємо i знаходимо L.Для полегшення роботи викладача при перевірці тестів, існують вікна відповідей з уже заздалегідь підрахованим результатом. Необхідно тільки звірити отриману студентом відповідь із запропонованою. Вікна відповідейВаріант № 1 Завдання I рівня1)l = 1 см2)Vф = 3×108 м/с3)n = 1,0005 ЗавданняIІ рівня4) 5) tр =1,4426 с С = 1,4426 Ф ЗавданняIІІ рівня6) L = 0,01 мкГн ЗавданняIІ рівня4) 5) tр =1,4426 с С = 1,4426 Ф
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Матухно, В. А., Ю. В. Байдак та П. Томлейн. "МОДЕЛЮВАННЯ ПОЛЯ ТЕМПЕРАТУРИ РОЗПОДІЛЬЧОГО ТРАНСФОРМАТОРА". Refrigeration Engineering and Technology 53, № 2 (30 жовтня 2017). http://dx.doi.org/10.15673/ret.v53i2.592.

Повний текст джерела
Анотація:
В роботі наведено причини і виконане обґрунтування доцільності впровадження на етапі проектування розподільчого трансформатора з економічно обґрунтованою і оптимальною конструкцією - методу моделювання поля температур на підставі вирішення рівняння Пуассона, якому відповідає будь-яке стаціонарне температурне поле з внутрішніми джерелами тепла. За приведеною формалізацією математичної моделі до виду рівняння Пуассона, підґрунтям якої є результати вирішення задачі флюїдної динаміки по рівнянням Нав’є - Стокса, виконано розрахунки поля швидкості масла у системі охолодження фази трансформатора у двомірній аксіальній системі координат та на підставі їх значень розраховано поле температур. Для підкреслення важливості вирішення задачі Нав’є - Стокса, наведено результати розрахунку поля температур без урахування швидкості руху охолоджуючої речовини - масла. Виконане моделювання теплової підсистеми доцільне для впровадження в наукових розробках відповідних електромагнітних пристроїв і в навчальному процесі, оскільки дозволяє здійснювати обґрунтований вибір магнітної індукції в стрижні магнітопроводу і густини струму в обмотках за показником припустимих в них температур нагріву.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Осадчук, Петро Ігорович, та Ігор Віталійович Безбах. "Інженерні методи розрахунку процесу гідратації при обробці олії електромагнітними хвилями". Scientific Works 85, № 1 (31 серпня 2021). http://dx.doi.org/10.15673/swonaft.v85i1.2068.

Повний текст джерела
Анотація:
До основних недоліків стандартних ліній гідратації відносяться висока енергоємність, велика витрата холодної води і пари, що зв'язано з використанням сепараторів, а також жорстким температурними режимами сушіння фосфоліпідної емульсії. Ці лінії не забезпечують ефективність процесу в цілому через високий залишковий зміст фосфоліпідів в олії і низької харчової цінності одержуваних фосфатидних концентратів унаслідок впливу перекису водню, застосовуваної для знебарвлення. Для усунення цих недоліків було запропоновано використання електромагнітних полів в процесі гідратації олій. В даній роботі запропоновано інженерні методи розрахунку процесу гідратації при обробці олії електромагнітними хвилями. Проведено моделювання процесу. Використовуючи метод аналізу розмірностей, отримано критеріальне рівняння для розрахунку продуктивності устаткування. Проведено узагальнення експериментальних даних отриманих в результаті досліджень. Розроблено алгоритм розрахунку степеневих показників та констант в рівнянні у числах подібності, який реалізовано у середовищі Microsoft Excel. Визначено ступінь впливу напруженості магнітного поля на процес гідратації. Враховано залежить коефіцієнту масопередачі від зміни температури. З отриманого рівняння в числах подібності розраховано ряд теоретичних значень числа Стантона та порівняно з експериментальними даними. Визначено розбіжність між розрахунковими та експериментальними даними в межах 18%. Отримане рівняння дає змогу розраховувати об’єм установки та швидкість протікання процесу, задаючись різними режимними параметрами: напруженістю магнітного поля, температурою.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Размишляєв, Олександр Денисович, та Марина Володимирівна Агєєва. "МЕТОДИКА РОЗРАХУНКУ ІНДУКЦІЇ ПОЗДОВЖНЬОГО МАГНІТНОГО ПОЛЯ ПІД ТОРЦЕМ ФЕРОМАГНІТНОГО ЕЛЕКТРОДА СТОСОВНО ДО ДУГОВОГО НАПЛАВЛЕННЯ". Наука та виробництво, № 21 (1 листопада 2019). http://dx.doi.org/10.31498/2522-9990212019187122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Ivashina, Yu K., T. L. Goncharenko, and Ya D. Plotkin. "Error of the linear current model application to magnetic field of current in square conductor calculation." Physical and Mathematical Education 25, no. 3 (November 2020). http://dx.doi.org/10.31110/2413-1571-2020-025-3-026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії