Добірка наукової літератури з теми "Проектування електростанцій"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Проектування електростанцій".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Проектування електростанцій"

1

Горін, В. В., В. В. Середа та П. О. Барабаш. "Метод розрахунку теплообміну під час конденсації холодоагентів у середині горизонтальних труб у разі стратифікованого режиму течії фаз". Refrigeration Engineering and Technology 55, № 1 (10 лютого 2019): 47–53. http://dx.doi.org/10.15673/ret.v55i1.1353.

Повний текст джерела
Анотація:
У сучасних конденсаторах систем кондиціонування повітря, теплових насосів, випарниках систем опріснювання морської води і нагрівачах електростанцій процес конденсації пари здійснюється переважно у середині горизонтальних труб і каналів. Процеси теплообміну, що відбуваються у теплообмінниках цього типу, мають суттєвий вплив на загальну енергоефективність таких систем. У даній роботі представлено експериментальні дослідження теплообміну у разі конденсації холодоагентів R22, R406A, R407C у гладкій горизонтальній трубі з внутрішнім діаметром d = 17 мм за наступними режимними параметрами:температура насичення 35 - 40ºC, масова швидкість 10 - 100 кг/кв.м/c, масовий паровміст 0,1 - 0,8, питомий тепловий потік 5 ‑ 50 кВт/кв.м, різниця між температурою конденсації та температурою стінки труби 4 - 14 К. Вимірювання локальних за перерізом труби теплових потоків і коефіцієнтів тепловіддачі проводились за методом «товстої стінки» під час різних режимів конденсації. За результатами досліджень установлено, що у верхній частині труби з підвищенням теплового потоку зростає товщина плівки конденсату, що призводить до зменшення тепловіддачі. У нижній частині труби збільшення теплового потоку підвищує тепловіддачу, що характерно для турбулентної течії рідини в трубі. Отримані результати роботи дозволили покращити метод розрахунку теплообміну у разі конденсації пари, яка ураховує вплив течії конденсату у нижній частині труби на теплообмін. Цей метод із достатньою точністю (похибка ±30%) узагальнює експериментальні дані під час конденсації пари холодоагентів R22, R134a, R123, R125, R32, R410a за умови стратифікованого потоку. Використання цього методу у разі проектування теплообмінних апаратів, які використовують такі типи речовин, підвищить ефективність енергетичних систем.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sikora, L. S., N. K. Lysa, V. I. Sabat, B. I. Fedyna та V. I. Kunchenko-Kharchenko. "Лазерні та інформаційні технології контролю динамічних зміщень просторових структур об'єктів за дії активних техногенних і природних чинників ризику аварій". Scientific Bulletin of UNFU 29, № 6 (27 червня 2019): 128–35. http://dx.doi.org/10.15421/40290625.

Повний текст джерела
Анотація:
На сучасному етапі розвитку науки для технологічних і техногенних енергоактивних систем вироблено системні методи ідентифікації структури, динаміки, оцінення ризику, тоді як для просторових об'єктів цю проблему повною мірою не вирішено. Це стосується будівництва та експлуатації таких об'єктів з просторово розподіленою структурою, як мости, великі павільйони, висотні будинки, агрегатні лінії на спільному фундаменті для кольорового друку, які піддаються великим динамічним неоднорідним за потужністю навантаженням, що діють упродовж тривалого часу експлуатації. Їх руйнація при сукупній дії динамічних і статичних неоднорідних потокових у часі чинників великої енергетичної потужності, призводить до аварій і людських втрат. Основний чинник, який призводить до когнітивних помилок у проектуванні просторових конструкцій, є те, що фахівці у процесі розроблення проекту не до кінця враховують поняття фізичної сили, енергії потужності та фізичної енергії чинників з потоковою випадковою структурою. На цей аспект проблеми динамічної стійкості конструкції за дії чинників із стохастичною структурою звернув увагу Я. П. Драган, ввівши поняття "стохастичного процесу скінченої енергії" і "скінченої потужності потоків (послідовностей) активних фізичних силових дій". За певних умов комплексна дія силових чинників призводить до виникнення солітонів, тобто формування піку енергії та потужності у певний момент часу у найслабшому вузлі конструкції, що її руйнує. Якщо проектант, через свої когнітивні здібності і рівень знань, не враховує енергетичну сутність чинників як руйнівних сил, тоді це призводить до руйнування інфраструктурних об'єктів (міст у Генуї (Італія 2018 р.)), збудований у 1967 р., Китай 2019 р.), руйнівних повеней, пожарів, транспортних катастроф, цунамі. Щодо мостів з металоконструкцій у США (Нью-Йорк), побудованих з урахуванням методів вібраційних розрахунків С. Тимошенко, то вони експлуатуються понад 100 років, за відповідного технічного обслуговування. Оцінка вібраційної стійкості просторових конструкцій, як наявних, так і нових проектів, залишається складною проблемою створення систем контролю і діагностики, не вирішеною повною мірою, і тому розроблення інтегрованих інтелектуальних методів проектування систем контролю методом дистанційного лазерного зондування є актуальною. Інтенсивний розвиток як соціальної, так і техногенної інфраструктури призводить, внаслідок дії транспортних потоків, електростанцій, виробництв з шкідливими викидами, до росту силового екологічного навантаження на просторові конструкції, корозію металевих складників, росту вібраційних впливів на елементи об'єктів. Подальший розвиток таких негативних процесів призводить до зменшення міцності конструкцій, їхньої стійкості, експлуатаційної надійності та руйнування. Зниження якості несучих конструкцій, через невраховані негативні впливи, унеможливлює прогноз моменту настання аварійних ситуацій. Відповідно, розроблення методів дистанційного контролю вібрацій просторових елементів несучих конструкцій є для різних галузей актуальною проблемою.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Belokon, A. M., І. V. Ben, О. А. Fesenko та V. О. Chornovol. "Оцінка несучої здатності металевих пальових стійок каркасно-модульних конструкцій фотогальванічної електростанції на слабких грунтах". Наука та будівництво 22, № 4 (24 грудня 2019): 60–67. http://dx.doi.org/10.33644/scienceandconstruction.v22i4.121.

Повний текст джерела
Анотація:
У статті було розглянуто конструктивні рішення каркасно-модульних систем фотогальванічних сонячних електростанцій (ФЕС), що являє собою каркасно-модульну конструкцію із металевих елементів похилих ригелів та пальових стійок. Фотогальванічні сонячні електростанції є одним із різновидів підприємств відновлювальної енергетики, що інтенсивно розвивається в Україні.У статті представлено результати проведення натурних випробувань металевих пальових стійок каркасно-модульних конструкцій фотогальванічної електростанції при дії сумарних навантажень, які включають в себе власну вагу конструкцій, обледеніння, снігове та вітрове навантаження. Проведення випробувань відбувалося відповідно до Методики, яка включала в себе вимоги, які поширюються на будівельні конструкції будівель і споруд, що зводяться, і встановлює граничні значення прогинів і переміщень несучих конструкцій. В методиці були розроблені схеми прикладення навантажень та встановлення вимірювальних приладів. Під час підготовки до проведення випробувань були проаналізовані інженерно-геологічні умови майданчика будівництва фотогальванічної сонячної електростанції. В результаті інженерно- геологічних вишукувань, що були проведені на майданчику, в межах ділянки досліджень було виділено п’ять інженерно-геологічних елементів, визначено склад ґрунту та його фізико-механічні характеристики. До початку випробування пальових стійок були виконані: огляд конструкцій на предмет виявлення дефектів або пошкоджень, встановлення випробувального обладнання, встановлення вимірювальних приладів, перевірка роботоздатності всіх систем і приладів. Навантаження на стійку прикладалось ступенями із витримкою під навантаженням не менше десяти хвилин і фіксацією переміщень на кожній ступені. Під час випробування, здійснювалося прикладення навантаження на елементи стійок до настання втрати несучої здатності або досягнення елементами стійок граничних деформацій зазначених при проектуванні; виконувалася фіксація переміщень та деформацій пальових стійок, значення переміщень представлено на графіках.За результатами випробувань було визначено несучу здатність пальових стійок на дію горизонтального навантаження, на вдавлювання та на висмикування вертикальним навантаженням. Експериментально було підтверджено можливість безпечного використання металевих конструкцій каркасно-модульних технологій у будівництві енергетичних об’єктів згідно з вимогами чинних нормативних документів.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Вольчин, Ігор, та Людмила Гапонич. "Стан та перспективи виконання національного плану скорочення викидів забруднюючих речовин від великих спалювальних установок". Матеріали міжнародної науково-практиченої конференції "Екологія. Людина. Суспільство", 20 травня 2021, 296–302. http://dx.doi.org/10.20535/ehs.2021.232880.

Повний текст джерела
Анотація:
В статті доведено, що Україна як Сторона Угоди про утворення Енергетичного співтовариства виконала свої зобов’язання щодо зниження валових викидів забруднюючих речовин (діоксиду сірки, оксидів азоту, твердих частинок) за 2018 і 2019 р. згідно Національного плану скорочення викидів забруднюючих речовин від великих спалювальних установок (НПСВ). Скорочення валових викидів забруднюючих речовин на рівні близько 50% від граничних обсягів стало наслідком економічної кризи та падіння виробітку електричної енергії в Україні і збільшення частки відновлювальних джерел енергії в паливному балансі об’єднаної енергосистеми України. Зниження валових викидів SОx, NОx та пилу набагато перевищує необхідну щорічну величину скорочення, але за умови збереження обсягів викидів на рівні 2018–2019 рр. на подальший період дії НПСВ Україна без спорудження нових газоочисних установок виконуватиме свої зобов’язання тільки до 2024 р. На сьогодні, тільки на Трипільській тепловій електростанції розпочато будівництво сіркоочисної установки. На жодній великій спалювальній установці не розпочато проектування азотоочисної установки. Така ситуаціє є наслідком відсутності механізму та не визначення джерел фінансування природоохоронних заходів в енергетичному секторі України. За 6,5 років, що залишилися до закінчення кінцевого терміну введення в експлуатацію установок сіркоочищення та пилоочищення (31.12.2028 р.), практично неможливо це реалізувати на енергоблоках, які включені до НПСВ. Враховуючи те, що введення в експлуатацію в Україні установок сірко- та азотоочищення не може розпочатися раніше 2025 р., а європейський досвід свідчить, що будівництво такої установки триває не менше 5 років, то для встановлення установок сірко- та азотоочищення на енергоблоках, що входять до НПСВ, потрібно не менше 14 років. Тому раціональною пропозицією є подовження строку закінчення НПСВ до кінця 2038 р.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Проектування електростанцій"

1

Блинцов, В. С. "К вопросу создания волновых электростанций для Азово-Черноморского бассейна". Thesis, 2012. http://eir.nuos.edu.ua/xmlui/handle/123456789/1345.

Повний текст джерела
Анотація:
Блинцов, В. С. К вопросу создания волновых электростанций для Азово-Черноморского бассейна / В. С. Блинцов // Матеріали Всеукр. наук.-техн. конф. з міжнар. участю "Сучасні проблеми інформаційної безпеки на транспорті". – Миколаїв : НУК, 2012.
Выполнен сравнительный анализ характеристик существующих типов волновых электростанций, выбраны наиболее перспективные из них для работы в Азово-Черноморском бассейне и сформулированы прикладные научные задачи, решение которых создаст теоретическую основу для практического создания таких ВЕС.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії