Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Процес електрохімічний.

Статті в журналах з теми "Процес електрохімічний"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-22 статей у журналах для дослідження на тему "Процес електрохімічний".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Роп’як, Любомир Ярославович, Максим Володимирович Шовкопляс та Василь Степанович Витвицький. "ВИЗНАЧЕННЯ ПРИПУСКІВ НА МЕХАНІЧНУ ОБРОБКУ ДЕТАЛЕЙ З ХРОМОВИМИ ПОКРИТТЯМИ". Вісник Черкаського державного технологічного університету, № 2 (22 червня 2021): 117–27. http://dx.doi.org/10.24025/2306-4412.2.2021.242339.

Повний текст джерела
Анотація:
Проведено аналіз методів визначення припусків на механічну обробку металевих, оксидних та керамічних покриттів, які базуються на міцності покриттів, зміні мікротвердості, забезпечені одержання мінімальної шорсткості обробленої поверхні. Визначення раціональних припусків на механічну обробку деталей з електрохімічними хромовими покриттями є важливою техніко-економічною задачею машинобудування, оскільки занижені значення припусків не гарантують досягнення необхідної точності розмірів та відповідної шорсткості робочої поверхні деталей, призводить до зниження ресурсу роботи виробів, а завищені значення припусків призводять до зростання витрат на механічну обробку. Мета – розроблення інженерної методики визначення припусків на механічну обробку сталевих деталей з хромовими електрохімічними покриттями для забезпечення необхідної точності та шорсткості зовнішніх циліндричних поверхонь. Покриття наносили на циліндричні сталеві зразки у спокійному та проточному електроліті на установці спорядженій автоматизованою системою контролю технологічних параметрів процесу електрохімічного хромування. Досліджено шорсткість поверхонь після алмазного круглого шліфування електрохімічних хромових покриттів нанесених у спокійному та в проточному електролітах. Встановлено, що товщина дефектного шару залежить від способу нанесення електрохімічного хромового покриття. Хромування сталевих деталей у проточному електроліті забезпечує одержання меншої товщини дефектного шару порівняно з хромуванням у спокійному електроліті. Також встановлено, що мінімальний припуск, для одержання поверхонь із мінімальною шорсткістю після алмазного шліфування електрохімічного хромового покриття, залежить від загальної товщини покриття та збільшується із її зростанням. Аналіз результатів розрахунку припусків показав, що припуск на механічну обробку заготовок деталей з хромовим покриттям, нанесеним у спокійному електроліті, є більшим у порівнянні із покриттям, отриманим у проточному електроліті в 2,5 рази. Це обумовлено нерівномірним нанесенням електрохімічного хромового покриття у спокійному електроліті внаслідок ускладнення газовідведення з поверхні покриття у процесі електролізу порівняно із електролізом у проточному електроліті. Вказані недоліки хромування в спокійному електроліті усуваються під час нанесення покриття на циліндричні деталі в проточному електроліті, про що свідчить також, зменшення конусоподібності деталей з покриттями близько в 1,7 раза та глибини дефектного поверхневого шару – 2,6 раза відповідно. Наукова новизна роботи полягає у встановленні товщини дефектного шару для хромових електрохімічних покриттів, нанесених у спокійному та проточному електроліті на циліндричні сталеві деталі, після зняття якого алмазним круглим шліфуванням забезпечується отримання обробленої поверхні з мінімальною шорсткістю. Практична цінність – розроблено інженерну методику розрахунку припусків на механічну обробку (операцію алмазного шліфування) циліндричних сталевих деталей з хромовими електрохімічними покриттями.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Посувайло, Володимир Миколайович, Максим Володимирович Шовкопляс, Микола Миколайович Романів та Володимир Юрійович Малінін. "ПОРІВНЯННЯ МЕТОДІВ ПОВЕРХНЕВОГО ЗМІЦНЕННЯ ДЕТАЛЕЙ МАШИН ПОКРИТТЯМИ". Вісник Черкаського державного технологічного університету, № 4 (24 грудня 2021): 83–97. http://dx.doi.org/10.24025/2306-4412.4.2021.253298.

Повний текст джерела
Анотація:
У статті проведено аналіз та порівняння найбільш поширених методів поверхневого зміцнення деталей машин покриттями. Відзначено, що шляхом використання захисних покриттів можна вирішувати низку науково-технічних проблем машинобудування, забезпечуючикомплексне раціональне використання властивостей основи деталі та властивостей матеріалу захисного покриття. Мета дослідження – провести аналіз і порівняння сучасних методів поверхневого зміцнення деталей машин металевими електрохімічними хромовими та оксидними покриттями і встановити тенденції їх розвитку. Для проведення досліджень технологій нанесення електрохімічних хромових покриттів на сталь та алюміній і формування оксидних покриттів на алюмінієвих литих та деформованих сплавах у режимі анодування та плазмоелктролітичного оксидування в електроліті застосували системний підхід і використали бібліографічний метод. Під час досліджень використовували електронні ресурси бібліографічних реферативних баз даних: Scopus, Web of Science, Google Scholar. Досліджено технологічні процеси нанесення металевих електрохімічних хромових покриттів на сталь, мідь та алюміній. Розглянуто процеси електролізу в спокійному та проточному електроліті на основі шестивалентного та тривалентного хрому за різних струмових режимів. Вивчено формування оксиднихпокриттів на алюмінієвих деформованих, литих сплавах та напилених алюмінієвих шарах, а також магнієвих сплавах. Встановлено, що тверде анодування забезпечує одержання оксидних покриттів меншої товщини порівняно з інноваційним методом – плазмоелектролітичним оксидуванням. Описано хімічні, електро- та плазмохімічні реакції під час утворення шарів оксидних покриттів. Проведено порівняння технологічних режимів нанесення та властивостей сформованих покриттів. Наукова новизна отриманих результатів дослідження полягає у застосуванні системного підходу до аналізу та порівняння сучасних методів формування металевих електрохімічних хромових та оксидних покриттів і визначенні перспектив їх подальшого вдосконалення. Практична значущість – обґрунтувано раціональний вибір металевих та оксидних покриттів для зміцнення деталей машин.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Martsenyuk, V. P., A. S. Sverstiuk, T. V. Bihunyak, A. V. Pavlyshyn та O. M. Mochulska. "ЗАСТОСУВАННЯ КІБЕРФІЗИЧНИХ БІОСЕНСОРНИХ ТА ІМУНОСЕНСОРНИХ СИСТЕМ". Medical Informatics and Engineering, № 1 (10 травня 2019): 25–38. http://dx.doi.org/10.11603/mie.1996-1960.2019.1.10108.

Повний текст джерела
Анотація:
У роботі проведено огляд кіберфізичних біосенсорних та імуносенсорних систем, що є новим поколінням інформаційно-вимірювальних систем із використанням у конструкції біологічних матеріалів, які забезпечують їх високу селективність. Проведена класифікація досліджуваних систем відносно чутливих елементів і можливості використанням різних режимів фізико-хімічного перетворення вимірювальної величини. Розглянуто такі види кіберфізичних біосенсорних та імуносенсорних систем: електрохімічні; оптичні; на основі оксиду кремнію, кварцу та скла; на основі наноматеріалів; генетично кодовані або синтетичні флуоресцентні; мікробні, розроблені за допомогою синтетичної біології та генетичної інженерії. Досліджувані системи порівняно за технологією, специфічністю, порогом виявлення, тривалістю аналізу, вартістю та портативністю. Розглянуто методи виготовлення електрохімічних кіберфізичних біосенсорних та імуносенсорних систем. Окремо представлено методи виготовлення, шляхом модифікування поверхні металевих і вуглецевих електродів із використанням біоматеріалів, таких як ферменти, антитіла або ДНК. Представлено оптичні досліджувані системи, що реалізуть свою дію за допомогою іммобілайзерів і можуть виготовлятися із золота, матеріалів на основі вуглецю, кварцу або скла. Описано найбільш важливі напрями використання кіберфізичних біосенсорних та імуносенсорних систем у лікувальних і діагностичних закладах, зокрема для моніторингу рівня глюкози в крові пацієнтів із цукровим діабетом, а також для розроблення нових лікарських засобів, біозондування та біомедицини. Зроблено висновок, що досліджувані системи з наноматеріалів на основі оксиду кремнію володіють найбільш високим потенціалом щодо застосування для біовізуалізаціі, біосенсорного аналізу та лікування онкологічнх захворювань. Розглянуто мічені кіберфізичні біосенсорні та імуносенсорні системи з використанням генетичного кодування або синтетичної флуоресценції, що дало змогу вивчати біологічні процеси, в тому числі, різні молекулярні перетворення всередині клітин. Наведено переваги візуалізації in vivo за допомогою досліджуваних систем малих молекул з метою кращого розуміння клітинної активності та механізму дії ДНК, РНК та мікро-РНК. Описано клітинні біосенсорні та імуносенсорні системи, що можна застосовувати для моніторингу біохімічної потреби в кисні, токсичності в навколишньому середовищі, для виявлення пестицидів і важких металів, спостереженні за екологічною ефективністю при виробництві електроенергії. Зроблено висновок, що для створення високочутливих мініатюрних пристроїв потрібне розроблення різних мікро- і нано-кіберфізичних біосенсорних та імуносенсорних платформ із залученням інтегрованих технологій, які використовують електрохімічний або оптичний біоелектронні принципи з комбінацією біомолекул або біологічних матеріалів, полімерів і наноматеріалів.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shirokov, S., та M. Mazinov. "Електрохімічна дезактивація парогенераторів". Nuclear and Radiation Safety, № 2(54) (25 квітня 2012): 60–62. http://dx.doi.org/10.32918/nrs.2012.2(54).13.

Повний текст джерела
Анотація:
В оглядовій статті озглянуто один з ефективних методів дезактивації складових частин парогенераторів АЕС — колекторів підведення й відведення води першого контуру. Описано суть процесу, використовувані дезактивуючі розчини та технічні особливості процесу.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zuiok, V., R. Rud, М. Тretiakov, Ya Кushtym, V. Кrasnorutskii, Т. Cherniaieva та V. Gritsyna. "Контактна корозія алюмінію та його сплавів у водному середовищі ядерних установок". Nuclear and Radiation Safety, № 3(67) (20 вересня 2015): 24–30. http://dx.doi.org/10.32918/nrs.2015.3(67).05.

Повний текст джерела
Анотація:
Досліджено процеси, що відбуваються в процесі контактної корозії таких конструкційних матеріалів ядерних установок, як алюміній, його сплав САВ-1 з цирконієвим сплавом Е110 і нержавіючою сталлю марки Х18Н10Т. Результати електрохімічних та автоклавних випробувань досліджуваних контактних пар показують, що в усіх випадках анодом є алюміній (або САВ-1), який окиснюється більш інтенсивно порівняно з Е110 і Х18Н10Т. У разі окиснювання алюмінію та САВ-1 у водному середовищі продукти корозії переходять у корозійне середовище. Попереднє окиснення матеріалу катода (Е110) до товщини оксидної плівки 1—1,5 мкм практично унеможливлює гальванічну складову корозії САВ-1 у контактній парі з Е110, що підтверджується результатами вимірювання щільності струму корозії та іншими показниками, які характеризують надійність роботи елементів і безпеку всієї установки в цілому.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stovpchenko, G. P., and A. V. Kadilnikova. "Electrochemical processes in electroslag melting (Review)." Sovremennaâ èlektrometallurgiâ 2021, no. 2 (June 28, 2021): 3–12. http://dx.doi.org/10.37434/sem2021.02.01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ненастіна, Т., М. Ведь, М. Сахненко, С. Зюбанова та І. Черепньов. "Електродні матеріали для водневої енергетики". Науковий журнал «Інженерія природокористування», № 1(15) (26 жовтня 2020): 6–12. http://dx.doi.org/10.37700/enm.2020.1(15).6-12.

Повний текст джерела
Анотація:
Електроосадження сплавів молібдену, вольфраму і цирконію з кобальтом з білігандних електролітів на імпульсному струмі дозволило отримати композиційні покриття з унікальним поєднанням фізико-хімічних властивостей, недосяжних при використанні інших методів нанесення. Окрім складу отриманих композиційних електролітичних покриттів на каталітичне виділення водню впливають характеристики їх поверхні, зокрема рельєф і морфологія. Дослідження топографії поверхні проводили за допомогою сканівного атомно-силового мікроскопа контактним методом. Порівняно топографію поверхні осаджених покриттів і показано, що найбільш рівномірно розвиненими і мікроглобулярними є композити складу Со-Мо-WOx і Со-Мо-ZrО2. Електролітична реакція виділення водню є багатостадійним процесом, тому для встановлення каталітичної активності композиційних сплавів на основі кобальту необхідно визначити механізм за яким відбувається даний процес. Оцінку електрокаталітичних властивостей композиційних електролітичних покриттів на основі сплавівкобальту різного складу здійснювали на підставі аналізу кінетичних параметрів модельної реакції виділення водню з розчинів електролітів різної кислотності. Визначено постійні Тафеля, коефіцієнти переносу, густину струму обміну для електрохімічного виділення водню на композиційних електролітичних покриттях сплавами кобальту. За величиною струму обміну електрохімічної реакції виділення водню на покриттях Со-Мo-WОх, Со-Мо-ZrО2, Co-W-ZrО2 встановлено їх високу електрокаталітичну активність порівняно із індивідуальними металами і бінарними сплавами. Встановлено, що електровідновлення водню на композиційних сплавах кобальту протікає за механізмом Фольмера-Тафеля з уповільненою стадією рекомбінації. Запропоновано схеми реакцій, за якимипротікає відновлення водню, якщо проміжним продуктом загального процесу є гідриди металів.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Калахан, Олег. "Електрохімічні закономірності корозійно-механічного руйнування титанових сплавів". Bulletin of Lviv National Agrarian University Agroengineering Research, № 25 (20 грудня 2021): 113–19. http://dx.doi.org/10.31734/agroengineering2021.25.113.

Повний текст джерела
Анотація:
На підставі кореляційних змін на поверхні й електродного потенціалу ідентифіковано характерні ділянки, які відповідають окремим етапам процесу корозійної багатоциклової втоми титанових сплавів різного структурно-фазового стану: руйнування захисних оксидних плівок; пасивація свіжоутворених поверхонь (СУП); утворення мікротріщин та їх розвиток у макротріщину; субкритичний ріст магістральної тріщини та спонтанне руйнування. Утворення захисних оксидних плівок на недеформованих і циклічно деформованих титанових a- і (a+b)-сплавах констатували, усуваючи з їхньої поверхні оксиди і визначаючи зміщення по­тенціалу та поведінку за зовнішньої поляризації, а також після призупинення онов­лення поверхні – за швидкістю зміни електродного потенціалу та струму. З’ясовано, що потенціал СУП титанових сплавів (t = 5 ms) знешляхетнюється та наближається до величини зворотного потенціалу анодної реакції Ті + Н2О = ТіО + 2Н+ + 2 (j0а = –1,31 V), неоднозначно залежить від концентрації Cl–-іонів в діапазоні 0,1–1,5 N розчинів NaCl. Регенерація пасивності сплавів у перші секунди відбувається за лінійним законом із подальшим уповільненням і стабілізацією до 1 h. Регенерація пасивності циклічно деформованих сплавів характеризується етапною зміною і потенціалу, і струму. На перших етапах їхній спад описується прямою лінією в координатах напруга (струм) – логарифм часу експозиції за різних кутових коефіцієнтів. На третьому етапі потенціал СУП досягає значення, що дорівнює потенціалу сплаву до оновлення поверхні. Характер зміни i–t кривих без і за наявності деформацій однаковий, але під дією деформації струм знижується швидше і за час експозиції до 10 s зменшується до стаціонарного значення.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Габ, Ангеліна Іванівна, Віктор Володимирович Малишев, Дмитро Борисович Шахнін, Юрій Володимирович Куріс, Олексій Геннадієвич Кириченко, Оксана Сергіївна Воденнікова та Роман Миколайович Воляр. "КОМПОЗИЦІЙНІ ЕЛЕКТРОХІМІЧНІ ПОКРИТТЯ НА ОСНОВІ ХРОМУ, МІДІ, ЦИНКУ, ЗАЛІЗА, ОЛОВА, БЛАГОРОДНИХ МЕТАЛІВ: ОДЕРЖАННЯ, СТРУКТУРА, ВЛАСТИВОСТІ (ОГЛЯД)". Scientific Journal "Metallurgy", № 2 (22 лютого 2022): 56–74. http://dx.doi.org/10.26661/2071-3789-2021-2-07.

Повний текст джерела
Анотація:
Здійснено систематизацію літературних даних щодо одержання композиційних електрохімічних покриттів на основі хрому, міді, цинку, олова, благородних металів, структури та властивостей покриттів хрому з частинками наповнювачів різної природи. Одним із способів поліпшення фізико-механічних властивостей є одержання комплексних електрохімічних покриттів (КЕП). Вихід за струмом хрому в присутності ультрадисперсних алмазів (УДА) знижується як у стандартному, так і в саморегулівному електролітах хромування. Композиційні покриття хром-графіт можуть бути використані у виробах, які працюють за умов сухого тертя. Зносостійкість і твердість КЕП на основі хрому значно підвищується за введення в стандартний електроліт хромування дисперсних частинок кремнію або діоксиду титану. Основне зазначення КЕП на основі міді – надання металевим поверхням зносостійкості, жароміцності й антифрикційних властивостей. Для одержання КЕП на основі міді найчастіше використовують сульфатні електроліти. Введення в електроліт УДА не змінює природу та механізм електродного процесу. Мікротвердість покриттів, осаджених з електроліту з вмістом УДА зростає майже в півтора разів порівняно з осадами, одержаними з базового електроліту. Електролітичні залізні покриття використовують для відновлення деталей машин і механізмів. Композиційні покриття на основі цинку застосовують для захисту сталевих поверхонь від корозії з поліпшенням їх фізико-механічних властивостей. КЕП на основі срібла з електропровідними частинками осаджують на електричні контакти для поліпшення провідності.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Роп’як, Л. Я., М. Я. Николайчук, М. В. Шовкопляс, В. С. Витвицький, М. М. Романів та В. М. Білінський. "АВТОМАТИЗОВАНА УСТАНОВКА ДЛЯ ОЧИЩЕННЯ ГАЛЬВАНІЧНИХ ВІДХОДІВ". Bulletin of Sumy National Agrarian University. The series: Mechanization and Automation of Production Processes, № 2 (44) (5 травня 2022): 70–80. http://dx.doi.org/10.32845/msnau.2021.2.15.

Повний текст джерела
Анотація:
У праці розглянуто основні типи покриттів та їх розповсюдженість у світі за частотою застосування в машинобудуванні. Відзначено, що найбільш розповсюдженими серед них є металеві – електрохімічні хромові покриття та неме-талеві – оксидні покриття, сформовані у різних електролітах. Проведено аналіз способів та обладнання для утилізації відпрацьованих електролітів для формування покриттів на деталях машин у гальванічних цехах і дільницях. Як об’єкти дослідження вибрали електроліти для електрохімічного хромування сталей та для плазмовоелектролітичного оксидування алюмінієвих сплавів. Використано системний підхід до вирішення актуальної проблеми утилізації відпрацьованих електролітів гальванічних ванн для нанесення покриттів, що є особливо важливим завданням на етапі переходу до «зелених технологій». Розроблено технологічну схему переробки відпрацьованих електролітів, яка включає процеси осадження, нейтралізації та очищення. Застосовано мехатронний підхід і комп’ютерне моделювання під час проектування установки для реалізації вказаної технології, котра містить два реактори і гідроциклон-фільтр, які сполучені трубопроводами, а також оснащену насосами, вказівниками рівня рідини, рН-метричним обладнанням та автоматизованою системою керу-вання. В склад установки входить розроблена нова конструкція гідроциклон-фільтра, який забезпечує комбіноване очищення рідин від завислих частинок забруднення шляхом одночасного поєднання відцентрового очищення та фільтрування, а також дозволяє здійснювати промивання його кільцевого зазору та регенерацію фільтрувальної зернистої засипки фі-льтрувальної касети. Розроблена технологія утилізації відпрацьованих електролітів є ефективною під час експлуатації та не потребує дороговартісного обладнання, процес є екологічно безпечним як для обслуговуючого персоналу, так і для навколишнього природного середовища, а продукти переробки можна повторно використовувати у виробничому циклі.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Габ, Ангеліна Іванівна, Дмитро Борисович Шахнін, Віктор Володимирович Малишев, Тетяна Миколаївна Нестеренко, Володислав Ростиславович Румянцев та Ольга Русланівна Бережна. "КОМПОЗИЦІЙНІ ЕЛЕКТРОХІМІЧНІ ПОКРИТТЯ НА ОСНОВІ НІКЕЛЮ: ОДЕРЖАННЯ, СТРУКТУРА, ВЛАСТИВОСТІ (ОГЛЯД)". Scientific Journal "Metallurgy", № 2 (22 лютого 2022): 44–55. http://dx.doi.org/10.26661/2071-3789-2021-2-06.

Повний текст джерела
Анотація:
Здійснено систематизацію літературних даних щодо одержання композиційних електрохімічних покриттів на основі нікелю, структури та властивостей покриттів нікелю з частинками ультрадисперсних алмазів, фулерену, фторопласту, різних сполук металів. Найбільшого поширення серед композиційних електрохімічних покриттів (КЕП) набули покриття з нікелевою матрицею, які характеризуються високою твердістю та зносостійкістю, а також стійкістю в корозійних середовищах. В останні роки значну увагу приділяють нікелевим покриттям, що містять як дисперсну фазу ультрадисперсні алмази (наноалмази; УДА), фулерен С60 і фторопласт (тефлон). Для осадження КЕП нікель-УДА Зазвичай використовують класичні сірчанокислі електроліти. УДА позитивно впливають на якість нікель-алмазних покриттів. Коефіцієнти тертя, порівняно з нікелевими покриттями, зменшуються з 0,43 до 0,33, а мікротвердість зростає з 2,45 до 4,31 ГПа. Деталі, покриті КЕП-нікель-УДА, можуть служити в 20 разів довше ніж деталі з нікелевим покриттям. При осадженням алмазних шарів з нікелевим покриттям на різальних інструментах одержують рівномірні КЕП із вмістом частинок від 20000 до 25000 на см2 поверхні. Входження наноалмазних частинок до нікелевої матриці призводить до зменшення розміру зерна, утворення дислокацій у вигляді клубків і сіток уздовж меж зерен. КЕП нікель-УДА має стовпчасту структуру. Збільшення мікротвердості За включенням бору в нікель-алмазні КЕП, можливо, пов’язане з переходом від стовпчастої до ланцюго-розширеної структури. Введення в сірчанокислий електроліт нікелювання частинок фулерену С60 полегшує катодний процес осадження КЕП нікель-фулерен. Одержаний КЕП має шорстку поверхню, мікровиступи якої утворюються за зарощуванням дисперсних частинок металом.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Плахотний, О. П. "МОДЕЛЮВАННЯ ВПЛИВУ АМПЛІТУДНО-ЧАСОВИХ ПАРАМЕТРІВ ЕЛЕКТРИЧНИХ ІМПУЛЬСІВ НА ПРОЦЕСИ АНОДНОГО РОЗЧИНЕННЯ ПРИ ЕЛЕКТРОХІМІЧНІЙ ОБРОБЦІ ДРОТЯНИМ ЕЛЕКТРОДОМ". Вісник Черкаського державного технологічного університету. Серія: Технічні науки 1, № 3 (26 вересня 2018): 87–96. http://dx.doi.org/10.24025/2306-4412.3.2018.162753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Рудик, Олександр Юхимович. "Методика використання ІКТ у курсі «Контроль якості покриттів»". Theory and methods of e-learning 3 (11 лютого 2014): 273–78. http://dx.doi.org/10.55056/e-learn.v3i1.349.

Повний текст джерела
Анотація:
Підвищення рівня надійності і збільшення ресурсу машин та інших об’єктів техніки можливо тільки за умови випуску продукції високої якості у всіх галузях машинобудування. Це вимагає безперервного вдосконалення технології виробництва і методів контролю якості покриттів. У даний час все більш широкого поширення набуває 100%-вий неруйнівний контроль покриттів на окремих етапах виробництва. Для забезпечення високої експлуатаційної надійності машин і механізмів велике значення має також періодичний контроль їх стану без демонтажу або з обмеженим розбиранням, який проводиться при обслуговуванні в експлуатації або при ремонті.Висока якість машин, приладів, устаткування – основа успішної експлуатації, отримання великого економічного ефекту, конкурентоспроможності на світовому ринку. Тому комплекс глибоких знань і певних навичок в області контролю якості покриттів є необхідною складовою частиною професійної підготовки фахівців з машинобудування.Існуючі методики викладання інженерних дисциплін, як правило, не відповідають змінам у розвитку суспільства. У зв’язку з невеликим обсягом годин, що приділяються на вивчення дисципліни, й сучасними високими вимогам до рівня підготовки фахівців такий курс необхідно ввести не традиційним способом, а з використанням інформаційних технологій. Для цього:– студенти повинні мати попередню комп’ютерну підготовку;– викладач повинен розробити відповідну технологію навчання.Відомо [1], що під технологією навчання мається на увазі системна категорія, орієнтована на дидактичне застосування наукового знання, наукові підходи до аналізу й організації навчального процесу з урахуванням емпіричних інновацій викладачів і спрямованості на досягнення високих результатів у розвитку особистості студентів.Суть пропонованої технології полягає у створенні модульного середовища навчання (МСН) «Контроль якості покриттів» і впровадженні його у процес навчання, що забезпечує систематизацію навчання й формалізацію інформації. Метою технології є індивідуалізація навчання, а визначеність МСН полягає в її алгоритмічній структурі. Тому зміст МСН розроблений у вигляді систематизуючої ієрархічної схеми, куди увійшли основні розділи робочої програми курсу. Структура МСН складається з наступних блоків:1. «Методичне забезпечення дисципліни», у якому пропонуються відповідні дії, що сприяють засвоєнню інформації на заданому рівні:– першоджерела;– робоча програма;– робочий план;– опис дисципліни;– загальні методичні вказівки;– методичні вказівки до вивчення лекційного матеріалу;– методичні вказівки до виконання самостійної роботи;– методичні вказівки до виконання лабораторних робіт;– методичні вказівки до виконання домашнього завдання №1;– методичні вказівки до виконання домашнього завдання №2;– зразок титульної сторінки домашнього завдання.2. «Лекції», у якому представлені html-файли відповідного лекційного матеріалу, контрольні питання й тести до кожної теми:– дефекти і фізико-хімічні властивості покриттів;– оцінка механічних властивостей покриттів; класифікація видів і методів неруйнівного контролю (НК); візуально-оптичний, радіохвильовий і тепловий види НК;– вихореструмовий і радіаційний види неруйнівного контролю покриттів;– магнітний та електричний види НК покриттів;– акустичний метод НК покриттів;– НК покриттів проникаючими речовинами;– технологічні випробування покриттів;– методи і засоби статистичного контролю якості; автоматизація контролю якості покриттів.Викладання лекцій проводиться у режимі комп’ютерної презентації.3. «Самостійне опрацювання теоретичного матеріалу» з тестами.Відомо, що викладач у процесі своєї роботи повинен не тільки передавати студентам певний об’єм інформації, але і прагнути сформувати у них потребу самостійно здобувати знання, застосовуючи різні засоби, зокрема комп’ютерні. Чим краще організована самостійна пізнавальна активність студентів, тим ефективніше і якісніше проходить навчання. Тому деякі матеріали, що відносяться до лекційних тем, пропонуються для самостійного вивчення. При цьому організований доступ студентів до розділів МСН без звернення за допомогою до викладача. При необхідності подальшого використання матеріалів МСН можна копіювати ресурси, компонувати, редагувати і згодом відтворювати їх.4. «Лабораторні роботи» з інструкціями з техніки безпеки при виконанні робіт у лабораторіях і при роботі на персональному комп’ютері й з тестами до кожної теми:– вплив товщини покриття на міцність деталі;– контроль мікротвердості покриттів;– моделювання технологічних випробувань покриттів;– контроль внутрішніх напружень покриттів;– вплив дефектів покриття на якість деталі;– корозійний та електрохімічний контроль якості покриттів;– використання х– та s–діаграм для визначення причин погіршення якості покриттів.5. «Домашні завдання» (умова з варіантами даних і методичні вказівки до виконання, зразок оформлення):– оцінити вплив мікротвердості покриття на міцність деталі;– оцінити вплив корозії покриття на міцність деталі.Для ефективного використання МСН необхідне його планомірне включення в учбовий процес. Тому ще на етапі тематичного планування були розглянуті варіанти можливого використання усіх модулів МНС.Для розвитку розумової діяльності студентів і виховання у них пізнавальної активності самостійну роботу потрібно добре методично забезпечити. У свою чергу, ефективність самостійної роботи студентів багато в чому залежить від своєчасного контролю за її ходом. Тому для оцінки ефективності використання ІКТ у учбовому процесі створена система визначення якості навчання і на її основі побудовані тестові процедури оцінки знань з усіх тем курсу. Перевірку і контроль знань студентів можна здійснити як під час занять, так й інтерактивно. Основними перевагами програми автоматизованого контролю знань є:– випадковий характер вибору тестових завдань, порядок проходження завдань і відповідей, що сприяє об’єктивності оцінок;– представлення варіантів відповідей у вигляді формул і малюнків, що дозволяє розширити коло текстових завдань;– диференційована оцінка кожного варіанту відповіді, що забезпечує детальний аналіз результатів тестування.Комп’ютерне тестування дозволяє [2] розширити можливості проведення індивідуально адаптованих процедур контролю і коректування знань конкретних тем, підвищити об’єктивності контролю знань студентів, забезпечити можливість проведення їх попереднього самоконтролю, підвищити рівень стандартизації вимог до об’єму і якості знань та умінь.Розв’язування експрес-тестів проходить під час лабораторних занять протягом фіксованого проміжку часу. Крім режиму контролю передбачений режим навчання.Важливим елементом навчання є використання моделюючих програм у процесі навчання. У цьому випадку студенти самостійно задають різні параметри задачі, що дає можливість детальніше перевірити характер поведінки моделі за різних умов.Особливістю МСН є застосування комп’ютерного моделювання для лабораторних робіт, оскільки постійні бюджетні проблеми останніх років виключають придбання необхідних установок і приладів. Моделювання контролю якості покриттів дозволило істотно наситити заняття експериментальним і теоретичним змістом. При цьому учбові і учбово-дослідницькі задачі розв’язуються як з формуванням практичних навиків у вивченні фізичних явищ, так і дослідницького мислення, а розроблені методичні вказівки дозволяють разом з типовими лабораторними роботами виконувати роботи евристичного змісту. І, що особливо важливо, використання ІКТ, методів комп’ютерного моделювання дозволяє істотно розширити можливості лабораторних робіт.Використання електронних лабораторних робіт дозволяє більш повно реалізувати диференційований підхід у процесі навчання, ніж роботи і завдання на паперових носіях. Це пов’язано з можливістю включення в роботи необхідної кількості завдань різного рівня складності або об’єму. Істотною перевагою є можливість легко адаптувати наявні роботи до нових версій програм, що з’являються [3].Домашні завдання також виконуються з використанням САПР: на етапі побудови 3D моделі деталі з покриттям студенти працюють в SolidWorks; потім, перейшовши до реальної конструкції, використовують SimulationXpress і SolidWorks Simulation (додатки для аналізу проектних розв’язків, повністю інтегровані в SolidWorks). Оформлення робочої документації досягається засобами Microsoft Office. Така організація роботи дозволяє у процесі навчання побудувати модель контролю якості покриттів на якісно новому рівні й підготувати студентів до використання сучасних інструментаріїв інженера.В SolidWorks Simulation студенти виконують наступне:– прикладають до деталей з покриттями рівномірний або нерівномірний тиск в будь-якому напрямі, сили із змінним розподілом, гравітаційні та відцентрові навантаження, опорну та дистанційну силу;– призначають не тільки ізотропні, а й ортотропні та анізотропні матеріали;– застосовують дію температур на різні ділянки деталі (умови теплообміну: температура, конвекція, випромінювання, теплова потужність і тепловий потік; автоматично прочитується профіль температур, наявний в розрахунку температур, і проводиться аналіз термічного напруження);– знаходять оптимальний розв’язок, який відповідає обмеженням геометрії та поведінки; якщо допущення лінійного статичного аналізу незастосовні, застосовують нелінійний аналіз– за допомогою аналізу втоми оцінюють ефект циклічних навантажень у моделі;– при аналізі випробування на ударне навантаження вирішують динамічну проблему (створюють епюру і будують графік реакції моделі у вигляді тимчасової залежності);– обробляють результати частотного і поздовжнього вигину, термічного і нелінійного навантажень, випробування на ударне навантаження й аналіз втоми;– будують епюри поздовжніх сил, деформацій, переміщень, результатів для сил реакції, форм втрати стійкості, резонансних форм коливань, результатів розподілу температур, градієнтів температур і теплового потоку;– проводять аналізи контактів у збираннях з тертям, посадок з натягом або гарячих посадок, аналізи опору термічного контакту.Змінюючи при чисельному моделюванні деякі вхідні параметри, експериментатор може прослідити за змінами, які відбуваються з моделлю. Основна перевага методу полягає у тому, що він дозволяє не тільки поспостерігати, але і передбачити результат експерименту за якихось особливих умов.Метод чисельного моделювання має наступні переваги перед іншими традиційними методами [4]:– дає можливість змоделювати ефекти, вивчення яких в реальних умовах неможливе або дуже важке з технологічних причин;– дозволяє моделювати і вивчати явища, які передбачаються будь-якими теоріями;– є екологічно чистим і не представляє небезпеки для природи і людини;– забезпечує наочність і доступний у використанні.Але щоб приймати технічно грамотні рішення при роботі з САПР, необхідно уміти правильно сприймати і осмислювати результати обчислень. Цілеспрямований пошук шляхом ряду проб оптимального або раціонального рішення у проектних задачах набагато цікавіший і повчальніший для майбутнього інженера, ніж отримання тільки одного оптимального проекту, який не можна поліпшити і ні з чим порівняти.При великій кількості варіантів проекту аналіз машинних розрахунків дозволяє виявити основні закономірності зміни характеристик проекту від варійованих проектних змінних і сприяє тим самим швидкому і глибокому вивченню властивостей об’єктів проектування.Упровадження сучасних САПР для контролю якості покриттів не тільки забезпечує підвищення рівня комп’ютеризації інженерної праці, але й дозволяє приймати оптимальні рішення. При створенні і використанні таких систем сучасний інженер повинен мати навички роботи з комп’ютерними системами, уміти розробляти математичні моделі формування параметрів оцінки якості покриттів.У цих умовах молодий інженер не має достатнього резерву часу для надбання на виробництві необхідних навичок моделювання складних процесів і систем – він повинен одержати такі навички у процесі навчання у вузі. Таким чином, йдеться про володіння прийомами постановки і розв’язування конструкторсько-технологічних задач сучасними методами моделювання.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Будько, В. І., та Я. В. Вайнштейн. "ПЕРЕКРИТТЯ НЕБАЛАНСІВ ЗГЕНЕРОВАНОЇ ТА ПРОГНОЗОВАНОЇ ЕЛЕКТРОЕНЕРГІЇ СОНЯЧНОЮ ЕЛЕКТРОСТАНЦІЄЮ ЗА РАХУНОК СИСТЕМИ АКУМУЛЮВАННЯ ЕЛЕКТРИЧНОЇ ЕНЕРГІЇ". Vidnovluvana energetika, № 4(67) (25 грудня 2021): 25–31. http://dx.doi.org/10.36296/1819-8058.2021.4(67).25-31.

Повний текст джерела
Анотація:
Сонячна фотоенергетика розвивається швидкими темпами, що приводить до появи нових важливих інженерно-технічних та науково-прикладних задач, вирішення яких є ключовим фактором стабільного розвитку не тільки даного сектору відновлюваної енергетики, а й всієї електромережі України. Однією з таких задач є підвищення показника надійності виробітку електричної енергії фотоелектростанцією та її видачі в мережу відповідно до наданого прогнозу на добу та окремо на дві години наперед. Питання стабільного виробітку актуально не лише для мережевих фотоелектростанцій, а й для фотоелектростанцій, що працюють на часткове покриття власного споживання, коли важливо відповідати графіку споживання, аби не порушувати технологічні процеси у виробництві. Одним із варіантів розв’язання цієї задачі є інтеграція різних систем акумулювання електричної енергії до складу фотоелектростанції в тому числі й електрохімічних акумуляторних батарей, що і було досліджено в даній роботі. На основі аналізу реальних даних виробітку електричної енергії протягом березня 2020 року мережевими фотоелектростанціями, що розташовані в Херсонській області, визначені межі невідповідності виробленої електроенергії заявленому прогнозу. Встановлені відносні значення необхідної ємності електрохімічних акумуляторних батарей для забезпечення максимальної відповідності виробітку заявленому прогнозу. Розрахунок базувався на методі пошуку невідповідностей між апроксимованою моделлю та реальними даними, з подальшим обрахуванням відхилення для кожної часової точки. Отримані графічні залежності відносного значення ємності системи акумуляторів від потужності станції, а також графіки швидкості зміни відносного значення ємності системи та потужності станції. В подальшому матеріали дано. Бібл. 6, табл. 2, рис. 4.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Мank, V., O. Тоnkha, V. Galimova, S. Surovtsev, O. Menshov, O. Bukova, and I. Rogovskiy. "ELECTROCHEMICAL INVESTIGATION OF COBALT ABSORBTION PROCESSES BY SOILS OF UKRAINE." Visnyk of Taras Shevchenko National University of Kyiv. Geology, no. 3 (86) (2019): 34–39. http://dx.doi.org/10.17721/1728-2713.86.05.

Повний текст джерела
Анотація:
In this paper, the processes of cobalt absorption by soils of Ukraine are investigated by using the electrochemical method of pulsed inversion chronopotentiometry. It has been established that the absorption capacity of cobalt by soil varieties from complexing media is 64–98 %. In solutions of KNO3, NH4OH and CSN2H4 mobile compounds of cobalt are part of [Co(H2O)n]2+, [Co(NH3)n]2+,[Co(CSN2H4)n]2+, and in solutions of Na4P2O7, Na5P3O10 and ЕДТА4– anionic complexes [Co(P2O7)n]2–4n, [Co(P3O10)n]2–5n ³ [CoЕДТА]2– are formed. The cobalt cationic complexes [Co(H2O)n]2+, [Co(NH3)n]2+, [Co(CSN2H4)n]2+ are almost completely absorbed by the soils. Anionic complexes – [Co(P2O7) n] 2–4n, [Co(P3O10) n]2–5n ³ [CoЕДТА]2– largely remain mobile in the soil profile. The sorption effect depends on the charge of the complex ions, their strength and on the steriîìåtric parameters of the complex ions. A close positive relationship was established between the cobalt absorption by soils and the cation exchange capacity of soils, the correlation coefficient was 0,7976, and between the cobalt absorption by soils and the humus content (0,7034). In the study of biohumus, it was found that cobalt goes into the solution of 0,02M ЕДТАNa2 + 0,09M NH4Cl by the mechanism of competitive complexation, its transition to the HCl solution occurs due to the protonization of the functional groups of biohumus with which the metal is bound. Biohumus has rather high sorption properties of cobalt and may be promising for its use as an effective carrier matrix in various combinations with basic fertilizers. Isotherms of sorption or exchange of cobalt for exchange ions of biohumus in various solutions correspond to isotherms of Langmuir single layer adsorption. The method of IIHP analysis is important to use to control the content of trace elements at the level of their trace concentrations necessary for plant development.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Gomelya, M. D., I. M. Trus, and I. A. Vasylenko. "Mathematical modeling of the sulfuric acid concentration process’ kinetics in electrochemical treatment of sulphate-containing eluates." Odes’kyi Politechnichnyi Universytet. Pratsi, no. 1 (March 31, 2015): 146–51. http://dx.doi.org/10.15276/opu.1.45.2015.24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kuzmin, O., and S. Sujkov. "DEVELOPING RELAXATION IN AQUEOUS-ALCOHOLIC SYSTEMS UNDER ELECTROCHEMICAL ACTIVATION OF DRINKING WATER." Scientific Works of National University of Food Technologies 23, no. 5(2) (October 2017): 229–39. http://dx.doi.org/10.24263/2225-2924-2017-23-5-2-29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Авдєєва, Леся Юріївна, Едуард Костянтинович Жукотський та Андрій Анатолійович Макаренко. "Дослідження кавітаційних ефектів в насосах різних типів". Scientific Works 83, № 1 (1 вересня 2019): 74–79. http://dx.doi.org/10.15673/swonaft.v83i1.1421.

Повний текст джерела
Анотація:
Насоси широко використовуються в більшості технологічних процесів хімічної і харчової промисловості, в т.ч. в апаратах для інтенсифікації процесу отримання мікро- і наноемульсій за рахунок виникнення ефектів гідродинамічної кавітації. Використання кавітаційних технологій дозволяє збільшити продуктивність технологічних процесів, забезпечити значну економію енерговитрат і високу якість обробки дисперсних систем. В технологічних схемах кавітаційних апаратів використовуються насоси різних типів. Виникнення в них кавітаційних ефектів призводить до негативних наслідків в результаті яких відбувається зниження продуктивності і ККД всього пристрою і руйнування поверхонь робочих органів. Найбільшого застосування знайшли динамічні лопатеві і об’ємні (гвинтові або шестеренні) насоси. В роботі представлені результати досліджень виникнення кавітаційних ефектів в динамічному відцентровому і в об’ємному шестеренному насосах за зміною температурних і електрохімічних показників води в результаті обробки. Аналіз результатів досліджень температурних показників продемонстрували відмінності принципу дії обраних насосів за їх впливом на оброблюване середовище. В динамічному відцентровому насосі температурні показники швидко наростають, на відміну від об’ємного шестеренного, в якому за 20 хв. роботи підвищення температури практично не відбулося. В результаті активного динамічного впливу на молекулярному рівні при проходження рідини через відцентровий насос рівень рН збільшується вже з перших секунд обробки. Значення питомої електропровідності води змінюються так само більш виражено для динамічного відцентрового насосу. Отримані результати вказують на активацію води з утворенням електронно-збуджених станів молекул. Таким чином, встановлено виникнення кавітації в динамічному відцентровому насосі при певних умовах і параметрах його роботи.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Roschenko, О. "Перспективні напрямки розширення функціональності портативних електронних пристроїв: зарубіжний досвід." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 43 (18 червня 2021): 129–33. http://dx.doi.org/10.36910/6775-2524-0560-2021-43-21.

Повний текст джерела
Анотація:
У статті розкрито зарубіжний досвід напрямків розширення функціональності портативних електронних пристроїв. Визначено слабкі сторони сучасних портативних електронних пристроїв. Зазначено, що переносні електронні пристрої, включаючи мобільні телефони, портативні комп’ютери, планшети та мобільні (переносні) електронні пристрої сприяють швидкому зростанню обробки та обміну інформацією. Підкреслено, що швидкий прогрес портативних електронних пристроїв неможливий без поступового вдосконалення технологій акумуляторних батарей. Первинні батареї вже використовувались як основне джерело енергії портативних електронних пристроїв протягом тривалого періоду. Наведено внутрішні та зовнішні методи захисту батарей портативних електронних пристроїв. Окремо відзначено портативні електронні пристрої, що мають механічну гнучкість (наприклад, зсувні дисплеї), вони представляють новий напрямок для електронної промисловості. Крім того, вони можуть поєднуватися з мобільними датчиками (наприклад, розумним одягом), щоб зробити революцію в житті людини. Наголошено, що електрохімічні функції гнучких батарей зазвичай погіршуються при тривалих частих механічних деформаціях, наприклад, при згинанні, згортанні, скручуванні та інших режимах деформації. З високою ємністю, можливістю швидкого заряджання / розряджання та чудовою стабільністю на циклі, що може бути додатково поєднано з гнучкими електролітами та сепараторами. Зазначається, що з метою подальшого задоволення постійно високих вимог до акумуляторних батарей у портативних електронних пристроїв, значні зусилля у галузі досліджень у всьому світі були спрямовані на вдосконалення існуючих акумуляторних систем з використанням нових матеріалів, передових технологій та нових енергетичних хімічних сполук.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Roschenko, О. "Перспективні напрямки розширення функціональності портативних електронних пристроїв: зарубіжний досвід." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 43 (18 червня 2021): 129–33. http://dx.doi.org/10.36910/6775-2524-0560-2021-43-21.

Повний текст джерела
Анотація:
У статті розкрито зарубіжний досвід напрямків розширення функціональності портативних електронних пристроїв. Визначено слабкі сторони сучасних портативних електронних пристроїв. Зазначено, що переносні електронні пристрої, включаючи мобільні телефони, портативні комп’ютери, планшети та мобільні (переносні) електронні пристрої сприяють швидкому зростанню обробки та обміну інформацією. Підкреслено, що швидкий прогрес портативних електронних пристроїв неможливий без поступового вдосконалення технологій акумуляторних батарей. Первинні батареї вже використовувались як основне джерело енергії портативних електронних пристроїв протягом тривалого періоду. Наведено внутрішні та зовнішні методи захисту батарей портативних електронних пристроїв. Окремо відзначено портативні електронні пристрої, що мають механічну гнучкість (наприклад, зсувні дисплеї), вони представляють новий напрямок для електронної промисловості. Крім того, вони можуть поєднуватися з мобільними датчиками (наприклад, розумним одягом), щоб зробити революцію в житті людини. Наголошено, що електрохімічні функції гнучких батарей зазвичай погіршуються при тривалих частих механічних деформаціях, наприклад, при згинанні, згортанні, скручуванні та інших режимах деформації. З високою ємністю, можливістю швидкого заряджання / розряджання та чудовою стабільністю на циклі, що може бути додатково поєднано з гнучкими електролітами та сепараторами. Зазначається, що з метою подальшого задоволення постійно високих вимог до акумуляторних батарей у портативних електронних пристроїв, значні зусилля у галузі досліджень у всьому світі були спрямовані на вдосконалення існуючих акумуляторних систем з використанням нових матеріалів, передових технологій та нових енергетичних хімічних сполук.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Горобець, М. В., та О. В. Міщенко. "ВПЛИВ БІШОФІТУ НА ОНТОГЕНЕЗ СОРТІВ ЯЧМЕНЮ ЯРОГО". Вісник Полтавської державної аграрної академії, № 1 (27 березня 2020): 25–32. http://dx.doi.org/10.31210/visnyk2020.01.02.

Повний текст джерела
Анотація:
Ярий ячмінь – важлива харчова, кормова та технічна культура, масштаби вирощування якої на-багато менше, ніж існує національна потреба в ній. Тривалі польові експерименти та практика вирощування сільськогосподарських культур показали, що попередня обробка їх насіння (насамперед посівів) бішофітом позитивно впливає на їх подальший ріст і розвиток. У статті представлені ре-зультати дослідження впливу електрохімічної обробки розчинами бішофіту з метою отримання розчинів з комплексом антибактеріальних властивостей, використання яких можна рекомендувати для передпосівної обробки ячменю ярого та захисту рослин від грибкового впливу. Це дало змогу, як показали експерименти на вирощуванні сільськогосподарських культур, збільшити врожайність удвічі-утричі, а також використовувати для знезараження побутових та промислових стічних вод у сільськогосподарських підприємствах. Розглянуто технологічні характеристики використання роз-чину бішофіту. Встановлено найбільш ефективну концентрацію замочування насіння ячменю ярого в концентрації 1,0% водного розчину бішофіту для сортів «Геліос» та «Парнас». Замочування насіння ячменю весняних сортів «Вакула» виявило стимулювання ростових процесів ячменю ярого вже на ранніх етапах онтогенезу, а також на подальший його ріст та розвиток, підвищення врожайності, кормових та харчових якостей зерна. Встановлено, що саме при концентрації 1,0 % водного розчину бішофіту енергія проростання є найбільш ефективною, адже при концентрації 1,5 %, для більшості використаних зразків ячменю, спостерігається сповільнення проростання та розвитку рослин. Встановлено, що найбільший стимулюючий ефект препарату на ріст кореню ячменю спостеріга-ється на 7-у добу після передпосівного замочування. Цей ефект зберігається протягом усього дослі-дження. Коренева система у 7-денних проростків ячменю ярого, вирощених з насіння після передпо-сівної обробки 1,0% розчином бішофіту, на 31 % довше, ніж у контрольних рослин, у 14-денних рос-лин ці показники відрізняються на 29 %, а у 21-денних – на 16 %, відповідно. При дії розчину бішофі-ту в концентрації 1,5 та 2,0 % інгібував процеси росту коренів ячменю ярого. На 7 добу досліджень довжина кореневої системи рослин була менше на 22 % порівняно з контрольними проростками, на 14-ту добу – на 34 %, а на 21 добу менше на 36 %. Отже, в дослідженні показано стимулюючийвплив 1,0 % розчину бішофіту на енергію проростання, лабораторну схожість насіння, а також напоказники росту рослин ячменю (площа листової поверхні, маса сирої й сухої речовини надземної ча-стини і коренів). Отримані результати підтвердили перспективність використання препарату бі-шофіт для передпосівної обробки насіння ячменю ярого.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Вакуленко, Анна, та Микола Гомеля. "Високоефективна переробка розчинів хлориду натрію з отриманням коагулянтів на основі хлориду заліза та хлориду алюмінію". Матеріали міжнародної науково-практиченої конференції "Екологія. Людина. Суспільство", 20 травня 2021, 103–5. http://dx.doi.org/10.20535/ehs.2021.233201.

Повний текст джерела
Анотація:
У роботі досліджені процеси електрохімічної переробки розчинів хлориду натрію з отриманням хлориду алюмінію, хлориду заліза і лугу в трикамерному електролізері з аніонообмінною мембраною МА-41 і катіонообмінною мембраною МК-40. Представлений спосіб переробки сольових концентратів із застосуванням розчинного алюмінієвого аноду є економічно доцільним, так як у результаті електролізу одночасно відбувається демінералізація рідких відходів до рівня нормативних вимог та виробництво з вихідних концентратів товарної продукції. Недоліком представленого способу отримання коагулянту є взаємодія алюмінію із водою. Проте, доведено, що із підвищенням анодної щільності струму під час електролізу вихід хлориду алюмінію практично повністю обумовлений електрохімічним розчиненням аноду, а хімічне розчинення алюмінію майже відсутнє. Стабільність отриманих розчинів коагулянтів протягом тривалого часу підтримується низькими значеннями реакції середовища (рН ≤ 3). Так, при силі струму 1 А (щільність струму 8,34 А/дм2 ) та вихідній концентрації хлориду натрію 1655 мг-екв/дм3 сумарна концентрація іонів алюмінію в отриманому розчині досягає 2278 мг-екв/дм3 . В цілому було досягнуто концентрації гідроксохлориду та хлориду алюмінію на рівні 130.85 г/дм3 тобто 13.085 %. На хімічно розчинений алюміній припадає не більше 12 %. За даних вихідних параметрів вихід іонів алюмінію з урахуванням хімічного розчинення аноду складає 100–108 %. Одночасно в катодній камері відбувається концентрування лугу. Його вихід за струмом при цьому сягає 92 - 94 %. Для отримання коагулянту на основі хлориду заліза в процесі досліджень використовувався катод із нержавіючої сталі та залізний анод. Були використані модельні розчини каустичної соди з концентрацією 50 мг-екв/дм3 (катодна область), солі хлористого натрію з концентрацією 100г/дм3 (середня область) та підкисленою соляною кислотою дистильованої води (рН на рівні 1-2, анодна область). В результаті проведення експериментів в катодній області утворюється розчин гідроксиду натрію, а в анодній при концентруванні іонів Cl- та розчинення залізного аноду утворюється розчин хлориду заліза (ІІІ).
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії