Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Процес нагрівання.

Статті в журналах з теми "Процес нагрівання"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Процес нагрівання".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

А.В. Беспалова, А.И. Кныш, Д.И. Чекулаев, В.П. Приступлюк, Т.В. Чумаченко та В.Г. Лебедев. "ШЛЯХИ ЗНИЖЕННЯ ТЕМПЕРАТУРИ АЛМАЗНИХ ВІДРІЗНИХ КРУГІВ ПРИ РОЗРІЗАННІ КАМ'ЯНИХ БУДІВЕЛЬНИХ МАТЕРІАЛІВ". Перспективні технології та прилади, № 18 (30 червня 2021): 6–13. http://dx.doi.org/10.36910/6775-2313-5352-2021-18-1.

Повний текст джерела
Анотація:
У процесі ремонту і реставрації будівель часто розрізають керамічні плитки і блоки з Al2O3 і ZrO2. В даний час для цих цілей широко використовуються алмазні абразивні диски. Процес розрізання супроводжується значним виділенням тепла і нагріванням алмазного диска. При температурі близько 600º міцність диска на розрив зменшується в 2 рази і відбувається графітизація алмазних зерен. Таким чином, при розрізанні алмазним кругом кам'яних і будівельних матеріалів, температура нагріву кола не повинна перевищувати 600 ºС. В роботі виконано математичне моделювання процесу нагрівання алмазного відрізного круга на металевій основі при розрізанні керамічних матеріалів для визначення часу безперервної роботи до критичної температури 600ºС. Результати моделювання, представлені на графіках, показали залежність температури нагрівання кола від діаметра останнього, частоти обертання, хвилинної подачі, від зернистості і товщини кола. Показано, що шляхом підбору відповідних характеристик процесу час безперервної роботи може бути близько 10 - 12 хв без застосування примусового охолодження.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Skidin, Ihor, Oksana Vodennikova, Sergii Vodennikov, Levan Saithareiev та Dmytro Baboshko. "ПРО РОЗРАХУНКИ ПРОЦЕСУ ФОРМУВАННЯ ШАРУ ТЕРМІТНОГО СПЛАВУ НА СТАЛЕВІЙ ПІДКЛАДЦІ ЗА СВС-ПРОЦЕСОМ". Scientific Journal "Metallurgy", № 1 (17 лютого 2021): 55–62. http://dx.doi.org/10.26661/2071-3789-2020-1-08.

Повний текст джерела
Анотація:
Розглянуто процес формування шару термітного сплаву на основі системи Fе-Cr-Cна сталевій підкладці за допомогою самопоширюваного високотемпературного синтезу.Показано, що попереднє нагрівання шихтових компонентів термітної суміші призводить дозбільшення спікливості продукту, знижує продуктивність і здорожує процес синтезу кінце-вих СВС-продуктів. В процесі нагрівання термітної суміші з 273 К до 873 К утворюється67,1% додаткового заліза та 24,5% карбіду хрому, що вводиться від кількості компонентівтермітної суміші. При цьому на нагрівання порошку заліза витрачається 2318,44 кДж теп-лоти, а на нагрівання порошку хрому 3314,93 кДж теплоти (у перерахунку на 1,0 кг суміші).Оптимальний вміст металевого наповнювача у нагрітій до 873 К термітній суміші складає40%. Показано, що надлишок теплоти, який утворився в процесі алюмотермічних реакцій,можна витратити на розплавлення додаткової кількості порошку заліза.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Павленко, А. М., та Л. П. Шумська. "Математична модель процесу нагрівання і сушіння вологих матеріалів". Refrigeration Engineering and Technology 56, № 1-2 (4 липня 2020): 19–26. http://dx.doi.org/10.15673/ret.v56i1-2.1825.

Повний текст джерела
Анотація:
Вирішення проблеми створення ефективних пористих теплоізоляційних матеріалів і технологій їх виробництва нерозривно пов’язане з науковими дослідженнями в області енергопереносу в пористій структурі на етапах спучування, затвердіння і сушіння за умови забезпечення найбільш низької теплопровідності і густини. Зазначені властивості матеріалів визначаються величиною їх пористості, співвідношенням мікро- та макропористі, властивостями міжпорових матеріалів, що утворюють своєрідний несучий каркас, який у свою чергу визначається технологією виробництва, видом сировинних матеріалів і умовами їх підготовки. Проблема теплової обробки вологих матеріалів містить питання перенесення теплоти і маси всередині тіла (внутрішня задача) і в граничному шарі на межі розділення фаз (зовнішня задача). Кількість видаленої вологи залежить від ступеня розвитку кожного з цих процесів. При нагріванні зменшується вміст вологи на поверхні, і це створює перепад концентрації по перерізу тіла. Тому в тілі виникає потік вологи з глибинних шарів до поверхні, назустріч якому спрямований потік теплоти. Таким чином, при нагріванні вологих матеріалів відбуваються складні процеси волого- і теплообміну, котрі взаємно впливають на ентальпію і вологовміст як матеріалу, що нагрівається, так і навколишнього середовища. У статті розглядаються особливості побудови математичної моделі процесу нагрівання і сушіння вологих матеріалів. Процес сушіння розглядається як тепловий процес з ефективними коефіцієнтами теплоперенесення, що враховують масоперенесення. Це дозволяє отримати зручні для інженерних розрахунків аналітичні залежності, за допомогою яких можна визначити температурне поле і оцінити кінетику сушіння вологих матеріалів
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Бошкова, І. Л., Н. В. Волгушева, О. С. Тітлов, Е. І. Альтман та І. І. Мукмінов. "Дослідження ефективності мікрохвильового нагріву нафтопродуктів". Refrigeration Engineering and Technology 57, № 2 (30 червня 2021): 98–105. http://dx.doi.org/10.15673/ret.v57i2.2023.

Повний текст джерела
Анотація:
Розглядається задача оптимізації нагріву нафтопродуктів при зливі з залізничних цистерн при використанні мікрохвильового нагрівання. Встановлено, що мікрохвильовий нагрів дозволяє значно спростити технологічну схему, виключивши всі процеси і апарати, пов'язані з підготовкою теплоносія. Визначено, що в даний час існуючі патенти і технічні рішення, запропоновані до застосування мікрохвильового нагріву для розігріву нафтопродуктів, припускають, що мікрохвильова енергія падає на вільну поверхню рідини. Стверджується, що недоліком подібних схем є істотна нерівномірність нагріву внаслідок того, що мікрохвильова енергія швидко згасає при просуванні вглиб цистерни. Відзначається, що при нагріванні поверхні рідини в цистерні відстань від джерела до зливного отвору досить велика, внаслідок чого неможливе ефективне використання мікро­хвильового нагріву. Запропоновано спосіб вирішення цієї проблеми, що полягає в установці мікро­хвильового пристрою всередині порожнистої труби, яка безпосередньо приєднується до верхнього люка при підготовці до відкачування і занурюється в нафтопродукт на глибину, що корелюється з глибиною проникнення мікрохвильового поля в конкретному продукті. Проведено оцінку глибини проникнення мікрохвильової енергії в досліджуваний нафтопродукт – мазут, на підставі якої рекомендовано встановлювати відстань від випромінювача до зливного отвору. Стверджується, що моделювання мікрохвильового нагрівання доцільно проводити на основі диференціального рівняння теплопровідності з урахуванням внутрішніх джерел теплоти. Представлено математичну модель, що описує нагрівання об’єму високов'язких нафтопродуктів як процес теплопровідності в необмеженому масиві при дії мікрохвильового випромінювання. На прикладі мазуту проведені розрахунки з використанням методу кінцевих різниць, які показали розподіл температур в масиві в різні моменти часу
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Сацюк, В. В., Ю. В. Булік, О. С. Дубицький та Н. О. Толстушко. "ДОСЛІДЖЕННЯ ПРОЦЕСУ ПРИГОТУВАННЯ СУШИЛЬНОГО АГЕНТА У СОНЯЧНОМУ ТЕПЛОВОМУ КОЛЕКТОРІ ІЗ ВИКОРИСТАННЯМ 3D-МОДЕЛЮВАННЯ". СІЛЬСЬКОГОСПОДАРСЬКІ МАШИНИ, № 45 (6 грудня 2020): 94–102. http://dx.doi.org/10.36910/acm.vi45.405.

Повний текст джерела
Анотація:
Сушіння сільськогосподарської продукції є однією із найбільш енергоємних операцій під час первинної обробки сировини. Зменшення витрат на процес сушіння суттєво впливає на вартість кінцевого продукту. Тому надзвичайно актуальним є використання сонячної енергії для приготування сушильного агента. У статті, використовуючи програмне забезпечення тримірного моделювання, досліджено процес нагрівання сушильного агента в сонячному тепловому колекторі. Використовуючи технологію “цифровий двійник”, досліджено режими роботи сонячного теплового колектора із різними геометричними параметрами. Реалізацію технології “цифровий двійник” здійснювали за допомогою програмного комплекса Creo 7.0 із встановленим модулем комп’ютерної симуляції FloEFD. Для комп’ютерної симуляції процесу нагрівання сушильного агента у колекторі були задані такі параметри: час проведення експерименту, місце розташування об’єкта дослідження, положення відносно вибраної системи координат (кути нахилу до горизонту), температура навколишнього середовища, хмарність. Використання технології “цифровий двійник” дозволило оптимізувати параметри сонячного теплового колектора та скоротити матеріальні витрати і тривалість дослідження. На кінцевому етапі досліджень було перевірено остаточно вибраний варіант конструкції колектора. Розроблена комп’ютерна модель буде використана для автоматизованого керування сонячним тепловим колектором та оптимізації процесу сушіння.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Жученко, О. А., та М. Г. Волощук. "ДОСЛІДЖЕННЯ ТЕМПЕРАТУРНИХ ПОЛІВ ПРОЦЕСУ ГРАФІТУВАННЯ ВУГЛЕЦЕВИХ ВИРОБІВ". Automation of technological and business processes 10, № 3 (13 листопада 2018): 25–35. http://dx.doi.org/10.15673/atbp.v10i3.1087.

Повний текст джерела
Анотація:
Виробництво графітованої продукції складне, багатостадійне та дуже енергоємне. На процес графітування впливає цілий ряд факторів, та головним чинником, який визначає якість готової продукції є температурний режим обробки. Ця обставина зумовлює необхідність дослідження температурних полів, які формуються під час графітування вуглецевих виробів. У існуючих дослідженнях, які хоч і мають практичну цінність, та їх напрям і результати не спрямовані на побудову системи керування процесом. Підвищення ефективності останнього пов’язане зі створенням ефективної системи керування. Звичайно, для цього необхідне експериментальне дослідження на промисловому обладнанні та воно неможливе, оскільки може принести великі фінансові затрати у зв’язку з реальною загрозою випуску бракованої продукції, та можливістю створення аварійної ситуації. У цих умовах єдиною альтернативою промисловим експериментам є дослідження за допомогою методу математичного моделювання. Процес графітування умовно можна поділити на два етапи – нагрівання та охолодження. Проводилось дослідження для чотирьох типів завантажень: заготовки діаметром 400, 500, 600 мм, а також комбіноване завантаження. Результати досліджень показали, що нагрівання заготовок при різних типах завантаження печі відбувається із суттєво різною інтенсивністю. Характерною особливістю процесу нагрівання є те, що найбільший перепад температур в усіх заготовках спостерігається фактично в один і той самий час, але цей час різний для варіацій діаметрів. Як і очікувалось, швидкість охолодження заготовок залежить від їх розмірів: чим більший діаметр, тим довше вони остигають, причому різниця у тривалості охолодження досить суттєва. Тобто, результати досліджень показали, що температурні поля процесу графітування вуглецевих виробів як у режимі нагрівання, так і у режимі охолодження суттєво залежать від типу заготовок, що завантажуються у піч, а також від їх розташування. Враховуючи суттєву температурну розподіленість процесу графітування, визначені місця розташування заготовок з найбільшою та найменшою температурами у досліджуваних режимах, які не змінюються у залежності від типу завантаження. На підставі проведеного дослідження повинна бути розроблена система керування процесом графітування вуглецевих виробів.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shevtsov, S. O. "Аналіз впливу вибору температурного режиму процесу ротаційного обкочуванням інструментом тертя на герметичність днищ балонів". Обробка матеріалів тиском, № 1(48) (1 листопада 2019): 128–34. http://dx.doi.org/10.37142/2076-2151/2019-128(48).

Повний текст джерела
Анотація:
Шевцов С. О. Аналіз впливу вибору температурного режиму процесу ротаційного обкочуванням інструментом тертя на герметичність днищ балонів // Обробка матеріалів тиском. – 2019. – № 1 (48). – C. 128–134. Значне місце серед промислових виробів займає продукція з днищем. Проведено аналіз стану питання про виготовлення балонів різними способами. Досить часто балони виготовляють з декількох частин, які зварюються. Такий метод не гарантує високу надійність з’єднання металу днища й корпусу балону, а також вимагають значної кількості різноманітних виробничих операцій та обладнання, також розглянуті інші способи виготовлення пустотілих виробів. Одним із методів виготовлення балонів підвищеної міцності та герметичності є спосіб використання операції обкочування заготовки з стальної труби інструментом тертя. Цей спосіб є доцільним з точки зору зниження собівартості для великосерійного виробництва. Ця технологія проста в реалізації, добре піддається автоматизації та не потребує значних капіталовкладень для створення серійного виробництва. Але при порушенні певних технологічних схем процесу обкочування виникають певні дефекти, що знижує якість виробів, або вимагає усунення дефектів. Метою роботи є встановлення впливу температурного режиму обкочування на процес для підвищення якості днищ балонів та ємностей з трубчастих різнотовщинних заготовок. Об'єктом досліджень є процес виготовлення днищ балонів підвищеної міцності та герметичності ротаційним обкочуванням інструментом тертя. Математичне моделювання процесу на основі рівнянь теплопровідності з урахуванням напружено-деформованого стану заготовки дозволило встановити діапазони основних параметрів процесу для подальшого моделювання методом скінченних елементів. Такими рекомендаціями будуть: початкова температура, відносна товщина стінок та відносна подача заготовки до інструмента тертя. Після моделювання були зроблені висновки: що до початку процесу обкочування оптимальною температурою нагрівання заготовки є температура приблизно рівна Тгом = 0,8. Підігрівання в процесі обкочування заготовки не потребують. Для тонкостінних заготовок для запобігання ефектів переплавлення та перегрівання виникає необхідність підстужування заготовки. Для товстостінних заготовок рекомендується нагрівання проводити максимально близьким до температури Тгом = 0,8
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kitchenko, L. M., та S. O. Okunevska. "Удосконалення технології дрібного напівтвердого крупнопористого сиру з високою температурою другого нагрівання з метою виробництва на сироробних підприємствах малої потужності". Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 20, № 85 (2 березня 2018): 95–99. http://dx.doi.org/10.15421/nvlvet8518.

Повний текст джерела
Анотація:
На українському ринку сири з високою температурою другого нагрівання користуються попитом, але в умовах роботи малих підприємств їх виробництво стримує низка факторів: складна та трудомістка технологія виробництва, низька якість сировини, довгий термін дозрівання, що не дозволяє виробляти сири однакової якості та потребує додаткової площі для дозрівання. Але ті малі сироробні підприємства, які володіють не тільки власною сировинною базою, а й достатніми виробничими площами, мають власну сировину, яка відповідає вимогам виробництва елітного сиру й технології його виробництва цього сир. Метою роботи було підбір заквашувальних культур, оптимізація процесів розрізання згустку та обробки сирної маси, соління та дозрівання сиру, які дозволять виробляти сири заданої якості у скорочений термін дозрівання. У статті висвітлено низку факторів щодо можливості випуску напівтвердих крупнопористих сирів з високою температурою другого нагрівання на сироробних підприємствах малої потужності. Насамперед підібрані закваски, які сприяють виробництву сиру із заданим рН. Прискоренню дозрівання сиру сприяє підвищена маса вологи у сирній масі, яка залежить від розміру сирного зерна та температури другого нагрівання, тому встановлені оптимальні параметри цих процесів. Особливістю виробництва сиру на сироробних підприємствах малої потужності є виробництво головок сиру з невеликою масою – не більше ніж 2 кг. Тому, досліджено процес соління головок сиру такого розміру та встановлено його оптимальний термін. Відпрацьовані процеси ступеневого дозрівання сиру, знайдено мінімальний термін дозрівання, коли сири отримували максимальну органолептичну оцінку. Таким чином, запровадження рекомендованої технології виробництва крупнопористого напівтвердого сиру дозволить випускати його на сироробних підприємствах малої потужності.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Жученко, О. А., та А. П. Коротинський. "ДОСЛІДЖЕННЯ ВПЛИВУ НАДЛИШКУ ПОВІТРЯ НА ПРОЦЕС НАГРІВАННЯ БАГАТОКАМЕРНОЇ ПЕЧІ ВИПАЛЮВАННЯ ДИМОВИМИ ГАЗАМИ". POWER ENGINEERING: economics, technique, ecology, № 1 (15 березня 2018): 71–80. http://dx.doi.org/10.20535/1813-5420.1.2018.133052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bilonoha, Y. L., та O. R. Maksysko. "Вплив поверхнево-активних речовин на швидкість фільтрування". Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 19, № 80 (4 жовтня 2017): 99–102. http://dx.doi.org/10.15421/nvlvet8020.

Повний текст джерела
Анотація:
В статті розглядається процес фільтрування, який є одним з енергозатратних в переробній промисловості. Проаналізовано фактори що впливають на швидкість фільтрування. Процес фільтрування доцільно розглядати з врахуванням сил поверхневого натягу на межі контакту тверде тіло-рідина і для визначення швидкості фільтрування використовувати рівняння, які б враховували дію цих сил. Запропоновано для зменшення опору осаду на фільтрувальній перегородці та інтенсифікації процесу фільтрування використовувати оптимальні концентрації різного роду поверхнево-активних речовин (ПАР). Експериментально знайдено оптимальну концентрацію аніонної ПАР до води, за якою коефіцієнт поверхневого натягу води є мінімальним. Показано, що за додавання оптимальної концентрації досліджуваної ПАР швидкість фільтрування у воді за температури 20 °С буде більшою у 2,3 рази ніж за нагрівання до температури 50 °С. Теоретично розраховані швидкості фільтрування у воді без ПАР та за додавання оптимальної концентрації аніонної ПАР. На стенді гідромеханічних процесів проведена серія експериментів для визначення швидкості фільтрування у воді без ПАР та за додавання оптимальної концентрації досліджуваної аніонної ПАР. Експериментальні дослідження добре узгоджуються з теоретичними розрахунками. Показано, що позитивна дія ПАР максимально проявляється тоді, коли частинки осаду починають відігравати функцію фільтрувальної перегородки. За таких умов швидкість фільтрування зростає у 2,5 рази.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Бошкова, І. Л., Н. В. Волгушева та М. Д. Потапов. "Дослідження явищ теплопровідності при мікрохвильовому сушінні матеріалу". Refrigeration Engineering and Technology 55, № 4 (5 вересня 2019): 205–10. http://dx.doi.org/10.15673/ret.v55i4.1629.

Повний текст джерела
Анотація:
Досліджуються математичні моделі нагрівання матеріалів при дії внутрішніх джерел теплоти. Представлено модель теплопровідності, у якій дія мікрохвильового поля враховується як позитивне внутрішнє джерело теплоти. Визначається, що доцільність одержання аналітичних рішень пов'язана із практичним інтересом до мікрохвильового сушіння. Інформація про розподіл температури в матеріалі важлива для різних технологічних процесів, наприклад, сушіння зерна. Розглядається напівобмежений масив, температура якого в початковий момент часу у всіх точках однакова. Прийнято однокомпонентну модель, відповідно до якої шар розглядається як квазігомогене середовище з ефективними характеристиками. Негативне джерело теплоти враховує частку енергії, обумовлену потоком вологи випаруваної при сушінні матеріалу. Приймається експонентний характер зміни інтенсивності позитивного та негативного джерела по товщині шару. Для рішення рівняння теплопровідності застосований метод інтегрального перетворення Лапласа. Рішення диференціального рівняння теплопровідності з початковими й граничними умовами І роду дозволило одержати формулу для розрахунку температури напівобмеженого масиву, що застосовно для умов, коли температура навколишнього середовища менше температури матеріалу. Ця умова відображає реальний фізичний процес мікрохвильового нагрівання. Аналізуються результати розрахунків температури води та щільного шару зерна пшениці залежно від тривалості дії мікрохвильового поля і його питомої потужності. Показано, що для одержання достовірних результатів важливим показником є значення коефіцієнта корисної дії мікрохвильової камери. Проведені розрахунки вологовмісту й температури шару зерна пшениці для періоду постійної швидкості сушіння. Отримана залежність може застосовуватися при аналізі впливу тривалості нагрівання, вхідної потужності й початкових температур на розподіл температури по товщині шару
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Молчанов, Лавр, Євген Синегін, Тетяна Голуб та Сергій Семикін. "ДОСЛІДЖЕННЯ НА ФІЗИЧНІЙ МОДЕЛІ ОСОБЛИВОСТЕЙ ВПЛИВУ ЗАПИЛЕНОСТІ СЕРЕДОВИЩА НА ЯКІСНІ ПОКАЗНИКИ ГАЗОВОГО, ПАЛАЮЧОГО ФАКЕЛУ". Modern Problems of Metalurgy, № 24 (28 березня 2021): 90–97. http://dx.doi.org/10.34185/1991-7848.2021.01.09.

Повний текст джерела
Анотація:
Процес кисневого конвертування супроводжується виділенням значного обсягу газів, що містять в основному продукти реакцій окислення вуглецю, які формують палаючий факел над горловиною конвертера. При цьому з конвертера виділяється значна кількість пилу різного складу і фракції в залежності від технологічних особливостей продувки, дослідження і облік впливу якої необхідний для розуміння якісних характеристик факела і конвертерного процесу вцілому. У роботі наведені результати дослідження на фізичної моделі, що імітує палаючий факел в запиленому середовищі, шляхом введення твердих порошків різних речовин, на якісні показники горіння факела: візуальні і теплопередачу. Досліджено подачу в палаючий факел порошків хлориду натрію, оксидів заліза, кремнію та алюмінію, чистих порошків заліза, кремнію та алюмінію, сажі і графіту. Встановлено, що введення різних компонентів в факел з температурою нижче, ніж температура факела, навіть при можливому візуальному збільшенні яскравості характеристик, що зокрема встановлено при введенні хлориду натрію або порошку заліза, сприяють зниженню теплопередачі від факела за рахунок відбору тепла на нагрівання і згоряння частинок, що вводяться.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Ощипок, Ігор Миколайович. "Математичне моделювання дії теплового випромінювання на термічну обробку ковбасних батонів". Scientific Works 84, № 1 (14 грудня 2020): 42–47. http://dx.doi.org/10.15673/swonaft.v84i1.1867.

Повний текст джерела
Анотація:
У статті досліджено використання теплоти інфрачервоного випромінювання яке є одним з ефективних шляхів інтенсифікації теплової обробки ковбасних батонів і дозволяє значно скоротити тривалість її обробки і підвищити якість готових виробів. На основі сучасного підходу вирішене завдання пов'язане з тепловою обробкою, яке полягає в дослідженні тих способів і режимів, забезпечуючих необхідну інактивацію мікрофлори, максимальне збереження харчової цінності продукту. На основі визначених передумов розглянута математична модель спільного тепломасопереносу і теплової обробки ковбасних батонів циліндричної форми в обсмажувальній установці з інфрачервоним (ІЧ) -нагріванням. досліджені такі способи і режими, які забезпечували б, разом з необхідною інактивацією шкідливої мікрофлори, максимальне збереження харчової цінності продукту. досліджено комплекс параметрів, які мають безпосередній вплив на хід процесу теплової дії на ковбасні батони. Враховане загасання променистого потоку, що проникає в продукт, яке описане параболічним законом. Реалізовані ефективні шляхи інтенсифікації теплової обробки ковбасних батонів з використання енергії і підвищення якості готових виробів на основі математичної моделі дії теплового електромагнітного поля ІЧ діапазону. Поставлена і аналітично вирішена задача спільного тепло- і масопереносу при інфрачервоному нагріванні ковбасного батона циліндричної форми. Отримані результати дозволять розрахувати поля температури і вмісту вологи, усереднені значення відповідних потенціалів перенесення, температури нагрівання, витрати тепла в процесі теплообміну, а також одержати формули, зручні для інженерних розрахунків. Запропоновані аналітичні конструкції дають можливість визначати час, необхідний для досягнення продуктом певної температури і вмісту вологи, забезпечуючи втрати маси при підсушуванні в діапазоні 0,5-1,8 % при тривалості процесу від 3 до 30 хвилин.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Пазюк, В. М. "СУЧАСНІ ПІДХОДИ ДО ВИРІШЕННЯ ПРОБЛЕМИ ПІДВИЩЕННЯ ЕНЕРГОЕФЕКТИВНОСТІ СУШІННЯ НАСІННЄВОГО ЗЕРНА". Vidnovluvana energetika, № 4(67) (25 грудня 2021): 90–99. http://dx.doi.org/10.36296/1819-8058.2021.4(67).90-99.

Повний текст джерела
Анотація:
В статті запропоновані сучасні методи низькотемпературного сушіння зернових культур. Найбільш поширені для сушіння зернових культур бункери та силоси для вентилювання, сушарки колонкового та шахтного типу. Приведені енергетичні витрати зерносушарок у найбільш відомих виробників, що становлять в залежності від типу зерносушарки 4350 – 5000 кДж/кг випареної вологи. Розроблена енергетична класифікація існуючих зерносушарок в залежності від заходів направлених на зниження енергетичних витратах теплоти, але цього недостатньо. Витрати теплоти в існуючих зерносушарках потрібно зменшувати, тому розроблені заходи із зниження витрат теплоти на процес сушіння, серед яких доцільно застосувати теплові насоси, які вирішують комплексно проблему енергоефективності. Ефективність теплонасосної установки підтверджується проведеними експериментальними дослідженнями, в якій розраховані енергетичні витрати на 1 кг випареної вологи, що становлять 3675–3700 кДж/кг випареної вологи. Процес сушіння насіння зернових культур в теплонасосній сушильній установці проходить періоди нагрівання, постійної та падаючої швидкості сушіння. Найбільш доцільна температура сушильного агента 50°С, швидкість сушіння 1,5 м/с та шар матеріалу в 20 мм. Насіннєві властивості зернових культур після теплової обробки зберігаються на рівні 99–100 %. Вирішення проблеми енергоефективності сушіння насіння зернових культур досягається встановленням в технологічну схему сушіння теплонасосної установки. Зерносушильна установка складається з 3-х зон, перша зона з температурою 80°С необхідна для швидкого підігрівання насіння зернових культур, друга зона із температурою теплоносія 50°С від конденсатора теплового насосу дозволяє сушити насіння, третя зона використовується для охолодження матеріалу від випарника теплового насосу. Бібл. 10, рис. 6.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Блятон, Артем, та Ірина Мазуркевич. "НОВІТНІ ТЕХНОЛОГІЇ ПРОДУКЦІЇ З МОЛОКА". ΛΌГOΣ. МИСТЕЦТВО НАУКОВОЇ ДУМКИ, № 6 (6 жовтня 2019): 38–40. http://dx.doi.org/10.36074/2617-7064.06.00.009.

Повний текст джерела
Анотація:
Розглянуто біохімічні та фізико-хімічні процеси, які проходять під час проведення процесу новітніх технологій нагрівання з витягуванням продукту з молока , а саме м’якого сиру. Стаття ставить проблеми необхідних умов для досягнення оптимального витягування згустку та інноваційних технологічних процесів, що призводять до фізико-хімічних змін продуктів з молока.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Biley, P. V., та R. O. Rokun. "ДИНАМІКА ЗМІНИ ТЕМПЕРАТУРИ ПРОФІЛЬНИХ ЗАГОТОВОК З ДЕРЕВИНИ ПІД ЧАС НАГРІВАННЯ В ГАЗОВОМУ СЕРЕДОВИЩІ". Scientific Bulletin of UNFU 25, № 9 (25 листопада 2015): 203–6. http://dx.doi.org/10.15421/40250931.

Повний текст джерела
Анотація:
Розглянуто фізичне явище нагрівання деревини. Визначено фізичні властивості (вологість і густину) та питому теплоємність деревини бука під час нагрівання. З'ясовано, що під час нагрівання змінюється (у незначних величинах) вологість деревини та відповідно – густина, питома теплоємність та питомі витрати теплоти. Дослідження проведено в лабораторній сушильній установці. Властивості деревини визначались за класичною методикою до і після процесу нагрівання. Для експериментального визначення динаміки зміни температури деревини вибрано два експериментальні зразки (букові поліна). По середині зразків вставлялись два давачі температури (термопари) на глибину х=0,15R та х=R. Температуру деревини фіксували приладом через певний проміжок часу. Таким чином, отримано залежність зміни температури поверхневих і центральних шарів деревини від тривалості процесу нагрівання. Експериментальні залежності описано емпіричними формулами.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Bolotov, Maksym, Gennady Bolotov, Iryna Prybytko та Oleh Novomlynets. "ОЦІНКА НАПРУЖЕНО-ДЕФОРМОВАНОГО СТАНУ ДИФУЗІЙНО-ЗВАРНИХ З’ЄДНАНЬ РІЗНОРІДНИХ МАТЕРІАЛІВ, ОТРИМАНИХ ПРИ НАГРІВАННІ В ТЛІЮЧОМУ РОЗРЯДІ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 1 (15) (2019): 9–20. http://dx.doi.org/10.25140/2411-5363-2019-1(15)-9-20.

Повний текст джерела
Анотація:
Актуальність теми дослідження. На сьогодні тліючий розряд середніх тисків знайшов значне поширення в різних технологічних процесах хіміко-термічної обробки, нанесення покриттів, зварювання і паяння завдяки можливості регулювання теплових впливів у широких межах. Постановка проблеми. Однак поряд зі сприятливими передумовами виявили і недоліки, здебільшого пов’язані зі складнощами зварювання в полі нормального тліючого розряду деталей, що суттєво відрізняються за теплофізичними властивостями, що зумовлено особливостями теплового впливу при підвищених тисках газу в робочій камері. Аналіз останніх досліджень і публікацій. Показано, що тліючий розряд, який горить у порожнистому катоді, забезпечує рівномірний розподіл теплової енергії, що забезпечує можливість отримання надійних металокерамічних дифузійно-зварних з’єднань. Мета роботи. Метою цієї роботи є порівняльний аналіз напружено-деформованого стану (НДС) при дифузійному зварюванні з’єднань із різнорідних матеріалів, що виникає під час нагрівання в нормальному тліючому розряді та тліючому розряді, ініційованому в порожнистому катоді. Виклад основного матеріалу. Шляхом комп’ютерного моделювання в програмному пакеті ANSYS v.16.0 здійснено порівняльний аналіз напружено-деформованого стану дифузійно-зварних теплофізично «тонких» та «масивних» деталей у процесі нагрівання в полі нормального тліючого розряду та розряду в порожнистому катоді. Висновки відповідно до статті. Встановлено, що при нагріванні теплофізично «масивних» різнорідних тіл у плазмі НТР утворюється несприятливий НДС із рівнем напружень, що на 19% перевищує межу витривалості кераміки. Такий вузол функціонувати не може. Водночас під час зварювання в ТРПК рівень напружень, що виникають у «масивних» з’єднаннях не перевищує допустимий.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Kuzyk, M. P., та M. F. Zayats. "КІНЕТИЧНІ ХАРАКТЕРИСТИКИ СУШІННЯ КОТЛІВ ТП-10 ЗА ДОПОМОГОЮ ТЕПЛОТИ ЖИВИЛЬНОЇ ВОДИ". Scientific Bulletin of UNFU 28, № 3 (26 квітня 2018): 101–4. http://dx.doi.org/10.15421/40280321.

Повний текст джерела
Анотація:
Спалювання непроектного вугілля на теплових електростанціях неминуче призводить до забруднення зовнішніх поверхонь нагріву котла і як наслідок – до погіршення техніко-економічних показників роботи пиловугільного котла. Аналізуючи літературні джерела та досвід експлуатації електростанцій, визначено основні чинники, які зумовлюють перебіг корозійних процесів на зовнішніх поверхнях нагрівання котлів під час спалювання різних видів палива та вплив на них режимів роботи котлів. До основних чинників, що зумовлюють процеси корозії на зовнішніх поверхнях нагрівання котлів, які розміщені в резерві, належать: вид і властивості палива, яке спалюється перед виведенням котлів у резерв – хімічний склад і властивості відкладень на поверхнях нагрівання, відносна вологість і температура повітря, що оточує поверхні нагрівання, проведені заходи для зниження вмісту сірки у відкладеннях на поверхнях нагрівання перед виведенням їх у резерв. Практикою експлуатації встановлено, що ретельно очистити поверхні від відкладень можливо тільки за допомогою водяного обмивання. Після обмивання потрібно провести якісне сушіння всіх зволожених поверхонь котла, щоб мінімізувати процеси низькотемпературної корозії. Викладено результати дослідження режимів малозатратної та ефективної процедури сушіння шляхом подачі в пароводяний тракт котла живильної води зі загальностанційного трубопроводу.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Petrovskiy, О. М., E. V. Gavrilko, D. O. Petrovska та S. E. Sidorov. "МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ТА ПРОГРАМНА РЕАЛІЗАЦІЯ РОЗРАХУНКУ ТЕПЛОВИХ РЕЖИМІВ СУЧАСНИХ ПРОЦЕСОРІВ". Системи управління, навігації та зв’язку. Збірник наукових праць 1, № 47 (8 лютого 2018): 84–88. http://dx.doi.org/10.26906/sunz.2018.1.084.

Повний текст джерела
Анотація:
Проведено аналіз сучасних процесорів, а саме їх конструкцій та принципів роботи. Розглянуті системи охолодження сучасної обчислювальної техніки. На основі будови процесорів та принципів їх роботивизначені режими нагрівання та теплопередачі в оточуюче середовище. Зроблене порівняння систем охолодження інтегральної мікросхеми. Запропонована фізико-математична модель процесу перерозподілу теплав внутрішній структурі процесора на основі рівняння теплового балансу і рівняння теплопровідності Фур’є.Розроблена математична модель дозволила аналізувати температурні режими роботи процесорів з метою зниження температури нагрівання напівпровідникових кристалів їх внутрішньої структури, а такожудосконалення процесу тепловідведення і технічних засобів систем охолодження.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Huber, Yu M., I. V. Petryshak, Zh Ya Humeniuk та M. M. Ilkiv. "Дослідження процесу гнуття деревини бука у пресі з високочастотним нагріванням". Scientific Bulletin of UNFU 29, № 2 (28 березня 2019): 103–8. http://dx.doi.org/10.15421/40290221.

Повний текст джерела
Анотація:
Перспективною технологією виготовлення гнутих деталей із масивної деревини є використання пресів, обладнаних генераторами СВЧ. Нагрівання деревини в полі струмів високої частоти дає змогу швидко нагріти її до потрібної температури, за якої пластичні властивості деревини будуть найкращими. Час на повний цикл гнуття становить 20…40 хв, тиск – до 500 кг/см2, кінцева вологість заготовок – 6…8 %. Ця технологія істотно зменшує час на гнуття та підвищує продуктивність порівняно з іншим обладнанням та технологіями. Наведено методику та результати дослідження процесу гнуття деревини бука у пресах з високочастотним нагріванням, а також вплив технологічних параметрів безпосередньо на якість оброблених заготовок. Дослідження проведено в умовах виробництва із застосуванням преса італійської фірми Italpresse, загальною потужністю 35 кВт. Експерименти проведено на шаблоні для гнуття із стрілою прогину 70 мм з використанням заготовок завдовжки 975 мм та поперечним перерізом 37×27 мм. Аналізуючи якість гнуття, визначено кількість придатних заготовок. Неякісною вважали заготовку, придатність якої є неможливою через наявність у ній тріщин, сколів, вм'ятин, потемніння та інших дефектів, що унеможливлює її використання з естетичних чи фізико-механічних вимог у виробництві меблевих виробів. За результатами досліджень отримано три групи графіків залежності частки виходу якісних заготовок від часу витримки, напруженості електромагнітного поля та тиску пресування. На основі аналізу отриманих графічних залежностей зроблено такі висновки: 1) збільшення тиску пресування до межі 100 кг/см2 призводить до зменшення частки якісних заготовок, а за тиску 120 кг/см2 – частка якісних заготовок зростає і є більшим, ніж за 80 кг/см2; 2)збільшення часу витримки до межі 20 хв призводить до зростання частки якісних заготовок, а за межі 30 хв – до зменшення частки якісних заготовок; 3) із зростанням напруженості електромагнітного поля частка якісних заготовок зменшується. Для знаходження оптимальних параметрів процесу гнуття букових заготовок виконано оптимізацію, за результатами якої можна стверджувати, що найбільшу кількість якісних гнутих заготовок (98,63 %) можна отримати за найменшої напруженості електромагнітного поля та за найбільшого значення тиску пресування, і витримки заготовок під тиском упродовж 20 хв 40 с.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Havrysh, V. I., V. B. Loik, I. Ye Ovchar, O. S. Korol, I. G. Kozak, O. V. Kuspish та R. R. Shkrab. "Математичні моделі визначення температурних режимів у елементах літій-іонних акумуляторних батарей". Scientific Bulletin of UNFU 30, № 5 (3 листопада 2020): 128–34. http://dx.doi.org/10.36930/40300521.

Повний текст джерела
Анотація:
Удосконалено раніше розроблені та наведено нові математичні моделі визначення та аналізу температурних режимів в окремих елементах літій-іонних акумуляторних батарей, які геометрично описано ізотропними півпростором і простором із внутрішнім джерелом тепла циліндричної форми. Також розглянуто випадки для півпростору, коли тепловиділяючий циліндр є тонким, а для простору, коли він є термочутливим. Для цього з використанням теорії узагальнених функцій у зручній формі записано вихідні диференціальні рівняння теплопровідності з крайовими умовами. Для розв'язування отриманих крайових задач теплопровідності використано інтегральне перетворення Ганкеля і внаслідок отримано аналітичні розв'язки в зображеннях. До цих розв'язків застосовано обернене інтегральне перетворення Ганкеля, яке дало змогу отримати остаточні аналітичні розв'язки вихідних задач. Отримані аналітичні розв'язки подано у вигляді невласних збіжних інтегралів. Для визначення числових значень температури в наведених конструкціях, а також аналізу теплообміну в елементах літій-іонних батарей, зумовленого різними температурними режимами завдяки нагріванню внутрішніми джерелами тепла, зосередженими в об'ємі циліндра, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, які відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових радіальної та аксіальної координат. Отримані числові значення температури свідчать про відповідність наведених математичних моделей визначення розподілу температури реальному фізичному процесу. Програмні засоби також дають змогу аналізувати середовища із внутрішнім нагріванням, зосередженим у просторових фігурах правильної геометричної форми, щодо їх термостійкості. Як наслідок, стає можливим її підвищити, визначити допустимі температури нормальної роботи літій-іонних батарей, захистити їх від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Гавриш, В. І., та В. Ю. Майхер. "Температурне поле у пластині з локальним нагріванням". Scientific Bulletin of UNFU 31, № 4 (9 вересня 2021): 120–25. http://dx.doi.org/10.36930/40310420.

Повний текст джерела
Анотація:
Розроблено математичні моделі аналізу температурних режимів у ізотропній пластині, яка нагрівається локально зосередженими джерелами тепла. Для цього теплоактивні зони пластини описано з використанням теорії узагальнених функцій. З огляду на це рівняння теплопровідності та крайові умови містять сингулярні праві частини. Для розв'язування крайових задач теплопровідності, що містять ці рівняння та крайові умови на межових поверхнях пластини, використано інтегральне перетворення Фур'є і внаслідок отримано аналітичні розв'язки задач у зображеннях. До цих розв'язків застосовано обернене інтегральне перетворення Фур'є, яке дало змогу отримати остаточні аналітичні розв'язки вихідних задач. Отримані аналітичні розв'язки подано у вигляді невласних збіжних інтегралів. За методом Ньютона (трьох восьмих) отримано числові значення цих інтегралів з певною точністю для заданих значень товщини пластини, просторових координат, питомої потужності джерел тепла, коефіцієнта теплопровідності конструкційного матеріалу пластини та ширини теплоактивної зони. Матеріалом пластини є кремній та германій. Для визначення числових значень температури в наведеній конструкції, а також аналізу теплообмінних процесів у середині пластини, зумовлених нагріванням локально зосередженими джерелами тепла, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, що відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових координат, коефіцієнта теплопровідності, питомої густини теплового потоку. Отримані числові значення температури свідчать про відповідність розроблених математичних моделей аналізу теплообмінних процесів у пластині з локально зосередженими джерелами тепла, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду середовища, які піддаються локальному нагріванню, щодо їх термостійкості. Як наслідок, стає можливим її підвищити і захистити від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й усієї конструкції.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kopets, M. M. "Optimal control over the process of heating of a thin core." Reports of the National Academy of Sciences of Ukraine, no. 7 (July 25, 2014): 48–52. http://dx.doi.org/10.15407/dopovidi2014.07.048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Kolyano, Ya Yu, I. T. Strepko, O. R. Marchuk (Svyryd), and K. I. Melnyk. "Study of the process of non-stationary convective heating of single-layer printing materials." Computer Technologies of Printing 1, no. 43 (2020): 97–115. http://dx.doi.org/10.32403/2411-9210-2020-1-43-97-115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Lazarenko, O. V., T. Ya Bodnaruk, V. B. Loik та S. V. Harnyk. "ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ПІДВИЩЕННЯ ВОГНЕЗАХИСТУ МЕТАЛЕВИХ КОНСТРУКЦІЙ ВЕРМИКУЛІТО-СИЛІКАТНИМИ ПЛИТАМИ". Scientific Bulletin of UNFU 25, № 9 (25 листопада 2015): 220–24. http://dx.doi.org/10.15421/40250934.

Повний текст джерела
Анотація:
Запропоновано використання вермикуліто-силікатних плит для підвищення вогнезахисту металевих будівельних конструкцій. На основі проведеного експерименту виявлено, що вермикуліто-силікатні плити є негорючими. Оцінено вогнезахисний ефект вермикуліто-силікатних плит завдяки хімічним процесам, які відбуваються у вермикуліті. Проаналізовано вогнезахисний ефект з визначенням вогнестійкості внаслідок впливу стандартного температурного режиму пожежі. Експериментально визначено вогнестійкість плити за втратою теплоізоляційної здатності, а також процеси та фазові перетворення, які відбуваються у вермикуліто-силікатній плиті під час нагрівання.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Havrysh, V. I., V. B. Loik, O. D. Synelnikov, T. V. Bojko та R. R. Shkrab. "МАТЕМАТИЧНІ МОДЕЛІ АНАЛІЗУ ТЕМПЕРАТУРНИХ РЕЖИМІВ У 3D СТРУКТУРАХ ІЗ ТОНКИМИ ЧУЖОРІДНИМИ ВКЛЮЧЕННЯМИ". Scientific Bulletin of UNFU 28, № 2 (29 березня 2018): 144–49. http://dx.doi.org/10.15421/40280227.

Повний текст джерела
Анотація:
_____________________________________ Інформація про авторів: Гавриш Василь Іванович, д-р техн. наук, професор кафедри програмного забезпечення. Email: gavryshvasyl@gmail.com Лоїк Василь Богданович, канд. техн. наук, доцент кафедри пожежної тактики та аварійно-рятувальних робіт. Email: v.loik1984@gmail.com Синельніков Олександр Дмитрович, канд. техн. наук, доцент кафедри пожежної тактики та аварійно-рятувальних робіт. Email: o.synelnikov@gmail.com Бойко Тарас Володимирович, канд. техн. наук, доцент, заступник начальника інституту. Email: boykotaras@gmail.com Шкраб Роман Романович, асистент кафедри програмного забезпечення. Email: ikni.pz@gmail.com Цитування за ДСТУ: Гавриш В. І., Лоїк В. Б., Синельніков О. Д., Бойко Т. В., Шкраб Р. Р. Математичні моделі аналізу температур­них режимів у 3D структурах із тонкими чужорідними включеннями. Науковий вісник НЛТУ України. 2018, т. 28, № 2. С. 144–149. Citation APA: Havrysh, V. I., Loik, V. B., Synelnikov, O. D., Bojko, T. V., & Shkrab, R. R. (2018). Mathematical Models of the Analysis of Temperature Regimes in 3D Structures with Thin Foreign Inclusions. Scientific Bulletin of UNFU, 28(2), 144–149. https://doi.org/10.15421/40280227 Нерівномірне нагрівання − один із факторів, що спричиняють деформації та напруження у пружних конструкціях. Якщо з підвищенням температури ніщо не перешкоджає розширенню структури, то вона деформуватиметься і жодних напружень не виникатиме. Однак, якщо в конструкції температура зростає нерівномірно і воно неоднорідне, то внаслідок розширення формуються температурні напруження. Першим і незалежним кроком для дослідження температурних напружень є визначення температурного поля, що становить основну задачу аналітичної теорії теплопровідності. В окремих випадках визначення температурних полів є самостійною технічною задачею, розв'язання якої допомагає визначити температурні напруження. Тому розроблено лінійні математичні моделі визначення температурних режимів у 3D (просторових) середовищах із локально зосередженими тонкими теплоактивними чужорідними включеннями. Класичні методи не дають змоги розв'язувати крайові задачі математичної фізики, що відповідають таким моделям, у замкнутому вигляді. З огляду на це описано спосіб, який полягає в тому, що теплофізичні параметри для неоднорідних середовищ описують за допомогою асиметричних одиничних функцій як єдине ціле для всієї системи. Внаслідок цього отримують одне диференціальне рівняння теплопровідності з узагальненими похідними і крайовими умовами тільки на межових поверхнях цих середовищ. У класичному випадку такий процес описують системою диференціальних рівнянь теплопровідності для кожного з елементів неоднорідного середовища з умовами ідеального теплового контакту на поверхнях спряження та крайовими умовами на межових поверхнях. Враховуючи зазначене вище, запропоновано спосіб, який полягає в тому, що температуру, як функцію однієї з просторових координат, на боковій поверхні включення апроксимовано кусково-лінійною функцією. Це дало змогу застосувати інтегральне перетворення Фур'є до перетвореного диференціального рівняння теплопровідності із узагальненими похідними та крайових умов. Внаслідок отримано аналітичний розв'язок для визначення температурного поля в наведених просторових середовищах з внутрішнім та наскрізним включеннями. Із використанням отриманих аналітичних розв'язків крайових задач створено обчислювальні програми, що дають змогу отримати розподіл температури та аналізувати конструкції щодо термостійкості. Як наслідок, стає можливим її підвищити і цим самим захистити від перегрівання, яке може спричинити руйнування як окремих елементів, так і конструкцій загалом.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Havrysh, V. I., O. S. Korol, I. G. Kozak, O. V. Kuspish та V. U. Maikher. "Математична модель аналізу теплообміну між двошаровою пластиною з локально зосередженим джерелом тепла та навколишнім середовищем". Scientific Bulletin of UNFU 29, № 5 (30 травня 2019): 129–33. http://dx.doi.org/10.15421/40290526.

Повний текст джерела
Анотація:
Розроблено математичну модель аналізу теплообміну між ізотропною двошаровою пластиною, яка нагрівається точковим джерелом тепла, зосередженим на поверхнях спряження шарів, і навколишнім середовищем. Для цього з використанням теорії узагальнених функцій коефіцієнт теплопровідності матеріалів шарів пластини зображено як єдине ціле для всієї системи. З огляду на це, замість двох рівнянь теплопровідності для кожного із шарів пластини та умов ідеального теплового контакту, між ними отримано одне рівняння теплопровідності в узагальнених похідних із сингулярними коефіцієнтами. Для розв'язування крайової задачі теплопровідності, що містить це рівняння та крайові умови на межових поверхнях пластини, використано інтегральне перетворення Фур'є і внаслідок отримано аналітичний розв'язок задачі в зображеннях. До цього розв'язку застосовано обернене інтегральне перетворення Фур'є, яке дало змогу отримати остаточний аналітичний розв'язок вихідної задачі. Отриманий аналітичний розв'язок подано у вигляді невласного збіжного інтегралу. За методом Сімпсона отримано числові значення цього інтегралу з певною точністю для заданих значень товщини шарів, просторових координат, питомої потужності точкового джерела тепла, коефіцієнта теплопровідності конструкційних матеріалів пластини та коефіцієнта тепловіддачі з межових поверхонь пластини. Матеріалом першого шару пластини є мідь, а другого – алюміній. Для визначення числових значень температури в наведеній конструкції, а також аналізу теплообміну між пластиною та навколишнім середовищем, зумовленим різними температурними режимами завдяки нагріванню пластини точковим джерелом тепла, зосередженим на поверхнях спряження шарів, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, що відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розробленої математичної моделі аналізу теплообміну між двошаровою пластиною з точковим джерелом тепла, зосередженим на поверхнях спряження шарів і навколишнім середовищем, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду неоднорідні середовища щодо їх термостійкості під час нагрівання. Як наслідок, стає можливим її підвищити і захистити від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kryvchyk, Liliia, Tetiana Khokhlova та Viktoriia Pinchuk. "УДОСКОНАЛЕННЯ ТЕХНОЛОГІЇ ТЕРМІЧНОЇ ОБРОБКИ ПРЕСОВОГО ІНСТРУМЕНТУ ДЛЯ ПРЕСУВАННЯ НЕРЖАВІЮЧИХ ТРУБ". Metallurgicheskaya i gornorudnaya promyshlennost, № 5-6 (27 грудня 2019): 47–56. http://dx.doi.org/10.34185/0543-5749.2019-5-6-47-56.

Повний текст джерела
Анотація:
Мета. Метою дослідження є удосконалення технології термічної обробки основного трубопресового інструмента – голки-оправки для пресування неіржавіючих труб на трубопрофільних пресах для подальшого вибору оптимальних режимів термозміцнення.Методика. Для проведення дослідження з поковок діаметром 250 мм були вирізані зразки розміром 10×10×55 мм і піддані остаточній термічній обробці в цехових умовах при різних температурних режимах загартування, відпуску і хіміко-термічної обробки. Виготовлення мікрошліфів зводилось до виконання наступних операцій: шліфування, полірування й травлення. Проведено мікроструктурний аналіз зразків і визначена твердість після різних режимів термічної обробки.Результати. Побудовані і досліджені графіки залежності твердості зразків від температури загартування, відпуску, запропонований оптимальний режим газового азотування (що підтверджено результатами замірів твердості) для отримання високих експлуатаційних властивостей трубопресового інструмента і отримання необхідного балу зерна, проведено дослідження структури азотованого шару (мікроструктурне і електронне). Результатом роботи є розробка оптимального режиму термозміцнення інструмента (голки-оправки) (загартування з двократним відпуском і послідуючим азотуванням замість традиційного режиму – загартування з трикратним відпуском), що підвищує міцність, зносо- і теплостійкість сталі шляхом утворення стійких у процесі нагрівання карбідів, нітридів, боридів і т. п. В результаті сталь здобуває високу твердість на поверхні HRC 71 – 72, що не змінюється при нагріванні до 400 – 450 °С, високу опірність зношуванню, високі границі витривалості, корозійну стійкість.Наукова новизна. Вперше науково обґрунтовано вибір більш ефективного режиму термозміцнення трубопресового інструмента (з проведенням мікроструктурних досліджень), що дозволяє його використовувати в реальних умовах виробництва неіржавіючих труб на трубних підприємствах «ПрАТ Сентравіс Продакшн Юкрейн», «ТОВ ВО Оскар» та ін.Практична цінність. Удосконалення технології термічної обробки голки-оправки (загартування з відпуском і послідуючим азотуванням замість звичайної технології – загартування з відпуском) дозволить збільшити стійкість пресового інструмента на 30 % та знизити витрати по переробці виготовлення неіржавіючих труб, а також покращити якість внутрішньої поверхні труб (відсутність плівок, порізів та інших дефектів неіржавіючих труб).
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Муратов, В. Г., В. М. Левінський, Л. А. Осипова та В. Н. Осипов. "АВТОМАТИЗАЦІЯ ПРОЦЕСІВ ПЕРЕРОБКИ ВТОРИННОЇ СИРОВИНИ ВИНОРОБСТВА". Automation of technological and business processes 10, № 4 (24 грудня 2018): 19–28. http://dx.doi.org/10.15673/atbp.v10i4.1227.

Повний текст джерела
Анотація:
В статті розглядаються результати праці над грантовим проектом ЄС № 83263440 «Розвиток українсько-молдавського транскордонного виробничо-науково-освітнього кластера з переробки вторинних продуктів виноробства». Роботи направлені на зниження собівартості виноробної продукції за рахунок комплексної переробки вторинної сировини, що дає можливість одержувати продукти, які представляють значну цінність для низки галузей народного господарства, а саме: етиловий спирт, винну кислоту, енотанин, виноградне масло, біоконцентрати вітамінів групи В, вітамін D, фуражні корми, абразивні матеріали та інші. Представлена раціональна для Одеського регіону технологічна схема переробки, яка включає нові зразки обладнання – сепаратор, дробарку, інфрачервону сушарку. Способи термообробки сировини та конструкції обладнання захищені патентами України. Згідно із запропонованими способами термообробки сушарка ИКС-1 забезпечує інфрачервоне нагрівання насіння винограду з його наступним адіабатичним охолодженням-дозріванням. Приведена конструктивна схема сушарки. Також розглядається технічна реалізація системи автоматичного керування інфрачервоною сушаркою, в середовищі Simulink програми Matlab досліджені алгоритми регулювання, що забезпечують високу точність підтримання температури насіння в процесі сушіння. Представлена модель сушарки як об’єкту керування, запропонована структура системи, яка дозволяє частково компенсувати вплив на температуру насіння зовнішніх неконтрольованих збурень. Приведені порівняльні результати моделювання систем автоматичного регулювання звичайної і підвищеної динамічної точності, які підтвердили доцільність включення в систему додаткового каналу компенсації впливу збурень. Наведені результати промислових випробувань устаткування та систем автоматизації. Виявлені раціональні параметри технологічного процесу сушіння виноградного насіння. Випробовування підтвердили заявлені характеристики розроблених систем автоматизації і устаткування.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Чжан, Чженчуань. "ХАРАКТЕРИСТИКА ПОКРИТТЯ ЗІ СРІБЛА НА ПОВЕРХНІ ОЛОВ’ЯНОЇ БРОНЗИ, СФОРМОВАНОГО МЕТОДОМ ЕЛЕКТРОІСКРОВОГО ОСАДЖЕННЯ". Bulletin of Sumy National Agrarian University. The series: Mechanization and Automation of Production Processes, № 4 (46) (7 квітня 2022): 60–66. http://dx.doi.org/10.32845/msnau.2021.4.9.

Повний текст джерела
Анотація:
Срібло як м’який матеріал використовується у конструкції підшипників, які несуть високі навантаження і високі швидкості, і має хороші характеристики змащення, механічні властивості та стійкість до корозії. Існує багато методів формування відповідного покриття, але не достатньо описаний процес нанесення Ag-покриття на поверхню олов’яно-бронзової втулки підшипника за допомогою технології електроіскрового осадження (ESD) для покращення умов експлуатації. У статті досліджене покриття, отримане на підкладці з олов’янистої бронзи, яке було сформоване в результаті ESD із застосуванням срібла як м’якого антифрикційного матеріалу. Досліджено морфологію, склад і властивості покриття. Приведено технологію формування Ag-покриття на поверхні олов’яної бронзи, яке утворене шляхом почергового електроіскрового осадження (ESD) нанесенням м’якого матеріалу срібла. Аналіз впливу осадження на масообмін, шорсткість, товщину, морфологію поверхні, елементний склад і трибологічні властивості Ag-покриття досліджували за допомогою електронних ваг, 3D-оптичних профілометрів, скануючої електронної мікроскопії (SEM), спектру енергетичної дисперсії (EDS) та трибометра. Покриття зі срібла наносили на поверхню олов’яної бронзи електроіскровим напиленням. Оптимальний параметр процесу був отриманий таким чином: напруга 60 В, робочий цикл 25%, продуктивність 1 хв/см2. За оптимальних параметрів процесу масообмін становить 25,0 мг, шорсткість поверхні Ag-покриття – 15,46 мкм, а товщина – 15 мкм. Зокрема, шар, отриманий за оптимальних параметрів процесу, зменшує поверхневі мікротріщини і має відносно гладку і щільну поверхню з хорошою цілісністю. Ag-покриття має хороший дифузійний зв’язок із підкладкою, а мікроструктура осадження компактна. Завдяки швидкому нагріванню та охолодженню поверхні підкладки за технологією ESD зерна в шарі осадження дуже щільні, витончені, рівномірно розподілені. Трибологічні властивості покриття при сухому терті показують, що менший опір демонструє Ag-покриття, нанесене з використанням м’якого антифрикційного матеріалу. Коефіцієнт поверхневого тертя стабільний після обкатки і стає стабільним протягом випробування, а мінімальний коефіцієнт тертя Ag-покриття становить приблизно 0,31 після етапу обкатки. У механізмі зношування Ag-покриття переважають пластична деформація, абразивне зношування та незначне полірування. На відносно м’якому Ag-покритті переважали пластична деформація та абразивне зношування. Срібло і мідь мають дуже хорошу «змочуваність», що сприяє покращенню ефективності дифузійного зчеплення між металами під час електростатичних розрядів. Однак ефективність застосування срібла як антифрикційного покриття потребує подальшого покращення.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Бошкова, І. Л., Н. В. Волгушева, М. Д. Потапов, Н. О. Колесниченко та О. С. Бондаренко. "Рішення завдань теплопровідності в тілі при дії двох джерел теплоти". Refrigeration Engineering and Technology 56, № 3-4 (11 січня 2021): 146–55. http://dx.doi.org/10.15673/ret.v56i3-4.1945.

Повний текст джерела
Анотація:
У роботі аналізуються математичні моделі, що представляють нагрівання тіл у мікрохвильовому електромагнітному полі з урахуванням масовіддачі, наприклад, при випаровуванні вологи. Дослідження ґрунтуються на підходах, запропонованих О.В. Ликовим, в основі яких лежить рівняння теплопровідності з урахуванням внутрішніх джерел теплоти, які можуть бути як позитивними, так і негативними. Об’ємний характер нагрівання матеріалу в мікрохвильовому полі дозволяє розглядати матеріал як середовище, у якому діють внутрішні позитивні джерела теплоти. Негативне джерело теплоти пов'язане з потоком вологи, що випарувалася. Розглядаються моделі, що описують теплопровідність у напівобмеженому масиві при граничних умовах I і III роду. Рішення моделей у неявному (диференціальному) вигляді привело до одержання залежностей для розрахунку локальних температур у тілі. Проведено аналіз розрахункових даних по розподілу вологовмісту й температури матеріалу в процесі сушіння при мікрохвильовому підведенні енергії. Представлено результати розрахунків при різних значеннях коефіцієнтів тепловіддачі, питомої потужності магнетронів, коефіцієнта температуропровідності матеріалу. Отримано відповідність розрахун­кових значень реальним фізичним процесам. У той же час виявлені області, для яких розрахунки не відповідають реальній фізичній картині. Визначені обмеження по застосовності по питомій щільності теплового потоку й коефіцієнту тепловіддачі. Аналітично досліджена середня температура тіла з безперервно діючими джерелами теплоти при граничних умовах III роду. Установлено, що для одержання достовірних даних по температурах матеріалу по аналітичним залежностям, отриманим для середньої безрозмірної надлишкової температури, потрібне виконання умови tc > t0 (температура навколишнього середовища вище температури матеріалу)
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Андрущенко М.І., к.т.н., Куликовський Р.А., к.т.н., Акритова Т.О., асп., Капустян О.Є., к.т.н., Бриков М.М., д.т.н. та Осіпов М.Ю., к.т.н. "ДОСЛІДЖЕННЯ МЕТОДІВ ТА ПРИЛАДІВ ТЕРМОМЕТРІЇ ДЛЯ ВИЗНАЧЕННЯ ТЕМПЕРАТУРИ ПОВЕРХОНЬ ТЕРТЯ ДЕТАЛЕЙ ПІД ЧАС ЗНОШУВАННЯ". Перспективні технології та прилади, № 14 (4 грудня 2019): 12–23. http://dx.doi.org/10.36910/6775-2313-5352-2019-14-2.

Повний текст джерела
Анотація:
Показано, що одним із основних параметрів, який негативно впливає на зносостійкість і здатність до самозміцнення поверхні тертя деталей в процесі зношування, є температура. Особливо це стосується матеріалів з великою кількістю в структурі метастабільного аустеніту. В залежності від хімічного складу метастабільного аустеніту негативний вплив нагрівання поверхні тертя може позначатися вже при температурах близько 100° С. Тому для обґрунтованого вибору матеріалів для виготовлення або відновлення деталей та їх структури потрібна інформація про рівень температури, яка виникає на поверхні тертя в процесі зношування. В роботі розглянуті два основні способи термометрії, які найкраще підходять для визначення температури робочих поверхонь деталей. Це контактний, за допомогою термоелектричних термометрів (термопар), та безконтактний, в якому датчиком виступає напівпровідниковий імерсійний болометр БП1-2, що працює в інфрачервоній частині спектру. Запропоновано способи, схеми та пристосування для визначення температур робочих поверхонь скребків змішувачів вогнетривкої маси та штампів для пресування вогнетривів в виробничих умовах. А також поверхонь тертя зразків при випробуваннях на стандартній установці Х4-Б та на лабораторному стенді, розробленому в ЗНТУ.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Havrysh, V. I., та Yu I. Hrytsiuk. "Аналіз температурних режимів у термочутливих шаруватих елементах цифрових пристроїв, спричинених внутрішнім нагріванням". Scientific Bulletin of UNFU 31, № 5 (25 листопада 2021): 108–12. http://dx.doi.org/10.36930/10.36930/40310517.

Повний текст джерела
Анотація:
Розроблено нелінійну математичну модель для визначення температурного поля, а в подальшому і аналізу температурних режимів у термочутливій ізотропній багатошаровій пластині, яка піддається внутрішнім тепловим навантаженням. Для цього коефіцієнт теплопровідності для шаруватої системи описано єдиним цілим за допомогою асиметричних одиничних функцій, що дає змогу розглядати крайову задачу теплопровідності з одним неоднорідним нелінійним звичайним диференціальним рівнянням теплопровідності з розривними коефіцієнтами та нелінійними крайовими умовами на межових поверхнях пластини. Введено лінеаризуючу функцію, за допомогою якої лінеаризовано вихідне нелінійне рівняння теплопровідності та нелінійні крайові умови і внаслідок отримано неоднорідне звичайне диференціальне рівняння другого порядку зі сталими коефіцієнтами відносно лінеаризуючої функції з лінійними крайовими умовами. Для розв'язування отриманої крайової задачі використано метод варіації сталих і отримано аналітичний розв'язок, який визначає запроваджену лінеаризуючу функцію. Розглянуто двошарову термочутливу пластину і, як приклад, вибрано лінійну залежність коефіцієнта теплопровідності від температури, яку часто використовують у багатьох практичних задачах. Внаслідок цього отримано аналітичні співвідношення у вигляді квадратних рівнянь для визначення розподілу температури у шарах пластини та на їх поверхні спряження. Отримано числові значення температури з певною точністю для заданих значень товщини пластини та її шарів, просторових координат, питомої потужності внутрішніх джерел тепла, опорного та температурного коефіцієнтів теплопровідності конструкційних матеріалів пластини. Матеріалом шарів пластини виступають кремній та германій. Для визначення числових значень температури в наведеній конструкції, а також аналізу теплообмінних процесів в середині шаруватої пластини, зумовлених внутрішніми тепловими навантаженнями, розроблено програмні засоби, із використанням яких виконано геометричне зображення розподілу температури залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розробленої математичної моделі аналізу теплообмінних процесів у термочутливій шаруватій пластині з внутрішнім нагріванням, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду середовища, які піддаються внутрішнім тепловим навантаженням, щодо їх термостійкості. Як наслідок, стає можливим її підвищити і захистити від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Бехта, П. А., Р. О. Козак та І. І. Кусняк. "Математичне моделювання процесу прогрівання пакета шпону, склеєного термопластичною плівкою". Scientific Bulletin of UNFU 30, № 3 (4 червня 2020): 93–98. http://dx.doi.org/10.36930/40300316.

Повний текст джерела
Анотація:
Запропоновано математичну модель процесу прогрівання пакета шпону, склеєного термопластичною плівкою поліетилену низької густини (ПЕНГ). Розроблена математична модель дає змогу визначити як температуру в заданій точці пакета шпону, так і тривалість, потрібну для нагрівання пакета шпону до заданої температури, залежно від застосовуваної сировини й режимних параметрів пресування. На підставі запропонованої математичної моделі розраховано зміну температурного поля по товщині пакета під час склеювання фанери поліетиленовою плівкою, виконано розрахунок значень тривалості прогрівання пакета шпону і встановлено залежності цього показника від витрати термопластичної плівки та температури пресування. Тривалість прогрівання пакета шпону, склеєного термопластичною плівкою, залежить від температури, за якої термопластичний полімер перейде із високоеластичного у в'язкотекучий стан. Перехід термопластичної плівки ПЕНГ у в'язкотекучий стан розпочинається за температури 125 оС і триває до 240 оС. Встановлено, що зі зростанням температури плит преса від 140 до 180 оС тривалість прогрівання середини пакета до 125 оС зменшується на 89 % за всіх досліджуваних витрат полімеру. Зміна вмісту полімеру в пакеті не чинить істотного впливу на тривалість його прогрівання. Зі збільшенням витрати термопластичної плівки від 130 до 190 г/м2 тривалість прогрівання середини пакета шпону до 125 оС збільшується неістотно, від 3,8 до 4,2 %, залежно від температури пресування. Для перевірки достовірності моделі було проведено експерименти щодо замірів температури всередині пакета шпону в процесі його пресування. Збіжність значень, отриманих експериментальним шляхом та розрахункових даних, в інтервалі до досягнення температури в центрі пакета 100 оС знаходиться в межах 88±7 %, тоді як в інтервалі від 100 до 125 оС – 78±8 %. Значення теоретичної та експериментальної залежностей є близькими, що підтверджує адекватність розробленої моделі. Математично змодельована, розрахована і проаналізована тривалість прогрівання середини пакета шпону, склеєного термопластичною плівкою, дасть змогу підвищити ефективність технології виготовлення фанери.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

KOMARCHUK, D. "Mathematical modeling of thermal processes of a double-stone press-extruder with induction heater." Energy and automation 2018, no. 3 (July 23, 2018): 75–85. http://dx.doi.org/10.31548/energiya2018.03.075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Новіков Ф. В. та Полянський В. І. "ВИЗНАЧЕННЯ УМОВ ПІДВИЩЕННЯ ЯКОСТІ МЕХАНІЧНОЇ ОБРОБКИ ЗА ТЕМПЕРАТУРНИМ КРИТЕРІЄМ". Перспективні технології та прилади, № 17 (29 грудня 2020): 99–106. http://dx.doi.org/10.36910/6775-2313-5352-2020-17-15.

Повний текст джерела
Анотація:
В роботі розглянуто питання підвищення якості механічної обробки за температурним критерієм складнопрофільної формуючої оснастки для харчової промисловості. Виконано чисельні розрахунки параметрів теплового процесу при шліфуванні, в якому припуск, що знімається, представлено набором адіабатичних стержнів, які перерізаються шліфувальним кругом. Встановлено, що час нагрівання адіабатичного стержня може бути до 10 разів менше часу його контакту з кругом при шліфуванні. Це пов'язано з тепловим насиченням поверхневого шару оброблюваної деталі. Доведено, що основна частка тепла, яка утворюється при шліфуванні, йде в стружки. Показано, що урахування перерізання адіабатичного стержня шліфувальним кругом забезпечує зменшення температури різання більш ніж в два рази. Це дозволяє по-новому підходити до вибору оптимального часу контакту шліфувального круга з оброблюваною деталлю й, відповідно, параметрів режиму шліфування та характеристик круга, виходячи з обмежень за температурою різання. Показано, що домогтися ще більшого зменшення температури різання можна в умовах лезової обробки сучасними збірними твердосплавними й керамічними ріжучими інструментами зі зносостійкими покриттям.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Іванченко, Анна В., Каріна Є. Хавікова, Дмитро О. Єлатонцев та Володимир О. Панасенко. "ДОСЛІДЖЕННЯ ПРОЦЕСУ ОЧИЩЕННЯ СТІЧНИХ ВОД КОКСОХІМІЧНОГО ВИРОБНИЦТВА ГЛАУКОНІТОВОЮ ГЛИНОЮ". Journal of Chemistry and Technologies 29, № 4 (21 січня 2022): 549–58. http://dx.doi.org/10.15421/jchemtech.v29i4.238046.

Повний текст джерела
Анотація:
Досліджено процес комплексного очищення коксохімічних стоків від фенолів, роданідів, загального амоніаку та смолистих речовин із використанням глауконітової глини. У роботі використано природний і активований глауконіт, глауконіт в поєднанні з катіонним флокулянтом марки Extraflock P 70 та активоване вугілля марки УАФ (для порівняння ефективності очищення). Активацію природного глауконіту проведено 7 %-им розчином HNO3 при температурі кипіння – 95–100 °С, співвідношенні «мінеральний сорбент:розчин кислоти» 1:6 та часі активації 5 год. Встановлено, що кислотна активація призводить до зміни хімічного складу глауконіту та збільшенню питомої поверхні з 32 м2/г до 128 м2/г. За результатами термічного аналізу природного глауконіту зроблено висновок про фазові перетворення та хімічні реакції, які протікають у глауконітовій глині при нагріванні або охолодженні, по термічним ефектам, що супроводжують ці зміни та отримати якісну характеристику мінералу глауконіту. Встановлено, що максимальний ступінь очищення фенолів із промислових стоків становить до 50 % і досягається при використанні глауконіту в поєднанні з флокулянтом. Максимальний ступінь очищення від загального амоніаку складає 57–58 % при застосуванні активованого глауконіту та глауконіту з флокулянтом. Найменший ступінь очищення досягається при вилученні роданідів, що не перевищує 20 % для будь-якого адсорбенту. Найбільший ступінь очищення 96.8 % спостерігається при видаленні смолистих речовин глауконітом в поєднанні з флокулянтом. Активація глауконіту HNO3 призводить до збільшення сорбційної ємності на 5–15 % в залежності від полютанта. Ступінь очищення коксохімічних стоків від наведених полютантів активованим вугіллям складає 20 % від фенолів, 14 % від роданідів, 28 % від загального амоніаку та 72 % від смолистих речовин, відповідно. Отже, в промисловій практиці рекомендовано використовувати для комплексної переробки стоків глауконіт концентрацією 2 г/дм3 в поєднанні з 0,1 % розчином катіонного флокулянту об’ємом 30 см3/дм3 за тривалості обробки стоків 20–120 хв.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Fialko, N. M., G. O. Gnedash, R. O. Navrodska, S. I. Shevchuk та G. O. Sbrodova. "Удосконалення технічних рішень теплоутилізаційного устаткування котелень". Scientific Bulletin of UNFU 29, № 7 (26 вересня 2019): 120–23. http://dx.doi.org/10.15421/40290724.

Повний текст джерела
Анотація:
Наведено результати досліджень щодо застосування в конденсаційних водогрійних теплоутилізаторах систем глибокої утилізації теплоти відхідних газів котельних установок пучків оребрених біметалевих труб певної конфігурації, а саме: з інтенсифікаторами (турбулізаторами) теплообміну всередині сталевих труб та з зовнішнім алюмінієвим оребренням. При цьому димові гази омивають оребрену поверхню, а рух нагріваної води здійснюється усередині труб. Використання таких труб дає змогу посилити теплообмін на внутрішній частині труб, що особливо важливо для конденсаційної зони теплоутилізатора, де відбувається інтенсифікація теплообміну, і з боку димових газів в разі їх охолодження нижче температури точки роси водяної пари та її конденсації. Для конденсаційної зони трубного пучка визначали раціональні геометричні параметри сталевих труб і турбулізаторів потоку на їхній внутрішній поверхні за умови рівності термічних опорів з боку димових газів і води. За результатами виконаних досліджень визначено оптимальні співвідношення параметрів сталевої труби і турбулізаторів потоку, що забезпечують значну інтенсифікацію теплообміну за відносно помірного росту аеродинамічного опору. Показано, що застосування пропонованих труб поліпшує також теплообмін і шляхом уповільнення процесу накипоутворення за рахунок турбулізації пристінного шару нагріваної води. Так відносне зменшення товщини відкладень для труб з турбулізаторами потоку порівняно з гладкими трубами зростає з часом і в деяких режимах перевищує значення 2.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Безбах, Ігор Віталійович, та Сергій Володимирович Шишов. "Експериментальне моделювання теплообміну в апараті з ротаційним шнековим термосифоном". Scientific Works 84, № 1 (14 грудня 2020): 67–72. http://dx.doi.org/10.15673/swonaft.v84i1.1872.

Повний текст джерела
Анотація:
Представлено результати експериментальних досліджень процесу теплообміну в апараті з ротаційним шнековим термосифоном. Проведено аналіз роботи роторних теплообмінників для термообробки сировини, апаратів на базі теплових труб, що обертаються. Виявлені достоїнства й недоліки обладнання. Пропонується для термообробки харчових рідин використовувати апарати на базі ротаційних термосифонів. З точки зору надійності ці апарати більш ефективні, так як є автономними конструкціями. Поверхня термосифону, що обертається дозволяє реалізувати локальний енергетичний вплив безпосередньо на прикордонний тепловий шар в продукті. Показано, що доцільним є проведення дослідження процесів теплообміну в таких апаратах. Розроблено експериментальні стенди і методики досліджень. Розроблено експериментальну установку для моделювання руху конденсату всередині конденсатора шнекового ротаційного термосифону. Розроблено експериментальну установку для дослідження процесу теплообміну в системі «термосифон-продукт». Проведено моделювання внутрішньої і зовнішньої задачі теплообміну для шнекового ротаційного термосифону. Зовнішня задача враховує гідродинаміку і тепломасообмін при обтіканні конденсатора термосифона продуктом, внутрішня задача – гідродинаміку руху конденсату всередині конденсатора. Застосування шнекового конденсатора дає ряд переваг – одночасне перемішування, нагрівання, транспортування продукту. Також, на відміну від розгалуженого конденсатора, в шнековому не відбувається запирання конденсату під дією відцентрової сили. Проведені дослідження по моделюванню гідродинаміки показали, що для шнекового термосифону повернення конденсату в випарник, внутрішній теплообмін буде найбільш ефективним при кутах нахилу конденсатора 37...45 град. Виявлено, що кут нахилу ротаційного термосифону впливає на динаміку розігріву продукту. Чим більше кут нахилу, тим швидше розігрівається продукт. Це пов'язано з ефективним поверненням конденсату і зменшенням термічного опору. Отримані результати будуть використані для розробки методів розрахунку і оптимізації апаратів на базі ротаційних термосифонів.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Gudz, G. S., M. I. Herys, I. Ia Zakhara та M. M. Ostashuk. "Ймовірнісна модель показників деформування колінчастих валів унаслідок відновлення їхніх шийок наплавленням". Scientific Bulletin of UNFU 29, № 5 (30 травня 2019): 93–96. http://dx.doi.org/10.15421/40290518.

Повний текст джерела
Анотація:
Для відновлення ресурсу колінчастих валів автомобільних двигунів широко застосовують різні способи наплавлення їхніх шийок. Встановлено, що найкращі результати за твердістю наплавленого матеріалу в разі відновлення колінчастих валів, без застосування термічного оброблення, отримують під час наплавлення пружинним дротом під флюсом АН 348А за легування металу вуглецем та хромом через флюс. Виявлено, що під час наплавлення деталі під флюсом відбувається значне нагрівання наплавлених ділянок, яке поширюється також на ділянки, що не піддаються наплавленню. Цьому сприяють лінійні та об'ємні розширення нагрітих ділянок деталі, осадження затвердлого розплавленого металу та перебіг структурних змін і перетворень у ньому. Як з'ясувалося, це супроводжується появою у наплавленому та основному металі розтягувальних або стискувальних напружень, під дією яких змінюється початкова геометрична форма деталі, тобто вона деформується. Встановлено, що деформування деталі може виникнути також і від згину, перекосу або її скручування у затискному пристрої, від надмірного стиснення у центрах верстату або від теплового видовження у процесі наплавлення тощо. У випадку невеликих величин деформування правлення колінчастих валів після наплавлення не обов'язкове, оскільки їхня співвісність за корінними шийками може бути досягнута в процесі механічного оброблення. Для цього необхідно спочатку шліфувати всі шатунні шийки й в останню чергу – корінні. За величин деформувань, більших від допустимих, деталі піддають правленню або утилізуванню. Для оцінки впливу на величину деформування колінчастих валів двигунів ЗМЗ 511.10 після їхнього відновлення наплавленням і подальшого шліфування побудовано ймовірнісну модель. На основі статистичного опрацювання результатів досліджень встановлено закономірності зміни випадкової величини (деформувань) за допомогою побудови емпіричного розподілу і кривої теоретичного розподілу, які підпорядковуються нормальному закону (Крива Гауса). Перевірка узгодження теоретичного та емпіричного розподілів за критерієм Пірсона показала задовільний збіг.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Bernyk, Iryna, and Ivan Kots. "Selection of the algorithm of the management of the barotermic processing of food raw material in the thermal camera with aerodynamic heating." FOOD RESOURCES 7, no. 13 (November 25, 2019): 14–22. http://dx.doi.org/10.31073/foodresources2019-13-01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Голубков, П., Д. Путников та В. Егоров. "ВИКОРИСТАННЯ ACTIVEX ТЕХНОЛОГІЙ ПРИ КОНВЕРТАЦІЇ СИСТЕМИ АВТОМАТИЧНОГО РЕГУЛЮВАННЯ НАГРІВАННЯМ ПЕЛЬМЕННОЇ ПРОДУКЦІЇ З СЕРЕДОВИЩА МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ MATLAB SIMULINK У СЕРЕДУ РОЗРОБКИ ДОДАТКІВ LABVIEW". Automation of technological and business processes 11, № 3 (11 листопада 2019): 80–83. http://dx.doi.org/10.15673/atbp.v11i3.1505.

Повний текст джерела
Анотація:
В статті розглядається створення керуючої програми процесом автоматичного нагрівання тіста пельменного продукту кубічної форми. Аналіз роботи підсистем регулювання температури в апараті здійснювалось на повній імітаційній моделі об’єкту керування та діючих на нього збурень. В ході апріорного аналізу особливостей реалізації системи автоматичного керування процесу функції регулювання відзначався високий рівень невизначеності динамічних властивостей каналів управління, і, перш за все, підсистеми регулювання температури нагріву пельменного продукту. Це вимагає підвищення якості реалізації функції регулювання. Воно повинно йти в напрямку підвищення запасу стійкості підсистеми регулювання температури, яке забезпечить стабілізацію динамічної точності регулювання в умовах змінних властивостей об’єкту керування, тобто в напрямку підвищення рівня точності роботи підсистеми. При розробці моделі системи керування виникла проблема створення на базі цієї ж моделі керуючої програми для промислового контролера та інтерфейсу керування, а також можливість роботи в декількох, абсолютно різних програмних продуктах. Подібні питання можуть виникнути при створенні програмного забезпечення для вирішення поставлених завдань. На поточний момент ми можемо варіювати і підбирати відповідно до тих чи інших вимог програмне забезпечення з різними можливостями системи автоматичного проектування. За допомогою ActiveX технологій створена модель була конвертована в середовище розробки програм LabView для подальшого створення керуючої програми. Що вирішило запитання з впровадженням технологічного рішення інженерних задач і їх використання для автоматизації виробництва при моделюванні процесів. Система була промодельована з тими ж параметрами що і в Matlab, та результати моделювання, які є адекватні оригінальній моделі, приведені в статті.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Нечипуренко, Павло Павлович. "Деякі аспекти імітації реальних хімічних процесів та систем у віртуальних хімічних лабораторіях". Theory and methods of e-learning 3 (11 лютого 2014): 238–44. http://dx.doi.org/10.55056/e-learn.v3i1.344.

Повний текст джерела
Анотація:
Перехід сучасного суспільства до інформаційної епохи свого розвитку висуває як одне з основних завдань, що стоять перед системою освіти, завдання формування основ інформаційної культури майбутнього фахівця. Процеси модернізації та профілізації вітчизняної шкільної освіти так само, як і модернізації вищої освіти (участь у створенні єдиного європейського простору, впровадження дистанційної освіти тощо) ведуться на базі інформаційно-комунікаційних технологій навчання. Метою даної статті є обговорення ролі сучасних комп’ютерних моделей у навчанні хімії, та проблеми якості відображення реальних хімічних процесів у комп’ютерних моделях, якими є віртуальні хімічні лабораторії.Дидактична роль нових інформаційних технологій полягає, перш за все, в активізації пізнавальної діяльності і творчого потенціалу учнів [5]. Необхідно створювати умови, аби учень став активним учасником навчального процесу, а вчитель був організатором пізнавальної діяльності учня. Адже вивчення будь-якої навчальної дисципліни – не мета, а засіб розвитку особистості. Ефективність застосування комп’ютерів у навчальному процесі залежить від багатьох чинників, у тому числі й від рівня самої техніки, від якості навчальних програм і від методики навчання, що застосовується вчителем. Більшість педагогів переконані в тому, що комп’ютер є потужним засобом для творчого розвитку дітей, дозволяє звільнитися від багатьох рутинних видів роботи і розробити нові ідеї в методиці навчання, дає можливість вирішувати більш цікаві і складні проблеми [5].Будь-який ілюстративний матеріал (мультимедійні й інтерактивні моделі в тому числі) значно розширюють можливості навчання, роблять зміст навчального матеріалу більш наочним, зрозумілим, цікавим. Не можна скидати з рахунків і психологічний чинник: сучасному учневі чи студенту набагато цікавіше сприймати інформацію саме в інтерактивній формі, ніж за допомогою застарілих схем і таблиць. Використання комп’ютерних моделей, комп’ютерних засобів візуалізації значно підвищує ефективність засвоєння матеріалу[5].Сучасні школярі, які здебільшого є представниками «покоління відеоігор», орієнтовані на сприйняття високоінтерактивного, мультимедіа насиченого навчального середовища. Згаданим вище вимогам якнайкраще відповідають освітні програми, що моделюють об’єкти і процеси реального світу і системи віртуальної реальності. Прикладом таких навчальних систем є віртуальні лабораторії, які можуть моделювати поведінку об’єктів реального світу в комп’ютерному освітньому середовищі і допомагають учням опановувати нові знання й уміння в науково-природничих дисциплінах, таких як хімія, фізика і біологія [3].Хімія – наука експериментальна, її завжди викладають, супроводжуючи демонстраційним експериментом. Ні для кого не є секретом, що матеріальний стан більшості шкіл в Україні є, м’яко кажучи, неідеальним. Дуже часто для демонстрації хімічного досліду не вистачає необхідних реактивів чи обладнання, тому доводиться обходитись теоретичним розглядом лабораторної роботи або проводити один дослід на весь клас. У такому випадку на допомогу вчителеві приходять саме спеціалізовані комп’ютерні програми, на кшталт віртуальних хімічних лабораторій, що дозволяють провести (саме провести, а не спостерігати) дослід у наближених до реальності умовах. Також, наприклад, при вивченні токсичних речовин, зокрема галогенів, віртуальне середовище надає можливість проводити хімічний експеримент без ризику для здоров’я учнів [4].На даний момент розроблена велика кількість навчальних програм для шкільного курсу хімії. Жодна з цих програм не є досконалою, проте сам факт їх створення свідчить про те, що в них існує потреба і вони мають безперечну цінність. Для того, щоб у дитини виник інтерес до співпраці з комп’ютером і в процесі цієї спільної творчості стійка пізнавальна мотивація до вирішення освітніх, дослідницьких завдань, необхідне створення таких умов, при яких учень стає безпосереднім учасником подій, що розвиваються на екрані монітора, тобто умов для повноцінного діяльнісного підходу до навчання.Умова успішного застосування комп’ютерних моделей в освітньому процесі сучасної школи закладена в добре відомих принципах педагогіки співпраці, які можна перефразовувати так: «не до комп’ютера за готовими знаннями, а разом з комп’ютером за новими знаннями» [3].Головна перевага віртуальних хімічних лабораторій полягає в тому, що віртуальні хімічні експерименти безпечні навіть для непідготовлених користувачів. Учні можуть також проводити такі досліди, виконання яких в реальній лабораторії може бути небезпечне або коштує надто дорого. Звичайно, за допомогою віртуальних дослідів не можна опанувати навички реального хімічного експерименту, але віртуальні досліди можуть застосовуватися, наприклад, для ознайомлення учнів з технікою виконання експериментів, хімічним посудом і устаткуванням перед безпосередньою роботою в лабораторії. Це дозволяє учням краще підготуватися до проведення цих або подібних дослідів в реальній хімічній лабораторії. Також проведення віртуальних експериментів допомагає учням та студентам засвоїти навички запису спостережень, складання звітів та інтерпретації даних в лабораторному журналі. Іще слід наголосити на тому, що комп’ютерні моделі хімічної лабораторії за певних умов можуть спонукати учнів експериментувати і отримувати задоволення від власних відкриттів [3].За способом візуалізації розрізняються лабораторії, в яких використовується двовимірна, тривимірна графіка і анімація. Крім того, віртуальні лабораторії можна поділити на дві категорії залежно від способу представлення знань у предметній області. Віртуальні лабораторії, в яких представлення знань у предметній області засновано на окремих фактах, обмежені набором заздалегідь запрограмованих експериментів. Цей підхід використовується при розробці більшості сучасних віртуальних лабораторій. В таких програмах змінити умови проведення експерименту і одержати якісь інші результати неможливо. Інший підхід дозволяє учням проводити будь-які експерименти, не обмежуючись заздалегідь підготовленим набором результатів. Це досягається за допомогою використання математичних моделей, що дозволяють визначити результат будь-якого експерименту і відповідний візуальний супровід. На жаль, подібні моделі поки що можливі тільки для обмеженого набору дослідів [3]. Переваги і недоліки вищезгаданих програмних продуктів достатньо повно були висвітлені Т. М. Деркач, яка, до речі, пропонує використовувати термін «імітаційні хімічні лабораторії» [1; 2].Суттєвою перевагою таких віртуальних лабораторій як ChemLab (виробник: Model Science Software), Croсоdile Chemistry (Crocodile Clips Ltd), Virtual Lab (The ChemCollective) є можливість активного втручання учня у хід роботи, а не пасивне спостерігання за відеофрагментом чи анімацією, що запрограмовані заздалегідь. При виконанні лабораторної роботи за допомогою вищезгаданих програм учень може повторити її безліч разів, при цьому щоразу змінюючи один чи декілька параметрів на власний вибір. В більшості випадків (якщо дії учня не суперечать логіці і можливі для виконання і у реальній лабораторії) учень отримає правильні результати, що лише підкреслить ті закономірності, виявлення яких і було метою роботи. Скажімо у лабораторній роботі «Гравіметричне визначення хлорид-йонів» («Gravimetric Analysis of Chloride») у віртуальній лабораторії ChemLab учень чи студент може замість запропонованих в інструкції 5 г речовини, що містить хлорид-йони, взяти 3, чи 6, чи 10 г її. Але в кожному випадку він отримає і відповідну масу осаду арґентум хлориду, за якою, при виконанні обчислень, прийде до одних і тих самих результатів і висновків.Подібний підхід, коли учень може проявити власну ініціативу при виконанні роботи, дуже позитивно відбивається і на навчальних досягненнях і на зацікавленості учнів. Але разом з ініціативою учні можуть також підключити і власну фантазію – спробувати виконати такі дії, які не були передбачені сценарієм проведення даної роботи (наприклад, нагріти розчин до кипіння, або навпаки охолодити його до температури замерзання) просто із цікавості, тим більше, що у ChemLab можна використовувати обладнання, застосування якого не передбачалось сценарієм виконання роботи. Результати таких незапланованих дій можуть переноситись учнями і на відповідні об’єкти та процеси реального світу, а тому до віртуальних лабораторій завжди висувалась жорстка вимога суворої відповідності віртуальних об’єктів та процесів реальним об’єктам і процесам.Тут доводиться констатувати протиріччя, яке існує в середовищі користувачів віртуальних хімічних лабораторій: методистів, розробників, вчителів, учнів тощо. Справа в тому, що немає і, мабуть, не може бути єдиної думки з приводу того, наскільки повно віртуальні процеси повинні відтворювати об’єктивну реальність. З одного боку, чим більше віртуальний світ схожий на реальний, тим нібито краще – в такому випадку навчання хімії за допомогою віртуальних комп’ютерних лабораторій виходить на якісно новий, більш високий рівень, з’являється набагато більше можливостей і форм застосування навчальних лабораторій у навчанні хімії, зникають передумови для одержання хибних висновків при їх використанні. Але, з іншого боку, врахування найменших дрібниць і максимальної кількості можливих варіантів розвитку подій неминуче призведе до значного ускладнення комп’ютерних програм, суттєвого збільшення баз даних і, як наслідок, подорожчання та подовження часу на розробку відповідних програмних продуктів, та, скоріш за все, суттєво ускладнить використання таких програм людьми без спеціальної підготовки. Не кажучи вже про те, що передбачити всі можливі варіанти дій користувача у віртуальній лабораторії просто неможливо.Інша точка зору полягає в тому, що віртуальні хімічні лабораторії в першу чергу є моделями, тобто системами, що відтворюють, імітують, відображають принципи внутрішньої організації або функціонування, певні властивості, ознаки чи характеристики об’єкта дослідження (оригіналу). Модель завжди є спрощеною версією модельованого об’єкта або явища (прототипу), що в достатній мірі повторює властивості, суттєві для цілей конкретного моделювання (опускаючи несуттєві властивості, в яких вона може відрізнятися від прототипу).Подібне визначення поняття «модель» фактично означає, що такі програми як віртуальні хімічні лабораторії, не повинні перевантажуватись «зайвими дрібницями» – несуттєвими для виконання певної роботи чи досліду зовнішніми ознаками, фактами і процесами. Окрім того, так само як викладач не залишить без догляду учнів у реальній лабораторії, так і викладач, що застосовує віртуальну лабораторію на занятті, повинен бути постійно поруч з учнями, надаючи їм відповідних порад або роз’яснюючи результати спостережень, що викликали питання або сумніви. Таким чином, можна попередити формування в учнів хибних уявлень, неправильних висновків тощо.У представників обох точок зору є свої аргументи. Наприклад, при виконанні стандартної лабораторної роботи в середовищі програми ChemLab «Фракційне розділення солей» («Fractional Crystallization»), сутність якої полягає в тому, що учневі пропонується розділити суміш солей (натрій хлориду та калій дихромату), використовуючи їх різну розчинність у воді за різних температур. Подібні процеси досить поширені як в промисловості (виробництво калійних добрив), так і в лабораторії (перекристалізація солей з метою їх очищення), хоча і в більш складному вигляді. Хід роботи включає в себе такі стадії: відбір наважок солей певної маси; їх розчинення у воді кімнатної температури; нагрівання розчину до повного розчинення калій дихромату; охолодження розчину до 0оС; відділення осаду калій дихромату; зважування калій дихромату, що випав в осад, та відповідні розрахунки.Якщо прискіпливо проаналізувати дану роботу, в ній можна знайти ряд неточностей або спрощень:1) при розчиненні калій дихромату у воді розчин залишається безбарвним;2) відсутній тепловий ефект при розчиненні обох солей;3) не враховано взаємний вплив солей на їх розчинність;4) розчин солей при охолодженні до температури замерзання не кристалізується;5) температура кипіння розчину солей дорівнює температурі кипіння ізомолярного з ним розчину будь-якого неелектроліту;6) зважування одержаного калій дихромату можна провести з високою точністю без попереднього промивання і висушування;7) відсутність допоміжного лабораторного обладнання (штативів, тримачів, шпателів, вакуум-насосу тощо) та можливість відбору наважок речовин без використання терезів.Подібні неточності можна знайти і у всіх інших лабораторних роботах програми ChemLab, але в більшості випадків ці неточності неочевидні, і, найголовніше, не відбиваються ані на одержанні результатів експерименту, ані на їх інтерпретації.Крім того, застосовуючи інструментарій майстра LabWіzard, що дозволяє користувачу створювати власні лабораторні роботи у ChemLab, певну кількість подібних невідповідностей можна заздалегідь передбачити й усунути у створених власноруч лабораторних проектах.[2; 4]Викладач, що використовує віртуальні хімічні лабораторії, обов’язково повинен наголосити на тому, що у віртуальній хімічній лабораторії присутні певні спрощення та невідповідності з об’єктивною реальністю. У групі учнів, що мають високий рівень знань і хімічного мислення, можна навіть побудувати роботу на тому, щоб знайти і обговорити подібні неточності. Наприклад, в рамках курсу «Комп’ютерне моделювання хімічних процесів», що викладається на ІІІ курсі спеціальності «Хімія» у Криворізькому педагогічному інституті, при розгляді особливостей віртуальної лабораторії ChemLab перед студентами була поставлена задача обґрунтовано довести наближений характер розрахунку температури початку кипіння розчину натрій хлориду у даній програмі (в межах лабораторної роботи «Fractional Crystallization»). Студенти на основі другого закону РауляΔtкип=kеб*b – для розчинів речовин-неелектролітів (1)Δtкип=i*kеб*b – для розчинів речовин-електролітів; (2)де kеб – ебуліоскопічна константа розчинника, b – моляльна концентрація розчиненої речовини (моль/кг), і – ізотонічний коефіцієнт, обчислювали температуру початку кипіння для розчину натрій хлориду тієї концентрації, яку вони самі створили у віртуальній хімічній лабораторії. Далі утворений віртуальний розчин нагрівали до кипіння і зазначали температуру початку кипіння. Вона збігалась із розрахованою за формулою (1), тобто без урахування ізотонічного коефіцієнту, який для розчину натрій хлориду повинен наближатись до 2. Значить реальна Δtкип розчину майже вдвічі повинна була б перевищувати Δtкип розчину у віртуальній лабораторії. Висновок зроблений студентами: в даній лабораторній роботі з метою спрощення не враховувався процес іонізації солі, оскільки для моделювання процесів розчинення солей за різних температур він особливого значення не має.Подібний недолік комп’ютерної програми може створити незручності з одного боку, але може бути перевагою з іншого: на основі розгляду подібних фактів можна в цікавій і нестандартній формі залучити групу студентів до повторення навчального матеріалу з різних розділів хімії та розв’язку розрахункових задач.Таким чином, можна зробити висновок про те, що віртуальні хімічні лабораторії є безумовно ефективним інструментом в руках вчителя або викладача хімії. Кожна з віртуальних хімічних лабораторій є моделлю, що описує реальні явища і процеси, а тому неминуче містить ряд спрощень і неточностей, як в плані графічного відображення об’єктів, так і в плані причинно-наслідкових зв’язків між діями користувача та їх результатами у віртуальному середовищі. Головною метою проведення дослідів у віртуальних комп’ютерних лабораторіях є усвідомлення самої сутності явища, що вивчається, його головних закономірностей, а недосконалість візуальних чи інших ефектів має другорядне значення. Подальший розвиток і вдосконалення віртуальних хімічних лабораторій, скоріш за все, буде відбуватись у напрямку збалансування простоти представлення моделі та максимальної її реалістичності.Враховуючи все, сказане вище, можна з упевненістю сказати, що розробка і впровадження віртуальних хімічних лабораторій залишається одним з пріоритетних напрямків у процесі вдосконалення навчання хімії у середній та вищій школі.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Шульга, Оксана Сергіївна, Сергій Олександрович Іванов, Володимир Васильович Листопад та Олександр Григорович Мазуренко. "ДОСЛІДЖЕННЯ ТЕПЛОФІЗИЧНИХ ХАРАКТЕРИСТИК ФОРМУВАЛЬНОГО РОЗЧИНУ БІОДЕГРАДАБЕЛЬНОГО ЇСТІВНОГО ПОКРИТТЯ/ПЛІВКИ". Scientific Works 82, № 2 (15 лютого 2019): 47–55. http://dx.doi.org/10.15673/swonaft.v82i2.1169.

Повний текст джерела
Анотація:
Їстівні покриття і плівки – вид біодеградабельної полімерної упаковки, яка не потребує індивідуального збору та особливих умов утилізації. Активне використання біоупаковки дозволить значно скоротити екологічне навантаження на довкілля. Дослідження залежності питомої теплоти випаровування вологи від вмісту вологи у матеріалі їстівного покриття, а також масової теплоємності матеріалу цього покриття від температури, проводили з використанням спеціалізованого калориметричного приладу ДКМИ-01, який розроблено в Інституті технічної теплофізики НАН України. Встановлено, що питома теплота випаровування вологи обох зразків значно перебільшує питому теплоту випаровування води rв = 2430,5 кДж/кг за температури 30 ºС, що підтверджує, що вся волога наявна у зразках є зв’язаною. Відповідно до отриманих експериментальних результатів теплоємність зразка без ПВС має більші значення (3598,89-3830,69 Дж/кг∙К за умови нагрівання зразка від 32,5 до 92,5 оС), що обумовлено властивістю матеріалу. За допомогою термічного аналізу встановлено, що більше механічно-та адсорбційно-зв’язаної вологи містить зразок з ПВС за рахунок водневих зав’язків, які утворюють полімолекулярний шар адсорбційно-зв’язаної вологи. ПВС дозволяє створювати екологічно безпечні матеріали, які мають відмінні показники якості. Встановлена закомірність буде впливати на тривалість висушування їстівного покриття з на поверхні виробів, що вимагатиме використання додаткового обладнання з метою інтенсифікації процесу або додаткових виробничих площ. Встановлено, що найкращою для прогнозування зразка без ПВС є степенева модель ŷ = 2937,76∙х0,054∙х, а за наявності ПВС – ŷ = 3455,23∙е0,001∙х. Отримані математичні моделі дозволяють раціоналізувати технологічні розрахунки у виробничих умовах.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Князев, Сергей. "Визначення складу пасти для формування зміцнених шарів на сталі мартенситного класу шляхом комбінованої обробки". Науковий жарнал «Технічний сервіс агропромислового лісового та транспортного комплексів», № 21 (18 лютого 2021): 229–34. http://dx.doi.org/10.37700/ts.2020.21.229-234.

Повний текст джерела
Анотація:
Проблематика підвищення зносостійкості потребує нових матеріалознавчих підходів до вирішення питань поверхневого зміцнення. Нержавіючі сталі мартенситного класу мають високі антикорозійні властивості і характеристики міцності, однак слабко протидіють абразивному і ерозійному зношуванню. Існуючі методи хіміко-термічного зміцнення вже не відповідають експлутаційно-економічним показникам. Застосування комбінованої методики зміцнення яка поєднує борування та швидкісний нагріву струмами високої частоти дозволяє інтенсифікувати дифузійні процеси. Такій підхід дозволяють отримати порівняно товсті зміцнені шари та отримати структуру зміцненого шару з принципово новою морфологією. В результаті обробки сталі мартенситного класу отримано шари товщиною 25 – 240 мкм з проміжним загартованим шаром між дифузійною зоною та основним металом. Така архітектура зміцненого шару дозволяє ефективніше протидіяти продавлюванню, абразивному, ерозійному та кавітаційному зношуванню. Основними структурами у борованому шарі є бориди типу Fe2B, карбобориди, які розташовані у твердому розчині бору у залізі та легуючих елементів. Мікротвердість борованого шару перевищує 10000 МПа. Мікротвердість загартованого шару сягає значень 8000 МПа, що відповідає мікротвердості безструктурного мартенситу. Перехід від дифузійного шару до основної структури відбувається через структуру гартування, яка була сформована під дією швидкісного нагрівання СВЧ, і достатньо швидкісним тепловідводом вглиб металу. Показано, що дрібні зерна матричного матеріалу, які утворились на границі поділу, утворюються внаслідок активного проникнення атомів бору по границям субструктури і формуванням нових границь структури. Ключові слова: борований шар, мікротвердість, загартований шар, карбід бору, струми високої частоти.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Федотов, В. Г., та О. І. Міхеєв. "ВПЛИВ ЕЛЕКТРИЧНО АКТИВНИХ ДЕФЕКТІВ НА ТЕРМОСТИМУЛЬОВАНІ СТРУМИ В КРИСТАЛАХ ДИФОСФІДУ ЦИНКУ". Vodnij transport, № 1(32) (27 січня 2021): 128–33. http://dx.doi.org/10.33298/2226-8553.2021.1.32.13.

Повний текст джерела
Анотація:
У статті проведено дослідження щодо впливу електрично активних дефектів на термостимульовані струми в кристалах дифосфіду цинку. Відомо, що зростання електропровідності у напівпровідникових матеріалах відбувається двома шляхами: за рахунок підвищення їх температури, а також через зріст кількісті домішок та дефектів у кристалах цих матеріалів. З цієї точки зору до перспективних напівпровідникових матеріалів можна віднести кристали дифосфіду цинку та кадмію. У нашому випадку у якості об’єкту дослідження були обрані кристали α - ZnP2. У тетрагональних кристалах дифосфіду цинку, які були вирощені методом сублімації у двох температурній печі, виявлені електрично активні дефекти, що обумовлюють появу релаксаційних струмів короткого замикання у процесі нагріву. Спонтанна поляризація, що генерує термостимульовані струми короткого замикання, викликана порушеннями динамічної рівноваги в електронній та гратковій підсистемах кристалу α - ZnP2. Наведено, що динамічна рівновага між електронною та гратковою пілсистемами визначає характер змін властивостей напівпровідникових кристалів. У свою чергу, зміна ж швидкості у процесах нагрівання безсумнівно приводитимо до порушення динамічної рівноваги між цими підсистемами та, отже, і до появи термостимульованих струмів. У ході дослідження виявлена здатність цих кристалів утворювати спонтанну поляризацію, яка приводить до появи термостимульованих струмів короткого замикання у напрямку (001). Це явище обумовлено не фазовими температурними переходами, як уявлялося раніше, а, найімовірніше, у результаті домішкових викривлень кристалічної гратки при її нагріві, які призводять до порушення динамічної рівноваги у електронній та гратковій підсистемах кристалу за рахунок появи електрично активних дефектів. Ключові слова: пониженні симетричні кристали, електрично активні дефекти, термостимульовані струми.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Balanyuk, V., O. Garasimyuk, Y. Kopystynsky та A. Grynova. "ПЕРСПЕКТИВИ ВИКОРИСТАННЯ ВОГНЕГАСНОГО АЕРОЗОЛЮ НА ОСНОВІ НЕОРГАНІЧНИХ СОЛЕЙ КАЛІЮ ДЛЯ ЕКРАНУВАННЯ ТЕПЛОВОГО ВИПРОМІНЮВАННЯ НА ПОЖЕЖАХ". Fire Safety 39 (29 грудня 2022): 56–62. http://dx.doi.org/10.32447/20786662.39.2021.07.

Повний текст джерела
Анотація:
Вступ. Виходячи з аналізу кількості пожеж горючих рідин в резервуарах в світі, 50% з них гасять досить швидко, 25% переходять в затяжні, а 25% взагалі не гасяться та ліквідовуються після згоряння всієї горючої рідини. Зважаючи на це, відкритим залишається питання не лише ефективності гасіння, а й обмеження поширення пожежі внаслідок теплового випромінювання. Особливої актуальності це питання набуває за умови необхідності екранування теплового випромінювання в умовах виникнення пожежі в важкодоступному місці, зокрема, обмеженому об’ємі кабельного тунелю, будівлі значної висоти або глибини, або неможливості перебування безпосередньо біля стволів особового складу внаслідок хімічного або радіаційного забруднення, або в інших несприятливих умовах. Застосування вогнегасного аерозолю дозволить ефективно екранувати від теплового випромінювання поверхні та обмежувати поширення пожежі внаслідок неможливості нагрівання горючих матеріалів навколо вогнища.Метою роботи є встановлення можливості використання вогнегасного аерозолю на основі неорганічних солей калію для створення екрануючих завіс, як способу захисту об’єктів від теплового випромінювання значних потужностей (більше 10 кВт/м2) на пожежах.Методи дослідження. Для досягнення поставленої мети та задач дослідження було використано теоретичні методи дослідження, що включали аналіз пожеж та фізико-хімічних характеристик водяних завіс, узагальнення отриманих результатів дослідження з подальшою їх систематизацією для досягнення поставленої мети дослідження.Основні результати роботи. Встановлено, що вогнегасний аерозоль на основі неорганічних солей калію може ефективно поглинати та екранувати теплове випромінювання. При цьому протікають різні процеси – що забезпечують рух та перемішування вогнегасного аерозолю, а також процеси, котрі відбуваються з самими частинками – їх розкладання з утворенням додаткової кількості газів – СО2, N2, H2O (пара), які також здатні активно поглинати теплове випромінювання. Визначено що вогнегасний аерозоль, завдяки тому, що розміри переважної більшості частинок аерозолю менші за 1 мкм, здатний найбільш ефективно поглинати інфрачервоне випромінювання.Висновки. В роботі обґрунтовано використання вогнегасного аерозолю на основі неорганічних солей калію з метою поглинання та створення екрануючих завіс, як способу захисту об’єктів від теплового випромінювання значних потужностей. Обґрунтовано, що вогнегасний аерозоль здатний створювати стійкі (до 40 хв) в часі завіси, які можуть ефективно поглинати потужне теплове випромінювання. Теоретично обґрунтовано, що розсіювання, відбивання та поглинання теплового потоку на різних частотах є основними чинниками, які забезпечують екранування від дії теплового потоку на пожежі.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Булат, А. Ф., В. І. Єлісєєв, Є. В. Семененко, М. М. Стадничук та Б. О. Блюсс. "Течія неньютонівської рідини в екструзійному апараті для тривимірного друку". Reports of the National Academy of Sciences of Ukraine, № 5 (27 жовтня 2021): 25–32. http://dx.doi.org/10.15407/dopovidi2021.05.025.

Повний текст джерела
Анотація:
Математичні моделі екструдування показують, що під час течії високов’язких рідин в процесі тривимірного друкування виникає проблема нагріву робочого середовища. Вона полягає в тому, що під час подачі матеріалу включається механізм дисипації механічної енергії в теплову, що зумовлює перегрів рідини. У свою чергу це може призводити до невідповідності форм одержуваного виробу. Для стійкого формування необхідно, щоб матеріал, що подається, оплавлявся біля стінок апарата. Перегрів має бути мінімальним, щоб,виходячи з насадка, матеріал міг швидко застигнути, бажано без додаткових обдувних пристроїв. У цій статті розглядається задача про рух полімерної маси в каналі з підігрівом з метою визначення необхідних умов виконання такої операції, виходячи з певних геометричних форм екструдера. Як модельна рідина використовується непружне середовище із в’язкістю, що залежить від температури та градієнтів швидкостей. Це досить широко використовуваний у практичних розрахунках клас неньютонівських модельних рідин для визначення параметрів течії полімерів і передбачення певних властивостей одержуваних виробів. Нехтування пружними властивостями полімерів часто є виправданим у зв’язку з незначністю проявів цих властивостей або з чіткою локалізацією цих ефектів. Для розв’язання задачі, сформульованої в рамках теорії вузького каналу, використовується метод смуг, в межах яких температура приймається постійною, тобто незалежною від поперечної координати. Це дає можливість покласти в основу розв’язання відомі аналітичні вирази для швидкостей з подальшим уточненням їх, у зв’язку зі складною залежністю в’язкості від градієнтів швидкості. Уточнюючи на кожному кроці динамічні параметри течії з попереднього кроку, можна чисельно отримати досить стійкі гладкі розв’язки. Розрахунки були проведені для неньютонівської рідини, близької за своїми властивостями до полімеру АБС-3А. Розрахунки показали, що властивість псевдопластичності, яка притаманна цьому полімеру, відіграє важливу роль у процесі екструдування. Завдяки тому, що зі збільшенням поперечного градієнта поздовжньої швидкості в’язкість цього полімеру значно падає, величина дисипації механічної енергії теж падає, тобто зменшується теплова енергія, що виділяється під час дисипації. Це в свою чергу призводить до меншого нагрівання полімерного матеріалу, що рухається. Отже, виходячи з геометричних розмірів апарата, можна моделювати течію полімерної рідини та підбирати параметри формування і температури рідини на виході з апарата.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Bolotov, Maksym, та Gennady Bolotov. "ВИЗНАЧЕННЯ МЕЖ ЕНЕРГЕТИЧНОЇ СТАБІЛЬНОСТІ ТЛІЮЧОГО РОЗРЯДУ В УМОВАХ ЗВАРЮВАЛЬНОГО НАГРІВУ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 1(19) (2020): 9–17. http://dx.doi.org/10.25140/2411-5363-2020-1(19)-9-17.

Повний текст джерела
Анотація:
Актуальність теми дослідження. Для отримання зварних з’єднань із високолегованих сталей, тугоплавких та активних металів, твердих та надтвердих сплавів ефективно застосовують способи зварювання тиском, зокрема, дифузійне зварювання, яке має суттєві переваги поряд з іншими видами зварювання та дозволяє отримувати зварні конструкції складної форми з мінімальними деформаціями. Постановка проблеми. Серед джерел енергії, що застосовують для дифузійного зварювання, найбільш перспективним є нагрів тліючим розрядом, що горить у середовищі інертних або активних газів при їх тиску нижче за атмосферний і який забезпечує можливість регулювати в широких межах інтенсивність і локальність нагріву. Однак суттєвим недоліком тліючого розряду є його недостатня стабільність і здатність переходити в дугову форму, що може призводити до оплавлення і руйнування деталей. Аналіз останніх досліджень і публікацій. Широка номенклатура зварних виробів визначає необхідність регулювання енергетичних характеристик розряду в значних межах. У цих умовах проблема керованості тліючого розряду стає безпосередньо пов’язаною із проблемою забезпечення його стабільності. Питанню підвищення стійкості тліючого розряду присвячена значна кількість досліджень, однак у своїй більшості вони відносяться до процесів хіміко-термічної або лазерної обробки матеріалів і не відповідають режимам горіння тліючого розряду, що застосовуються в умовах зварювання. Виділення недосліджених частин загальної проблеми. До теперішнього часу, всі спроби забезпечити стабільне існування потужнострумового тліючого розряду в межах обраної форми в різних технологічних процесах не є вельми ефективними, оскільки не беруть до уваги мультифакторність проблеми, головним чином зосереджуючись лише на енергетичних аспектах. Постановка завдання. Метою роботи є вдосконалення методів керування і стабілізації потужнострумового тліючого розряду в процесах дифузійного зварювання. Виклад основного матеріалу. Для забезпечення стабільності тліючого розряду в роботі запропоновано використовувати певний критерій, який поєднує параметри режиму горіння розряду з умовами переходу його в електричну дугу. Таким критерієм у роботі обрано співвідношення середньої напруги на розрядному проміжку, що визначається частотою виникнення дугових пробоїв, до напруги горіння стабільного тліючого розряду. За відсутності дугових пробоїв значення критерію наближається до максимального К = 1, зі збільшенням частоти імпульсів дуги величина К поступово знижується. Оскільки стійкість тліючого розряду суттєво залежить від основних параметрів режиму, у роботі визначено інтегральний показник, який поєднаний із критерієм стійкості. У ролі такого показника застосовано добуток струму розряду та тиску газу. Встановлено аналітичну залежність критерію стійкості від обраного показника. Розроблено схему автоматичного пристрою переривання процесу нагрівання за умови, якщо фактичне значення коефіцієнта стійкості опуститься нижче його заданого значення. Висновки відповідно до статті. Оптимальне регулювання тліючого розряду в процесах дифузійного зварювання за умов забезпечення його стабільності може ефективно здійснюватися на основі критерію стійкості, що визначається як співвідношення середнього значення напруги на розрядному проміжку до напруги горіння стабільного тліючого розряду, і величина якого при оптимальному процесі становить 0,5…1.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Havrysh, V. I., O. S. Korol, O. M. Ukhanska, I. G. Kozak та O. V. Kuspysh. "Математична модель визначення температурних режимів у біпластині, зумовлених точковим джерелом тепла". Scientific Bulletin of UNFU 29, № 3 (25 квітня 2019): 104–7. http://dx.doi.org/10.15421/40290322.

Повний текст джерела
Анотація:
Розроблено математичну модель визначення температурних режимів у ізотропній двошаровій пластині, яка нагрівається точковим джерелом тепла, зосередженим на поверхнях спряження шарів. Для цього з використанням теорії узагальнених функцій коефіцієнт теплопровідності матеріалів шарів пластини зображено як єдине ціле для всієї системи. З огляду на це, замість двох рівнянь теплопровідності для кожного із шарів пластини та умов ідеального теплового контакту, між ними отримано одне рівняння теплопровідності в узагальнених похідних із сингулярними коефіцієнтами. Для розв'язування крайової задачі теплопровідності, що містить це рівняння та крайові умови на межових поверхнях пластини, використано інтегральне перетворення Фур'є, внаслідок чого отримано аналітичний розв'язок задачі в зображеннях. До цього розв'язку застосовано обернене інтегральне перетворення Фур'є, яке дало змогу отримати остаточний аналітичний розв'язок вихідної задачі. Отриманий аналітичний розв'язок подано у вигляді невласного збіжного інтегралу. За методом Сімпсона отримано числові значення цього інтегралу з певною точністю для заданих значень товщини шарів, просторових координат, питомої потужності точкового джерела тепла і коефіцієнта теплопровідності конструкційних матеріалів пластини. Матеріалом першого шару пластини є мідь, а другого – алюміній. Для визначення числових значень температури в наведеній конструкції, а також аналізу температурних режимів, що виникають через нагрівання точковим джерелом тепла, зосередженим на поверхнях спряження шарів пластини, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, що відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розробленої математичної моделі аналізу температурних режимів у двошаровій пластині з точковим джерелом тепла, зосередженим на поверхнях спряження її шарів, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду неоднорідні середовища щодо їх термостійкості. Як наслідок, можливо її підвищити і цим самим захистити від перегрівання, яке може спричинити руйнування як окремих елементів, так і всієї конструкції загалом.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії