Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Проектування програмних засобів.

Статті в журналах з теми "Проектування програмних засобів"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Проектування програмних засобів".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kovalenko, Yu B., та I. O. Kozlyuk. "РЕАЛІЗАЦІЯ ПРОГРАМНОГО КОМПЛЕКСУ РОЗРОБЛЕННЯ ДОДАТКА ІНТЕГРОВАНОЇ МОДУЛЬНОЇ АВІОНІКИ ЗА СТАНДАРТОМ ARINC653". Visnyk of Zaporizhzhya National University Physical and Mathematical Sciences, № 2 (12 березня 2021): 27–35. http://dx.doi.org/10.26661/2413-6549-2020-2-04.

Повний текст джерела
Анотація:
Сучасні інтегровані модульні системи авіоніки привносять значну гнучкість у розроблення систем авіоніки, але з такою гнучкістю виникає більш складний процес проектування для точного налаштування програмно-апаратної платформи виконання. Це значно збільшує труднощі в проектуванні системи IMA порівняно з федеративними архітектурою, де прикладне програмне забезпечення статично розподіляється між її виконавчим обладнанням. Метою розроблення програмного комплексу є надання засобів розроблення прикладних програм ІМА і подальший їх запуск на цільовій платформі LynxOS-178 без зміни вихідного коду. Використання цього комплексу дозволить як формувати нові навички для розроблення сучасних модулів авіоніки, так і отримати більш глибокі знання для формування компетенцій у сфері новітніх технологій. У статті пропонується архітектура програмного комплексу розроблення прикладних програм інтегрованої модульної авіоніки (далі – ІМА) з інтерфейсом APEX за стандартом ARINC-653 в операційній системі Linux, особливості її реалізації, а також методи розроблення програмного комплексу. Запропонований підхід спрощує процес розроблення додатків ІМА і зменшує ціну розроблення, включаючи тестування і налагодження. Також використання як загальнодоступної операційної системи реального часу ОСРЧ Linux із відкритим вихідним кодом з інтерфейсом APEX за стандартом ARINC-653 під час розроблення прикладних програм ІМА є рішенням, що лежить у межах програми імпортозаміщення. Запропонований програмний комплекс можна використовувати для забезпечення дисциплін, пов’язаних із вбудованими обчислювальними системами як засіб для розроблення додатків ІМА, у межах освоєння таких компетенцій, як здатність освоювати методики використання програмних засобів для розв’язання практичних завдань, здатність розробляти компоненти апаратно-програмних комплексів і баз даних, використовуючи сучасні інструментальні засоби і технології програмування, здатність сполучати апаратні й програмні засоби в складі інформаційних і автоматизованих систем, готовність застосовувати основи інформатики та програмування до проектування, конструювання та тестування програмних продуктів, готовність застосовувати основні методи і інструменти розроблення програмного забезпечення, володіння навичками використання різних технологій розроблення програмного забезпечення.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Столбов, Денис Володимирович. "Особливості проектування програмного середовища навчання підлітків безпеці в мережі Інтернет". New computer technology 13 (25 грудня 2015): 131–34. http://dx.doi.org/10.55056/nocote.v13i0.893.

Повний текст джерела
Анотація:
Розглянуто питання створення програмного середовища навчання підлітків Інтернет-безпеці. Визначено особливості проектування такого програмного середовища. Цілі дослідження: визначити особливості проектування програмного середовища навчання підлітків безпечній поведінці в Інтернеті. Завдання дослідження: проаналізувати існуючі програмні засоби навчання учнів Інтернет-безпеці; визначити характер діяльності сучасних підлітків в Інтернет-просторі; сформувати особливості проектування програмного середовища навчання підлітків Інтернет-безпеці. Об’єкт дослідження: навчання учнів основної школи. Предмет дослідження: проектування програмного середовища навчання учнів Інтернет-безпеці. Методи дослідження: аналіз науково-педагогічних досліджень вітчизняних та зарубіжних науковців з питань навчання учнів Інтернет-безпеці, проектування електронних засобів навчального призначення. Результати дослідження: проведено аналіз програмних засобів навчання учнів Інтернет-безпеці; охарактеризовано діяльність сучасних підлітків в Інтернет-просторі; визначено особливості проектування програмного середовища навчання підлітків безпечній поведінці в Інтернеті. Висновки та рекомендації: в процесі проектування програмного середовища, зорієнтованого на навчання підлітків Інтернет-безпеці необхідно враховувати вікові особливості їх розвитку, характер їх діяльності в Інтернет-просторі. Разом з цим розроблене програмне середовище повинно задовольняти вимогам, що висуваються до електронних засобів навчання.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Шумова, Л. О., та А. В. Ячменьов. "Програмні засоби аналітичної підтримки обліку продажів інтернет-магазину". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 4(268) (10 червня 2021): 128–32. http://dx.doi.org/10.33216/1998-7927-2021-268-4-128-132.

Повний текст джерела
Анотація:
У статті розглянуто питання щодо проектування інформаційно-аналітичної системи для обліку та прогнозування продажів інтернет-магазину з метою підвищення ефективності його управління. Розроблено базу даних у MySQL та необхідні програмні засоби для обліку торгових операцій інтернет-магазину; програмний модуль на С# для прогнозування обсягів продажів на основі моделі авторегресії. Представлено схему інтеграції розроблених програмних засобів у інформаційно-аналітичну систему управління інтернет-магазином.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Овчаров, С. "Педагогічні аспекти проектування навчальних програмних засобів". Збірник наукових праць Полтавського державного педагогічного університету ім. В.Г. Короленка. Педагогічні науки, Вип. 7 (2005): 73–80.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Жицький, Олександр Олександрович, та Юрій Васильович Триус. "Web-орієнтований програмний засіб для експертного оцінювання анкетним методом". New computer technology 13 (25 грудня 2015): 305–17. http://dx.doi.org/10.55056/nocote.v13i0.920.

Повний текст джерела
Анотація:
Метою дослідження є створення web-орієнтованого програмного засобу для експертного оцінювання анкетними методами. Завданнями дослідження є аналіз переваг і недоліків анкетних методів проведення експертизи, аналіз існуючих програмних засобів для експертного оцінювання, проектування і створення web-орієнтованого програмного засобу для експертного оцінювання анкетними методами, який би був доступним в мережі Internet користувачам для експертного аналізу реальних задач і проблем у сфері бізнесу та освіти. Об’єктом дослідження є використання методів і програмних засобів експертного оцінювання. Предметом дослідження є web-орієнтоване програмне забезпечення для експертного оцінювання анкетними методами. Результати дослідження можуть бути використані для експертного оцінювання об’єктів малого і середнього бізнесу, при вирішенні проблем освітньої логістики, а також будуть корисними студентам ВНЗ, які вивчають експертні технології прийняття рішень.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Плотніков, В. М., та Ю. В. Борцова. "ПРОЕКТУВАННЯ ЗАХИСНИХ СИСТЕМ НА БАЗІ ФРАКТАЛЬНИХ АЛГОРИТМІВ". Automation of technological and business processes 13, № 2 (2 серпня 2021): 41–49. http://dx.doi.org/10.15673/atbp.v13i2.2056.

Повний текст джерела
Анотація:
Для захисту конфіденційних даних від комп'ютерних злочинів користувач має подбати про безпеку своєї інформації власноруч, використовуючи існуючі сучасні програмні засоби. Одним з таких засобів є реалізація шифрування повідомлень за допомогою прикріплення цифрового підпису до даних. Для роботи криптосистем шифрування з відкритим ключем необхідно три алгоритми: алгоритм шифрування, алгоритм розшифрування та алгоритм генерації ключів. Одним з перспективних шляхів розвитку шифрування з відкритими ключами є використання моделі піднесення до великої степені дискретних логарифмів для генерування ключів, так званий алгоритм Діффі-Хеллмана. Рекурентні відношення, що становлять основу множини Мандельброта, забезпечують хаотичну поведінку та суттєву залежність процесу від початкових умов. Ці властивості дозволяють створити криптографічну систему, що здатна використовувати їх для вирішення поставлених задач. Спроектована криптографічна система повінна поєднувати в собі засоби створення ключів, шифрування текстових повідомлень та генерації цифрового підпису. Протокол обміну ключами передбачає встановлення між учасниками спільного секретного ключа, який у подальшому можна використовувати для шифрування повідомлень тексту або зображень цифровим підписом. Проаналізовано інструментальні засоби, за допомогою яких можна вирішити і реалізувати систему фрактальних алгоритмів для захисту інформації. В ході дослідження реалізовано програмний продукт мовою програмування C# у середовищі Visual Studio 2010. Система спроектована у рамках об'єктно-орієнтованого підходу до розробки програмних продуктів, тому вона використовує програмні класи для розподілення функціональності. Реалізований алгоритм має більшу кількість можливих ключів у порівнянні з поширеною на сьогодні схемою обміну ключами Діффі-Хеллмана. Великий розмір простору ключів робить важкими для реалізації атаки перебором, також відомі як метод «грубої сили». Хаотичні властивості фрактального алгоритму не вимагають використання чисел великої розрядності, проте забезпечують високу якість шифрування. Економія часу на розрахунках дозволяє зменшити затрати ресурсів та підвищити продуктивність системи в цілому.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Рассовицька, Марина Віталіївна, та Андрій Миколайович Стрюк. "Використання хмаро орієнтованих систем автоматизованого проектування у професійно-практичній підготовці майбутніх інженерів-механіків". New computer technology 17 (25 червня 2019): 168–74. http://dx.doi.org/10.55056/nocote.v17i0.961.

Повний текст джерела
Анотація:
Метою дослідження є добір хмаро орієнтованих систем автоматизованого проектування, які доцільно використовувати у професійно-практичній підготовці майбутніх інженерів-механіків. Задачі дослідження: проаналізувати доцільність використання хмаро орієнтованих систем автоматизованого проектування у професійно-практичній підготовці бакалаврів прикладної механіки; виконати добір засобів автоматизованого проектування, які доцільно використовувати у навчанні майбутніх інженерів-механіків. Об’єктом дослідження є професійно-практична підготовка майбутніх інженерів-механіків. Предметом дослідження є використання хмаро орієнтованих систем автоматизованого проектування у професійно-практичній підготовці бакалаврів прикладної механіки. У роботі проаналізовано актуальність та доцільність використання хмаро орієнтованих систем автоматизованого проектування у професійно-практичній підготовці майбутніх інженерів-механіків, обрано комплекс програмних засобів, хмарних та мобільних сервісів для професійно-практичної підготовки майбутніх інженерів-механіків, запропоновано модель доступу з використанням облікового запису Google.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yakovyna, V. S., M. M. Seniv, V. V. Lytvyn та І. І. Symets. "Програмний модуль розв'язування систем диференціальних рівнянь Колмогорова-Чепмена для автоматизації надійнісного проектування". Scientific Bulletin of UNFU 29, № 5 (30 травня 2019): 141–46. http://dx.doi.org/10.15421/40290528.

Повний текст джерела
Анотація:
Надзвичайно важливою компонентою якості складних технічних систем є їхня надійність, тобто властивість системи виконувати задані функції, зберігаючи в часі значення експлуатаційних показників у заданих межах, що відповідають умовам використання та заданим режимам технічного обслуговування, збереження і транспортування. Сучасний стан розвитку методів аналізу надійності технічних систем характеризується поєднанням аналітичних методів дослідження надійності з обчислювальними можливостями сучасних комп'ютерних засобів. Тому актуальною проблемою є автоматизація моделювання складних технічних систем яка, за умови відповідного рівня формалізації моделей, уможливлює їх побудову та проведення аналізу надійності з використанням сучасних комп'ютерних засобів. В роботі описано програмний модуль автоматизованого розв'язання систем диференціальних рівнянь Колмогорова-Чепмена, який є складовою програмного комплексу автоматизації надійнісного проектування складних технічних систем. Розроблений модуль дає змогу розв'язувати системи диференціальних рівнянь Колмогорова-Чепмена без залучення спеціалізованих програмних продуктів (Matlab, Mathcad) для аналізу структурних схем надійності та автоматизованого визначення надійнісних показників складних технічних систем. Представлений модуль, за рахунок інтеграції в програмний комплекс автоматизації надійнісного проектування, дає змогу швидше опрацьовувати вхідні дані великих об'ємів та візуалізувати отримані результати обчислень.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Снігур, O. "Інструменти програмної інженерії призначені для забезпечення процесів життєвого циклу програмного забезпечення." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 44 (2 листопада 2021): 149–56. http://dx.doi.org/10.36910/6775-2524-0560-2021-44-23.

Повний текст джерела
Анотація:
У статті розкрито інструменти програмної інженерії призначені для забезпечення процесів життєвого циклу програмного забезпечення. Визначено етапи еволюції методів та методологій застосовуваних для розробки та підтримки процесів життєвого циклу програмного забезпечення. Схематично представлено еволюцію методів та методологій застосовуваних для розробки та підтримки процесів життєвого циклу програмного забезпечення. Виділено чотири етапи еволюційного циклу: модель водоспаду (послідовна), модель фонтану (зворотна), ітеративна еволюційна модель, швидка комплексна модель розробки програмного забезпечення. Наголошено, що у зв’язку зі стрімким розвитком ІТ сфери практично для кожної фази життєвого циклу розробки програмного забезпечення були розроблені інструменти програмної інженерії. Для багатьох етапів існує велика кількість інструментів, які виконують ті ж або подібні функції. Деякі інструменти надають засоби, які охоплюють багато різних етапів, інші зосереджені на певному виді завдання, технології, мові чи проблемі розробки програмного забезпечення. Запропоновано граф функціональної приналежності кожного виду інструментів програмної інженерії до певного процесу життєвого циклу програмного забезпечення. Що дозволило візуально відстежити пристосованість кожного окремого виду інструментів до часового проміжку певного етапу. Описано набір інструментів і методів програмної інженерії для проектування програмного забезпечення, що допомагає забезпечити високу якість програм, відсутність помилок і простоту в обслуговуванні програмних продуктів та зазначається, що окреслена низка інструментів застосовується до аналізу, проектування та інженерних інструментів, але іноді використовується для позначення всіх інтегрованих програмних засобів, розгорнутих у проекті. Наголошено, що незважаючи на інтегральність, структурованість та універсальність багатьох інструментів програмної інженерії та масштабність послуг, які надаються ними, не завжди вони однаково застосовуються продавцями та їх дослідниками, за рахунок наявності специфічних приналежностей.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sereda, Khrystyna V. "ТЕОРЕТИЧНІ ОСНОВИ ІНФОРМАТИЗАЦІЇ МЕНЕДЖМЕНТУ НАУКОВИХ ДОСЛІДЖЕНЬ У ГАЛУЗІ ПЕДАГОГІЧНИХ НАУК". Information Technologies and Learning Tools 42, № 4 (25 вересня 2014): 181–99. http://dx.doi.org/10.33407/itlt.v42i4.1051.

Повний текст джерела
Анотація:
У статті представлено результати аналізу теоретичних засад інформатизації менеджменту наукових досліджень у галузі педагогічних наук. Досліджено основні принципи державної і закордонної політики в галузі інформатизації. Визначено цілі і завдання інформатизації менеджменту наукових досліджень у галузі педагогічних наук у НАПН України. Представлено підхід до проведення інформатизації шляхом впровадження інформаційної системи менеджменту наукових досліджень (ІС «Наукові дослідження»). Проведено аналіз існуючих комплексів стандартів і вимог, які регламентують процеси проектування розробки інформаційних систем. Окреслено основні принципи проектування, описано структуру і склад програмних засобів ІС «Наукові дослідження».
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Гірник, Анатолій Володимирович. "Вітчизняна САПР БудКАД як засіб легалізації програмного забезпечення". New computer technology 8 (22 листопада 2013): 09–11. http://dx.doi.org/10.55056/nocote.v8i1.166.

Повний текст джерела
Анотація:
Основними причинами широкого використання в будівельній галузі неліцензійного програмного забезпечення є низька купівельна спроможність підприємств і організацій галузі, що ускладнює придбання легального програмних продуктів, відсутність негативного ставлення у суспільстві до нелегального використання програмного забезпечення. Особливо це стосується проектних організацій, що експлуатують вартісні програмні комплекси автоматизованого проектування та розрахунків [1].За даними Асоціації «Українське об’єднання проектних організацій», вартість заходів з легалізації (закупівлі ліцензій на програмне забезпечення) в будівельній галузі України сягає 4 млрд. грн. Причому на сьогодні це на 95% імпорт.З метою вирішення проблеми легалізації програмних засобів в проектних організаціях за ініціативою Асоціації «Українське об’єднання проектних організацій» в І кв. 2010 року завершено створення вітчизняної системи автоматизованого проектування об’єктів будівництва (САПР) БудКАД. Розробку системи виконує базова організація з інформаційних технологій Міністерства регіонального розвитку та будівництва України – Державний науково-дослідний інститут автоматизованих систем у будівництві (ДНДІАСБ).Основні принципи, на яких базується вітчизняна САПР БудКАД [2]:– відповідність функціональності САПР стану проектних технологій в будівельній галузі на даний час та їх подальшого розвитку; – забезпечення сумісності креслень з іншими САПР, що використовуються в проектних організаціях та плануються до використання в майбутньому;– забезпечення читання та коригування напрацьованих креслень, в тому числі на застарілих версіях САПР;– максимальна наближеність інтерфейсу користувача до того, що використовується сьогодні на більшості робочих місць проектувальників, щоб уникнути тривалого перенавчання у процесі впровадження САПР БудКАД;– відслідковувавання змін формату файлів DWG, який є внутрішнім форматом САПР БудКАД;– максимальне дотримання вимог ДСТУ та ДБН з будівельного проектування. САПР БудКАД ДНДІАСБ створена на базі платформи IntelliCAD до консорціуму ІТС (IntelliCAD Technology Consortium), який на корпоративних засадах розробляє та підтримує базову платформу. Програмні продукти, створені на цій платформі, широко відомі у світі і поставляються в 80-ти країнах, в тому числі в США, Європі, Японії.За нашими підрахунками, близько 85-90% проектних робіт виконуються сьогодні з використанням двовимірного креслення. Тому, на нашу думку, бюджетна САПР БудКАД стане засобом, який внесе істотний вклад в вирішення проблеми легалізації програмного забезпечення в проектних організаціях будівельної галузі України. Особливо це стосується конструювання та проектування інженерних мереж будівель.Створена Асоціацією «Українське об’єднання проектних організацій» постійно діюча робоча група фахівців САПР проектних інститутів, тестує версії БудКАД, визначає перелік необхідних першочергових доробок, узгоджує технічні вимоги до наступних версій.На сьогодні створений додаток до БудКАД – BudCAD BonusTools, який містить набір додаткових інструментів для виконання проектної документації у відповідності до державних стандартів системи проектної документації для будівництва (СПДС).В перспективних напрямках подальшого розвитку САПР БудКАД: 3D-версія, розширення функціональності СПДС та підтримка інших ДСТУ і ДБН (здійснюється поступово за рішеннями робочої групи Асоціації проектних організацій), інтегрування вітчизняних розробок з автоматизації проектування окремих частин проекту, архітектурний пакет з інформаційною моделлю, вихід на програми будівельних розрахунків та передавання обсягів у кошторисні програми, вбудований інженерний калькулятор.Міністерство регіонального розвитку та будівництва сумісно з Міністерством освіти та науки співпрацюють у сфері впровадження сучасних інформаційних технологій в будівництві в учбовий процес навчальних закладів будівельного профілю. Учасникам конференції роздаємо учбову версію САПР БудКАД та проводимо тренінг з її первинного освоєння.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Odarushchenko, O. "ОЦІНЮВАННЯ ТА ЗАБЕЗПЕЧЕННЯ ФУНКЦІЙНОЇ БЕЗПЕКИ ПРИ РОЗРОБЛЕННІ ТА ЛІЦЕНЗУВАННІ МОДУЛІВ І ПЛАТФОРМ ДЛЯ ПРОГРАМНО-ТЕХНІЧНИХ КОМПЛЕКСІВ ІНФОРМАЦІЙНО-КЕРУЮЧИХ СИСТЕМ". Системи управління, навігації та зв’язку. Збірник наукових праць 3, № 61 (11 вересня 2020): 90–93. http://dx.doi.org/10.26906/sunz.2020.3.090.

Повний текст джерела
Анотація:
Виконано аналіз сучасного стану досліджень в галузі надійності та функційної безпеки програмнотехнічних комплексів інформаційно-керуючих систем (ПТК ІКС). Встановлено, що не зважаючи на використання нової елементної бази в ході модернізації та розроблення нових ПТК ІКС, застосування сучасних технологій розробки їх апаратної та програмної компонент, підвищення ефективності технологічних процесів, зниження ресурсємності виробництва не призвело до достатнього прогресу у вирішені завдань проектування ПТК з необхідним і гарантованим рівнем надійності і функційної безпеки. Крім того, встановлено, що не зважаючи на інтенсивні дослідження впродовж останніх десятиліть залишається низка нерозв’язаних задач і обмежень існуючих методів і засобів, а саме: моделі, які описують надійнісну і безпекову складові, не ураховують розмірність задач і обмежень існуючих методів; у сучасних методах оцінювання функційної безпеки аспекти безвідмовності апаратних і програмних засобів розглядаються відокремлено, без спільного кількісного аналізу результатів верифікації; методи розроблення й забезпечення відмовостійкості ПТК з використанням програмовних платформ недостатньо ураховують можливості, обмеження і похибки вбудованих засобів контролю і діагностування на рівні електронних проектів, модулів і каналів. Представлений в роботі метод частково вирішує перелічені задачі
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Rudenko, O., O. Odarushchenko, Z. Rudenko та O. Odarushchenko. "ОЦІНЮВАННЯ КІЛЬКОСТІ ВТОРИННИХ ДЕФЕКТІВ ПРОГРАМНИХ ЗАСОБІВ ШЛЯХОМ КОМПЛЕКСУВАННЯ МОДИФІКОВАНИХ МОДЕЛЕЙ РОСТУ НАДІЙНОСТІ ДЖЕЛІНСЬКІ-МОРАНДИ І ШИКА-ВОЛВЕРТОНА". Системи управління, навігації та зв’язку. Збірник наукових праць 1, № 59 (26 лютого 2020): 97–100. http://dx.doi.org/10.26906/sunz.2020.1.097.

Повний текст джерела
Анотація:
Виконано аналіз множин моделей оцінювання надійності програмних засобів (МНПЗ) або за іноземною назвою моделей зростання надійності ПЗ (Software Reliability Growth Models – SRGM). Досліджено ймовірнісні МНПЗ з метою встановлення таких, що можуть бути використано для врахування фактору прояву вторинних дефектів. Під вторинними дефектами розуміються такі, що вносяться в ПЗ після усунення первинних, які проявляються та усуваються в процесі налагодження та тестування ПЗ. Проаналізовано припущення та аналітичні вирази моделей росту надійності програмних засобів Джелінські-Моранди, Шика-Волвертона, щодо питання їх застосування для врахування фактору внесення та прояву вторинних дефектів проектування програмних засобів. Запропоновано підхід щодо кількісної оцінки вторинних дефектів, що полягає в модифікації функцій ризику моделей внесенням до них параметра, який визначає число вторинних дефектів та комплексування модифікованих функцій ризику. Проаналізовані проблемні питання, що виникають при комплексуванні модифікованих простої експоненціальної моделі і моделі Джелінські-Моранди. Розглянуті підходи, при яких можливе комплексування модифікованих МНПЗ – узгодженість припущень, прийняття додаткових припущень, що узгоджують моделі, співставлення параметрів щодо умов здійснення аналітичних перетворень. Показані переваги комплексування модифікованих моделей росту надійності Джелінські-Моранди і Шика-Волвертона у порівнянні з комплексуванням модифікованої моделі росту надійності Джелінські-Моранди і модифікованої простої експоненціальної моделі. Проведено співставлення параметрів модифікованих моделей росту надійності Джелінські-Моранди і Шика-Волвертона, в результаті чого виявлено співпадання більшості з них. Додано припущення моделі росту надійності Шика-Волвертона про пропорційність функції ризику тривалості тестування, що не відповідає припущенню МНПЗ Джелінські-Моранди, оскільки відповідний параметр використовується в аналітичних перетвореннях при комплексуванні моделей. Обґрунтована можливість комплексування МНПЗ Джелінські-Моранди і Шика-Волвертона. Показана послідовність аналітичних перетворень об’єднаної моделі модифікованих моделей Джелінські-Моранди і Шика-Волвертона на основі яких одержана формула для оцінювання кількості вторинних дефектів програмних засобів. Одержаний вираз спрощує оцінювання кількості вторинних дефектів ПЗ, у порівнянні з їх оцінюванням на основі комплексування модифікованих моделей Джелінські-Моранди і простої експоненціальної моделі. Одержана формула у поєднанні з МНПЗ інших класифікаційних ознак дозволяє спрогнозувати значення функції ризику та далі використовувати її для комплексного оцінювання показників надійності та функціональної безпеки складних систем, у тому числі систем, які можливо віднести до класу критичних (наприклад, програмно-технічних комплексів інформаційно-керуючих систем АЕС)
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Lytvynova, Svitlana G. "ЗАРУБІЖНИЙ ДОСВІД ПРОЕКТУВАННЯ ХМАРО ОРІЄНТОВАНИХ НАВЧАЛЬНИХ СЕРЕДОВИЩ ЗАГАЛЬНООСВІТНІХ НАВЧАЛЬНИХ ЗАКЛАДІВ". Information Technologies and Learning Tools 41, № 3 (4 червня 2014): 10–27. http://dx.doi.org/10.33407/itlt.v41i3.1052.

Повний текст джерела
Анотація:
У статті висвітлено досвід проектування хмаро орієнтованих навчальних середовищ (ХОНС) в системі загальної середньої освіти зарубіжних країн. Проаналізовано проекти Росії, Німеччини, Чехії, Австралії, Китаю, Ізраїлю, Африки, Сінгапуру, Бразилії, Єгипту, Колумбії, Азербайджану та США. У результаті аналізу реалізацій проектів було з’ясовано спільні проблеми впровадження хмаро орієнтованих навчальних середовищ (безпека особистих даних, технічні проблеми інтеграції хмарних середовищ з існуючими системами і продуктивність хмарних сервісів) і переваги їх використання в середній освіті (мобільність учасників, об’ємні хмарні сховища даних, повсюдна доступність, систематичне оновлення програмних засобів, простота використання). Встановлено, що проблема проектування хмаро орієнтованих навчальних середовищ набуває особливого значення у зв'язку з підвищенням вимог суспільства до якості освітніх послуг і розвитком електронного навчання в системі середньої освіти.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Коваль, Максим Валерійович, та Андрій Миколайович Стрюк. "Аналіз доцільності використання хмарних технологій у комбінованому навчанні магістрів з програмної інженерії". Theory and methods of e-learning 4 (28 лютого 2014): 134–39. http://dx.doi.org/10.55056/e-learn.v4i1.381.

Повний текст джерела
Анотація:
Підготовка магістрів з програмної інженерії ведеться на базі освітньо-кваліфікаційного рівня бакалаврів з програмної інженерії. У зв’язку з цим майбутні магістри вже володіють навичками з розробки та тестування програмного забезпечення [4] і повинні отримати професійні компетентності, що дозволяють виконувати роботу наукового співробітника, як у галузі програмування, так і у інших галузях обчислень, та інженера у інших галузях інженерної справи, займаючи первинні посади: інженера з впровадження нової техніки та технологій; керівника виробничого або функціонального підрозділу; асистента вищого навчального закладу або викладача професійного навчального закладу.Таким чином, при підготовці магістрів з програмної інженерії передбачається посилення таких виробничих функцій, як організаційна, навчально-виховна, науково-дослідна та проектувальна. Кожна функція вимагає володіння певними вміннями згідно відповідної освітньо-кваліфікаційної характеристики. В табл. 1 показано зв’язок між виробничими функціями, типовими задачами в рамках кожної функції та уміннями, якими має оволодіти магістр з програмної інженерії.Таблиця 1Розподіл умінь магістрів з програмної інженерії згідно функцій ФункціяТипова задачаЗміст умінняОрганізаційнаКерівництво роботою виконавців та підрозділів по автоматизації обробки данихСпираючись на нормативні документи вміти: планувати та організувати роботу виконавців та підрозділів; виконувати контроль виконаних робіт по автоматизації обробки данихНавчально-виховнаОволодіння формами, методами та принципами організації навчального процесу у ВНЗСпираючись на відповідні підручники та методичне забезпечення вміти: підібрати потрібний зміст навчального матеріалу; використати оптимальні форми, методи і засоби навчання відповідно до програмиОволодіння основними дидактичними принципами педагогічних тех­нологій і процесів педагогічного проектуванняНа основі педагогічних знань вміти: контролювати і корегувати здобуті знання; застосовувати дидактичні принципи педагогічних технологійНа основі педагогічних знань вміти: застосовувати основні принципи комунікативної культури; застосовувати одержану інформацію у практичній і творчій діяльності; використовувати найновіші форми методи та прийоми у навчально-виховній діяльності на основі наукових знань, рекомендацій і комп’ютерної технікиНауково-досліднаДослідження існуючих технологій в ІС, розробка заходів по їх удосконаленню, та нових компонентівНа основі аналізу інформаційних систем (ІС) вміти: формулювати задачу дослідження; володіти методикою системного аналізу; моделювати та оптимізувати інформаційні системиВизначення актуальності наукового дослідженняВикористовуючи знання та результати аналізу наукових досліджень предметної області, вміти: обґрунтувати проблему дослідження; сформулювати парадигму, та границі дослідження; визначити мету та задачі дослідженняВизначення предмету і об’єкту дослідженняНа основі визначеної мети, задач дослідження вміти обґрунтувати предмет та об’єкт дослідженняПроектувальнаПрограмування прикладних задач мовами високого рівняУміти знаходити спільні і від’ємні риси різних систем програмування, розуміти основи побудови мов програмування високого рівня, використовувати ретроспективний аналіз для прогнозування розвитку і впровадження власних програмНавчальний план підготовки магістрів прийнято розділяти на окремі дисципліни. Так, наведені в табл. 1 уміння частково формуються під час вивчення дисциплін гуманітарної та соціально-економічної підготовки («Філософські проблеми наукового пізнання», «Вища освіта і Болонський процес», «Основи наукових досліджень»), а також при вивченні наступних дисциплін професійної та практичної підготовки:1. Інженерія ПЗ для паралельних та розподілених систем.2. Технології проектування та створення сучасних корпоративних мереж.3. Експертні технології для систем підтримки прийняття рішень.4. Розробка і дослідження інформаційних систем.5. Проектування, моделювання та аналіз інформаційних систем.6. Методи обробки експериментальних даних та планування експерименту.У той же час визначені у освітньо-кваліфікаційній характеристиці вміння є міждисциплінарними і формування їх відбувається під час вивчення не окремих дисциплін, а всього циклу підготовки. Міждисциплінарна інтеграція в рамках навчальної програми магістрів може відбуватися за наступними напрямками:1) посилення професійної зорієнтованості дисциплін гуманітарної та соціально-економічної підготовки;2) посилення діяльнісного підходу до вивчення дисциплін циклу професійної та практичної підготовки, активне застосування методів проектів та контекстного навчання, елементів проблемного навчання та навчання у співпраці [6];3) фундаменталізація підготовки магістрів програмної інженерії.В роботі С. О. Семерікова [7] підкреслюється, що подальша фундаменталізація підготовки фахівців повинна бути спрямована на педагогічну інтеграцію, подолання розриву між знаннями, отриманими студентами при вивченні різних навчальних дисциплін за рахунок істотного розвитку міжпредметних зв’язків, а одним із факторів фундаменталізації професійної підготовки фахівців з інформаційних технологій є фундаменталізація засобів навчання через надання їм властивостей мобільності. Підвищення мобільності можна досягти шляхом технологічного насиченням навчального процесу мобільними засобами ІКТ та шляхом уніфікації структури навчального матеріалу – подання його у вигляді окремих незалежних блоків, що називають навчальними об’єктами [9].Інтенсивне використання засобів ІКТ у вищій школі доцільне в умовах комбінованого навчання [8], яке передбачає системну інтеграцію традиційних та інноваційних технологій, зокрема, технологій електронного, дистанційного та мобільного навчання. Прагнення зробити навчальний процес більш гнучким, відкритим та мобільним зумовило зростання інтенсивності використання хмарних технологій у навчанні.Хмарні технології – найбільш перспективний на сьогодні напрям розвитку мобільних ІКТ [10] – передбачають доступ окремих користувачів до великого масиву легкодоступних віртуальних ресурсів (апаратних, програмних платформ та послуг) незалежно від пристрою, що використовується для доступу [2]. Обсяг хмарних ресурсів, що надається користувачу, може динамічно змінюватись, пристосовуючись до його потреб, що робить хмарні технології оптимальним інструментом забезпечення повсюдного та повсякчасного доступу до освітніх послуг.Детальному огляду впливу на вищу освіту тих змін, що пов’язані з поширенням хмарних технологій в сучасній ІТ-індустрії, присвячено дослідження авторів дослідницького об’єднання EDUCASE [1]. В дослідженні [5] розглянута реалізація ІТ-інфраструктури університету на основі хмарних технологій (рис. 1). Рис. 1. Архітектура хмари для університетів (за З. С. Сейдаметовою) Дослідження М. Ю. Кадемії та В. М. Кобисі [3] підтверджують, що технології хмарних обчислень є розвиненим засобом реалізації проектного методу навчання та формування у студентів навичок колективної роботи. В роботі Ю. В. Триуса [11] підкреслено, одним з реальних шляхів підвищення якості підготовки майбутніх ІТ-фахівців є розробка та впровадження у навчальний процес ВНЗ інноваційних технологій навчання, в основу яких покладено органічне поєднання традиційних та комп’ютерно орієнтованих форм, методів і засобів навчання, зокрема й хмарних технологій.Таким чином, аналіз доступних на сьогодні методичних підходів до використання хмарних засобів подання навчальних матеріалів та організації спільної роботи суб’єктів навчального процесу показав, що вони найбільш природно реалізують принципи комбінованого навчання та надають можливість приділити додаткову увагу формуванню специфічних професійних умінь магістрів з програмної інженерії. Хмарні технології мають стати провідним засобом підготовки магістрів з програмної інженерії з урахуванням їх доцільності для системної реалізації принципів комбінованого навчання та об’єктно-орієнтованого підходу до подання навчального матеріалу.Фундаменталізація навчання магістрів з програмної інженерії відбувається за рахунок інтеграції різних навчальних дисциплін, розвитку міжпредметних зв’язків та посилення діяльнісного підходу до вивчення дисциплін циклу професійної підготовки, активного застосування інноваційних методів навчання у співпраці на основі хмарних технології.Проведений аналіз надає можливість визначити такі напрями подальших досліджень:1. Виділити засоби і методи хмарних технологій навчання, використання яких спрямоване на реалізацію комбінованого навчання магістрів з програмної інженерії з урахуванням особливостей їх підготовки.2. Розробити методику використання хмароорієнтованих засобів у процесі комбінованого навчання магістрів з програмної інженерії.3. Локалізувати та допрацювати хмароорієнтоване програмне забезпечення для реалізації методики комбінованого навчання магістрів з програмної інженерії.4. Дослідити методи проектування та застосування навчальних об’єктів у комбінованому навчанні магістрів з програмної інженерії з використанням хмароорієнтованих засобів.5. На основі методики використання хмароорієнтованих засобів у процесі комбінованого навчання магістрів з програмної інженерії розробити методичне забезпечення дисциплін «Технології проектування та створення корпоративних мереж» та «Інженерія програмного забезпечення паралельних та розподілених систем».6. Експериментально перевірити вплив організації навчального процесу за методикою комбінованого навчання з використанням хмароорієнтованих засобів на рівень сформованості професійних компетентностей магістрів з програмної інженерії.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Цмоць, І. Г., та В. Я. Антонів. "Удосконалення паралельного сортування масивів чисел методом злиття". Scientific Bulletin of UNFU 30, № 4 (17 вересня 2020): 134–42. http://dx.doi.org/10.36930/40300422.

Повний текст джерела
Анотація:
Удосконалено метод сортування злиттям способом просторового розпаралелення процесу сортування, яке зведено до одночасного отримання елементів зростаючого та спадаючого масивів. Визначено та розглянуто такі основні етапи розроблення потокового графу для паралельного сортування масивів даних з використанням удосконаленого методу злиття, як декомпозиція алгоритму сортування масиву із m×N чисел, проектування комунікацій між функціональними операторами, укрупнення функціональних операторів, планування процесу сортування масиву із m×N чисел. Розроблено орієнтований на архітектуру графічного процесора конкретизований потоковий граф паралельного сортування масивів даних з використанням удосконаленого методу сортування злиттям. Запропоновано розробку програмних засобів паралельного сортування масивів даних з використанням удосконаленого методу злиття виконувати на основі комплексного підходу, який охоплює: дослідження, розроблення та вдосконалення алгоритмів і методів паралельного сортування масивів даних; потокові графи алгоритмів паралельного сортування; архітектуру графічного процесора GPU та програмну модель CUDA. Показано, що попри необхідність розроблення додаткових програм для внутрішніх операцій, а саме: створення тимчасових масивів для зберігання проміжних результатів, ядра програми, циклів виконання ядра програми у потоках та блоках, бінарного пошуку, присвоєння ключів записав на фінальній стадії порівняння двох масивів і формування вихідного відсортованого масиву, реалізація на графічному процесорі паралельного сортування масивів даних з використанням удосконаленого методу злиття, забезпечує значне зменшення часу сортування порівняно з використанням тільки центрального процесора.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Гірник, Анатолій Володимирович, та Алла Федорівна Неминуща. "Навчання сучасним інформаційним технологіям проектування". Theory and methods of e-learning 2 (3 лютого 2014): 230–34. http://dx.doi.org/10.55056/e-learn.v2i1.279.

Повний текст джерела
Анотація:
В останні роки минулого тисячоліття провідні світові держави перейшли рубіж, що символічно розділяє «вік енергетики» і «століття інформатики». Це супроводжувалося глобальним переобладнанням всіх галузей комп’ютерними та телекомунікаційними системами і вимагало величезних капіталовкладень – у тому числі в розробку програмних засобів різного призначення для автоматизації інженерної та управлінської діяльності. За висновком Національного наукового фонду США, впровадження систем САПР в різні сфери інженерної діяльності має більший потенціал підвищення продуктивності праці, ніж усі відомі технічні нововведення з часів відкриття електрики. Процес історичний, хоча сучасникам і сьогодні непросто усвідомлювати глибину та значення змін, що відбуваються на їхніх очах [1].Інформаційні технології відносяться до так званих «високих технологій», що є однією з найважливіших і найбільш наукоємних ланок науково-технічної революції на сучасному етапі. Бачимо, що серед найбільш успішних світових компаній розробники програмного забезпечення знаходяться на чільному місці.Будь-яка технологічна перебудова промисловості безперспективна, якщо вона не забезпечена відповідними кадрами. У зв’язку з цим необхідно оцінити якість випускників наших навчальних закладів, їх відповідність сучасним реаліям і зарубіжним стандартам. Наприклад, в [1] наведені експрес-зіставлення студентів інженерно-будівельного факультету Санкт-Петербурзького будівельного університету з тими, які щорічно проходять навчання в міжнародній школі в Норвегії. Виявилося, що в порівнянні із закордонними однолітками наші студенти володіють великим обсягом фундаментальних знань, мають більший інженерний кругозір, але поступаються у вирішенні практичних інженерних завдань. На жаль, наша освіта дає застарілі технології застосування знань. Наш випускник може розрахувати будівельну конструкцію, але буде це робити вручну і досить довго. А його закордонний колега, що володіє відповідними програмними засобами, зробить розрахунки набагато швидше і, крім того, зможе оптимізувати сортамент металопрокату, видати необхідні специфікації та робочі креслення. Звичайно, такий фахівець більш цінний і для нашої промисловості. Аналогічні дослідження, напевне, необхідно було б виконати і для галузі вітчизняної профтехосвіти.Формування фахівця, здатного ефективно працювати в XXI столітті, має здійснюватися шляхом насичення навчальних планів інформаційно-технологічними компонентами і розвитку перепідготовки кадрів. Отже, потрібно переглядати зміст і склад загальних та спеціалізованих дисциплін. Необхідно звернути особливу увагу на підготовку фахівців для проектних організацій, які найбільш насичені інформаційними технологіями, зокрема автоматизованими системами проектування (САПР). Ці досить вартісні комп’ютерні програми сьогодні встановлені на кожному робочому місці проектувальника.Якщо звернутися за досвідом до сусідньої країни, то можна констатувати, що в Російській Федерації вже зробили істотні кроки в реформуванні підготовки фахівців, починаючи з загальноосвітньої школи. Ще в 1992 році компанія АСКОН випустила версію САПР КОМПАС, призначену для навчання школярів. У 2008 році навчальна САПР КОМПАС-3D LT, поступила в школи Росії у складі Стандартного базового пакета програмного забезпечення в рамках пріоритетного національного проекту «Освіта». Ця навчальна САПР отримала широке поширення в школах і використовується в рамках курсів інформатики, креслення, геометрії. Під керівництвом професора КДПІ О. О. Богуславського розроблена методика викладання в програмно-методичному комплексі «Освітня система на базі КОМПАС-3D LT». В рамках Міжнародного проекту «Мережева школа ІКТ» працює секція «Комп’ютерне креслення в середовищі САПР КОМПАС», учасники якої є навіть з України. Організатор проекту – Академія підвищення кваліфікації та професійної перепідготовки працівників освіти РФ.В Україні тільки розпочинаються роботи в цьому напрямку.За ініціативи Асоціації проектних організацій України та Рішення науково-технічної ради Міністерства регіонального розвитку та будівництва створена перша вітчизняна система автоматизованого проектування «БудКАД» загального призначення (рис. 1, 2, 3) [2]. Ця система є аналогом найбільш розповсюдженої серед проектувальників країни САПР AutoCAD і дає можливість створення робочих креслень 2D. БудКАД має три мови інтерфейсу користувача: українську, російську та англійську. Розпочата адаптація надбудов, які сьогодні використовуються над AutoCAD. На сьогодні вже поставляється надбудова СПДБ – BonusTools. За даними Асоціації проектних організацій САПР БудКАД придатний для використання на 80-85% робочих місць проектувальників. З кінця минулого року розпочалося широке впровадження САПР БудКАД в проектні організації України. Завдяки тому, що вартісні показники САПР БудКАД на порядок нижчі, ніж найбільш розповсюдженої САПР AutoCAD (США), впровадження першої в значній мірі вирішує питання легалізації програмного забезпечення в галузі, що дуже гостро стоїть сьогодні в нашій країні (рівень піратства сягає 84%). Крім того, заміна зарубіжних програмних продуктів вітчизняною САПР істотно знижує навантаження на імпорт (за даними Асоціації проектних організацій вартість ліцензій на імпортні програмні засоби, необхідних для легазізації будівельної галузі, сягає 4 млрд. грн.) [3]. На жаль, темпи впровадження дещо знижені внаслідок економічної кризи в галузі.Міністерство освіти і науки, молоді та спорту України та Міністерство регіонального розвитку та будівництва України визначили заходи з впровадження вітчизняної САПР також і в навчальний процес: безкоштовне оснащення навчальних закладів будівельного профілю системою БудКАД; проведення навчання та атестації викладачів систем автоматизованого проектування; проведення семінарів з питань інформаційних технологій в будівельній галузі; проведення конкурсів на кращу роботу з будівельного креслення; залучення Асоціації проетних організацій України до процесу навчання; участь в Міжнародних виставках «Сучасна освіта в Україні».В рамках цих заходів ДНДІ автоматизованих систем в будівництві (базова організація Мінрегіонбуду з інформаційних технологій) готує підручник і методичні рекомендації з навчання САПР БудКАД та спільно з Інститутом професійно-технічної освіти НАПН України веде розробку методики викладання курсів інформатики і креслення з використанням САПР в ПТНЗ будівельного профілю. Готується проведення науково-практичних семінарів для викладачів навчальних закладів та конкурсів на кращу роботу з будівельного креслення, фінальна частина яких призначена на ІХ Міжнародній науково-технічній конференції «Новітні комп’ютерні технології НОКОТЕ’2011», що відбудеться у вересні 2011 р. в м. Севастополі.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Шершун, О. О., Ж. А. Титуренко, І. І. Зінченко та О. В. Ольшевська. "Розроблення автоматизованого ресурсу обробки даних науковців ОНАХТ з наукометричних баз даних". Automation of technological and business processes 12, № 3 (5 листопада 2020): 41–47. http://dx.doi.org/10.15673/atbp.v12i3.1925.

Повний текст джерела
Анотація:
Дана робота присвячена програмному продукту для автоматизації виявлення точок зростання і потенціалу нових напрямків науки та науково-технічного прогресу. Об’єктом дослідження виступає галузь автоматизації обробки даних. Завданням проєктування є розробка веб-ресурсу, що організовує взаємодію програмних процедур з базою даних. При дослідженні основних проблем предметної області, аналізі аналогів та засобів розробки було обрано об’єктно-реляційну систему управління базами даних PostgreSQL. Для розробки програмного продукту використано фреймворк Django - вільний фреймворк для веб-додатків на мові Python, що використовує шаблон проектування MVC. Інтерфейс було побудовано на мові розмітки HTML та CSS. Також було використано шаблонізатор Jinja, для об’єднання html-файлів. За побудову графіків відповідала підключена бібліотека ChartJS. Наукова новизна полягає у об’єднанні всіх даних про науковців таких наукометричних баз як: Web of Science (WoS), Scopus та Google Scholar на єдиному ресурсі, де й відбувається аналітика даних та звітування науковців. У результаті роботи було створено програмний продукт, який відповідає всім вимогам для систематизації наукометричних даних науковців, а також опрацювання статистичних даних ОНАХТ. Даний програмний продукт не є вимогливим до апаратного забезпечення, що дозволяє використовувати додаток широкому колу людей. А вартість використання даного продукту рівна вартості доступу до мережі Internet.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Дорошенко, Юрій Олександрович. "Післямова до міжнародного науково-практичного фестивалю «САПР Allplan у архітектурі і будівництві»". New computer technology 11 (22 листопада 2013): 199–202. http://dx.doi.org/10.55056/nocote.v11i1.165.

Повний текст джерела
Анотація:
У Інституті аеропортів Національного авіаційного університету (Київ, Україна) з 22 по 26 квітня 2013 року відбувся Міжнародний науково-практичний фестиваль «САПР Allplan у архітектурі і будівництві». Організували й провели цей масштабний захід кафедра архітектури НАУ (завідувач Ю. О. Дорошенко) та Центр компетенцій в Україні (директор Ю. О. Смирнов) фірми Allbau Software GmbH (Берлін, Німеччина).Головна мета фестивалю – актуалізація багатоаспектної проблеми формування фахово-інформатичної компетентності архітекторів і інженерів-будівельників та визначення одного з шляхів її розв’язання – навчання архітектурно-будівельних ІКТ-технологій на основі САПР Allplan у системі вищої та післядипломної освіти.Зазначена мета конкретизована у низці похідних задач, серед яких – виявлення закладів і організацій, де активно використовується програма Allplan; визначення сфер та рівня застосування програми; порівняння ефективності використання програми Allplan з іншими САПР; накопичення, узагальнення і обмін практичним досвідом щодо використання програми Allplan у архітектурній і будівельній практиці та наявним педагогічним досвідом і методичними наробками з освітньої практики; консолідація користувачів програми Allplan з різних сфер діяльності; колективне виявлення проблемних аспектів і вироблення обґрунтованих рішень щодо розширення сфери і рівня використання програми Allplan у архітектурі, будівництві і освіті.Предметна область проведеного фестивалю інтегрувала сфери архітектурного проектування, будівництва і експлуатації будівель і споруд, а також дизайну архітектурного середовища з використанням архітектурно-будівельних інформаційних технологій на основі САПР Allplan та відповідної професійної освіти зі створенням інформаційно-освітнього середовища на основі сучасних ІКТ, ядром яких є САПР Allplan. При цьому особлива увага зверталася на опрактичнення змісту архітектурно-будівельної освіти у плані формування у студентів належної фахово-інформатичної компетентності шляхом опанування роботи у середовищі професійних інструментальних програмних засобів, насамперед, САПР Allplan.Головними інтегральними цілями Фестивалю були визначені:– окреслення кола архітектурно-будівельних задач, для розв’язання яких використовується чи може бути використана САПР Allplan;– виявлення організацій і закладів, де активно використовується САПР Allplan;– здійснення на основі наявного практичного досвіду порівняльного аналізу ефективності використання САПР Allplan з іншими функціонально подібними програмами;– демонстрація і поширення архітектурно-будівельних інформаційних технологій на основі САПР Allplan;– виявлення і поширення навчальних програм і освітніх технологій, орієнтованих на опанування студентами роботи у середовищі САПР Allplan як ключового інструментального програмного засобу архітектурно-будівельних інформаційних технологій;– створення передумов для широкого впровадження САПР Allplan у навчальний процес ВНЗ, де готують архітекторів і інженерів-будівельників;– збирання, узагальнення і поширення досвіду використання САПР Allplan на виробництві та в освіті шляхом його обговорення на семінарі і круглому столі та видання збірника матеріалів;– інформування користувачів САПР Allplan щодо функціональних можливостей нових версій програмних продуктів комплексу і підвищення їхньої кваліфікації;– здійснення початкового навчання користувачів САПР Allplan;– організація полілогу, дискусії, обговорення полемічних питань щодо концептуальних основ здійснення навчального процесу для опанування сучасних ІКТ та відповідних інструментальних програмних засобів; управління розвитком, ефективністю і якістю такого навчання; впровадження інноваційних педагогічних технологій та реалізація неперервної професійної освіти.У рамках фестивалю були проведені такі заходи: майстер-клас, семінар, круглий стіл, семінар користувачів Allplan, навчальний базовий практикум користувача-початківця Allplan, підведення підсумків, прийняття рішення та вручення сертифікатів.Фестиваль розпочався з майстер-класу, де впродовж трьох годин провідні фахівці Центру компетенцій Максим Дарич, Євген Дегтярьов та Андрій Баранецький продемонстрували функціональні можливості програмного комплексу Allplan та свою фахову майстерність. У майстер-класі взяли участь гості з різних архітектурно-будівельних внз України, Росії, Білорусі, Казахстану, викладачі Інституту аеропортів, студенти-архітектори і студенти-будівельники 4-го та 5-го курсів НАУ.У другий день фестивалю відбувся його ключовий захід – науково-методичний семінар, присвячений висвітленню і обговоренню питань, пов’язаних з різними аспектами впровадження САПР Allplan у архітектурне проектування і будівництво, а також проблемних питань і наявного досвіду інформатизації вищої архітектурної та інженерно-будівельної освіти на основі САПР Allplan.Тематично-змістова спрямованість роботи семінару була окреслена такими пріоритетними напрямками:– інформатизація архітектурно-будівельної освіти на основі Allplan;– практичний досвід застосування САПР Allplan у архітектурному проектуванні, будівельному конструюванні та будівництві;– міжпрограмний інтерфейс Allplan з іншими САПР;– інтегрована лінія проектування Allplan–САПФІР–ЛІРА;– порівняльний аналіз інтерфейсу, інструментальних засобів, технологічних можливостей та організації даних Allplan з іншими САПР;– розробка, ресурсне забезпечення і впровадження у практику «хмарних технологій» на основі САПР Allplan;– практичний досвід базової і професійної інформатичної підготовки майбутніх архітекторів і будівельників;– формування фахово-інформатичної компетентності майбутнього архітектора та інженера-будівельника на основі САПР Allplan;– дидактичне забезпечення впровадження САПР Allplan у навчальний процес старшої профільної школи, ПТНЗ та вищої освіти;– методичні особливості (відбір змісту, вибір організаційних форм і дидактичних методів, розробка і застосування мультимедійної наочності) навчання інформатичних технологій на основі САПР Allplan.Матеріали семінару Міжнародного науково-практичного фестивалю «САПР Allplan у архітектурі і будівництві», видрукувані окремим збірником [1], будуть корисними для студентів ВНЗ архітектурно-будівельного спрямування, аспірантів, наукових та педагогічних працівників, практикуючих архітекторів та інженерів-будівельників.Проведений фестиваль «САПР Allplan у архітектурі і будівництві» продемонстрував свою суспільну корисність і важливість для модернізації та підвищення якості вищої архітектурно-будівельної освіти в країнах СНД, популяризації програми Allplan та поширення сфери її застосування у архітектурній та будівельній практиці. Подібних спеціалізованих науково-практичних заходів (наскільки нам відомо) в країнах СНД допоки ще не проводилося. Цей фестиваль став першим. З нього розпочалися процеси узагальнення наявного досвіду практичного використання програми Allplan як інструментального засобу ефективного розв’язання комплексних задач архітектури і будівництва, консолідації викладачів, які використовують САПР Allplan у навчальному процесі, обміну накопиченим освітнім досвідом, визначення перспектив застосування і ефективного рекламування САПР Allplan, що дасть змогу ширше використовувати цей багатофункціональний програмний комплекс у навчанні майбутніх архітекторів і інженерів-будівельників.Оскільки проведений фестиваль перш за все має освітню спрямованість, то може розглядатися як своєрідна новітня педагогічна інноваційна технологія, яка здатна забезпечити швидкий і ефективний творчий прорив свідомості його учасників до інноваційних ідей і концепцій в архітектурі і будівництві XXI століття. Успішне проведення фестивалю створило підстави для організації в Інституті аеропортів НАУ навчально-впроваджувального Центру інформаційних архітектурно-будівельних технологій на базі САПР Allplan, потреба у якому в Україні давно назріла. Задачами такого Центру буде здійснення практичного навчання і підвищення кваліфікації викладачів, архітекторів і інженерів-будівельників у галузі архітектурних, дизайнерських і будівельних інформатичних технологій на базі САПР Allplan, розробка необхідного навчально-методичного забезпечення (навчальних програм, лабораторних практикумів, навчальних посібників, методичних вказівок, сертифікаційно-кваліфікаційних тестів тощо) та інноваційних технологій навчання і навчальних тренінгів, конструювання, наукове обґрунтування і перевірка нових ефективних технологій архітектурного проектування і будівельного конструювання на базі САПР Allplan.За рішенням учасників фестивалю започатковано щорічне проведення таких комплексних заходів, де відбуватиметься територіальна і галузева фіксація використання САПР Allplan, аналіз реальної ситуації та колективне вироблення перспективних рішень. Серед головних перспективних задач – залучення студентської молоді до опанування інформатичних архітектурно-будівельних технологій на основі Allplan та міжпрограмного інтерфейсу провідних САПР. У контексті інформатизації архітектури, будівництва і освіти та підвищення їх якості і ефективності.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Літот, О. В., та T. A. Манько. "МОДЕЛЮВАННЯ ОПРАВКИ ДЛЯ СТВОРЕННЯ ТОНКОСТІННИХ БЕЗЛЕЙНЕРНИХ ПАЛИВНИХ БАКІВ РАКЕТ-НОСІЇВ ІЗ КОМПОЗИЦІЙНИХ МАТЕРІАЛІВ". Математичне моделювання, № 2(45) (13 грудня 2021): 58–63. http://dx.doi.org/10.31319/2519-8106.2(45)2021.246947.

Повний текст джерела
Анотація:
Стаття присвячена процесу моделювання конструктивних схем оправок для виготовлення тонкостінних оболонок з композиційних матеріалів. При розробці деталей з композитів проектування конструкції, створення матеріалу і технологія його виготовлення є невід’ємною частиною одна одного. Враховуючи цю особливість композитів, вибір технології виготовлення та технологічної підготовки є одним із найважливіших аспектів, що визначають облік усієї конструкції. На початкових етапах проектування розглядається питання обґрунтованого вибору технологічного обладнання для виготовлення конструкцій із композиційних матеріалів, у тому числі паливні баки. Сучасним напрямом розвитку цього напрямку є моделювання розрахункових схем за допомогою програмних засобів. Їх використання дозволяє не тільки спростити розуміння процесу створення деталей з композитів, а й при високій автоматизації обробляти велику кількість конструктивно-технологічних реалізацій обладнання та конструктивних компонування. Крім того, моделювання дозволяє попередньо оцінити можливі недосконалості деталей, визначені технологічними обмеженнями. Це дозволяє ефективно розробляти обладнання та технологію виготовлення на етапі проектування з урахуванням технологічних і конструктивних особливостей. Розглянуто процес наукового обґрунтування вибору та реалізації різних варіантів конструкції оправок. Велику увагу приділяли розгляду конкретних реалізацій та використанню різноманітних структурних схем обладнання. Визначено раціональний шлях створення нових складних елементів ракетно-космічної техніки, таких як тонкостінні безлейнерні паливні баки із композиційних матеріалів з урахуванням вимог по технологічності і ефективності використання технологічного оснащення що застосовується. Представлено оцінку отриманих ре-зультатів та висновки про проведену роботу.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Маркова, Євгенія Сергіївна. "Аналіз напрямків використання засобів ІКТ у педагогічній діяльності вчителя початкової школи". Theory and methods of e-learning 3 (10 лютого 2014): 179–83. http://dx.doi.org/10.55056/e-learn.v3i1.337.

Повний текст джерела
Анотація:
Рівень розвитку країни значною мірою визначається рівнем розвитку освіти, яка повинна на нинішньому етапі розвитку цивілізації швидко й адекватно реагувати на потреби суспільства. Одним із важливих чинників реформування освіти є її інформатизація. Процеси інформатизації суспільства та освіти взаємопов’язані та взаємозумовлені. Підвищення загального рівня інформатизації освіти в цілому вимагає підготовки фахівців всіх освітніх ланок, які володіють сучасними комп’ютерно-орієнтованими технологіями. Тому перед вищими педагогічними закладами гостро постала проблема вдосконалення підготовки майбутніх учителів початкової школи, які б могли у своїй майбутній професійній діяльності поєднувати глибокі фундаментальні теоретичні знання і практичну підготовку з постійно зростаючими вимогами інформаційного суспільства.Методика впровадження ІКТ в навчально-виховний процес загальноосвітньої школи, теорія і досвід розробки педагогічних програмних засобів та використання їх у навчальному процесі, принципи та методи навчання з використанням комп’ютера висвітлені в роботах В. Ю. Бикова, Р. Вільямса, А. М. Гуржія, А. П. Єршова, М. І. Жалдака, Ю. О. Жука, В. В. Лапінського, В. М. Монахова, Н. В. Морзе, О. М. Пєхоти, І. П. Підласого, М. І. Шкіля та інших.Психологічні аспекти використання інформаційних технологій у навчальному процесі досліджені в працях В. П. Беспалька, В. М. Бондаревської, П. Я. Гальперіна, В. П. Зінченка, Ю. І. Машбиця, М. Л. Смульсон, Н. Ф. Тализіної та інших.Аналіз праць цих та інших науковців засвідчив, що в педагогічній науці накопичено певний досвід дослідження проблем підготовки вчителя в умовах інформатизації освіти, в тому числі вчителя початкової школи. Водночас ряд аспектів потребує подальшого вивчення, зокрема недостатньо чітко визначені напрямки педагогічної діяльності вчителя, орієнтовані на комп’ютерну підтримку навчального процесу, і не розроблена методика їх практичного наповнення.Метою цієї статті є визначення напрямків практичного використання засобів інформаційно-комунікаційних технологій майбутніми вчителями початкової школи в їх педагогічній діяльності.Педагогічна діяльність – це професійна активність учителя, в якій за допомогою різних засобів впливу на учнів реалізуються задачі навчання й виховання [1]. Виділяють різні види педагогічної діяльності, такі як: навчальна, виховна, організаторська, управлінська, консультаційно-діагностична, діяльність з самоосвіти та ін.Структура педагогічної діяльності:1) дидактичне проектування навчання школярів: конкретизація мети, завдань навчання; конкретизація змісту навчання; планування методів, засобів, форм навчання;2) організація дидактичного процесу, процесу, під час якого відбувається засвоєння учнями змісту освіти: формування позитивного ставлення до навчання; організація сприйняття; організація усвідомлення, узагальнення; організація закріплення; організація застосування знань;3) контроль і оцінка результатів навчання, корекція процесу навчання.На сучасному етапі розвитку програмного та технічного забезпечення можна виділити декілька напрямків використання засобів ІКТ для підтримки педагогічної діяльності вчителя в початковій школі.1. Традиційні друковані посібники. Майбутній вчитель повинен володіти комп’ютером як засобом автоматизації та технологізації його професійної діяльності. Вміння структурувати, моделювати і створювати друковані матеріали повинні засновуватись на вміннях використовувати символи, списки, графічні компоненти і таблиці, оформлювати текстових документів складної структури (з поданням тексту у вигляді колонок та розбиттям документа на розділи, наприклад, хоча б конспекту уроку).Використання офісних додатків дозволяє самостійно виготовляти потрібні наочні посібники, призначені для друку: набори варіантів самостійних і контрольних робіт, картки з завданнями і тестами, головоломки, пазли, анаграми, ребуси, кросворди тощо. Матеріали до завдань можливо дібрати як із традиційних існуючих посібників для початкової школи або спроектувати за власним розсудом і потребами.Таким чином, одним з напрямків використання ІКТ в початковій школі є підготовка майбутніми вчителями посібників у друкованому вигляді. Набори завдань, призначених для друку, накопичуються у студентів уже під час навчання у педагогічному ВНЗ. Це – чудова база для їх майбутньої успішної професійної діяльності, фахового вдосконалення і поширення передового педагогічного досвіду, яка дозволить інтенсифікувати навчально-виховний процес та підвищити мотивацію учнів до навчання.2. Інтенсивне проникнення в практику роботи навчальних закладів нових засобів подання навчального матеріалу, а саме комп’ютерів з дисплейним відображенням інформації, дозволяє виділити і розглядати відеометод як важливий метод навчання. Навчальна і виховна функції даного методу обумовлюються високою ефективністю впливу мультимедійних наочних образів і можливістю управління подіями за допомогою комп’ютера, який оснащено технічними засобами мультимедіа, де можна використовувати відео- і аудіо повідомлення одночасно. Тому неодмінно необхідно формувати у майбутніх учителів початкової школи навички щодо розробки власних мультимедійних посібників.На сьогодні існує велике різноманіття програмних оболонок, призначених для створення мультимедійних посібників. За допомогою цих програм можна створити різноманітні мультимедійні засоби: презентацію, тест, навчальну гру, кросворд, ребус, лото тощо.Під час подання, засвоєння, узагальнення й систематизації знань та для визначення рівня навчальних досягнень можна використовувати мультимедійні посібники, які мають розгалужену структуру. Візуалізовані, анімовані завдання на слайдах викликають зацікавлення в учнів молодшого шкільного віку, активізується їх пізнавальна діяльність, збільшується інтерес до обраної теми. Працюючи з такими мультимедійними презентаціями наодинці, учень має змогу повторювати, закріплювати навчальний матеріал з урахуванням своїх індивідуальних особливостей засвоєння і реакції.Використання мультимедійних засобів в педагогічній діяльності дозволяє розширити горизонти і забезпечити глибину знань, які необхідні дітям, модернізувати навчально-інформаційний матеріал; зробити процес отримання знань більш яскравим, захоплюючим, невимушеним і різноманітним.3. На сьогодні надзвичайно актуальним стає використання електронних інтерактивних посібників для навчання учнів усіх вікових груп, починаючи з початкової школи. Термін «інтерактивний» англійського походження та означає «взаємодіючий». Інтерактивність означає здатність до взаємодії чи саму взаємодію, діалог з ким-небудь (наприклад, викладачем, іншими учасниками навчально-виховного процесу). Інтерактивне навчання – це найперше діалогове навчання, під час якого здійснюється взаємодія між суб’єктами процесу. Отже, інтерактивний документ – це такий документ, який реагує на дії користувача.Інтерактивний посібник може складатися з кількох окремих файлів, кожний з яких може бути представлений як звичайним текстом, так і даними будь-якого іншого виду. В залежності від дій користувача змінюється порядок перегляду, автоматично відкриваються інші зв’язані документи (відтворюються аудіо-, відеофайли, мультимедійні файли, тестові документи різних форматів та ін.).Інтерактивні електронні документи використовують такий інструментарій, як гіперпосилання, макроси, форми, а також включають об’єкти, вставлені в ці документи (текст, таблиці, графіку, мультимедіа та ін.).4. Комп’ютерні форми оцінювання результатів навчального процесу сьогодні набули великого поширення, тож неодмінною ознакою високого професіоналізму майбутнього вчителя початкової школи є оволодіння сучасними існуючими програмними засобами оцінювання. Активне впровадження тестової форми визначення рівня навчальних досягнень учнів потребує поширеного використання інструментальних програмних оболонок, призначених для розробки і проведення тестування.Тестові технології використовуються з метою вирішення навчальних, виховних і розвивальних завдань на всіх етапах педагогічної діяльності. У системі моніторингу якості тестовому контролю приділяється особлива роль, оскільки він дозволяє одержати найбільш оперативну й досить об’єктивну оцінку навчальних досягнень учня, поліпшити діагностичність і прогностичність всієї системи моніторингу.Тому доцільно ознайомлювати студентів факультетів підготовки вчителів початкової школи з можливостями використання інструментальних програмних оболонок для розробки і проведення тестування рівня навчальних досягнень молодших школярів.5. Слід підкреслити необхідність ознайомлення майбутніх учителів початкової школи з існуючими педагогічними програмними засобами для дітей молодшого шкільного віку, а також придбання практичних навичок аналізу і вибору тих фрагментів, що є методично корисними і коректними для психологічного і розумового розвитку учнів початкової школи. «Поняття педагогічний програмний засіб, пакет прикладних програм навчального призначення, навчальне забезпечення і т.ін. інколи використовують як синоніми поняття комп’ютерна навчальна система, а інколи в більш вузькому значенні» [2, 15]. Безперечно, застосування ППЗ забезпечує додаткові можливості щодо підвищення ефективності викладання навчальних предметів та розвитку учнів початкової школи, впровадження творчих форм навчальної діяльності, сприяє розробці нових прогресивних технологій навчання.6. З широким розповсюдженням Інтернет перед освітніми установами розкрилися принципово нові можливості використання ресурсів всесвітньої мережі в освітніх цілях. Глобальна мережа Інтернет надає у розпорядження майбутнього вчителя безкінечну кількість інформаційних матеріалів: банки методичних розробок, рефератів, дипломних, курсових робіт; велику кількість підручників, навчальних посібників в електронному вигляді, програмне забезпечення, відео-, аудіо-файли тощо.Вчитель може використовувати можливості мережі Інтернет у педагогічній діяльності у наступних цілях: самоосвіта, самостійне підвищення своєї кваліфікації на основі інформації, що міститься в мережі, вивчення досвіду своїх колег; отримання нормативно-довідкових документів із серверів МОНмолодьспорту, обласних, міських і районних відділів освіти; отримання інформації про новітні педагогічні технології; використання на уроках і позакласних заходах методичних і дидактичних матеріалів, наявних в мережі; розробки власних матеріалів і публікація їх в мережі; тестування школярів на основі контрольно-оцінюваних матеріалів, що зберігаються в мережі; знайомство з новими книгами, підручниками, методичною літературою і придбання їх в Інтернет-магазинах; участь в заочних конференціях і конкурсах; створення власного сайту вчителя; пошук однодумців і колег в інших регіонах, листування з колегами і друзями.Існує велика кількість сайтів, на яких кожен вчитель початкових класів знайде корисні посібники як для подання навчального матеріалу, так і для оцінювання успішності.Отже, у контексті вимог сьогодення до оновлення системи освіти, орієнтація на прикладне застосовування комп’ютерних технологій у навчальному процесі, в ході інформаційної підготовки майбутніх учителів початкової школи ми виділяємо наступні напрямки практичного використання засобів інформаційно-комунікаційних технологій в педагогічній діяльності: підготовка та виготовлення традиційних друкованих посібників; створення мультимедійних посібників з використанням мультимедійних проектора або дошки; виготовлення інтерактивних посібників, заснованих на принципі взаємодії з користувачем; застосування інструментальних програмних тестових оболонок; використання існуючих педагогічних програмних засобів; використання ресурсів глобальної мережі Інтернет.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Волкова, Тетяна Василівна. "Підготовка інженерів-педагогів з дисципліни “Комп’ютерні технології управління проектами”". New computer technology 5 (2 листопада 2013): 17–18. http://dx.doi.org/10.55056/nocote.v5i1.56.

Повний текст джерела
Анотація:
Дисципліна “Комп’ютерні технології управління проектами” є однією з основних у підготовці інженерів-педагогів за напрямом навчання 7.010104. “Професійне навчання. Комп’ютерні технології в управлінні та навчанні”.Поняття проект об’єднує різні види діяльності, які характеризуються низкою ознак, серед яких найбільш загальними є спрямованість на досягнення конкретної мети, певних результатів; координоване виконання взаємопов’язаних дій; обмеженість у часі з визначеним початком і закінченням виконання робіт. З точки зору системного підходу, проект розглядається як процес переходу з вихідного стану до кінцевого – результат за участю механізмів за умови дотримання обмежень. Управління проектами – методологія організації, планування, керівництва, координації трудових, фінансових та матеріально-технічних ресурсів упродовж проектного циклу, спрямована на ефективне досягнення його цілей шляхом застосування сучасних методів, техніки й технології управління.“Комп’ютерні технології управління проектами” – дисципліна, яка ґрунтується на системному підході, інтегрує спеціальні та загальнопрофесійні знання, вивчає організаційно-технологічний комплекс методичних, технічних, інформаційних і програмних засобів, спрямованих на підтримку і підвищення ефективності процесів управління проектом.Планування проекту – найбільш відповідальна частина управління проектом, оскільки на цьому етапі закладаються передумови для успішної реалізації проекту. Сутність планування полягає у визначенні цілей і способів їх досягнення на основі формування комплексу робіт, застосуванні методів і засобів здійснення цих робіт, ув’язці ресурсів, необхідних для їх виконання, узгодженості дій учасників проекту. Інформаційна система управління проектом – організаційно-технологічний комплекс методичних, технічних, програмних та інформаційних засобів, спрямований на підтримку і підвищення ефективності процесів управління проектом.Комп’ютерні технології управління проектом використовуються на таких етапах узагальненого життєвого циклу проекту: планування проекту: детальне планування комплексу робіт і ресурсів, аналіз термінів виконання проекту в цілому і окремих його стадій, ресурсне планування, аналіз і оптимізація графіка розподілу ресурсів проекту і витрат проекту; виконання проекту: контроль за ходом реалізації проекту, аналіз стану проекту, оперативне управління проектом, перепланування проекту.Основна мета планування полягає в побудові моделі реалізації проекту.Програма дисципліни включає теоретичні основи управління проектами і практичні завдання розробки проектів освітнього і виробничого призначення за допомогою прикладного програмного забезпечення Microsoft Office Project (www.microsoft.com/project).МодульІ. Теоретичні основи управління проектами (12 год.). Класифікація базових понять управління проектами. Системний підхід до аналізу організації управління. Методи управління проектами. Організаційні структури управління проектами. Розробка проектної документації. Оцінка ефективності проекту.МодульІІ. Методологія проектування (12 год.). Планування проекту: основні поняття й визначення, процеси і рівні планування. Початкова фаза проекту. Бізнес-планування. Моделі планування. Мережне планування. Ресурсне планування. Документування плану проекту.Модуль ІІІ. Прикладне програмне забезпечення управління проектом Microsoft Office Project (6 год.). Основи Microsoft Office Project. Налагодження параметрів проекту. Визначення календаря робочого часу. Управління файлами проекту. Створення і використання шаблонів.Практикум в Microsoft Office Project: проектування і планування електронного навчального курсу.Модуль ІV. Календарне планування (20 год.). Формування мети і складання попереднього плану робіт у поданні Gantt Chart. Створення ієрархічної структури етапів, зв’язків між етапами. Уведення вимог планування. Установлення зв’язків між задачами. Робота з обмеженнями задач. Переривання задачі. Створення і використання календаря задач. Перегляд плану. Робота з поданням Gantt Chart. Робота з поданням Calendar. Редагування проекту в поданні Network Diagram.МодульV. Ресурсне планування (16 год.). Визначення ресурсів і витрат. Визначення пула ресурсів. Сортування, групування та фільтрація ресурсів. Планування ресурсів. Розрахунок вартості проекту. Призначення ресурсів задачам. Призначення фіксованих витрат. Усунення проблем з призначенням ресурсів.МодульVІ. Оптимізація проекту. Налагодження MSProject (10 год.). Перегляд і корекція плану проекту. Друк звітів. Налагодження подання, таблиць, полів, фільтрів і груп; панелей інструментів, меню і форм.Самостійна робота (59 год.) передбачає виконання студентами індивідуальних та групових проектів за варіантами.Програма дисципліни “Комп’ютерні технології управління проектами” може бути використана як складова навчально-тематичного плану підготовки інженерів-педагогів комп’ютерних дисциплін, так і як самостійний спецкурс для менеджерів інформаційних систем у системі вищої професійної освіти.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Козуб, Г. О., Ю. Г. Козуб, Г. А. Могильний та А. В. Жуков. "Розробка мобільного Аndroid-додатку з застосуванням принципів Сlean Аrchitecture". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 5 (269) (10 вересня 2021): 5–10. http://dx.doi.org/10.33216/1998-7927-2021-269-5-5-10.

Повний текст джерела
Анотація:
В роботі розглянуто існуючі методи розробки мобільного Android-додатку із застосуванням принципів CLean Architectureз метою оптимізації архітектури програмних продуктів на старті їх створення. Досліджено концептуальні підходи та принципи Clean Architecture, розглянуто можливість побудови Android-додатків згідно пошарової схеми, згідно з якою шари зв’язуються правилом залежності Dependency Rule. Для розробки Android-додатку “Lucky Days - Lunar Calendar” використаносередовищеAndroid Studioна базі вихідного коду продукту IntelliJ IDEA Community Edition та мови програмування Kotlin, яка працює поверх JVM та компілюється в JavaScript. Показано коди додаткудля потоку вводу-виведення, який демонструє використання співпрограми.Крім можливостей, що існують в IntelliJ IDEA, в Android Studio реалізовано нову уніфіковану підсистему складання, тестування і розгортання застосунків, яка базується на інструментарії Gradle і підтримує використання засобів безперервної інтеграції. Наведено описання інтерфейсу програми, наведено фрагменти кодів, що відповідають за найбільш важливі функції. До складу також включені пристосовані під особливості платформи Android розширені інструменти рефакторингу, перевірки сумісності з минулими випусками, виявлення проблем з продуктивністю, моніторингу споживання пам'яті та оцінки зручності використання. У редактор також додано режим швидкого внесення правок.Для спрощення проектування додатку використано бібліотеку Android Navigation з набору Jetpack та створено граф зв’язків між вікнами додатку. Для роботи мобільного додатку сформовано та запаковано у архів бази даних SQLite, а для організації комунікації між не пов’язаними частинами додатку реалізовано EventBus з набором функцій. Наведено приклади кодів Event-класів та State-класів, які використовуються у розробленому додатку. Запропоновану методику, що відповідає принципам Clean Architecture, а саме відокремлення бізнес-логіки від відображення елементів списку впроваджено для розробки Android-додатку.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Черновол, Михайло Іванович, Микола Миколайович Петренко, Євген Констянтинович Солових, Андрій Євгенович Солових, Віктор Васильович Аулін та Олександр Вікторович Лізунков. "Деякі проблеми системи дистанційної освіти". Theory and methods of learning fundamental disciplines in high school 1 (19 квітня 2014): 251–54. http://dx.doi.org/10.55056/fund.v1i1.443.

Повний текст джерела
Анотація:
Дистанційна освіта – це інтегральна, гуманна в своїй основі, форма освіти, що базується на використанні широкого спектру традиційних і нових технологій та їх технічних засобів [1], які застосовуються при поданні навчального матеріалу, його самостійного вивчення, діалогового обміну між викладачем чи навчальною комп’ютерною програмою і студентом, причому процес навчання у загальному випадку є некритичний до їх розташування в просторі і часі, а також до конкретного навчального закладу.Ця форма освіти використовує і глобальні комп’ютерні комунікації типу Internet та Intranet і базується в основному на індивідуальній роботі студента з добре структурованим навчальним матеріалом [2].Найбільш характерними рисами дистанційного навчання є: гнучкість; паралельність; велика аудиторія; економічність; ефективне використання площ, технічних засобів; концентроване і уніфіковане представлення інформації знижує витрати на підготовку фахівців; технологічність; соціальна рівність; інтернаціональність; нова роль викладача; позитивний вплив на студента; висока якість та ін.Організація та впровадження дистанційної освіти є своєчасною і можливою для ВНЗ.Разом з тим функціонування системи дистанційної освіти породжує цілий ряд проблем. В проблемах, пов’язаних з розробкою дидактичного інформаційного забезпечення на електронних носіях, необхідним чином поєднуються технічні і гуманітарні знання.При засвоєнні студентами знань засобами дистанційної освіти особливу значимість мають цілі одночасного формування методологічної культури і методологічної рефлексії як основи професійної свідомості спеціаліста. Проблемність даної ситуації полягає в самій природі основних знань, які мають професійно-комп’ютерну сутність [3].На методологічному рівні вони об’єднуються поняттями “cистемність” і “модель”, тому при проектуванні дистанційного навчального процесу повинна застосовуватись педагогічна технологія, що реалізує селективно-інтерактивний режим використання комп’ютера при додержанні основних правил побудови дидактичного інформаційного забезпечення на електронних носіях, що суттєво удосконалює спосіб подання студентам навчальної інформації.Зазначимо, що оптимізація цього способу досягається виконанням двох основних положень:необхідність введення в зміст понять ”система” і “системність”, а також спряжених з ними явищ;відмінність в побудові письмової та комп’ютерної мови.При конструюванні дидактичного забезпечення на електронних носіях необхідно акцентувати увагу на встановлення причинно-наслідкових зв’язків, роль яких в інтелектуальному розвитку студентів важко переоцінити. Тут доцільне використання розмежованої абстракції, а потім проведення двофазового узагальнення.Комп’ютерна освіта розглядається в якості середовища, що забезпечує умови для ефективного розвитку студентів як осіб, здатних до активної творчої самоорганізації усіх видів діяльності на основі оволодіння науковою організацією праці дослідника. Це означає оволодіння студентами прийомами пізнання навколишнього світу, що містяться в комп’ютерному просторі при дистанційній освіті, яка являє універсальну наукову методологію, що реалізується в суворій послідовності дій: вербальний опис об’єкту; математична модель; обчислювальний алгоритм; комп’ютерна програма; розрахунок на комп’ютері; аналіз результатів розрахунку; їх інтерпретація; управління об’єктом. Фактично це спосіб реалізації процесу пізнання і впровадження отриманих знань стосовно конкретного об’єкту. Синтезуючи знання і зусилля студентів, дистанційна освіта вимагає від кожного з них як принципово нових особистих якостей так і забезпечення іншого рівня сформованості традиційних моральних якостей особистості [3]. Дана обставина визначається специфікою співробітництва людини і комп’ютера, коли сумісна робота двох навчань за рахунок своєрідного підсилення інтелекту нерідко дозволяє отримати результати в 3-4 рази швидше, ніж при роботі їх поодинці.Особливістю моделювання комп’ютерного простору при дистанційній освіті, як засобу активізації пізнавальної навчальної діяльності є дидактично доцільним узгодження навчання професійним знанням та уміння проведення обчислювального експерименту, що передбачає можливість не тільки індивідуальної, але і групової роботи при одночасності, оперативності та індивідуалізованості управління навчально-пізнавальною діяльністю студентів [4].Комп’ютерні технології навчання (КТН), як сукупність технічних, програмних, навчальних та методичних засобів, що використовуються при навчанні, з використанням комп’ютерів, в склад яких входять комп’ютерно-орієнтовані дидактичні засоби (КДЗ), як головна складова нових інформаційних технологій навчання [5].Навчальний комп’ютер без дидактичного наповнення не забезпечить позитивного результату при використанні в дистанційній освіті КТН.Згідно робіт [5,6] комп’ютерно-орієнтовані засоби можна розподілити на такі види:1 – навчально-комп’ютерні, програмування, комп’ютерний об’єкт вивчення;2 – комп’ютерні ігри: технічні; педагогічні; ігрові та ін.;3 – комп’ютерні розв’язники задач;4 – комп’ютер-дослідник в лабораторному практикумі моделювання, віртуальні стенди, мультиплікування;5 – курсове та дипломне комп’ютерне проектування: оптимізація типових розрахунків, автоматизовані системи та ін;6 – діалогові комп’ютерні системи: інформаційно-довідкові, інформаційно-навчальні, експертні та експертно-навчаючі;7 – комп’ютерні підручники: електронні, автоматизовані навчальні курси (АНК), комплексні, енциклопедичні, навчаючі, екзаменуючі;8 – ноу-хау – мультипрограми, гіпертекстові системи.Наші дослідження показують, що існує явна незабезпеченість в технологіях навчання комп’ютерно-орієнтованих дидактичних засобів КДЗ-2 – КДЗ-8.Разом з тим в переліку ВАК України для здобувачів вченого ступеня канд. пед. наук існує спеціальність 13.00.02 “Теорія і методика навчання”. Підготовка таких спеціалістів може достатньо кваліфіковано забезпечити створення КДЗ-2 і КДЗ-8 по будь-яким вузівським дисциплінам. В Кіровоградському державному технічному університеті ведеться підготовка КДЗ по основним навчальним дисциплінам досвідченими викладачами у відповідності з науково-педагогічним обґрунтуванням теорії і методики навчання.По дистанційній освіті розроблена концепція, що охоплює весь комплекс проблем, які виникають в процесі практичної реалізації, та форми їх розв’язання. Дистанційна освіта як система доводить право на своє ефективне існування.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Здолбіцька, Н., A. Здолбіцький та O. Семенко. "Системи електронної ідентифікації і управління доступом користувачів". КОМП’ЮТЕРНО-ІНТЕГРОВАНІ ТЕХНОЛОГІЇ: ОСВІТА, НАУКА, ВИРОБНИЦТВО, № 36 (22 листопада 2019): 103–8. http://dx.doi.org/10.36910/6775-2524-0560-2019-36-5.

Повний текст джерела
Анотація:
У статті розглянуто сучасні засоби системи електронної ідентифікації і управління доступом користувачів. Проведено порівняльний аналіз засобів безпеки. Проаналізовано особливості функціонування, основні характеристики та параметри, які необхідно враховувати при проектуванні систем доступу, виборі режиму роботи і конкретної апаратури для реалізації. Розроблено програмно-апаратний комплекс для тестування роботи найпоширеніших сьогодні на ринку засобів автентифікації. Комплекс використовує платформу Arduino, як найбільш недороге та водночас гнучке рішення із великою кількістю модульних давачів та засобів фізичної ідентифікації та контролю.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Levchenko, L., та M. Bahrii. "МЕТОДИ ПОПЕРЕДНЬОГО ОЦІНЮВАННЯ ЕЛЕКТРОМАГНІТНОЇ ОБСТАНОВКИ ДЛЯ ПРОЕКТУВАННЯ ЗАСОБІВ ЗАХИСТУ". Системи управління, навігації та зв’язку. Збірник наукових праць 1, № 53 (5 лютого 2019): 90–93. http://dx.doi.org/10.26906/sunz.2019.1.090.

Повний текст джерела
Анотація:
Предметом даного дослідження є процеси формування електромагнітної обстановки у виробничому середовищі в умовах впливу на неї джерел електромагнітних полів різних амплітудно-частотних характеристик. Мета роботи розроблення методологічного підходу до попереднього оцінювання електромагнітної обстановки у приміщеннях різного призначення у залежності від типу та характеристик технологічного обладнання, параметрів електричних мереж та впровадження відповідних організаційно-технічних заходів захисту людей. Завданням дослідження є аналіз математичних методів розрахунку рівнів електромагнітних полів у залежності від поставлених задач та характеристик електромагнітних полів. Використано аналітичний метод оцінювання адекватності математичних функцій умовам формування електромагнітної обстановки. У роботі показано, що розрахункові та експериментальні методи не можуть бути використані окремо. Це пояснюється обов’язковою присутністю припущень та спрощень при моделюванні поширення електромагнітного поля навколо джерела та наявністю великих обсягів експериментальних даних за їх окремого використання. Зазначено, що більшість розроблених засобів оцінювання електромагнітної обстановки стосуються одного джерела поля або групи однотипних джерел, що не відповідає сучасним вимогам. Надано прикладний розрахунковий апарат для оцінювання зниження високочастотного електромагнітного поля неоднорідними (перфорованими) екрануючими поверхнями. Показано необхідність попереднього експериментального визначення електрофізичних властивостей використаних матеріалів для двокомпонентних захисних матеріалів. Зроблено висновок, що крім аналітичного оцінювання електромагнітної обстановки традиційними методами доцільним є розроблення програмно-технічного комплексу з моделювання поширення електромагнітного поля від джерела. Таке програмне забезпечення має враховувати геометричні характеристики приміщень та відбивні характеристики обмежуючих поверхонь.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Волочій, Б., В. Якубенко, Ю. Сальник та П. Чернишук. "Програмна стохастична модель експлуатаційної поведінки відмовостійких систем мажоритарного типу з правилом голосування {3 із 5}". Information and communication technologies, electronic engineering 1, № 2 (грудень 2021): 94–113. http://dx.doi.org/10.23939/ictee2021.02.094.

Повний текст джерела
Анотація:
Програмна стохастична модель експлуатаційної поведінки відмовостійких систем мажоритарного типу призначена для інформаційної технології проектування комунікаційних або технологічних систем об'єктів критичної інфраструктури. В запропонованій програмній стохастичній моделі відмовостійкої системи мажоритарного типу крім показників надійності модулів ядра та мажоритарного елемента (інтенсивності відмов), показників функціональності засобу контролю і комутаційного пристрою, обмеження на кількість резервних модулів, враховано ефект старіння (вичерпання експлуатаційного ресурсу) модулів ядра. Так як старіння модулів відповідає зростанню інтенсивності відмов після певної тривалості їх експлуатації, використано метод урахування цього зростання в стохастичній моделі. Метод базується на гіпотезі про те, що перша відмова будь-якого модуля в ядрі мажоритарної структури «сигналізує» про близькість вичерпання експлуатаційного ресурсу і в інших модулів ядра. Тому вважати, що після заміни несправного модуля резервним, модулі що залишилися в ядрі мають початковий ресурс працездатності не можна. Розроблено структурно-автоматну модель експлуатаційної поведінки відмовостійких систем мажоритарного типу з правилом голосування {3 із 5}, яка є складовою програмної стохастичної моделі. Проведено валідаційні дослідження програмної стохастичної моделі.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

H.O., Raykovska. "GEOMETRICAL-GRAPHIC PREPARATION IN TECHNICAL ESTABLISHMENTS OF HIGHER EDUCATION." Collection of Research Papers Pedagogical sciences, no. 94 (May 6, 2021): 158–65. http://dx.doi.org/10.32999/ksu2413-1865/2021-94-22.

Повний текст джерела
Анотація:
The purpose of the article consists in a theoretical ground and development of model geometrical-graphic preparations of future inzheneer-tekhnichal specialists in ZVO; forming of SAPR professional jurisdiction facilities. In professional preparation of future inzheneer-tekhnichal specialists research workers, practical teachers-workers, were widely enough engaged in development of innovative methods of the use of the specialized software products of SAPR and continue probing from the different areas of technical knowledges. In the article methodology and technique of scientific research is described geometrical-graphic preparation in establishments of higher education by facilities of SAPR.Results. An analysis and estimation of initial facts brought us over to determination of basic directions of research which foresaw the analysis of structure and maintenance of preparation of bread-winners of higher education after educationally professional by the program “the highly Technological computer engineering” the first level “bachelor”, after the area of knowledges 13 the “Mechanical engineering”. Feature geometrical-graphic preparations conditioned various professional-tekhnichal tasks which are pulled out before specialists in the sphere of their activity. Foremost this ability to decide complex scientific and technical, technical and other functional tasks; system, algorithmically and associative to think; expressly to plan the structure of actions, necessary for achievement of the set purpose; ability by sight to present the result of the activity. The scientific novelty of our research consists in the construction of model of perfection of educational process on the basis of the through use of the special programmatic facilities of SAPR; providing of intersubject connection, beginning from the first course and to final work. By the main idea of complete cycle geometrical-graphic preparations are: use of the unique computer-aided design – Solidworks. Conclusions. The conducted research grounds to assert that most effective is approach of through complex geometro-graphic preparations of future specialists, which allows to understand essence of complete cycle of production of goods facilities of SAPR.Key words: geometrical-graphic preparation, geometrical design, constructing, software. Мета статті полягає в теоретичному обґрунтуванні і розробленні моделі геометро-графічної під-готовки майбутніх інженерно-технічних фахівців у ЗВО; формуванні професійних компетентностей засобами САПР. Розробкою інноваційних методик використання спеціалізованих програмних продуктів САПР у професійній підготовці майбутніх інженерно-технічних фахівців досить широко займалися і продовжують досліджувати науковці, викладачі-практики з різних областей технічних знань. У статті описано методологію й техніку наукового дослідження геометро-графічної підготовки в закладах вищої освіти засобами САПР.Результати. Аналіз і оцінка початкових фактів привели нас до визначення основних напрямків дослідження, що передбачало аналіз структури і змісту підготовки здобувачів вищої освіти за освітньо-професійною програмою «Високотехнологічний комп’ютерний інжиніринг» першого рівня «бакалавр», за галуззю знань 13 «Механічна інженерія». Особливість геометро-графічної підготовки обумовлена різноманітними професійно-технічними задачами, що висуваються перед фахівцями у сфері їх діяльності. Передусім це вміння розв’язувати комплексні науково-технічні, технічні та інші функціональні задачі; системно, алгоритмічно і асоціативно мислити; чітко планувати структуру дій, необхідних для досягнення заданої мети; уміння візуально представляти результат своєї діяльності. Наукова новизна нашого дослідження полягає в побудові моделі вдосконалення освітнього процесу на основі наскрізного використання спеціальних програмних засобів САПР; забезпеченні міждисциплінарного зв’язку, починаючи з першого курсу і до випускної роботи. Головною ідеєю повного циклу геометро-графічної підготовки є: використання єдиної системи автоматизованого проектування – SolidWorks. Висновки. Проведене дослідження дає підстави стверджувати, що найбільш ефективним є підхід наскрізної комплексної геометро-графічної підготовки майбутніх фахівців, який дозволяє зрозуміти суть повного циклу виробництва продукції засобами САПР.Ключові слова: геометро-графічна підготовка, геометричне моделювання, конструювання, програмне забезпечення.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Залойко, Едгар Володимирович, та Юрій Васильович Триус. "Web-орієнтований програмний засіб для розв’язування задач лінійного програмування графічним методом". New computer technology 13 (25 грудня 2015): 290–94. http://dx.doi.org/10.55056/nocote.v13i0.917.

Повний текст джерела
Анотація:
Метою роботи є створення web-орієнтованого програмного засобу для розв’язування задач математичного програмування графічним методом. Завданням роботи є проектування і розробка інструментального web-орієнтованого програмного засобу для розв’язування двовимірних задач математичного програмування графічним методом. Об’єктом дослідження є методи розв’язування задач математичного програмування. Предметом дослідження є програмні засоби розв’язування задач математичного програмування. Результати дослідження можуть бути використані у навчанні студентів ВНЗ методам оптимізації та дослідження операцій, зокрема графічним методам розв’язування задач лінійного, квадратичного і дробово-лінійного програмування, а також матричних ігор.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Лотюк, Юрій Георгійович, та Олег Михайлович Богут. "Формування у студентів умінь та навичок проектування та моделювання комп’ютерних мереж". New computer technology 5 (7 листопада 2013): 64–65. http://dx.doi.org/10.55056/nocote.v5i1.82.

Повний текст джерела
Анотація:
У вищих навчальних закладах студенти згідно вимог освітньо-професійної програми підготовки бакалавра [4], повинні вміти розробляти концепцію побудови локальних комп’ютерних мереж на основі стандартних протоколів і інтерфейсів, аналізуючи потреби замовника. Вибирати топологію комп’ютерної мережі, мережні протоколи, планувати мережну інфраструктуру, аналізуючи потреби користувачів, програмне і апаратне забезпечення, що використовується, фізичне розміщення користувачів, ділення мережі на сегменти тощо. Майбутні спеціалісти також повинні вміти розробляти логічну і фізичну структуру локальної комп’ютерної мережі, топологію і засоби прокладки кабелів, розміщення комутаторів та маршрутизаторів, вибирати необхідне програмне забезпечення комп’ютерних мереж за допомогою нормативно-довідкової інформації, використовуючи процедури аналізу типових проектних рішень.Дані вимоги поширюються як на лекційний курс, так і на лабораторний практикум. Однак не кожен вищий навчальний заклад має можливість проводити лабораторний практикум у повній відповідності до вимог освітньо-професійної програми [1].Більшість вищих навчальних закладів не має матеріальної бази для практичного розгляду питання побудови та діагностики мережі. Ці теми розглядаються переважно тільки теоретично, оскільки не завжди можна дати можливість студентам самостійно спроектувати мережу або ділянку мережі, і перевірити її дію.Тому на лабораторних заняттях студенти в основному працюють в уже спроектованій, діючій мережі, і лише досліджують її топологію та характеристики.Такий підхід суттєво знижує рівень практичних навичок майбутніх спеціалістів з інформатики, оскільки при реалізації на практиці конкретного мережного проекту майбутній спеціаліст може стикнутись з рядом задач до яких він підготовлений лише теоретично.Тому нами пропонується при вивченні теми проектування комп’ютерних мереж залучати спеціалізоване моделююче програмне забезпечення для візуального проектування, моделювання та дослідження комп’ютерних мереж.Такий підхід має переваги у вивченні даної тематики, однак зауважимо, що перед вивченням тематики проектування та дослідження мереж на емуляторі існує необхідність продемонструвати студентам реальне мережне обладнання та особливості його використання і тільки потім проводити лабораторний практикум на емуляторі.При такому підході забезпечується повне охоплення тематики проектування та моделювання мереж як на теоретичному так і на практичному рівні [2].Однією з основних переваг використання емуляторів при вивченні проектування та дослідження мереж є можливість розглянути такі задачі, які неможливо розглянути навіть з використанням наявного обладнання. Так, наприклад при використанні емуляторів є можливість розглянути на основі діючої моделі функціонування кампусної мережі, Wi-Fi мереж, використання супутникової технології зв’язку та інших технологій, що залишаються недоступними для студентів при стандартному підході.Однією з найбільш відомих програм-емуляторів є програма NetCracker [3]. Дана програма створена компанією NetCracker Technology Corporation, і є однією з найбільш широко вживаних у світі як при вивченні, так і при професійному використанні.Робота з NetCracker побудована на основі технології Drag and Drop, що значно спрощує навчання користуванню програмою, і дозволяє основну увагу приділити безпосередньо питанню побудови та дослідження характеристик мережі. База даних програми містить характеристики великої кількості реальних апаратних мережних засобів, і дозволяє емулювати мережу у максимальній відповідності до фізичного відповідника.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Жеребко, Валерій Анатолійович. "Концепція віртуалізації об’єктів автоматизації в навчально-наукових задачах проектування систем управління". Theory and methods of learning mathematics, physics, informatics 13, № 2 (12 квітня 2018): 294–303. http://dx.doi.org/10.55056/tmn.v13i2.594.

Повний текст джерела
Анотація:
Розглянуто проблему використання технології віртуалізації імітаційних моделей технічних об’єктів управління (ОУ) при розробці керуючих програм для контролерних платформ (ПЛК) польового рівня промислової автоматизації. Пропонується узагальнена концепція віртуальних об’єктів автоматизації (ВОА), що дозволяє значно підвищити якість та швидкість розв’язання системними інтеграторами проектних рішень при розробці автоматизованих систем управління як у навчальному процесі так і у промисловій галузі. Структурними елементами ВОА є віртуальні технічні засоби автоматизації та віртуальна імітаційна модель ОУ. Розглянуто приклад впровадження концепції ВОА у навчально-методичній сфері технічного університету. У якості засобів розробки ВОА в лабораторному практикумі пропонується використовувати вільний програмний симулятор ПЛК та мову програмування BASIC. У якості розширення запропонованої концепції пропонується віртуалізувати розподілену систему управління, до складу якої входитимуть декілька відокремлених ВОА та один віртуальний контролер.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Шишкіна, Марія Павлівна. "Вимоги до реалізації засобів та систем електронного навчання в контексті інформаційного суспільства". Theory and methods of e-learning 3 (13 лютого 2014): 333–39. http://dx.doi.org/10.55056/e-learn.v3i1.358.

Повний текст джерела
Анотація:
В умовах реформування сучасної освіти, модернізації освітніх стандартів постає проблема підготовки кваліфікованих наукових та виробничих кадрів, що є основною рушійною силою розвитку економіки та соціальних відносин, каталізатором суспільних процесів у науковій, освітній та виробничій сферах. Особливо складним та важливим завданням є виховання здатної до продуктивної діяльності особистості, формування фахових та освітніх компетентностей, що забезпечували б їй можливість вирішувати особисті та професійні задачі в умовах інформаційного суспільства, що характеризується інтенсивним розвитком високих технологій.Сучасні електронні засоби освітнього призначення, мультимедійні та дистанційні технології постають невід’ємною складовою навчання більшості предметів шкільного циклу, багатьох сфер вищої освіти. Використання засобів ІКТ збагачує та розширює можливості навчання, що призводить до поняття електронного навчання [4; 5]. Трактування цього поняття має різні тлумачення, крім того, із розвитком технологій суттєво трансформується його об’єм і зміст. Наприклад, згідно електронної енциклопедії освіти (Education encyclopedia), це поняття «охоплює всі форми навчання та викладання, що відбуваються за електронної підтримки, є процедурними по своїй суті і спрямовані на формування знань із врахуванням індивідуального досвіду, практики і знань того, хто вчиться. Інформаційні і комунікаційні системи, мережеві чи ні, постають як специфічні засоби для забезпечення процесу навчання» [5].Сучасна тенденція полягає у значному розмаїтті і складності систем електронного навчання. Це дає більше можливостей для інтеграції, концентрації і вибору ресурсів та систем. Використання новітніх засобів та сервісів сприяє досягненню якісно нового рівня якості освітніх послуг, створюючи потенціал для індивідуалізації процесу навчання, формування індивідуальної траєкторії розвитку тим, хто вчиться, добору і використання підходящих технологічних засобів. Необхідною умовою в цьому відношенні є відповідність засобів ІКТ низці вимог до підтримки та управління ресурсами, проектування інтерфейсу, ергономіки та інших.Як визначити, які засоби та технології найбільш продуктивні для підтримки навчальної діяльності, для досягнення необхідного рівня якості освіти та формування компетентностей учнів? Відповідь на це питання залежить від змісту електронного навчання, від того, які застосовуються методи і способи оцінки систем електронного навчання, а також від вибору та використання технологій їх реалізації.Метою статті є визначення тенденцій розвитку систем е-навчання в сучасній освіті та виявлення вимог до перспективних шляхів використання інформаційно-технологічних платформ їх реалізації.Загалом, визначальною рисою електронного навчання є використання інформаційно-комунікаційних ресурсів та технологій як засобів навчання [4; 5]. Сучасний стан розвитку інформаційно освітнього середовища характеризується підвищенням якості інформаційних ресурсів наукового та навчального призначення, впровадженням інтегральних платформ доступу до цих ресурсів як для освітніх установ, так і для індивідуальних користувачів. Це потребує забезпечення умов для створення та поширення якісного програмного забезпечення – електронних книг, бібліотек, освітніх порталів, ресурсів інформаційно-комунікаційних мереж, дистанційних освітніх сервісів.Засоби інформаційно-комунікаційних технологій постають інструментами реалізації систем відкритого та дистанційного навчання. В цьому контексті виникають нові потреби і виклики, нові професійні та навчальні цілі, пов’язані з сучасним станом розвитку інформаційного суспільства. Інноваційні освітні технології мають задовольняти певним системним педагогічним та інформаційно-технологічним вимогам, що продиктовані рівнем науково-технічного прогресу та максимально відповідати принципам відкритої освіти серед основних з яких мобільність учнів і вчителів, рівний доступ до освітніх систем, формування структури та реалізації освітніх послуг [1].Серед основних цілей, що постають перед освітою із розвитком інформаційного суспільства, зазначають формування в учнів системи компетентностей ХХІ сторіччя. На думку Т. Бітмана, який узагальнив деякі дослідження, більшість авторів виокремлюють серед них такі компоненти, як технологічні навички, серед яких: інформаційна грамотність; знайомство з інформаційно-комунікаційними носіями; знайомство з засобами інфомаційно-комунікаційних технологій; соціальні навички, такі як: загальнокультурна грамотність; гнучкість та адаптивність; навички мислення та набування знання високого рівня; комунікативність та здатність до співпраці [2]. Цей автор відмічає такі тенденції у розвитку сучасного суспільства, як все більш високий рівень взаємозв’язку та швидкості перебігу суспільних процесів та різке зростання обсягів доступної інформації, до якої можуть залучатися широкі верстви суспільстваРозвиток нових технологій характеризується низкою показників, що стосуються різних аспектів реалізації систем електронного навчання. Ці показники тісно пов’язані із потребою формування в учнів освітніх компетентностей в контексті сучасних вимог відкритості, мобільності, гнучкості навчання та розвитку пізнавальних та особистісних якостей учня.Однією з проблем у сфері реалізації електронного навчання є забезпечення його доступності. Цей показник стосується наявності та організації доступу до необхідних систем навчання, розширення участі, що на наш час розглядаються в двох аспектах. Поняття «доступу до е-навчання» трактується, по-перше, як зміст і обсяг послуг, наявних у певний час. По-друге, як комплекс майнових, соціальних, класових, статевих, вікових, етнічних чинників, фізичних чи розумових здібностей та інших чинників, що впливають на реалізацію е-навчання і мають бути враховані при його проектуванні [4].Поряд з цим, серед суттєвих причин, які перешкоджають ширшому впровадженню і використанню систем електронного навчання, є такі, як наявність достатньої кількості комп’ютерів, програмного забезпечення і необхідних сервісів, доступу до Інтернет, включаючи широкосмуговий доступ, швидкість з’єднання тощо. Розгляд цих питань суттєво залежить від вибору платформи реалізації електронного навчання, на базі якої організується добір і використання різноманітних типів ресурсів, їх систематизація та оптимізація використання.Варто також звернути увагу на доступність важливої інформації, чи є зручні можливості пошуку і вибору необхідного навчального матеріалу. Цей чинник також є критичним при залученні у процес навчання необхідних ресурсів на електронних носіях.Існує ще один вимір доступу до е-навчання, що стосується обмежень у часі і просторі. Це протиріччя вирішується певною мірою за рахунок використання мобільних технологій і розподіленого навчання, які є перспективним напрямом розвитку систем відкритої освіти.Наступний показник стосується якості освітніх послуг, що надаються за допомогою систем е-навчання. Якість електронного навчання і її оцінювання мають багато рівнів таких, як: зміст освіти, рівень підготовки методичних та навчальних матеріалів; персонал і кваліфікація викладачів; стан матеріально-технічного забезпечення; управління навчальним процесом; рівень знань та компетентностей учнів та інших.Предметом численних досліджень є питання оцінки результатів навчання за допомогою комп’ютера. Технологія оцінювання стосується багатьох аспектів середовища навчання. Серед труднощів, які виникають при реалізації електронного оцінювання є такі, як ризик відмови обладнання, висока вартість потужних серверів з великою кількістю клієнтів, необхідність опанування технології оцінювання студентами та викладачами та інші [4].Якість навчальних матеріалів потребує врахування також вимог до обслуговування, управління, проектування інтерфейсу, ергономіки, гігієни та інших. Ці питання не втрачають актуальності у зв’язку з швидким оновленням комп’ютерної техніки. Розробка та впровадження навчальних матеріалів та ресурсів на електронних носіях суттєво взаємообумовлена використанням ефективних методів оцінки їх якості.Окремий комплекс проблем пов’язаний з розробкою вимог і стандартів для освітнього програмного забезпечення. Зокрема, це стосується визначення психолого-педагогічних, дидактичних параметрів оцінки якості освітніх ресурсів. Багато авторів (С. Санс-Сантамарія, Дж. А. Ва­діле, Дж. Гутьєррес Серрано, Н. Фрізен та інші [6]) погоджуються на думці, що хоча стандарти у галузі електронного навчання були розроблені з метою визначення шляхів і способів використання у педагогічній діяльності навчальних об’єктів, реалізованих засобами ІКТ, це скоріше сприяло подальшому пошуку в цьому напрямку, ніж було остаточним рішенням. Існуючі педагогічні характеристики об’єктів орієнтовані здебільшого на можливість спільного використання різних одиниць контенту окремими системи управління е-навчанням. Це не відображає в достатній мірі педагогічні підходи, що стоять за навчальними об’єктами.Загалом із розвитком електронного навчання зростають вимоги до якості освітніх послуг, яка, як свідчать дослідження, суттєво залежить від технологій оцінювання електронних ресурсів та матеріалів та від технологій їх створення та надання користувачеві. В той же час, застосування інтегральних підходів до організації використання та постачання ресурсів та сервісів сприяє удосконаленню і уніфікації підсистем їх розробки та апробації, пошуку та відбору кращих зразків програмного забезпечення, що також може бути передумовою підвищення якості освітніх послуг.Ще один показник, пов’язаний з реалізацією систем е-навчання, характеризує ступінь адаптивності. Цей чинник передбачає застосування досить спеціалізованих та диференційованих систем навчального призначення, що ґрунтуються на моделюванні індивідуальних траєкторій учня чи студента, його рівня знань [3]. У зв’язку з цим, поширення набувають адаптивні технології е-навчання, що враховують особливості індивідуального прогресу учня. Адаптивність передбачає налаштування, координацію процесу навчання відповідно до рівня підготовки, підбір темпу навчання, діагностику досягнутого рівня засвоєння матеріалу, розширення спектру можливостей навчання, придатність для більшого контингенту користувачів.Побудова адаптивної моделі студента, що враховувала б особистісні характеристики, такі як рівень знань, індивідуальні дані, поточні результати навчання, і розробка технологій відстеження його навчальної траєкторії є досить складною математичною і методичною проблемою [3; 4]. Побудова комп’ютерної програми в даному випадку передбачає деякі форми формалізованого подання сукупності знань в предметній області, що вивчається. Розвиток даного типу систем, здебільшого з елементами штучного інтелекту, є досить трудомістким. Зростання ступеню адаптивності є однією з тенденцій розвитку систем електронного навчання, що відбувається за рахунок удосконалення технологій подання, зберігання і добору необхідних засобів. Різноманітні навчальні матеріали, ресурси і сервіси можуть бути надані за потребою користувача, та дають можливість динамічної адаптації до досягнутого рівня знань, компетентності та освітніх уподобань того, хто вчиться.Наступний показник стосується інтеграції та цілісності систем електронного навчання, і тісно пов’язаний із стандартизацією технологій і ресурсів в управлінні системами е-навчання. Ці проблеми виникають у зв’язку з формуванням відкритого середовища навчання, що забезпечує гнучкий доступ до освітніх ресурсів, вибір та зміну темпу навчання, його змісту, часових та просторових меж в залежності від потреб користувачів [1]. Існує тенденція до координації та уніфікації стандартів навчальних матеріалів, розроблених різними організаціями зі стандартизації, такими як IEEE, IMS, ISO / IEC JTC1 SC36 й інші, а також гармонізації національних стандартів з міжнародними. У зв’язку з цим, наукові основи оцінювання інформаційних технологій та способів їх добору і застосування потребують подальшого розвитку.Наступний показник пов’язаний з повномасштабною інтерактивністю засобів ІКТ навчального призначення. Справді, сучасні технології спрямовані на підтримування різних типів діяльності вчителя у віртуальному комп’ютерному класі. Це стосується таких форм навчання, як формування груп, спільнот, що навчаються і взаємодіють віртуально в режимі он-лайн. Щоб організовувати навчальну діяльність в таких спільнотах, використовуються функції, що забезпечують колективний доступ до навчального контенту для групи користувачів, можливість для вчителя проглядати всі комп’ютери у групі, концентрувати увагу учнів за рахунок пауз і повідомлень, підключати або відключати учасників навчального процесу, поширювати файли або посилання серед цільової групи учнів, надсилати повідомлення конкретним учням. Учні також можуть звертатися до учителя за рахунок надання запитань, коментарів, виступів тощо [7]. Організація навчання у віртуальному класі потребує застосування апаратно-програмних засобів доставки навчального контенту, що також суттєво залежить від добору відповідних технологій.Наступний показник стосується безпеки освітнього середовища і передбачає аналіз ризиків та переваг використання комп’ютерних технологій у навчанні. При створенні систем електронного навчання мають враховуватись чинники збереження здоров’я, розвитку інтелектуального потенціалу учня.З огляду на визначені тенденції розвитку та використання систем е-навчання у сучасному освітньому процесі виникає потреба у певній інформаційно-технологічній платформі, яка могла б підтримувати нові форми навчання у відповідності сучасним вимогам доступності, гнучкості, мобільності, індивідуалізації та відкритості освіти [1].Продуктивним видається підхід, за якого проблеми розвитку е-навчання вирішувалися б через призму нових технологій, що надали б підходящу основу для дослідження цих систем, їх розробки і використання. Зокрема, перспективним є використання технології хмарних обчислень, за якої електронні ресурси і об’єкти стають доступні користувачеві в якості веб-сервісу [7].За визначенням Національного Інституту Стандартів і Технологій США (NIST), під хмарними обчисленнями (Cloud Computing) розуміють модель зручного мережного доступу до загального фонду обчислювальних ресурсів (наприклад, мереж, серверів, файлів даних, програмного забезпечення та послуг), які можуть бути швидко надані при умові мінімальних управлінських зусиль та взаємодії з постачальником.Переваги хмарних обчислень у сфері освіти можна охарактеризувати наступними чинниками:- спрощення процесів встановлення, підтримки та ліцензійного обслуговування програмного забезпечення, яке може бути замовлено як Інтернет-сервіс;- гнучкість у використанні різних типів програмного забезпечення, що може порівнюватись, обиратись, досліджуватись, завдяки тому, що його не потрібно кожний раз купляти і встановлювати;- можливість багатоканального поповнення колекцій навчальних ресурсів та організація множинного доступу;- універсалізація процесів розподіленого навчання, завдяки віртуалізації засобів розробки проектів, наприклад, командою програмістів, які всі мають доступ до певного середовища і програмного коду, приладів або лабораторій, інших засобів;- здешевлення обладнання завдяки можливості динамічного нарощування ресурсів апаратного забезпечення, таких як обсяг пам’яті, швидкодія, пропускна здатність тощо;- спрощення організації процесів громіздких обрахунків та підтримування великих масивів даних завдяки тому, що для цього можуть бути використані спеціальні хмарні додатки;- мобільність навчання завдяки використанню хмарних сервісів комунікації, таких як електронна пошта, IP-телефонія, чат, а також надання дискового простору для обміну та зберігання файлів, що уможливлює спілкування та організацію спільної діяльності.Таким чином, впровадження технології хмарних обчислень є перспективним напрямом розвитку систем електронного навчання, що сприятиме реалізації таких засобів і систем, які задовольнятимуть сучасним вимогам до рівня доступності, якості, адаптивності, інтеграції та повномасштабної інтерактивності.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Бірілло, Інна Валеріївна. "Реформування архітектурної освіти". Theory and methods of learning fundamental disciplines in high school 8 (23 листопада 2013): 39–45. http://dx.doi.org/10.55056/fund.v8i1.194.

Повний текст джерела
Анотація:
Освіта – основа інтелектуального, культурного, духовного, соціального, економічного розвитку суспільства і держави. Метою освіти є всебічний розвиток людини як особистості та найвищої цінності суспільства, розвиток її талантів, розумових і фізичних здібностей, виховання високих моральних якостей, формування громадян, здатних до свідомого суспільного вибору, збагачення на цій основі інтелектуального, творчого, культурного потенціалу народу, підвищення освітнього рівня народу, забезпечення народного господарства кваліфікованими фахівцями [1].Провідним орієнтиром в ХХІ столітті в суспільстві знань постають гуманізація та інтелектуалізація соціальних відносин, а першочергового значення набувають знання та інформація. Актуальність проблеми обумовлюється перетворенням освіти на один з вирішальних соціокультурних чинників інформаційного суспільства. З огляду на динамічні зміни у сучасному глобалізованому світі, які детермінували нові вимоги до рівня освіти, професійної підготовки і компетентностей фахівців, сьогодні на національну вищу освіту покладається завдання формування сучасної національної еліти, здатної забезпечити відтворення та розвиток інноваційного потенціалу демократизації суспільства.Реорганізація освіти відповідно до вимог сучасності – комплексне завдання. Воно включає модернізацію управління як всієї системи освіти, так і окремими її закладами; зміну форм і методів навчального процесу; підвищення якості навчання студентів; перегляд кількості напрямів підготовки; постійне підвищення кваліфікації професорсько-викладацького складу; забезпечення академічної і трудової мобільності студентства; інноваційні підходи до проблем фінансування та самофінансування освітніх закладів тощо. Зокрема, у Національній доктрині розвитку освіти пріоритетним розвитком визначено впровадження новітніх інформаційно-комунікативних технологій, а поєднання освіти і науки розглядається як умова модернізації системи освіти, головне джерело її подальшого розвитку [2].Актуальні проблеми становлення сучасної освітньої парадигми та модернізаційних зрушень в системі вищої освіти проаналізовані в роботах В. П. Андрущенка, М. З. Згуровського, І. А. Зязюна, С. Ф. Клепка, К. В. Корсака, В. Г. Кременя, В. І. Лугового та інших вітчизняних науковців. В роботах Д. Белла, З. Бжезинського, І. Валлерстайна, У. Дайзарда, Ж. Еллюля, Г. Кана, Г. Кіссінджера, Р. Коена, Ж.-Ф.Ліотара, Т. Куна, М. Макклюєна, Й. Масуди, Р. Рорті, Т. Стоуньєра, А. Тоффлера, А. Турена, Ф. Уебстера, П. Фейєрабенда, М. Фуко, Ф. Фукуями, Ю. Хаяші, Ф. Хіггса, П. Штомпки, К. Ясперса відображено проблеми концептуальних засад глобальних змін суспільства, визначено теоретичні (наукові, інтелектуальні) знання, інновації та інформаційні технології.Ключові проблеми інформатизації освіти як складової інформатизації суспільства, аналіз педагогічного потенціалу інформатизації навчального процесу розкрито в працях В. Ю. Бикова, А. Ф. Верланя, А. М. Гуржія, Ю. О. Дорошенка, А. П. Єршова, М. І. Жалдака, Ю. О. Жука, Ю. І. Машбиця, І. Ф. Прокопенка, В. Д. Руденка, О. В. Співаковського та багатьох інших науковців.Аналіз проблем інформатичної освіти, дослідження теоретичних і методичних аспектів навчання інформатики в сучасних умовах знайшли відображення в працях А. П. Єршова, М. І. Жалдака, К. К. Коліна, Е. І. Кузнєцова, О. А. Кузнєцова, М. П. Лапчика, В. М. Монахова, Н. В. Морзе, О. О. Ракітіної, Ю. С. Рамського, С. А. Ракова, C.О. Семерікова, В. Ф. Сухіної, Ю.В. Триуса та інших.Проте, не зважаючи на достатню кількість наукових публікацій з численних питань реформування національної вищої освіти, сьогодні чітко окреслюється коло проблем, які потребують подальшого осмислення й аналізу.Структурне реформування національної системи вищої освіти, зміна освітніх програм і проведення необхідних інституційних перетворень у вищих навчальних закладах України здійснюється в рамках Болонського процесу. У багатьох його документах зазначається, що він не передбачає уніфікації змісту освіти, натомість кожна країна-учасниця має зберегти національну палітру, самобутність та надбання у змісті освіти і підготовці фахівців з вищою освітою, а далі запровадити інноваційні прогресивні підходи до організації вищої освіти.Аналіз теорії та практики архітектурної освіти свідчить, що рівень професійної підготовки молодих архітекторів не відповідає міжнародним вимогам, що негативно позначається на продуктах архітектурної діяльності, а отже, на якості навколишнього середовища та життя суспільства в цілому. Це зумовлено суперечністю між потребою послідовного, цілеспрямованого залучення майбутніх фахівців до професійного та соціокультурного досвіду, опанування новітніми інформаційно-комунікаційними технологіями та відсутністю ефективних освітніх технологій формування професійної культури майбутніх архітекторів [3].Світовий і вітчизняний досвід сучасної архітектури свідчить про те, що єдиний процес інформатизації в архітектурі розвивається по двох паралельних руслах: перше – технологічний супровід проектування, істотно інтенсифікує і змінює його процесуальне зміст. Друге – дослідження, що проводяться у віртуальному середовищі (або віртуальні дослідження), що активізують творчий потенціал проектувальника і формують професійну мову сучасного архітектора. Вітчизняна практика вищої архітектурної освіти розвивається в основному в першому руслі – спонтанного впровадження цифрових технологій шляхом вивчення пакетів комп’ютерних програм. Це задовольняє, насамперед, попит архітектурно-будівельного ринку на фахівця, що володіє ремеслом, необхідним для оформлення проектної документації в електронному вигляді. Однак така спеціалізація не служить розвитку художньої складової архітектурної професії [4].Різним теоретичним і методичним аспектам підготовки архітекторів у системі вищої освіти присвячено дослідження К. С. Алабяна, Ю. С. Асєєва, Л. Г. Бачинської, М. Г. Бархіна, Є. Д. Білоусова, Ю. М. Бі­локоня, В. М. Вадимова, Ю. П. Волчок, Н. В. Докучаєва, М. М. Дьоміна, В. І. Єжова, О. В. Кащенка, Л. М. Ковальського, Г. І. Лаврика, І. Г. Лежави, В. П. Мироненка, В. Є. Михайленка, Д. Л. Мелодинського, Н. Ф. Метленкова, Т. Ф. Панченка, О. С. Слєпцова, Г. Ю. Сомова, В. О. Тімохіна, В. В. Товбича, М. А. Туркуса, В. П. Уреньова, В. Р. Усова, Г. Й. Фільварова, У. А. Кисельової, І. С. Ніколаєва, М. В. Никольського, Н. Ф. Нечаєва, Е. А. Левінсона, С. О. Хан-Магомедова, Л. П. Холодової, М. І. Яковлєва, О. В. Чемакіна, Ю. О. Дорошенка, Ю. М. Ковальова, О. А. Трошкіна, Л. М. Бармашина, Г. І. Болотова.Проблеми архітектури і архітектурної освіти також постійно знаходяться в центрі уваги міжнародних суспільних та професійних організацій. Зокрема, ці проблеми представлено в Хартії Міжнародного Союзу архітекторів та ЮНЕСКО «Про освіту архітекторів», яка прийнята на XIX Міжнародному конгресі МСА в Барселоні в 1996 році; у міжнародних програмах ЮНЕСКО «Всесвітнє природне і культурне надбання в руках молодих», у програмі МСА «Архітектори у школі».Проблемам навчання майбутніх архітекторів власне комп’ютерних технологій архітектурного проектування та візуалізації спроектованих об’єктів донині приділяється вкрай мало уваги. Зазначене пояснюється певною консервативністю архітекторів щодо активного використання інноваційних засобів і технологій у своїй діяльності, відсутністю належної підготовки у більшості науково-педагогічних працівників та певним запізненням щодо розробки та впровадження у практику інструментальних програмних засобів архітектурного проектування порівняно з інженерними САПР. Разом з тим, можна назвати публікації, присвячені навчанню майбутніх архітекторів сучасних комп’ютерних технологій архітектурного проектування та опануванню відповідного програмного інструментарію [3; 4; 5]. Проте таких робіт досить мало, а їх зміст не відповідає повною мірою на запити освітньої практики та свідчить про недостатню кваліфікацію (щодо розв’язуваної проблеми) їх авторів і неповне розуміння ними актуалізованих завдань модернізації вищої архітектурної освіти у плані її інформатизації.Роль і значення архітектурної освіти неухильно зростає, вона стає предметом досліджень, у тому числі й дисертаційних, у соціології, психології, культурології тощо. У педагогічній науці архітектурна освіта представлена ідеями та діяльністю різних дослідників, які розглядають теоретичні аспекти та навчально-методичні основи архітектурної освіти, методологію креативного навчання, вивчають архітектурну освіту за кордоном, розробляють конкретні методики архітектурно-художньої освіти, зокрема, професійної підготовки майбутнього архітектора засобами образотворчого мистецтва.У сучасних умовах інформатична освіта набуває особливого значення у професійній підготовці майбутніх архітекторів, оскільки швидкий процес інформатизації практики архітектурного проектування потребує від сучасного архітектора знань і умінь щодо доцільного й ефективного застосування інформатичних засобів, методів і технологій у власній професійній діяльності, що загалом визначає фахово-інформатичну компетентність архітектора. Тому предметом інформатичної освіти у структурі вищої архітектурної освіти є інтелектуальні технології створення архітектурного проекту за допомогою комп’ютерно-комунікаційних апаратних та програмних засобів.Отже, нинішня зміна освітніх цілей та ціннісних орієнтирів потребує кардинального оновлення змісту вищої архітектурної освіти. Згідно чинного законодавства України про освіту структура освіти включає: дошкільну освіту; загальну середню освіту; позашкільну освіту; професійно-технічну освіту; вищу освіту; післядипломну освіту; аспірантуру; докторантуру; самоосвіту. Вивчення стану вищої архітектурної освіти в Україні показало, що фахівців галузі знань «Будівництво та архітектура», «Мистецтво» готують сьогодні у вищих навчальних закладах І-IV рівнів акредитації у відповідності з напрямами, за якими здійснюється підготовка фахівців у навчальних закладах за освітньо-кваліфікаційним рівнем молодшого спеціаліста, бакалавра, спеціаліста та магістра (табл. 1).Вищими навчальними закладами, згідно чинного законодавства в Україні є технікум (училище), коледж, інститут, консерваторія, академія, університет та інші. [1]Таблиця 1Перелік напрямків, за якими здійснюється підготовка фахівців у навчальних закладах за освітньо-кваліфікаційним рівнем молодшого спеціаліста, бакалавра, магістра та спеціаліста ГалузьМолодші спеціалістиБакалавриСпеціалістиМагістри0601Будівництво та архітектура будівництво та експлуатація будівель і споруд 5.06010101архітектура6.060102архітектура будівель і споруд7.06010201 архітектура будівель і споруд8.06010201 містобудування 7.06010202 містобудування8.06010202архітектурне проектування та внутрішній інтер’єр5.06010201дизайн архітектурного середовища7.06010203 дизайн архітектурного середовища8.06010203реставрація пам’яток архітектури та містобудування і реконструкція об’єктів архітектури7.06010204реставрація пам’яток архітектури та містобудування і реконструкція об’єктів архітектури8.060102040202Мистецтводизайн5.02020701дизайн (за видами)6.020207дизайн (за видами)7.02020701дизайн (за видами)8.02020701 Відповідно до статусу вищих навчальних закладів законодавчо встановлено чотири рівні акредитації:перший рівень – технікум, училище, інші прирівняні до них вищі навчальні заклади (підготовка фахівців за освітньо-кваліфікаційним рівнем – молодший спеціаліст);другий рівень – коледж, інші прирівняні до нього вищі навчальні заклади (підготовка фахівців за освітньо-кваліфікаційним рівнем – бакалавр);третій і четвертий рівні (залежно від наслідків акредитації) – інститут, консерваторія, академія, університет (підготовка фахівців за освітньо-кваліфікаційним рівнем – спеціаліст, магістр). [1]Загальносвітові процеси глобалізації та становлення інформаційного суспільства призводять до адекватної зміни освітніх цілей та ціннісних орієнтирів особистості, що у свою чергу зумовлює відповідне оновлення змісту освіти та здійснення навчального процесу. Основою такого оновлення в світовій практиці нині прийнято компетентнісний підхід.Формування і розвиток інформатично-комунікативної компетентності майбутнього архітектора та її складової – фахово-інформатичної компетентності – здійснюється під час наскрізної інформатичної підготовки: спочатку у середній загальноосвітній школі, затим, ступенево-поетапно, в університеті, потім, за потребою – у післядипломній освіті, під час професійної діяльності. Відповідно до сказаного виділятимемо такі етапні рівні: початкова загальноосвітня інформатична компетентність  базова інформатична компетентність  фахово-інформатична компетентність  акмеологічна фахово-інформатична компетентність. Тобто, компетентнісний підхід трансформується у акмеологічний підхід.Архітектор навчається все життя і при цьому має постійно слідкувати за новітніми науковими розробками. Тобто, архітектурна освіта, як ніяка інша відповідає нинішній освітній концепції навчання впродовж життя.Зважаючи на різноплановість фахової підготовки та складність професійного й духовного становлення молодого архітектора, системна інтеграція художніх, наукових і технічних (інженерних) знань має відбуватися впродовж усього процесу формування, становлення і розвитку архітектора як професіонала: спочатку під час допрофесійного (пропедевтичного) навчання, затим – під час фахової підготовки у вищих навчальних закладах, насамкінець, у процесі професійного (акмеологічного) зростання і саморозвитку під час виробничої діяльності.Процес підготовки майбутніх архітекторів до професійної діяльності розглядаємо як складну динамічну систему, яка ґрунтується на комплексі теоретико-методологічних підходів і забезпечує формування компетентного креативного фахівця нової генерації, підготовленого для здійснення професійної діяльності із застосуванням комп’ютерних засобів та інформатичних технологій, а також здатного до активної конкуренції на ринку праці та безстресової соціалізації.Концептуальні положення підготовки майбутніх архітекторів проявляються у формі провідних тенденцій і визначають стратегію цього процесу. До таких насамперед можна віднести: гуманізацію; гуманітаризацію; фундаменталізацію; забезпечення неперервності освіти; міждисциплінарний та інтернауковий характер знань; інтелектуалізацію навчальної і професійної діяльності; динамізацію.Реформаційні заходи в системі архітектурної освіти на сучасному етапі можуть прислужитися активізації індивідуально-орієнтованого навчання та особистісного підходу до розвитку творчих здібностей студентів, забезпечити в процесі навчання формування самостійного аналітичного мислення студентів, слугувати вдосконаленню професійної підготовки спеціалістів, здатних працювати в умовах глобалізованої економіки. Від цього багато в чому залежить, якою мірою майбутні спеціалісти зможуть поєднувати сучасні знання, професіоналізм із соціальною активністю і високою моральністю. Адже кінцевим результатом діяльності усіх рівнів освіти є всебічно осв
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Ільченко, Олена Олександрівна. "Аналіз сучасного стану системи підготовки викладачів до проектування електронних курсів". New computer technology 5 (6 листопада 2013): 44–45. http://dx.doi.org/10.55056/nocote.v5i1.70.

Повний текст джерела
Анотація:
Сьогодні, коли вже близько десяти років в Україні здійснюється реалізація Національної програми інформатизації [1], близько семі років здійснюється програма комп’ютеризації сільських шкіл [2], близько чотирьох років активно впроваджується система дистанційного навчання, технічне реалізація якого згідно з указом Міністерства освіти і науки України [3] відбувається на базі сучасного телекомунікаційного забезпечення можна враховувати, що проблему забезпечення навчальних закладів комп‘ютерами вирішили. І хоча з технічної точки зору ця проблема завжди остається актуальною (обладнання застаріває завдяки бурхливому розвитку науково-технічного процесу), на перший план виходить необхідність вирішення іншого питання – забезпечення навчальних закладів програмними засобами, що відповідають вимогам навчального процесу. Незважаючи на те, що сьогодні школи мають комп’ютерну техніку, як її ефективно використовувати в навчальному процесі викладачі не знають, бо їм не вистачає відповідного навчального програмного забезпечення. Це стосується також і електронної підтримки навчання інформатики.Сьогодні Українським інститутом інформаційних технологій в освіті запропоновані платні курси за модульною програмою “Технології дистанційного навчання” [4]:Модуль 1. Основи та програмно-технічне забезпечення дистанційного навчання (обсяг 32 академічні години – 390 грн.).Модуль 2. Менеджмент проектів у сфері дистанційного навчання (обсяг 32 академічні години – 450 грн.).Модуль 3. Експертиза в системі дистанційного навчання (обсяг 32 академічні години – 450 грн.).Модуль 4. Розробка дистанційних курсів на базі платформ дистанційного навчання IBM Lotus LearningSpace Forum, IBM Lotus LearningSpace 5.01 (обсяг 35 академічних годин – 560 грн.).Модуль 5. Інтелектуальна власність та комп’ютерне авторське право (обсяг 32 академічні години – 450 грн.).Модуль 6. Тестування в системі дистанційного навчання (обсяг 32 академічні години – 450 грн.).Модуль 7. Розробка дистанційних курсів на базі e-learning платформи Moodle (обсяг 32 академічні години – 560 грн.).Модуль 8. Платформи підтримки дистанційного навчання LearningSpace та Moodle (обсяг 32 академічні години – 450 грн.).Це є спробою вирішити проблему підвищення кваліфікації викладацького складу для реалізації наповнення української навчальної інформаційної мережі сучасним контентом, згідним для використання в навчальному процесі, що обумовлює актуальність дослідження проблеми своєчасної підготовки майбутніх вчителів до розробки власних електронних навчальних матеріалів.Об’єктом дослідження є система підготовки майбутніх вчителів інформатики в вищих навчальних закладах до проектування електронних курсів. Предметом є формування вмінь реалізації принципів наочності при проектуванні електронних засобів навчання. Метою є підвищення рівня компетентності майбутніх вчителів інформатики в галузі проектування електронних курсів. У процесі аналізу проблеми була висунута гіпотеза: оновлення методичної системи підготовки майбутніх вчителів інформатики за рахунок мережевих систем управління контентом та візуалізації підвищує рівень компетентності майбутніх вчителів інформатики в галузі проектування електронних курсів.В роботі обґрунтовуються та формулюються задачі, які необхідно вирішити для досягнення мети та перевірки висунутої гіпотези. Робота, що розглядається, виконується за темою НДР кафедри прикладної математики та інформатики ПДПУ ім. К.Д. Ушинського [5].
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Демідов, Б. О., Д. А. Гриб, С. І. Хмелевський та О. О. Хмелевська. "Методичні підходи до створення програмних динамічних статистичних еквівалентів елементів зразків озброєння і військової техніки". Системи озброєння і військова техніка, № 4 (68) (24 грудня 2021): 77–83. http://dx.doi.org/10.30748/soivt.2021.68.11.

Повний текст джерела
Анотація:
У статті розглядаються науково-методичні положення про обчислювальні експериментальні і програмні динамічні статистичні еквіваленти (ДСЕ), що використовуються для створення імітаційних моделей складних зразків озброєння і військової техніки та їх програмного забезпечення. Наведена модель похибки вимірювань інформаційно-вимірювальної системи, що може бути корисною при заміні реального об’єкту ДCЕ, адекватним із точністю до заданих статистичних характеристик. Наводяться типові приклади, що підтверджують необхідність (доцільність) застосування вказаних методичних засобів при передпроєктних дослідженнях, зовнішньому проектуванні і під час дослідження проблем обґрунтування і вибору обрисів, передпроєктних конструкторських рішень і варіантів використання за призначенням нових зразків ОВТ і у тих випадках, коли створення цих засобів здійснюється із значними витратами ресурсів.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Zhukovskyy, V. V., S. V. Shatnyi та N. A. Zhukovska. "Нейронна мережа для розпізнавання та класифікації картографічних зображень ґрунтових масивів". Scientific Bulletin of UNFU 30, № 5 (3 листопада 2020): 100–104. http://dx.doi.org/10.36930/40300517.

Повний текст джерела
Анотація:
Запропоновано нейронну мережу для розпізнавання картографічних зображень ґрунтових масивів та класифікації ландшафтних ділянок за типами ґрунтових масивів із використанням нейронної мережі. Описано підходи до проектування архітектури, методів навчання, підготовки даних для проведення навчання, тренування та тестування нейронної мережі. Розроблено структурно-функціональну схему нейронної мережі, яка складається із вхідного, прихованих та вихідного шарів, кожен окремий нейрон описано відповідною активаційною функцією із підібраними ваговими коефіцієнтами. Показано доцільність застосування кількості нейронів, їх тип та архітектуру для проведення задачі розпізнавання та класифікації ділянок на кадастрових картах. Як вихідні дані використано відкриті державні інформаційні ресурси, в яких виділено окремі ділянки за типами ґрунтів, їх поширення та сформовано базу даних для навчання та тренування нейронної мережі. Проаналізовано ефективність, швидкодію та точність роботи нейронної мережі, зокрема, проведено комп'ютерну симуляцію із використанням сучасного програмного забезпечення та математичне моделювання обчислювальних процесів у середині структури нейронної мережі. Розроблено програмні засоби для попередньої підготовки та оброблення вхідних даних, подальшого тренування та навчання нейронної мережі та безпосередньо процесу розпізнавання та класифікації. Відповідно до отриманих результатів, розроблена модель та структура нейромережі, її програмні засоби реалізації показують високу ефективність як на етапі попереднього оброблення даних, так і загалом на етапі класифікації та виділення цільових ділянок ґрунтових масивів. Надалі наступним етапом досліджень є розроблення та інтеграція програмно-апаратної системи на основі розпаралелених та частково розпаралелених засобів обчислювальної техніки, що дасть змогу значно пришвидшити обчислювальні операції, досягти виконання процесів навчання та тренування нейронної мережі в режимі реального часу та без втрати точності. Подані наукові та практичні результати мають високий потенціал для інтеграції в сучасні інформаційно-аналітичні системи, системи аналізу та моніторингу за станом навколишнього середовища, технологічними об'єктами та об'єктами промисловості.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Юденкова, Олена Петрівна. "Формування інформаційної компетенції майбутнього робітника видавничо-поліграфічної галузі". Theory and methods of e-learning 2 (4 лютого 2014): 398–404. http://dx.doi.org/10.55056/e-learn.v2i1.305.

Повний текст джерела
Анотація:
Притаманна нашому часу інформатизація всіх галузей народного господарства зумовлює необхідність формування у майбутніх кваліфікованих робітників інформаційної компетенції, як складової професійної компетентності, що забезпечує ефективну діяльність випускника ПТНЗ в умовах інтенсивного використання інформаційно-комунікацій­них технологій. Формування інформаційних компетенцій безпосередньо пов’язано з інформатизацією освіти.Інформатизація освіти – упорядкована сукупність взаємопов’яза­них організаційно-правових, соціально-економічних, навчально-мето­дичних, науково-технічних, виробничих і управлінських процесів, спрямованих на задоволення інформаційних обчислювальних і телекомунікаційних потреб, що пов’язані з можливостями методів і засобів інформаційних та комунікаційних технологій (ІКТ) учасників навчально-виховного процесу, а також тих, хто цим процесом управляє та його забезпечує [3, 360]. Процес інформатизації освіти охоплено відповідною нормативно-правовою та законодавчою базою: Концепція інформатизації освіти (1984), Постанова Уряду України щодо забезпечення комп’ютерної грамотності учнів загальноосвітніх і професійно-технічних навчальних закладів (1985), Закон України «Про концепцію Національної програми інформатизації»(1998) та ін.Проблемам інформатизації освіти присвячені праці Л. Білоусової, В. Бикова, І. Булах, Т. Волкової, Р. Гуревич, Ю. Дорошенка, М. Жалдака, С. Жданова, М. Кадемії, В. Кухаренка, С. Сисоєвої, М. Шкіля та ін. Інформаційно-комунікаційні технології, стрімко вдосконалюючись, нарощують свій освітній потенціал, проте практика навчання свідчить про відставання темпів впровадження новітніх досягнень зазначених технологій у реальний навчальний процес професійно-технічних навчальних закладів України. Однією з вагомих причин такого відставання є недостатність спрямованості навчального процесу у ПТНЗ на забезпечення всебічної підготовки майбутнього кваліфікованого робітника до свідомого й ефективного застосування інформаційно-комунікаційних технологій у професійній діяльності.Вивчення проблеми впровадження інноваційних виробничих технологій у процес підготовки кваліфікованих робітників поліграфічного профілю забезпечило можливість виявити суперечності між зростанням обсягів роботодавців до знань, умінь та професійних компетенцій в цілому, які необхідні конкурентоздатному фахівцю поліграфічної галузі та недостатньою модернізацією, відсутністю системи в оновленні змісту освіти в ПТНЗ. Педагогічна практика свідчить, що сьогодні ще далеко не всі навчальні заклади використовують у повному обсязі інформаційні технології з метою формування у випускників інформаційних компетенцій. Причини різні: відсутність відповідної матеріально-технічної бази (більшість ПК, які надані ПТНЗ за Державною програмою комп’ютеризації на сьогодні відносяться до застарілих моделей ); наявна кількість не відповідає потребам навчального процесу (при наявності 1 – 2 кабінетів не можливо повноцінно забезпечити загальноосвітню підготовку з предметів «Інформатика», «Інформаційні технології» та професійно-практичну підготовку з професій, які пов’язані з використанням комп’ютерної техніки у професійній діяльності); відсутність необхідних професійно-прикладних програмних продуктів (інноваційного дидактичного інструментарію); відсутність підручників, навчальних посібників, методичних рекомендацій, лабораторних робіт щодо оволодіння комп’ютерними технологіями професійно-орієнтованого змісту для учнів ПТНЗ; відсутність затверджених на державному рівні комплексних завдань та контрольних робіт з перевірки знань і умінь, навичок учнів з використанням тестових технологій (кожен навчальний заклад розробляє свої форми діагностики, що не сприяє уніфікації та стандартизації в освіті); відсутність внутрішньої мотивації як в учнів так і в педагогічних працівників до ефективного застосування інформаційних технологій у процесі підготовки до професійної діяльності); не розуміння педагогічними працівниками та адміністрацією ПТНЗ цілей використання інформаційних технологій.Сьогодення вимагає від педагога професійної майстерності не просто надання учням певних знань, а навчання їх мисленню, структуруванню інформації та цілеспрямованому відбору необхідного. Викладач спецтехнології і майстер виробничого навчання мають разом нести учням не просто нові знання, а новий тип оволодіння інформацією. У зв’язку з цим, особливого значення набуває переорієнтація мислення сучасного педагогічного працівника на усвідомлення принципово нових вимог до його педагогічної діяльності, до його готовності щодо використання засобів ІКТ у професійній діяльності як провідної педагогічної умови у процесі вивчення учнями ПТНЗ інноваційних виробничих технологій.Вивчаючи зарубіжний досвід, ми виокремили основні педагогічні цілі використання інформаційних технологій [1], [6], [8]:1. Розвиток особистості учня, підготовка його до продуктивної самостійної діяльності в умовах інформаційного суспільства, що включає: розвиток конструктивного, алгоритмічного мислення на основі спілкування з комп’ютером; розвиток творчого мислення за рахунок зменшення частки репродуктивної діяльності; розвиток комунікативних компетенцій на основі виконання сумісних проектів; формування уміння самостійно приймати рішення у складних виробничих ситуаціях; розвиток навичок дослідної діяльності (при роботі з моделюючими програмами та інтелектуальними навчальними системами); формування інформаційної культури, умінь обробляти інформацію.2. Реалізація соціального замовлення, яке обґрунтоване інформатизацією сучасного суспільства: професійна підготовка фахівців в галузі інформаційних технологій на різних рівнях (кваліфікований робітник, бакалавр, спеціаліст, магістр); підготовка учнів засобами педагогічних та інформаційних технологій до самостійної пізнавальної діяльності.Соціальне замовлення для освіти – вимоги зі сторони суспільства і держави до змісту освіти і якостей особистості, яка формується в освітній системі [8, 270].3. Інтенсифікація усіх рівнів навчально-виховного процесу: підвищення ефективності і якості навчання за рахунок використання інформаційних технологій; виявлення та використання стимулів пізнавальної діяльності; поглиблення міжпредметних зв’язків у результаті використання сучасних засобів обробки інформації при вирішенні завдань з різних предметів.Виходячи із цілей інформатизації освіти, розширенням масштабів упровадження засобів інформаційно-комунікаційних технологій у професійно-технічні навчальні заклади формуються нові завдання, які передбачають: створення автоматизованих систем з розроблення комп’ютерно-орієнтованих програмно-методичних комплексів, підтримки наукових досліджень, моніторингу результатів впровадження педагогічних інновацій, оцінювання і моніторингу результатів навчальної діяльності, підтримки процесу навчання, інформатизації бібліотечних систем, інформаційно-аналітичних систем управління освітою і навчальними закладами [3, 362]. Отже, діяльність педагога професійної майстерності має бути спрямованою на системне вивчення, оволодіння і використання комп’ютерних технологій, як педагогічної умови, що дозволяє активізувати діяльність учнів у будь-якій предметній області та формувати інформаційну компетенцію майбутніх випускників.Сьогодні відбувається перегляд Державних стандартів професійної освіти, розробляються нові стандарти на основі професійних компетенцій, які включають в освітній простір не тільки кваліфікаційні характеристики випускників по професії (що повинен знати чи вміти випускник ПТНЗ), а й ті компетенції, які формують учня як конкурентоздатного фахівця на ринку праці. До числа таких компетенцій ми відносимо інформаційну компетенцію.Інформаційна компетенція формується при допомозі реальних об’єктів (комп’ютер, телевізор, телефон тощо) та самих інформаційних технологій (ЗМІ, електронна пошта, Інтернет, мультимедіа). В її структуру входять уміння та навички учнів по відношенню до інформації, яка міститься в навчальних предметах і оточуючому світі: самостійно шукати, аналізувати і відбирати інформацію, організовувати, перетворювати, зберігати та передавати її [5, с. 57].Сьогодні багато українських економістів і політологів вважають, що зростання закордонних інвестицій на внутрішньому ринку – це нові високі технології, сучасна організація виробництва, випуск якісної, конкурентоздатної продукції [7, 153]. Динамічні зміни у видавничо-полігра­фічній галузі в останнє десятиріччя підтвердили цю істину. На зламі століть техніка і технологія галузі зазнала значних якісних змін. Усі підприємства впроваджують сьогодні найсучаснішу комп’ютерну техніку, принципово нове обладнання і матеріали. Широке впровадження цифрових технологій сприяло інтеграції видавничих і поліграфічних процесів, створенню настільних видавничо-поліграфічних систем. Відбувся безповоротний технологічний стрибок, який докорінно змінив характер роботи працівників галузі, а отже і вимагає оновлення і зміст професійної освіти поліграфічного профілю.Маркетингове дослідження поліграфічних підприємств показало, що роботодавці відмовляються від робітників, які мають вузьку спеціалізацію, а володіння інформаційними технологіями вони відносять до складу ключових соціально-професійних компетенцій. Сучасний кваліфікований робітник має уміти самостійно вносити в систему своєї діяльності наростаючий потік інформації. Інформаційна насиченість видавничо-поліграфічної галузі потребує перебудови усього навчального процесу у ПТНЗ. Отже, у процесі підготовки кваліфікованих робітників поліграфічного профілю маємо враховувати, що інформаційні технології є джерелом отримання інформації про інноваційні виробничі технології; сформовані в учнів інформаційні компетенції надають вагомої переваги при працевлаштуванні у галузі та подальшому кар’єрному зростанні. Отже, інформаційна компетенція майбутнього робітника видавничо-поліграфічної профілю – це задана соціальним замовленням норма (вимога) до професійної підготовки учня ПТНЗ, необхідна для його якісної продуктивної діяльності у галузі в умовах інформатизації суспільства, розвитку науки, комп’ютерної техніки, різноманітних програмно-технічних засобів, ресурсів, виробництва, технологій.В якості прикладу розглянемо кваліфікаційні вимоги до інформаційних компетенцій випускника ПТНЗ за професією «Оператор комп’ютерного набору; Оператор комп’ютерної верстки»: технічна підготовка: технічна робота з комп’ютером, управління файлами (архівування, створення копій), робота із замовником, планування і нормування; технічне обслуговування: проектування технічної системи, адміністрування технічних систем, технічна підтримка; верстання: коректура тексту, попередній дизайн видання, верстання сторінки, корекції технологічного процесу; отримання зображення: робота із сканером, цифрове перетворення, редагування зображення; виведення даних: спуск полос і шпальт, пробні відбитки, монтаж, виготовлення форм.Отже, процес формування інформаційних компетенцій майбутніх поліграфістів ґрунтується на знаннях та навичках з п’яти основних галузей: системотехніки, отримання зображення, верстання, електронного чи графічного виводу, технічного обслуговування. Інформаційні компетенції поліграфістів передбачають наявність таких професійно-важливих якостей: гнучкість і динамічність мислення, здатність аналізувати ситуацію, відповідальність, високий рівень розвитку концентрації та стабільності уваги, швидкість сприйняття, кольоровідчуття, просторова уява, координація рухів, естетичний і художній смак, оперативне мислення та пам’ять, стійкість до зовнішніх перешкод, уміння розподіляти та переключати увагу [4, 284].Педагогічний колектив Міжрегіонального вищого професійного училища з поліграфії та інформаційних технологій має значний досвід у системному оновленні змісту поліграфічної професійної освіти з врахуванням: потреб суспільства; нової техніки; технологій; результатів праці; взаємовідносин між замовником, роботодавцем, працівником тощо. Розробка нового змісту навчання з використанням інформаційних технологій вимагає дотримання системного професійного аналізу, формування в учнів інформаційних компетенцій як професійно важливих якостей. Вагомим внеском в оновлення змісту освіти стала розробка галузевого електронного «Термінологічного довідника (для учнів ПТНЗ поліграфічного профілю, майстрів виробничого навчання, викладачів)» [9]. Електронний довідник складається з двох розділів. Перший розділ «Терміни та визначення понять» містить українські видавничі та поліграфічні терміни пов’язані з професійною видавничою діяльністю і технологією виробництва паперу, фарб тощо. Терміни упорядковано в алфавітному порядку. Тлумачне визначення термінів здійснено українською мовою, крім того, дається англійська та російська назва кожного терміна. У другому розділі авторами презентовано огляд напрямів та технологічних процесів видавничо-поліграфічної галузі українською і англійською мовами, розділ унаочнено рисунками і фотографіями (загалом 35 рисунків двома мовами). Електронний довідник «загорнуто» в систему електронного пошуку, – пошук в якій організований таким чином, що система сканує весь зміст намагаючись знайти в ньому хоча б щось схоже на запит. Використання такого сучасного засобу навчання як електронний довідник дозволяє впроваджувати нову форму організації навчання – E-learning. Поняття «E-learning» походить від термінологічного словосполучення (Electronic Learning) і означає електронне навчання (або Інтернет-навчання). E-learning – це надання доступу до комп’ютер­них навчальних програм (coursware) через мережу Інтернет чи корпоративні Інтернет-мережі. Синонімом E-learning є термін WBT (Web-based Training) – навчання через веб [8, 185]. Використання інноваційних засобів навчання, нових форм організації навчання на основі комп’ю­терних технологій вирішує завдання: збагачення знаннями та вміннями у галузі інформаційних технологій; розвитку стійкої пізнавальної мотивації, інтелектуальних та комунікативних здатностей учнів ПТНЗ.Окремо слід зазначити, що в умовах інформатизації освіти, в професійно-педагогічній діяльності вчителя, поряд із традиційними функціями, з’являється необхідність виконання нових, які пов’язані з його особистою ІКТ-компетентністю. ІКТ-компетентність вчителя – комплекс якостей особистості, що забезпечують її гнучкість і готовність швидко прилаштовуватися до будь-яких змін у професійній діяльності в умовах інформатизації освіти, використовувати продуктивні ідеї, напрацьовані в одній галузі, до іншої, а також стимулюючий потяг до самовираження [2, 10].Таким чином, формування інформаційної компетенції майбутнього робітника видавничо-поліграфічної галузі, як складової соціально-професійної компетентності залежить від багатьох чинників – починаючи з комп’ютерно-орієнтованих засобів навчання, зокрема програмних засобів навчального призначення і закінчуючи ІКТ-компетентністю самих педагогічних працівників. На нашу думку, дослідження проблеми формування інформаційної компетенції майбутнього кваліфікованого робітника видавничо-поліграфічної галузі, як педагогічної умови впровадження інноваційних виробничих технологій у зміст освіти дасть змогу професійним навчальним закладам спрямувати психолого-педагогічне, методичне забезпечення навчального процесу в необхідному напрямі.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Любарець, Владислава. "ОСОБЛИВОСТІ ПРОЕКТУВАННЯ ЕЛЕКТРОННИХ ПІДРУЧНИКІВ ДЛЯ ПРОФЕСІЙНОЇ ПІДГОТОВКИ МЕНЕДЖЕРІВ СОЦІОКУЛЬТУРНОЇ ДІЯЛЬНОСТІ В ІНДУСТРІЇ ГОСТИННОСТІ". Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: педагогічні науки 16, № 1 (12 червня 2021): 235–50. http://dx.doi.org/10.32453/pedzbirnyk.v16i1.702.

Повний текст джерела
Анотація:
Інформатизація суспільства вимагає швидкого переходу на якісну підготовку управлінців в соціокультурній діяльності, що потребує нового високого і якісного рівня її цифровізації. У професійному просторі діяльності менеджерів СКД постійно впроваджуються інновації, що потребує вдосконалення їх знань, умінь, компетенцій та професіоналізму як в своїх, так і в суміжних сферах, зокрема в нашому дослідженні – в індустрії гостинності.Сучасні стратегії України спрямовано на подальший розвиток національної системи освіти, адаптацію її до умов соціально-орієнтованої економіки, трансформацію та інтеграцію у європейське і світове освітнє співтовариство. Менеджерська освіта України має інтегруватися в єдиний європейський освітній простір.Оскільки освітні контексти все більше і більше збагачуються електронними та мобільними технологіями, то дослідження в галузі цифровізації освіти можуть запропонувати більше основних напрямів навчальної практики. У сучасних умовах цифровізації орієнтації суспільства основою змісту й організації освітньої діяльності виступає соціальне замовлення на індивідуалізацію навчання, а також потреби студентів у творчій самореалізації за допомогою засобів інформаційно-комунікаційних технологій (ІКТ) [4].У статті проаналізовано питання розробки, упровадження та використання електронних підручників у професійній підготовці менеджерів соціокультурної діяльності для індустрії гостинності. Обґрунтовано особливості проектування електронних підручників для професійної підготовки менеджерів соціокультурної діяльності. Проаналізовано сучасні підходи до створення електронних підручників, систематизовано структурні елементи електронного підручника, визначено програмні засоби для створення електронного підручника.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Коваленко, Ю. Б., та І. О. Козлюк. "ФУНКЦІОНАЛЬНІ МЕТОДИ РОЗРОБКИ ІНТЕГРОВАНИХ МОДУЛЬНИХ СИСТЕМ АВІОНІКИ". Visnyk of Zaporizhzhya National University Physical and Mathematical Sciences, № 1 (6 вересня 2021): 101–15. http://dx.doi.org/10.26661/2413-6549-2021-1-12.

Повний текст джерела
Анотація:
Розвиток сучасних систем авіоніки робить проектування таких систем неможливим без використання засобів автоматизації. У даний час область таких інструментів представлена запатентованими інструментами, розробленими такими великими виробниками літаків, як Boeing та Airbus, а також низкою відкритих або частково відкритих міжнародних проектів, що відрізняються за термінами дії, наявністю вихідного коду та документації. Eсі інструменти базуються на архітектурних моделях розробленої системи. У цій статті розглядаються мови, доступні для опису архітектурних моделей систем авіоніки, та показано, яка мова програмування є найбільш підходящою через її текстові позначення та вбудовані концепції, які добре підходять для представлення більшості елементів вбудованих систем. Потім у статті представлено набір інструментів для проектування сучасних систем авіоніки. Набір інструментів забезпечує як загальну платформу для проектування та аналізу архітектурних моделей, так і спеціалізоване рішення для певної галузі систем авіоніки. Він підтримує створення, редагування та маніпулювання моделями як у текстовому, так і в графічному форматах. Зауважімо, що саме архітектурні моделі, що описують компоненти системи і взаємозв'язок між ними, стають основою для формування нових технологій і інструментів для автоматизації проектування. Вони дозволяють описувати різні аспекти архітектури в єдиній формалізованої моделі, яку можна обробляти різними інструментами для перевірки внутрішньої узгодженості архітектури, відповідності різним вимогам системи, автоматизації проектних рішень, генерації даних і файлів конфігурації, вихідний код і т.д. Складність сучасних авіаційних систем і високі вимоги до їх надійності призводять до необхідності використання загальних ресурсів. Під час створення IMA-систем розробники стикаються з низкою завдань і проблем, з якими вони раніше не стикалися. Для вирішення цих проблем на допомогу приходять різні засоби автоматизації і комп’ютерна підтримка розробки. Розвиток цього напрямку в першу чергу пов’язано з використанням різних моделей, в тому числі архітектурних моделей програмно- апаратних комплексів.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Бахрушин, Володимир Євгенович, та Андрій Вікторович Янаков. "Програмне забезпечення сайту дистанційної освіти МІДМУ гуманітарного університету “ЗІДМУ”". New computer technology 5 (1 листопада 2013): 09. http://dx.doi.org/10.55056/nocote.v5i1.51.

Повний текст джерела
Анотація:
Дистанційне навчання органічно поєднує комп’ютерні та Інтернет-технології навчання. Навчання може здійснюватися за допомогою корпоративних мереж, мережі Інтернет, електронної пошти та інших сучасних засобів зв’язку. В окремих випадках дистанційне навчання має істотні переваги перед класичними формами навчання.В тезах розглянуто логічну модель, модель даних і програмне забезпечення сайту дистанційної освіти Мелітопольського інституту державного і муніципального управління ГУ “ЗІДМУ”.Програма повинна складається з двох модулів: модуля користувача і модуля адміністратора. Перший модуль є сайтом, який бачить студент, а другий – сайтом, призначеним для адміністрування модуля користувача та додавання навчального матеріалу викладачами. Внаслідок цього, предметну область, а також логіку роботи програми ми розглядали із двох точок зору: з погляду клієнта і погляду адміністратора. Концептуальну модель сайту було побудовано як перелік вимог до вказаних модулів. Наступним етапом була побудова моделі прецедентів, тобто сценаріїв подій, що можуть відбуватися на сайті дистанційного навчання. Всього визначено та описано 14 різних прецедентів, зокрема: “Інсталяція системи”, “Авторизація користувача”, “Вибір потрібної інформації”, “Тестування студента” тощо. Здійснено концептуальне, логічне фізичне проектування бази даних. Її логічну модель подано у вигляді двох діаграм “Сутність-зв’язок” – для даних про користувачів і контенту сторінок.Розроблений сайт складається з головної сторінки і декількох класів, що реалізують основні можливості системи дистанційного навчання. Два класи є фундаментальними. Через один з них здійснюється робота з базою даних із будь-якого іншого класу розробленої системи. Він фактично є оболонкою над стандартними функціями PHP по роботі з базою даних, але в той же час через нього здійснюється перевірка коректності даних, що виключає можливість зламати сайт за допомогою SQL-ін’єкцій. Другий клас містить усілякі допоміжні функції для швидкого формування HTML коду, такі як, методи створення посилань, списків тощо.Створений програмний продукт можна використовувати у вищих навчальних закладах для впровадження дистанційної форми навчання. При цьому, на відміну від аналогів, він враховує вимоги кредитно-модульної системи організації навчального процесу.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Моісеєнко, Михайло Вікторович, Світлана Вікторівна Шокалюк та Наталя Володимирівна Моісеєнко. "Елементи комп’ютерного моделювання в підготовці вчителів хімії та інформатики". New computer technology 15 (25 квітня 2017): 31–34. http://dx.doi.org/10.55056/nocote.v15i0.644.

Повний текст джерела
Анотація:
Метою дослідження є проектування та реалізація комп’ютерно-орієнтованого навчання майбутніх учителів хімії та інформатики моделюванню об’єктів (процесів, явищ та систем) квантової механіки на другому рівні вищої освіти. Задачами дослідження є обґрунтування необхідності навчання магістрів хімії – майбутніх учителів хімії та інформатики – комп’ютерного моделювання об’єктів квантової механіки за підтримки спеціалізованого програмного засобу «Активний конструктор ієрархічних систем»; визначення змісту лабораторного практикуму з дисципліни (факультативного курсу) «Новітні інформаційні технології в наукових дослідженнях та освіті» та особливостей методики його навчання. Об’єктом дослідження є процес навчання бакалаврів та магістрів хімії – майбутніх учителів хімії та інформатики. Предметом дослідження є зміст та програмні засоби навчання комп’ютерного моделювання об’єктів квантової механіки. У роботі засвідчено необхідність навчання майбутніх учителів хімії та інформатики теорії та практики комп’ютерного моделювання об’єктів квантової механіки, подано розгорнутий зміст комп’ютерно-орієнтованого лабораторного практикуму вибіркової дисципліни (факультативного курсу) «Новітні інформаційні технології в наукових дослідженнях та освіті» для магістрів спеціальності 014 Середня освіта (Хімія), зазначено особливості методики його упровадження. Результати дослідження: узагальнення рекомендацій щодо проектування освітніх стандартів та навчальних планів підготовки магістрів за спеціальністю 014 Середня освіта (Хімія) та спеціалізацією 014 Середня освіта (Інформатика).
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kolmakova, V., S. Sharov, and S. Kurlianskyi. "USE OF SOFTWARE AND PEDAGOGICAL TOOLS IN «SOFTWARE ENGINEERING» DISCIPLINE." Transactions of Kremenchuk Mykhailo Ostrohradskyi National University 4 (August 28, 2020): 17–24. http://dx.doi.org/10.30929/1995-0519.2020.4.17-24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Denysenko, O., A. Kovalenko та S. Pashkevich. "ВИЗНАЧЕННЯ ЕФЕКТИВНОСТІ РОЗПОДІЛУ ТРАНСПОРТНИХ ПОТОКІВ НА ПІДХОДАХ ДО РЕГУЛЬОВАНИХ ПЕРЕХРЕСТЬ". Системи управління, навігації та зв’язку. Збірник наукових праць 1, № 63 (26 лютого 2021): 67–70. http://dx.doi.org/10.26906/sunz.2021.1.067.

Повний текст джерела
Анотація:
Предметомвивченнявстаттієвизначенняумоврозподілутранспортнихпотоків(ТП)напідходахрегульованих перехресть, при яких здійснюється комплексна оптимізація елементів циклу світлофорної сигналізації (ЦСС). Метою є визначення умов розподілу ТП згідно з обраним критерієм, при якому здійснюється мінімізація затримок транспортних засобів на перехресті і оптимізуються значення елементів світлофорного циклу. Завдання: визначення критерію і математичних моделей аналітичних умов оптимального розподілу ТП для різних схем на підході до перехрестя, при яких забезпечується оптимізація затримок транспортних засобів та елементів світлофорного циклу. Отримані наступні результати. Розкрито деякі особливості вирішення завдання формування напрямків руху ТП і пошуку оптимальних схем їх розподілу за фазами циклу. Визначено критерій і умови вирівнювання фазових коефіцієнтів для ряду типових схем пофазного роз'їзду, а також математичні моделі аналітичних умов розподілу ТП, що забезпечують оптимізацію затримок транспортних засобів. В ході аналізу досліджень і результатів роботи в подальшому запропонований алгоритм вибору схем організації дорожнього руху на перехресті і послідовність визначення елементів циклу регулювання. Висновки. Отримані умови для розподілу ТП на перехресті дають можливість вибору раціональної структури пофазного роз'їзду, істотно зменшити обсяг розрахунків при виборі комплексної схеми оптимізації режимів світлофорного регулювання. Запропонований підхід оцінки технології управління світлофорної сигналізації є комплексним і може буті основою для математичного забезпечення систем автоматизованого проектування світлофорних об'єктів. Моделі розподілу ТП на перехресті необхідні для визначення більш якісної оцінки умов руху, рівня функціонування і вибору найбільш раціональної організації руху і комплексу керуючих дій. Проведені дослідження дозволили розробити алгоритми та програмне забезпечення, які можуть застосовуватися для проектування схем організації руху на перехрестях вулично-дорожньої мережі
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Лавріненко, Наталя Михайлівна. "Проектування деталей машин методами комп’ютерного моделювання – невід’ємна частина підготовки інженера–механіка". New computer technology 5 (6 листопада 2013): 59. http://dx.doi.org/10.55056/nocote.v5i1.79.

Повний текст джерела
Анотація:
Широке застосування комп’ютерного моделювання є невід’ємною частиною впровадження інноваційних технологій у навчальний процес. Процес технічного переозброєння ведучих промислових підприємств, який зараз відбувається, і якому немає альтернативи через жорстоку конкуренцію на вітчизняному та світовому ринках, потребує досконалого знання інженерами-механіками новітніх технологій, зокрема технології проведення інженерного аналізу за допомогою САЕ-системи ANSYS. Поширення де-факто програмного комплексу ANSYS серед інженерів-механіків зумовлене широкими можливостями програми у сфері розв’язку складних проблем механіки деформованого твердого тіла, зокрема при розрахунку напружено-деформованого стану елементів конструкції механізмів при статичному навантаженні.При підготовці інженерів-механіків дисципліна “Проектування деталей машин методами комп’ютерного моделювання” формує майбутнього фахівця у сфері розрахунку і конструювання деталей машин загального призначення. Разом з курсом “Деталі машин” дисципліна завершує загально-технічне навчання студентів, яке забезпечується знаннями з теоретичної механіки, теорії механізмів і машин, опору матеріалів, вищої математики та математичного моделювання. З метою активізації учбового процесу застосовується організація виконання індивідуальних лабораторних робіт з найважливіших тем курсу.В результаті вивчення курсу студенти повинні уміти виконувати інженерні розрахунки на міцність, моделювати надійність елементів конструкцій та механізмів, знаходити оптимальні інженерні рішення шляхом аналізу надійності моделей елементів механізмів, вибору матеріалу та необхідних розмірів, оцінки величини реакції на дію зовнішніх сил; здійснювати перехід від формальної логіки теоретичних дисциплін до евристичної діяльності інженера. Необхідно підкреслити, що моделювання стало важливим методом наукового пізнання. Комп’ютерні досліди з моделями об’єктів дозволяють, спираючись на потужність сучасних обчислювальних методів і технічних засобів, детально і глибоко вивчати об’єкти у такій повноті, яка є недоступною для чисто теоретичних підходів. Тому такою важливою є взаємодія математичного і комп’ютерного моделювання для навчального і науково-дослідного процесів.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ревякін, О. О., та Д. М. Попков. "Концепція мобільного додатка підтримки бездротової передачі даних за допомогою WI-FI". Automation of technological and business processes 13, № 4 (3 лютого 2022): 8–12. http://dx.doi.org/10.15673/atbp.v13i4.2203.

Повний текст джерела
Анотація:
Робота присвячена розробці мобільного додатку для підтримки бездротової передачі даних за допомогою Wi-Fi. Предметом дослідження є спосіб передачі даних за допомогою бездротової технології Wi-Fi. Завданням проектування є розробка мобільного додатку для бездротової передачі даних у локальній мережі, яка допоможе користувачеві в швидкої і якісної передачі даних засобами бездротових технологій за допомогою Wi-Fi. При дослідженні основних проблем предметної області, аналізі аналогів та засобів розробки було створено базу даних із використанням реляційної системи управління бази даних SQLite, використані мови програмування Kotlin, Groovy та Java, середовище розробки Android Studio та система автоматичного складання додатку Gradle. Робота була спрямована на розробку мобільного додатку, завдяки якому люди зможуть швидко та якісно передавати файли та обмінюватись буферами обміну на різних пристроях за допомогою бездротових технологій з використанням Wi-Fi у локальній мережі. Система являє собою мобільний додаток, який допомагає людям передавати інформацію бездротовим способом у локальній мережі. Даний програмний продукт не є вибагливим до апаратного забезпечення, що дозволяє користуватися системою кожній бажаючій людині, яка має доступ в Інтернет.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Сушенцев, Олександр Олександрович. "Професійна підготовка студентів з використанням комп’ютерних технологій у модульно-рейтингової системи". Theory and methods of e-learning 1 (14 грудня 2013): 211–14. http://dx.doi.org/10.55056/e-learn.v1i1.232.

Повний текст джерела
Анотація:
Актуальність. Високі темпи прогресу науки й технологій, створення й поширення технологічних і організаційних інновацій, розвиток інформаційних технологій в умовах становлення української економіки, заснованої на знаннях, задають якісно нові вимоги до рівня підготовки кадрів з перспективних напрямів і спеціальностей. На теперішній час система вищої освіти є найбільш розвиненою складовою системи освіти України. Інноваційні процеси відбуваються в динамічно мінливому інформаційно-освітньому середовищі сучасного вищого навчального закладу, у ході насичення його новітніми інформаційно-комунікаційними технологіями. Ринкова економіка змінює уявлення особистості про життєві перспективи, у зв’язку із чим освіта сьогодні розглядається як «ключ до успіху» [1, 65]. У майбутній професії увагу студентів привертає не тільки одержання нових знань, умінь та навичок, а й можливості швидкого кар’єрного просування та пов’язані з ним матеріальна забезпеченість і фінансова самостійність. Ці нові орієнтири значно змінили менталітет молоді: абітурієнтів, студентства й випускників. При цьому вони усе чіткіше усвідомлюють, що ринкові й у цілому сучасні суспільні відносини висувають жорсткі вимоги до їх професійних і комунікативних здібностей, умінню знаходити вихід зі складних ситуацій, швидко адаптуватися до стрімко мінливій ситуації. Особливу актуальність здобуває інноваційна освіта, що припускає особистісний підхід, фундаментальність, творче начало, професіоналізм, компетентність. Вирішення даної проблеми лежить в області проектування методичних систем навчання на основі комплексного використання традиційної, комп’ютерної й рейтингової технологій.Постановка проблеми.Існуючі організаційні форми навчання (лекція, практичне заняття та ін.) мають істотні недоліки: перевага словесних методів викладу змісту навчального матеріалу; усереднений загальний темп викладу матеріалу; фронтальна форма проведення практичних занять, що не враховує різнорівневість підготовки і працездатності студентів.Самостійна робота студентів з підручниками, навчальними посібниками утруднена через недостатнє структурування змісту навчального матеріалу, сухості мови викладу, повної відсутності емоційного впливу й контролю засвоєння знань.Автоматизовані навчальні системи дозволяють реалізувати основні принципи дидактики (навчання): науковість, системність, модульність, наступність, наочність і створюють передумови для підвищення якості професійної підготовки. Вони надають студентам наступні можливості: керування темпом викладу, повернення до вивчених розділів, багаторазове опрацювання матеріалу для його закріплення, користування термінологічним словником, перевірка засвоєння за допомогою питань і завдань, відпрацьовування умінь та навичок. Використовуючи автоматизовані навчальні системи неважко якісно організувати самостійну роботу, самоконтроль і контроль знань.Метою статті є розкриття можливостей професійної підготовки з використанням комп’ютерних технологій навчання у модульно-рейтинговій системі навчання.Основна частина. Досвід роботи у вищому навчального закладі показує, що студенти молодших курсів не можуть самі контролювати хід навчання, систематично й напружено працювати протягом семестру. На вирішення цих проблем спрямована модульно-рейтингова технологія як засіб формування в студентів пізнавальної активності протягом усього періоду навчання. Аналіз робіт показує, що модульно-рейтингове навчання сприяє розвитку й закріпленню системного підходу до вивчення дисципліни, формує в студентів навички самоконтролю, вимогливості до себе, стимулює самостійну систематичну роботу, а також допомагає виявити сильних і здібних студентів.Проблему запровадження у практику роботи вищої школи модульної системи навчання досліджували А. Алексюк, І. Богданова, В. Бондар, З. Кучер, П. Сікорський, П. Стефаненко, В. Стрельніков та ін. Запровадженню рейтингової системи навчання присвячені роботи С. Вітвицької, І. Мельничук та ін.Наш науковий інтерес викликала методична система професійної підготовки студентів з використанням комп’ютерних технологій і модульно-рейтингової системи навчання. Під методичною системою будемо розуміти педагогічну структуру, компонентами якої є мета, зміст, методи, форми й засоби навчання. У проектованій методичній системі передбачається, з одного боку, розкрити позитивний досвід існуючої методичної системи, а з іншого, – використати комп’ютерні засоби навчання для вирішення проблем у викладанні окремих дисциплін, наприклад, для викладання традиційно складних курсів у технічних вузах – теорія машин і механізмів (ТММ), теорія автоматичного управління (ТАУ). Для цього необхідно розробити: систему цілей; критерії відбору змісту методичної системи; систему методів навчання; особливості реалізації кожної з основних організаційних форм в умовах застосування автоматизованої навчальної системи; класифікацію комп’ютерних засобів, які будуть використовуватись в методичній системі по курсах ТММ і ТАУ:модульно-рейтинговий комплекс;модель автоматизованої навчальної системи й сценарій електронних підручників; - модель контролю.Система цілей методичної системи: формування наукового світогляду; накопичення знань, умінь і навичок; розвиток продуктивної розумової діяльності студентів; забезпечення професійної готовності майбутніх інженерів до використання отриманих знань при розв’язанні науково-технічних проблем.Комп’ютерні технології мають у своєму розпорядженні більші можливості для вдосконалення пояснювально-ілюстративних і репродуктивних методів, які доповнюються методами, що безпосередньо базуються на використанні комп’ютерів: метод використання комп’ютера як інструмента, що дозволяє значно розширити ілюстративну базу вузівського курсу; метод використання комп’ютера для формування алгоритмічної культури студентів; метод використання комп’ютера при виконанні розрахункових завдань; метод використання комп’ютерних технологій як засіб експериментування й моделювання.У проектованій методичній системі роль засобів навчання значно зростає. Підручники й навчально-методичні посібники традиційно відіграють важливу роль. Комп’ютерні навчальні засоби, що використовуються в різних курсах, можна розбити на два види:навчаючі програмні засоби з елементами моделювання (призначаються для організації й підтримки навчального діалогу студента з комп’ютером, надають середовище для комп’ютерного моделювання, необхідну навчальну інформацію з курсу, направляють навчання (електронні підручники й комп’ютерні практикуми));навчально-демонстраційні засоби навчального характеру (надають наочну навчальну інформацію як статичного, так і динамічного характеру (демонстраційні блоки з елементами мультимедіа)).Модульно-рейтинговий комплекс представляє собою сукупність модульної програми й рейтингової оцінки знань студентів. В основу розробленої рейтингової системи покладена концепція, що полягає в тім, що підготовка фахівця з міцними базовими знаннями залежить від способу їхнього формування. Міцність і надійність знань завжди вище, якщо їхнє формування відбувається не в авральній формі, що ми часто спостерігаємо, а систематично, протягом усього періоду навчання В методичній системі модульно-рейтинговий комплекс виконує дві функції: засобу керування навчальним процесом (реалізується через модульну структуру курсу) і система контролю (яка ґрунтується на оцінюванні всіх видів навчальної роботи з урахуванням якості й своєчасності виконання).Електронні підручники містять курси лекцій, демонстраційні моделі. По кожному розділу електронних підручників підготовлені тести декількох рівнів. Підручники виконані в технології Internet. У структуру підручника входять зміст і предметний покажчик, пов’язаний з лекціями гіперпосиланнями. Навігація реалізована з використанням функцій мовою JavaScript і елементами динамічного HTML. Тексти підручників відповідають державним освітнім стандартам вищої професійної освіти за напрямами і спеціальностями.Комп’ютерні засоби навчання – це програмний засіб або програмно-технічний комплекс, призначений для вирішення певних педагогічних завдань, що має предметний зміст. Предметний зміст передбачає, що комп’ютерні засоби навчання повинні включати навчальний матеріал з певної дисципліни. Під навчальним матеріалом розуміється інформація, як декларативного характеру, так і завдання для контролю знань і вмінь, а також моделі й алгоритми, що представляють досліджувані процеси. Методи оцінювання знань і вмінь студентів з даної дисципліні, курсу, розділу, теми або фрагменту з обліком встановлених кваліфікаційних вимог не зовсім досконалі. Особливістю поточного контролю, наприклад, повинно бути сполучення в ньому функцій перевірки знань і навчання. Засоби пересування по навчальному матеріалу повинні бути реалізовані таким чином, щоб це було можливим.Висновки. Використання комп’ютерних технологій і модульно-рейтингової системи навчання забезпечує підвищення інтересу у студентів до навчання, мотивує їх до навчально-пізнавальної діяльності і створює умови для індивідуалізації навчання у вищому навчальному закладі.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

ПЕРЕЛЬМУТЕР, А. В., та В. В. ЮРЧЕНКО. "ДОСЛІДЖЕННЯ ОБЛАСТІ НЕСУЧОЇ ЗДАТНОСТІ ТОНКОСТІННИХ СТЕРЖНЕВИХ ЕЛЕМЕНТІВ ІЗ ХОЛОДНОГНУТИХ ПРОФІЛІВ". Наука та будівництво 21, № 3 (26 вересня 2019): 42–48. http://dx.doi.org/10.33644/scienceandconstruction.v21i3.110.

Повний текст джерела
Анотація:
У статті розглядаються області несучих здатностей для поперечних перерізів тонкостінних стержневих елементів конструкцій із холодногнутих профілів. Звертається увага на важливу властивість області несучої здатності – її випуклість. У статті представлений випадок, коли внутрішні зусилля зі значеннями, меншими за розрахункові, можуть бути більш несприятливими для невипуклої області несучої здатності стержневих елементів із холодногнутих профілів. Представлено алгоритм автоматизованої побудови областей несучої здатності для перерізів стержневих елементів конструкцій та його програмну реалізацію в обчислювальному комплексі SCAD Office. Побудова області несучої здатності поперечного перерізу разом із випуклою оболонкою заданих комбінацій внутрішніх зусиль є гнучким інструментом для аналізу умов навантажень. Виконані дослідження області несучої здатності для перерізів стержневих конструкцій із холодногнутих профілів слугують засобом критичного аналізу вимог норм проектування для досліджуваного класу конструкцій. Засвідчена невипуклість та стрибкоподібна зміна межі області несучої здатності, що обумовлена не- узгодженостями окремих положень нормативного документу [1]. Зокрема, такий характер області спостерігається при переході від однієї розрахункової ситуації (закритична стадія роботи елемента конструкції після досягнення явища втрати місцевої стійкості) до іншої (робота в межах пружніх деформацій сталі).
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Кухаренко, Володимир Миколайович. "Сучасне проектування дистанційних курсів". Theory and methods of e-learning 4 (28 лютого 2014): 154–64. http://dx.doi.org/10.55056/e-learn.v4i1.385.

Повний текст джерела
Анотація:
Вступ Сучасні методи проектування дистанційних курсів базуються на розвинених інформаційних освітніх ресурсах і, в першу чергу, відкритих освітніх ресурсах. Кожен університет має концепцію розвитку своїх інформаційних освітніх ресурсів, які полегшують викладачеві використання технологій дистанційного навчання у навчальному процесі, як очному, так і заочному.Інформаційний освітній простір забезпечує:– доступність інформаційних ресурсів університету, системну інтеграцію;– комунікації між студентами, викладачами, науковим співтовариством;– створення інформаційного співтовариства;– інформаційну підтримку прийняття рішень, функціонування органів управління університету.Велику роль у формуванні інформаційного освітнього простору відіграють відкриті освітні ресурси ‑ навчальні або наукові ресурси, які розміщені у вільному доступі, або мають ліцензію, яка дозволяє їх вільне використання або переробку.До відкритих освітніх ресурсів можна віднести навчальні курси, окремі матеріали курсу і модулі курсу, посібники, навчальне відео, програмне забезпечення та інші засоби, матеріали або технології.Використання відкритих освітніх ресурсів зменшує вартість доступу до навчальних матеріалів, підвищує активність учасників навчального процесу, створює ефективну навчальне середовище, розвиває компетенції викладачів при підготовці навчальних матеріалів та проведенні навчального процесу.Відкриті освітні ресурси забезпечують прозорість прав інтелектуальної власності та авторських прав, забезпечують високу якість авторських робіт, сприяють підвищенню ефективності управління системою зберігання даних для освітніх ресурсів університету.Рівень розвитку інформаційних освітніх ресурсів університетів України можна оцінити за досягненнями у міжнародному рейтингу сайтів університетів Webometrics (http://webometrics.info). На жаль, сайти університетів України в цьому рейтингу розташовуються в кінці першої тисячі і нижче. Це створює великі проблеми при розвитку дистанційного навчання.Для успішного проведення навчального процесу кожен університет на базі інформаційних освітніх ресурсів повинен мати кампус, який іноді називають мобільним кампусом. Мобільний кампус ‑ це, насамперед, можливість бути частиною навчального співтовариства в будь-який час і в будь-якому місці. Він потрібен для того, щоб створити в навчальному закладі колективно-рефлексивний вимір неформальної навчальної діяльності, опосередкованої мобільними технологіями.У такому мобільному кампусі процес навчання може починатися коли завгодно; тривати скільки завгодно; він може бути раптово припинений або перерваний і може бути продовжений з будь-якого місця. Це дозволяє встановлювати індивідуальний розклад, створює ефект присутності і породжує явище віртуального університету.Педагогічне проектуванняВ останній час відбулися великі зміни в дистанційному навчанні, зокрема, з’явилися нові педагогічні теорії, соціальні сервіси, методи навчання і масові відкриті он-лайн курси (МВОК), тому необхідно переглянути методи проектування дистанційних курсів.Перш за все, проектування ‑ це процес створення нового об’єкта для задоволення потреб особистості. Мета проектування ‑ започаткувати зміни у навколишньому штучному середовищі людини.У техніці існують неформальні визначення «проектування» [1]:Цілеспрямована діяльність по розв’язанню задач (Арчер).Прийняття рішень в умовах невизначеності з тяжкими наслідками в разі помилки (Азімов).Моделювання передбачуваних дій до їх здійснення до тих пір, поки не з’явиться повна упевненість в кінцевому результаті (Букер).Здійснення дуже складного акту інтуїції (Джонс).Натхненний стрибок від фактів сьогодення до можливостей майбутнього (Пейдж).Проектування – це процес, а методи проектування ‑ це методологія, яка вимагає комплексного застосування різних наукових напрямків та теорій.З інших робіт з проектування слід звернути увагу на роботи Я. Дітріхса і Г. С. Альтшуллера.Г. С. Альтшуллер розглядав проектування як алгоритм розв’язання винахідницьких задач (АРВЗ – http://www.triz-ri.ru/triz/triz02.asp#a4), пізніше сформувавши теорію розв’язання винахідницьких задач (ТРВЗ). АРВЗ ‑ це інструмент для мислення і вирішення нестандартних задач. Наступні роботи І. Л. Вікентьєва з розвитку ідей Г. С. Альтшулера показали, що ці підходи добре працюють в бізнесі, журналістиці, освіті та інших напрямках.АРВЗ орієнтований на вирішення нестандартних, новаторських задач, які зараз дуже потрібні в освіті і складається з етапів:Аналіз задачі;Аналіз моделі задачі;Визначення ідеального кінцевого результату і фізичного протиріччя (ФП);Мобілізація та застосування ресурсів;Застосування інформаційного фонду;Зміна чи заміна задачі;Аналіз способу усунення ФП;Застосування отриманої відповіді;Аналіз ходу рішення.Педагогічне проектування ‑ це застосування та розвиток ідей технічного проектування на педагогічну діяльність з використанням усіх існуючих педагогічних теорій.Педагогічне проектування ‑ це методологія створення новаторських освітніх ресурсів.Традиційно педагогічне проектування базується на ADDIE: аналіз (Analyzing) потреб організації; проектування (Designing) системи для потреб організації; розвиток (Developing) системи з використанням аналізу вихідних даних; виконання (Implementing) процесів системи; оцінка (Evaluating) проекту створення та виконання.Комплексне застосування педагогічного проектування та методології АРВЗ дозволить створювати унікальні дистанційні курси, наприклад, МООК.Методи навчанняПоява нових соціальних сервісів впливає на розвиток освіти і, зокрема, на дистанційне навчання. Переглядаються психолого-педагогічні підходи до навчання, особливо, якщо вони мають відношення до корпоративного навчання. Не залишилися без уваги і формальне, неформальне, інформальне і соціальне навчання.Розгляд видів робіт спеціаліста дозволяє визначити співвідношення формального і неформального навчання [2]. При виконанні рутинних робіт частка неформального навчання мінімальна і зростає до видів діяльності, що потребують вирішення варіативних (творчих) завдань (рис. 1).Формальне навчання (відповідно до визначення CEDEFOP [3]) ‑ це структуроване (з точки зору цілей і часу) навчання, яке зазвичай надається навчальним закладом і призводить до сертифікації. Формальне навчання є навмисним, з точки зору учня. Рис. 1 Формальне та неформальне навчання Інформальне (informal) навчання [3] ‑ це щоденне навчання, пов’язане з роботою, сім’єю або відпочинком, не організоване і не структуроване (з точки зору мети, часу та підтримки). Інформальне навчання в більшості випадків ненавмисне з точки зору учня і не призводить до сертифікації.Неформальне (non-formal) навчання (автором є Малкольм Ноулз 1970 р.) [3] ‑ це навчання, яке вбудовано в заплановані заходи, але явно не призначено (з точки зору цілей, часу та підтримки) і містить важливий елемент навчання. Неформальне навчання є навмисним з точки зору учня і приводить до сертифікації.В даний час спостерігається підйом неформального навчання [4], що пов’язано з бурхливим розвитком е-Learning ‑ предтечею неформального навчання, збільшенням інновацій в бізнесі, підвищенням продуктивності. Неформальне навчання, яке можна відстежувати і вимірювати, забезпечує рентабельність передачі знань, компетенції, сприяє підвищенню організаційної ефективності. Дослідження показують, що 70% навчання є неформальним, а 30% формальним. Внаслідок цього створюється думка, що при правильній організації неформального навчання можна скоротити витрати на навчання.Поява соціальних сервісів і розвиток теорій навчання показує, що поєднання формального і неформального навчання дозволяє зробити процес навчання успішним, коли [5]:– не все навчання організоване у курсі;– існує безліч підходів для доставки курсів;– при необхідності використовуються змішані рішення;– навчання вбудовано в процес роботи;– тренери виконують функції «керівництво на стороні», а не «мудреці на сцені».При цьому необхідно передбачати неформальне (non-formal) навчання на робочому місці [6]:– моделювання соціальної поведінки, обміну;– моделювання корпоративного зв’язку;– створення простої в освоєнні і використанні системи;– інтеграція використання системи в робочий процес співробітника;– заохочення обміну інформацією;– створення почуття гумору.Модель підтримки неформального навчання (OODA) [7] включає спостереження, орієнтацію, прийняття рішення, дію. Реалізується ця модель через персональне навчальне середовище (ПНС), яка дозволяє інтегрувати формальне і неформальне навчання. На першому етапі через різні канали йде сканування навколишнього середовища з використанням різних фільтрів. Організація може створювати інформаційні портали для різних категорій службовців і сприяти формуванню у них ПНС.На другому етапі виконується цикл синтезу даних та інформації у якийсь уявний образ з урахуванням старих образів. Це найбільш складний етап. Проблемами на цьому етапі можуть бути знання бізнесу, глибина сканування інформації і культура організації, тому важливо організувати зворотний зв’язок. На третьому етапі, використовуючи можливості ПНС, розглядаються всі можливі варіанти рішень, які реалізуються на останньому, четвертому, етапі.Соціальне навчання [3] ‑ це придбання знань у соціальній групі або процес, в якому люди спостерігають за поведінкою інших людей і її наслідками, і відповідним чином змінюють свою поведінку.Соціальне навчання базується на соціальній теорії навчання А. Бандури [8] і включає спостереження, моделювання поведінки, ставлення і емоційну реакцію. До елементів навчання можна віднести увагу, закріплення, активне самостійне відтворення, мотивацію, характеристику спостерігача. Остання включає [9] автономність, самостійність, самоорганізацію, самоврядування і самоконтроль.Основними принципи теорії А. Бандури є: кодування змодельованої поведінки; змодельована поведінка дає цінний результат; модель зрозуміла і близька студенту та має функціональну цінність.Теорія соціального навчання Бандури дає наступні рекомендації:– вчити зразковим пізнавальним процесам і поведінці, які базуються на реальних проблемах;– використовувати прості приклади та порівняння для вивчення послідовності процесів сприйняття і засвоєння;– використовувати робочі приклади як метод моделювання процесу розв’язання проблеми;– повторення виконання з варіаціями.Численні дослідження показують, що соціальне навчання [10] здійснюється на роботі ‑ 70%, в спілкуванні з колегами і керівниками ‑ 20% і від вивчення курсів та книг ‑ 10%. Для реалізації цього принципу необхідна підтримка навчального процесу на робочому місці, поліпшення навичок навчання співробітників та створення сприятливої організаційної культури.Навчанню на робочому місці сприяє застосування нових знань і навичок в реальних ситуаціях, виділення нових робіт в рамках існуючої ролі, збільшення кола обов’язків та сфери контролю, завдання, спрямовані на нові ініціативи, робота в складі невеликої групи, можливість проводити дослідженні та експертизу.Навчанню у спілкуванні з колегами сприяють зворотний зв’язок для нових підходів до старої проблеми, участь у формальному і неформальному наставництві, заохочення до участі у дискусіях, висловлювання думок, роботи у команді, побудови навчальної культури.Куратор змістуУ даний час спостерігається невпинне зростання інформації в мережі: кожну хвилину завантажується на YouTube 72 годин відео, щодня створюється 340 млн. твітів, кожен місяць на Facebook створюються 25000 млн. одиниць контенту [11], і таких прикладів можна наводити безліч. Тому з’явилася потреба в новій діяльності в мережі, яку здійснює куратор контенту або куратор змісту ‑ людина, яка дає користувачеві повну інформацію для певної теми з коментарями на вимогу. Ця назва походить від Сontent сurator ‑ хранитель музею. Куратор змісту забезпечує зберігання вмісту (content curation) ‑ процес категоризації великої кількості контенту та подання її в організаційній функції для конкретної предметної області.Термін «куратор змісту» з’явився кілька років тому і привернув увагу користувачів Інтернет. З одного боку ‑ це кваліфікація, з іншого, можливо, спеціальність. Одне зрозуміло, фахівців цього профілю зараз обмаль і їх необхідно готувати.Зберігання змісту відіграє велику роль у розвитку сучасного інформаційного суспільства [12]. Оцінки показують, що понад 90% навчання на робочому місці відбувається за рамками формальної програми. Зберігання змісту ‑ це не кількість ресурсів, а їх якість. Куратор змінює шум на прозорість і ясність. Обмін вмістом може бути більш важливим і ефективним для вашої аудиторії, ніж створення контенту.Робота куратора змісту не може бути ефективною, якщо він не знайомий особливостями побудови сучасної електронної бібліотеки, наукометричними продуктами. В даний час в Інтернет можна знайти (http://www.scopus.com/) понад 19 тис. поточних журналів та 45 млн. публікацій з журналів (87%) і конференцій (11%). Поповнення складає понад 2 млн. публікацій щорічно.Робота куратора змісту можлива тільки, якщо у нього сформовано ПНС, в яке входять найбільш поширені соціальні сервіси, що охоплюють усі сфери його діяльності. Класифікація соціальних сервісів дозволяє визначити, які сервіси необхідно засвоїти для успішного курування змісту. Куратор змісту повинен уміти використовувати соціальні сервіси мобільних пристроїв.Наявність у куратора ПНС дозволяє сформувати персональну навчальну мережу, яка включає всі можливі зв’язки куратора змісту.Функції куратора змісту [13]:– оптимізує, редагує назви;– форматує зміст;– вибирає і додає відповідне зображення;– коментує текст для його розуміння;– додає вступ для конкретної аудиторії;– класифікує з використанням метаданих;– інтегрує посилання;– перевіряє першоджерела;– фільтрує вхідний зміст;– пропонує елементи інших кураторів;– шукає новий відповідний зміст і джерела;– дає поради та інформацію з краудсорсингу.Ефективне курування передбачає управління увагою, візуалізацію матеріалу, встановлення ритуалів, рефлексію, управління поштою, управління фізичним простором і багато іншого.Інструменти куратора: Twitter, Facebook, Google +, Paper.li, Scoop.it, Netvibes.com, RSS reader, DIIGO та багато інші.Курування змісту може бути використане в маркетингу, бізнесі, бібліотечній справі. В освіті ‑ це професійна і педагогічна діяльність викладача, навчальна діяльність студента.Проектування масового відкритого онлайн курсуВ теперішній час поширюються масові відкриті онлайн курси (МВОК), але поки дуже мало публікацій про особливості їх проектування. В роботі [14] відзначається, що у таких курсах цільова група невизначена та головна увага приділяється технологічним особливостям проектування курсу: реєстрації, вибору хештегу, сайту, агрегатора, форуму.Більше інформації про проектування курсу можна знайти в роботі С. Даунса [15]. Він зазначає, що МВОК ‑ це курс без змісту і важливо створити надлишкову інформацію. Кількість посилань до кожної теми повинно перевищувати число Данбара (зазвичай 100-230, приймається 150) (http://en.wikipedia.org/wiki/Dunbar’s_number/). Число Данбара ‑ це когнітивні обмеження на кількість людей, з якими можна підтримувати стабільні соціальні відносини. Вибір такої кількості джерел змушує слухача вибірково читати запропоновані матеріали.Розробник повинен вміти вибирати зміст, брати уча
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Третяк, Дмитро, та Ірина Іванишин. "СТРУКТУРА МОДЕЛІ ПРОГРАМИ ЗДОРОВ’ЯЗБЕРІГАЮЧОЇ СПРЯМОВАНОСТІ НА ЕТАПІ ПОПЕРЕДНЬОЇ БАЗОВОЇ ПІДГОТОВКИ У ЮНИХ ФУТБОЛІСТІВ З ФУНКЦІОНАЛЬНИМИ ПОРУШЕННЯМИ ОПОРНО-РУХОВОГО АПАРАТУ". Вісник Прикарпатського університету. Серія: Фізична культура, № 36 (22 січня 2021): 66–74. http://dx.doi.org/10.15330/fcult.36.66-74.

Повний текст джерела
Анотація:
Мета. Розробити модель програм здоров’язберігаючої спрямованості на етапі попередньої базової підготовки у юних футболістів з функціональними порушеннями опорно-рухового апарату. Методи. Аналіз даних науково-методичної літератури й інформаційних ресурсів мережі Інтернет, контент-аналіз теоретичних і методичних робіт, реконструкція, синтез. За даними наукової спільноти властива сучасному дитячо-юнацькому спорту інтенсифікація навчально-тренувального процесу, спрямована на досягнення високих спортивних результатів, призводить до збільшення навантажень на дитячий організм і може спричинити виникнення в юних спортсменів метаболічних, морфо-функціональних порушень, донозологічних станів і захворювань. Сьогодні все більшу актуальність набуває проблема профілактики, раннє виявлення і корекції порушень станів кістково-м’язової системи юних спортсменів.Враховуючи фундаментальні розробки теорії та методики юнацького спорту, біомеханіки просторовоїорганізації тіла людини, специфіку планування фізичних навантажень з акцентом на особливості організму юних спортсменів, розроблено модель програм здоров’язберігаючої спрямованості футболістів з функціональними порушеннями опорно-рухового апарату на етапі попередньої базової підготовки та технологічні операції, яка включає два взаємопов’язаних блоки: організаційно-методичний та змістовно-цільовий. Організаційно-методичний блок моделі програм здоров’язберігаючої спрямованості футболістів з функціональними порушеннями опорно-рухового апарату на етапі попередньої базової підготовки передбачає організацію попередньої підготовчо-методичної роботи зі створення здоров’язберігаючого се-редовища. У змістовно-цільовий блок програм входили мета, завдання, засоби, форми і методи корекційно-профілактичних заходів, принципи і методи проектування і реалізації здоров’язберігаючої технології.Ключові слова: юні футболісти, модель, програми здоров’язберігаючої спрямованості,порушення постави.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Жигірь, В. І. "РОЗРОБЛЕННЯ ІНДИВІДУАЛЬНИХ ОСВІТНІХ ТРАЄКТОРІЙ ДЛЯ ПІДГОТОВКИ МАЙБУТНІХ КВАЛІФІКОВАНИХ РОБІТНИКІВ У ЗАКЛАДАХ ПРОФЕСІЙНОЇ (ПРОФЕСІЙНО-ТЕХНІЧНОЇ) ОСВІТИ". Pedagogical Sciences: Theory and Practice, № 3 (10 січня 2022): 54–61. http://dx.doi.org/10.26661/2786-5622-2021-3-07.

Повний текст джерела
Анотація:
У статті проаналізовано різні підходи до трактування сутності понять «індивідуальна освітня траєкторія» та «індивідуальний освітній маршрут», визначено їхні особливості, теоретично обґрунтовано доцільність побудови для майбутніх кваліфікованих робітників. Досліджено законодавчу базу, що закріплює право учнів закладів професійної (професійно-технічної) освіти на навчання за індивідуальною освітньою траєкторією. Також акцентовано увагу на етапах розроблення індивідуальної освітньої траєкторії майбутніх кваліфікованих робітників: ‒ цілепокладання та проектування ‒ містить постановку суб’єктами освіти (викладач і учень як партнери в освітньому процесі) цілей професійної підготовки; аналіз індивідуальних особливостей учнів (здібності, особистісні якості, можливості, інтереси, потреби, спрямованість особистості в частині життєвих і професійних цінностей і мотивів діяльності), необхідних для реалізації освітньої траєкторії учня, в тому числі стиль і темп його навчальної діяльності, способи роботи з навчальним матеріалом; особливості засвоєння матеріалу, здатності працювати в режимі індивідуальної програми та ін.; ‒ організації професійної підготовки ‒ передбачає організаційний та методичний супровід реалізації індивідуальної освітньої траєкторії учнів. Він передбачає індивідуальний підхід та диференціацію навчання (диференціація матеріалу з навчальних дисциплін за рівнем складності, який відповідає можливостям, потребам та інтересам учнів); ‒ рефлексії та коригування професійної підготовки ‒ спрямований на усвідомлення учнями необхідності та значущості розроблення індивідуальної освітньої траєкторії як одного зі способів самовизначення та самореалізації в професії, а також на рефлексивне оцінювання та самооцінювання отриманих результатів для коригування власної освітньої діяльності. Зроблено висновок про те, що розроблення та упровадження індивідуальних освітніх траєкторій забезпечить можливість майбутнім кваліфікованим робітникам здійснювати індивідуальний вибір рівнів, змісту, форм, методів та засобів навчання професії; виробництву ‒ отримати фахівця із затребуваними кваліфікаційними параметрами; інженерно-педагогічним працівникам ‒ найбільш повно реалізувати власний науково-педагогічний потенціал.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії