Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Потужність теплова.

Статті в журналах з теми "Потужність теплова"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-30 статей у журналах для дослідження на тему "Потужність теплова".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Гратій, Т. І., та О. С. Тітлов. "Розробка апаратів для первинної термічної обробки і холодильного зберігання харчових продуктів". Refrigeration Engineering and Technology 57, № 3 (15 жовтня 2021): 126–37. http://dx.doi.org/10.15673/ret.v57i3.2163.

Повний текст джерела
Анотація:
Проведено експериментальні дослідження комбінованих холодильних агрегатів абсорбційного типу (АХА) з додатковою нагрівальною камерою (ДНК), яка забезпечує теплову та холодильну обробку харчових продуктів у побуті. Для забезпечення теплового зв'язку між теплорозсіювальними елементами АХА (дефлегматором) використовується двофазний випарний термосифон (ДФТС). Показано, що теплова потужність, яка відводиться у процесі проведення випробувань АХА з ДФТС, закріпленого на підйомній магістралі дефлегматора, не перевищувала 7 Вт, а в середньому становила 4...5 Вт; величини теплового потоку, що відводиться з дефлегматора АХА за допомогою ДФТС, достатньо тільки для підтримки в ДНК температури на рівні 50 °С; для підтримки у ДНК рівня температур 70 °С і 100 °С потрібні додаткові енерговитрати; величина додаткових енерговитрат для 70 °С становить 3,5 Вт, а для 100 °С – 8,7 Вт, при цьому добові енерговитрати холодильника зростуть відповідно на 4,9% і 12,3%; за повного використання теплоти дефлегмації для обігріву ДНК можливе гарантоване забезпечення її теплових режимів у діапазоні температур 50...100 °С; у разі використання у якості робочого середовища ДНК повітря виникають проблеми при теплопередаванні від конденсатора ДФТС до внутрішнього об'єму камери – у цьому випадку необхідно підтримувати перепад температур між нагрівальною панеллю і повітрям в ДНК близько 25...35 °С а величина панелі повинна становити не менше 0,200×0,285 м; у разі використання води у якості робочого середовища ДНК доцільно використовувати нагрівальні панелі заввишки 0,2 м, шириною 0,02...0,03 м, а для інтенсифікації процесів теплопередавання при нагріванні води нагрівальну панель необхідно розташовувати в нижній частині ДНК; у разі використання повітря в ДНК його охолодження через втрату тепла до навколишнього повітря йде в 32 рази швидше, ніж при використанні води при початковій температурі 50 °С і в 11 раз швидше при початковій температурі 70 °С
Стилі APA, Harvard, Vancouver, ISO та ін.
2

ГРЕЧИХИН, Леонид, Надежда КУЦЬ, Юрий БУЛИК та Александр ДУБИЦКИЙ. "Транспорт и вихревой тепловой насос". СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 1, № 14 (31 серпня 2020): 78–85. http://dx.doi.org/10.36910/automash.v1i14.349.

Повний текст джерела
Анотація:
У роботах [1, 2] для транспорту запропоновано застосувати вихровий тепловий насос на штучно створеному вітрові. В результаті показано, що такий вихровий насос перетворює не механічну енергію вітру в електричну потужність, а теплову складову потоку повітря, що прокачується. Розглянуто загальний принцип роботи такого вихрового теплового насоса. Конкретний розрахунок перетворення енергій виконаний для повітряних вітрогенераторів. Вихровий тепловий насос, який може бути застосований на транспорті, описаний якісними параметрами. У зв'язку з цим виникла необхідність провести розрахунок енергій перетворення вихровим тепловим насосом із застосуванням конкретного електричного двигуна, електричного генератора, повітряного гвинта і лопатей вітрогенератора для транспортних систем. Вентилятор створює повітряний потік, який впливає на лопаті вітрогенератора, вітрогенератор виробляє потужність більше потужності, споживаної електродвигуном вентилятора і витраченої потужності на подолання сил тертя при обертанні якорів в електромоторах, а також тертя об повітря при обертанні лопатей вітрогенератора. В результаті проведених досліджень встановлено, що для збільшення захоплюваної поверхні вентилятором необхідно використовувати високооборотний гвинт порівняно великого діаметра, а обертання такого гвинта повинен забезпечувати електромотор з підвищеною потужністю, але це суттєво зменшить коефіцієнт перетворення. Збільшення числа лопаток в вітрогенераторі можливе при зростанні діаметра електрогенератора, що також знижує коефіцієнт перетворення. Встановлено, що найбільш ефективний спосіб отримання максимального коефіцієнта перетворення енергії - це збільшення швидкості руху потоку повітря до певної межі. Якщо застосувати каскадну схему шляхом розташування двох і більше лопатевих кілець в вітрогенераторі, то різко зросте коефіцієнт перетворення вихрового теплового насоса. Ключові слова: тепловий насос, вітрогенератор, вентилятор, повітряний гвинт, лопаті, зривний потік.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Дорошенко, О. В., В. Ф. Халак та Ю. І. Дем'яненко. "Оптимізація й прогнозування ефективності рідинних сонячних колекторів у складі систем гарячого водопостачання". Refrigeration Engineering and Technology 56, № 1-2 (4 липня 2020): 37–43. http://dx.doi.org/10.15673/ret.v56i1-2.1827.

Повний текст джерела
Анотація:
В останні роки сонячні системи гарячого водопостачання викликають усе більший практичний інтерес. Їхнє використання дозволяє знизити пікові навантаження в традиційних системах гарячого водопостачання, альтернативно – замінити останні, забезпечуючи зниження шкідливих викидів у навколишнє середовище. Основним елементом такої системи є рідинний сонячний колектор. На ринку представлений великий вибір сонячних колекторів, проте висока вартість таких систем є одним із факторів, що стримує їх повсякденне використання. Використання полімерних матеріалів у конструкції сонячних колекторів (абсорбера й прозорого покриття) дозволяє суттєво знизити їхню вартість і вагу. Розрахункову ефективність сонячних колекторів досліджують при сонячному випромінюванні вище 800 Вт/м2, але реальні умови його експлуатації скоріш за все будуть нижче номінальних. Для кращого розуміння поведінки плоского полімерного сонячного колектору в реальному середовищі, та виборі його оптимальних геометричних і режимних параметрів, авторами було проведено порівняльне експериментальне дослідження двох таких колекторів, проте з різною величиною повітряного зазору (10 і 25 мм) між теплоприймачем і прозорим покриттям. Як результат, було визначено: коефіцієнт корисної дії, оптичну ефективність, та сумарний коефіцієнт теплових втрат. Був виконаний також аналіз розподілу температур у баку-теплоакумуляторі у верхній і нижній його частинах. За результатами експерименту було відзначено відсутність суттєвої різниці в ефективності сонячних колекторів при зменшенні повітряного зазору з 25 мм до 10 мм в однакових польових умовах. Розрахунок ефективності сонячної системи гарячого водопостачання проводився з урахуванням витраченої енергії на роботу насоса. На основі даних по будівельній кліматології для м. Одеса щодо величини сонячної радіації, авторами була визначена денна та річна теплова потужність сонячної системи гарячого водопостачання
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Морозюк, Л. І., В. В. Соколовська-Єфименко, Б. Г. Грудка, А. М. Басов та Л. В. Іванова. "Визначення енергоефективності термодинамічних циклів когенераційних машин комерційного призначення". Refrigeration Engineering and Technology 56, № 3-4 (11 січня 2021): 92–99. http://dx.doi.org/10.15673/ret.v56i3-4.1949.

Повний текст джерела
Анотація:
У багатьох комерційних підприємствах на реалізацію процесів охолодження припадає значна час­тина загального енергоспоживання підприємства. Для моніторингу справжнього споживання електроенергії під час безперервної роботи холодильних систем сформовано і методично обґрунтовано способи розрахунку енергоефективності. Основною вимогою до методики енергетичного аналізу таких систем є її базування на принципах і законах термодинаміки. Системним кордоном для порівняння ефективності холодильних та теплонасосних установок є теплова або холодильна потужність та температурний режим роботи. Машину, яка досліджується, призначено для під­приємства торгівлі з широким асортиментом продуктів з двома постійними температурними рівнями короткострокового зберігання. Відповідні холодопродуктивності різні за кількісними показниками, але постійні за часом. Визначення показників ефективності здійснено в системних кор­донах термодинамічного циклу та конструкційних особливостей елементів машини. Вид аналізу – порівняння енергетичної ефективності та габаритів циклів двох або більшої кількості машин з різними робочими речовинами. З використанням еталонних циклів здійснено числове моделювання процесів в теплофікаційній холодильній машині з робочими речовинами R404А та СО2 у єдиному робочому режимі. Розрахунки проведені для шести схемно-циклових рішень. Результатами розв’язання «енергетичної» задачі є дійсний коефіцієнт перетворення СОР. Аналіз показав низьку енергетичну ефективність одноступеневих циклів в режимі теплофікаційної машини з двома тем­пературами кипіння, одна з яких є низькотемпературною. Найвища ефективність у машин, які працюють за циклом двоступеневого стиснення з двома випарниками та детандером перед високотемпературним випарником. Результатами розвязання «транспортної» задачі є визначення теоретичної об’ємної холодопродуктивності компресорів (габариту циклу). Порівняльний аналіз результатів констатує, що габарит циклу з СО2 втричі менший за R404A. Рекомендація на перспективу – двоступенева машина з двома випарниками та проміжною посудиною з СО2. За розв’язанням усіх задач вказаний цикл має найкращі характеристики.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Morozov, Yu, A. Barylo, D. Chalaev та M. Dobrovolskyi. "ЕНЕРГЕТИЧНА ЕФЕКТИВНІСТЬ ВИКОРИСТАННЯ ПЕРШИХ ВІД ПОВЕРХНІ ВОДОНОСНИХ ГОРИЗОНТІВ ДЛЯ ТЕПЛО- І ХЛАДОПОСТАЧАННЯ". Vidnovluvana energetika, № 2(57) (2 вересня 2019): 70–78. http://dx.doi.org/10.36296/1819-8058.2019.2(57).70-78.

Повний текст джерела
Анотація:
На підставі експлуатаційних даних двох свердловин, пробурених на території Міжнародного центру відновлювальної енергетики, визначена енергетична ефективність використання підземних вод перших від поверхні землі водоносних горизонтів для отримання теплоти та холоду в системах теплохладопостачання житлових будинків та будівель громадського призначення. Дослідні свердловини розташовані на відстані 11,5 м одна від одної, глибина яких складає 50 і 57 м відповідно. Під час проведення пробних відкачок одержані основні попередні експлуатаційні характеристики горизонту. Статичний рівень встановлюється на глибині 32,0 м, дебіт свердловин складає 2-3 м3/год., початкова температура підземних вод – 12 °С. Були розкриті таки водоносні горизонти та комплекси: горизонт алювіально-делювіальних відкладень першої надзаплавної тераси, що складається кварцовими пісками з лінзами та проверстками суглинків і залягає на глибині від 8 до 12 м; водоносний комплекс у відкладах межигірської, берекської та новопетрівської світ олігоцен-міоцену (полтавська і харківська серії), який залягає на глибині від 32 до 50 м та створений з дрібно-зернистого піску; бучаксько-канівський водоносний горизонт, що залягає на глибині від 90 до 117 м і складається з мілкого та дрібно-зернистого піску. Для оцінки можливості використання підземних вод з метою геотермального тепло- і хладопостачання використано водоносний горизонт полтавського і харківського віку, оскільки цей горизонт ізольований від поверхневих і грунтових вод потужною товщою (до 20 м) щільних глин, що забезпечує йому сталий режим фільтрації і стабільні гідрогеологічні параметри. В роботі показано, що використання підземних вод як джерела низькопотенційної енергії для теплових насосів дозволяє отримати від свердловини в 7...10 разів більшу теплову потужність в порівнянні з традиційними теплонасосними системами на основі ґрунтових зондів. Запропоновано схему роботи теплонасосних агрегатів з ступінчастим спрацьовуванням температурного потенціалу підземних вод від + 12 °С до + 1 °С, що дозволяє майже в півтора рази підвищити енергетичну ефективність процесу генерування теплової енергії. Оцінено ефективність застосування підземних вод для кондиціонування приміщень в літній час. Показано, що для даних свердловин величина СОР процесу «пассивного» кондиціонування перевищує 25. Температуру в приміщенні можна знизити на 5 градусів. Кількість «холоду», яка може бути отримана від однієї свердловини, становить більше 10 кВт. На підставі аналізу гідрогеологічних характеристик та режиму фільтрації перших від поверхні водоносних горизонтів вибрано найбільш придатний для створення систем геотермального тепло- і холодопостачання водносний комплекс та проведено розрахунки, які показали доцільність використання водоносного горизонту у відкладах межигірської, берекської та новопетрівської світ олігоцен-міоцену. Бібл. 3, табл. 3, рис. 4.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Кравчук, І. С., О. І. Сподін, В. І. Нікітченко та В. Г. Березанський. "Обґрунтування параметрів хибних теплових цілей для захисту літальних апаратів від керованих ракет з інфрачервоним самонаведенням". Наука і техніка Повітряних Сил Збройних Сил України, № 4(41), (25 жовтня 2020): 71–78. http://dx.doi.org/10.30748/nitps.2020.41.08.

Повний текст джерела
Анотація:
Стаття присвячена обґрунтуванню вимог до сучасних хибних теплових цілей для захисту літальних апаратів від керованих ракет з інфрачервоним самонаведенням. Так, для імітування просторових, енергетичних та траєкторних ознак повітряної цілі відстрілювання хибних теплових цілей виконується у вигляді комбінованих залпів, у яких хибні теплові цілі мають різну потужність інфрачервоного випромінювання, різні коефіцієнти лобового опору, завдяки чому швидкість гальмування зустрічним повітряним потоком у них різна, а часові інтервали відстрілювання окремих хибних теплових цілей у залпі підбираються таким чином, щоб амплітудні, спектральні та траєкторні селектори сучасних інфрачервоних головок самонаведення не змогли однозначно виконати селекцію. Підтверджено, що однією з основних характеристик хибних теплових цілей, яка визначає її ефективне застосування для захисту літальних апаратів від керованих ракет з інфрачервоним самонаведенням, є максимальна або пікова сила випромінювання у заданому діапазоні довжин хвиль. Також в статті розглянуто один з нових способів застосування хибних теплових цілей та вимоги до них. Зокрема, обґрунтовані вимоги до закону зміни інфрачервоного випромінювання у часі, необхідної сили інфрачервоного випромінювання, часу виходу на режим та досягнення ефективного рівня випромінювання, а також повного часу випромінювання.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Трушляков, Е. І., М. І. Радченко, А. А. Зубарєв та В. С. Ткаченко. "Підхід до визначення складових теплового навантаження систем кондиціонування припливного повітря". Refrigeration Engineering and Technology 54, № 5 (30 жовтня 2018): 17–22. http://dx.doi.org/10.15673/ret.v54i5.1245.

Повний текст джерела
Анотація:
Запропоновано підхід до визначення складових теплового навантаження системи кондиціонування припливного повітря (СКПП) з урахуванням поточних кліматичних умов експлуатації, який базується на гіпотезі розкладання поточних змінних теплових навантажень на відносно стабільну складову як базову для вибору встановленої (проектної) холодопродуктивності холодильної машини, що працює на номінальних або близьких йому режимах, і нестабільне теплове навантаження, що припадає на попереднє охолодження зовнішнього повітря при змінних поточних зовнішніх температурах. Для обґрунтування підходу до вибору складових теплового навантаження СКПП виконаний аналіз поточних значень питомих теплових навантажень на холодильну машину СКПП при охолодженні зовнішнього повітря від його змінної поточної температури до температур 10, 15 і 20 ºС. Показано, що виходячи з різного темпу приросту річного виробітку холоду, обумовленого зміною теплового навантаження у відповідності з поточними кліматичними умовами протягом року, необхідно вибирати таке проектне теплове навантаження на холодильну машину СКПП охолодження повітря (її встановлену потужність охолодження), яке забезпечує досягнення максимального або близького йому річного виробітку холоду при відносно високих темпах його збільшення. При цьому значення теплового навантаження, що припадає на попереднє охолодження зовнішнього повітря, розраховують за залишковим принципом як різницю раціонального загального теплового навантаження і її базової відносно стабільної складової. Запропонований метод доцільно використовувати при розрахунку проектної базової холодопродуктивності холодильної машини СКПП, що працює на номінальному або близьких йому режимах, і бустерной складової теплового навантаження на попереднє охолодження зовнішнього повітря при змінних поточних зовнішніх температурах з використанням енергозберігаючих методів: акумуляції надлишкового (невикористаного) холоду при знижених поточних теплових навантаженнях на СКПП і його витрачання на попереднє охолодження зовнішнього повітря, річкупераціі охолоджуючого потенціалу повітря, яке відводиться для попереднього охолодження зовнішнього повітря.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kassov, V. D., A. V. Kabatsky, E. V. Berezhnaya та S. V. Malygina. "Газоповітряний нагрівач для нагріву деталей обертання при зварюванні та наплавленні". HERALD of the Donbass State Engineering Academy, № 2 (46) (1 жовтня 2019): 17–21. http://dx.doi.org/10.37142/1993-8222/2019-2(46)17.

Повний текст джерела
Анотація:
Кассов В. Д., Кабацький О. В., Бережна О. В., Малигіна С. В. Газоповітряний нагрівач для нагріву деталей обертання при зварюванні та наплавленні // Вісник ДДМА. – 2019. – № 2 (46). – C. 17–21. Одним з важливих етапів технології наплавлення масивних великогабаритних деталей є нагрів їх до необхідної температури. При цьому, неможливість підтримувати прийняті параметри нагріву неминуче призводить до утворення дефектів в наплавленому шарі (тріщини, відшарування і ін.). Метою роботи було вдосконалення устаткування для стабільного й безпечного підтримання процесу нагріву деталей при зварюванні та наплавленні. Запропоновано конструкцію газоповітряного нагрівача для зварювання й наплавлення. При цьому газоповітряним полум'ям пальників нагрівається внутрішній лист утеплювача, випромінюваним теплом від якого нагрівається деталь. Розпечені гази, продукти згоряння відводяться в безпечне місце. Розрахунок пальників нагрівача проводиться за їх тепловою потужністю. Враховуючи неминучі втрати тепла при наплавленні, а також за конструктивними міркуваннями у нагрівач встановлено три пальники потужністю 55000 ккал/год. Було також здійснено перевірочний розрахунок пальнику. Виконано розрахунок на відсутність проскакування полум’я, яке показало безпечність його використовування. Було виконано також розрахунок розміру виходного сопла пальника. Виходячи з рекомендацій, знайдено діаметр сопла таким, що складає 2,3 мм. Нагрівач складається з двох рознімних половин (передньої і задньої), що представляють собою порожнини, усередині яких встановлено пальники. У задній половині нагрівача розташовано два пальники, в передній – один. Обидві половини вільно поступально переміщаються в напрямку поздовжньої осьової лінії установки, що зручно при установці деталі під наплавлення, а також при її знятті. Зверху і знизу половини нагрівача замикаються, утворюючи при цьому зазори для зручності наплавлення і переміщення зварювальної головки вгорі, і прибирання флюсової кірки і флюсу внизу. Оскільки пальники розташовані в закритому просторі нагрівача, потрапляння гарячих газів (продуктів згоряння) на зварювальну головку виключається, і поліпшуються умови роботи наплавників й підвищується якість металу. Нагрівач працює при високих температурах, а тому виготовляється з нержавіючої жаростійкої листової сталі товщиною 4 мм. Як показали випробування, вибрана конструкція газоповітряного нагрівача дозволяє забезпечити стабільність й безпечність процесу нагріву деталей при зварюванні та наплавленні, значно знизити втрати тепла і виконувати наплавлення без перерв. Використання нагрівача може бути рекомендоване при зварюванні та наплавленні деталей обертання в умовах виробництва.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nikulina, E., та V. Severin. "Багатокритеріальний синтез систем управління реакторної установки шляхом мінімізації інтегральних квадратичних оцінок". Nuclear and Radiation Safety 12, № 2 (21 червня 2009): 3–12. http://dx.doi.org/10.32918/nrs.2009.12-2(42).01.

Повний текст джерела
Анотація:
Розглядається математичне моделювання систем автоматичного управління реакторної установки ВВЕР-1000 з різними типами регуляторів. Розроблено лінійні моделі систем управління тепловою потужністю ядерного реактора ВВЕР-1000. Наведено результати багатокритеріального синтезу систем управління тепловою потужністю ядерного реактора ВВЕР-1000 шляхом мінімізації покращених інтегральних квадратичних оцінок. Розроблено лінійні моделі систем управління продуктивністю парогенератора ПГВ -1000. Виконано ідентифікацію і багатокритеріальну оптимізацію систем управління продуктивністю парогенератора ПГВ -1000 з різними типами регуляторів.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kravchenko, V., E. Korchomny, A. R. Abdul Khuseyn та V. Kravchenko. "Деякі показники ядерної енергетичної установки типу КН-3". Nuclear and Radiation Safety, № 2(50) (15 червня 2011): 43–47. http://dx.doi.org/10.32918/nrs.2011.2(50).08.

Повний текст джерела
Анотація:
Розглянуто судову ЯЕУ електричною потужністю в конденсаційному режимі 152,3 МВт. Наведено її особливості порівняно зі стаціонарними ЯЕУ. Визначено залежність електричної потужності від кількості теплоти, що відпускається споживачеві. Отримано економічні показники використання інтерметалевого та оксидного ядерного палива.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Dzyubanovskyi, І. Ya, та А. М. Prodan. "Результати лікування варикозної хвороби нижніх кінцівок, асоційованої з дисплазією сполучної тканини, з використанням ендовенозної лазерної коагуляції". Klinicheskaia khirurgiia, № 1 (28 січня 2018): 41–44. http://dx.doi.org/10.26779/2522-1396.2018.01.41.

Повний текст джерела
Анотація:
Мета. Клінічна оцінка впливу ендовенозної лазерної коагуляції (ЕВЛК) за різних режимів потужності в пацієнтів при дисплазії сполучної тканини (ДСТ) для визначення її меж для зменшення негативного впливу теплової енергії та покращення результатів лікування. Матеріали і методи. У 51 (34,7%) пацієнта з варикозною хворобою нижніх кінцівок і ознаками недиференційованої ДСТ (НДСТ) застосовано ЕВЛК потужністю 15 Вт та 10 Вт. Результати та обговорення. Встановлене достовірне переважання травматичних (термічних – болісні тяжі, парестезія, больовий синдром) і запальних (інфільтрати, тромбофлебіт, набряк м’яких тканин) ускладнень при використанні ЕВЛК потужністю 15 Вт. При зменшенні потужності ЕВЛК до 10 Вт лікування виявилося ефективним та безпечним. Висновок. При виборі режиму потужності ЕВЛК слід мати на увазі наявність супутньої ДСТ для мінімізації частоти термічних ускладнень.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Лужанськa, Г. В. "Теплозахист будинків і споруд системами теплолокалізаціі". Refrigeration Engineering and Technology 54, № 4 (9 вересня 2018): 33–37. http://dx.doi.org/10.15673/ret.v54i4.1212.

Повний текст джерела
Анотація:
З кожним роком проблема енергозбереження в сучасному світі стає все більш і більш актуальною. Енергозбереження передбачає економне витрачання енергетичних ресурсів, тому що природні ресурси є вичерпними, дорого коштують, а їх видобуток в більшості випадків завдає шкоди навколишньому середовищу. Системи життєзабезпечення для комфортного перебування людей в будівлях та спорудах різного призначення є одними з найбільш значущих споживачів паливно-енергетичних ресурсів. Можливостей для розвитку енергозберігаючих технологій у даній області існує безліч. Один з важливих напрямків у економії енергетичних ресурсів при експлуатації будівель - це вдосконалення систем захисту тепла будівель та споруд комунально-промислового сектора. Актуальним є реалізація теплозахисту будівель при проривах холодного повітря в опалювальних приміщеннях при відкриванні зовнішніх дверей та воріт. При дослідженні роботи теплолокалізуючого пристрою плоский неізотермічний струмінь, що виходить із прямокутного стального насадку, розташованого в площині відкритого зовнішнього отвіра, розбився на безліч маленьких струменів, які поширюються в даному напрямку, витікають з однакових по розміру розтинів з однаковою швидкістю, відокремлені друг від одного на відстані, рівною ширини щелі Була визначена швидкість повітряного потоку, отримані графічні залежності. За допомогою математичного моделювання отримана адекватна картина фізичного процесу витікання. На початковій ділянці відбулося злиття цих струменів в єдиний повітряний потік, і як наслідок, не виникає проникнення холодного зовнішнього повітря в опалювальні приміщення будівель і споруд, тим самим зменшуючи теплову споживану потужність теплолокалізуючого пристрою. В результаті відбувається значне зниження затрат енергетичних ресурсів на систему теплопостачання, поліпшується мікроклімат в приміщенні, збільшується ефективність роботи засобів теплозахисту будівель і споруд.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Дем'яненко, Ю. І., та Т. В. Дуднік. "Сезонні акумулятори тепла в схемах теплопостачання приватних житлових будинків". Refrigeration Engineering and Technology 57, № 2 (30 червня 2021): 81–88. http://dx.doi.org/10.15673/ret.v57i2.2026.

Повний текст джерела
Анотація:
Стаття присвячена вибору сезонного акумулятора тепла (САТ) для первинного контуру теплового насосу в системі опалення та гарячого водопостачання приватного житлового будинку. В Україні в індивідуальному житловому будівництві впровадження найсучасніших ефективних систем акумуляції енергії стримується значною вартістю обладнання та відсутністю державної підтримки. Проте неухильне зростання тарифів на енергоносії спонукає домогосподарів до пошуку прийнятних варіантів САТ серед того, що пропонується споживачеві на вітчизняному ринку технологій та обладнання відновлюваної енергетики. Перехід на відновлювані джерела енергії (ВДЕ) супроводжує додаткове енергетичне завдання – узгодження нестабільних ВДЕ з навантаженням, яке також змінюється і впродовж доби, і впродовж року. Це особливо притаманне краї­нам, що потребують опалення в холодну пору року. Потужність, що генерується більшістю ВДЕ, істотно залежить від мінливих природних явищ. В статті запропонована німецька технологія крижаного теплоакумулятора – Wärmepumpe Eisspeicher-System. Вона розроблена спеціалістами фірми Viessmann як реакція на заборону німецьким природоохоронним відомством ґрунтових теплових насосів – як колекторних, так і з ґрунтовими зондами. В умовах густонаселеної Німеччини і високої вартості землі, відчуження значних її площ для улаштування первинних контурів ТН є неприйнятним – земля виводиться з сільськогосподарського обігу – і суперечить державним інтересам. Тому використання крижаних акумуляторів як первинних контурів ТН знімає проблему як прямої, так і опосередкованої екологічної шкоди. Наведені в статті розрахунки теплового балансу первинного контуру теплового насосу Eisspeicher-System для найхолоднішого місяця опалювального періоду підтверджують можливість функціонування системи опалення та ГВП у моновалентному режимі
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Lebediev, Volodymyr, Oleksandr Dubovyi та Serhii Loi. "ОСОБЛИВОСТІ ФОРМУВАННЯ (СТРУКТУРОУТВОРЕННЯ) ТА ВЛАСТИВОСТІ ТЕПЛОЗАХИСНИХ ПОКРИТТІВ ПРИ ПЛАЗМОВОМУ НАПИЛЕННІ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 1(19) (2020): 32–41. http://dx.doi.org/10.25140/2411-5363-2020-1(19)-32-41.

Повний текст джерела
Анотація:
Актуальність теми дослідження. Плазмове напилення для створення захисник покриттів у різних галузях машинобудування, ремонту та відновлення є достатньо поширеним, зокрема при покращенні показників стійкості в авіаційних та судових двигунах, турбінах завдяки відносній простоті, низький вартості компонентів, отриманні високих результатів. Постановка проблеми. Однак поряд з явними перевагами плазмових покриттів вони мають достатньо суттєві недоліки, зокрема ті, що напилюються як захист від впливу тепла й мають схильність до відшарування, зокрема при неефективних складових матеріалів для їх нанесення на вузли та деталі й недостатньо вивчені щодо властивостей. Аналіз останніх досліджень і публікацій. Відзначено, що напилення, яке проводиться за допомогою плазмового потоку, є дієвим технологічним засобом отримання надійних покриттів, у тому числі й теплозахисних, при цьому показано, що поруч з уже проведеними дослідженнями є проблеми, які потребують подальших пошукових робіт. Мета роботи. Метою цієї роботи є визначення характеристик плазмових покриттів, розробка математичного опису одного з них для використання як одного з параметрів та порівняльний аналіз запропонованих та отриманих результатів, зокрема з тими, що вже існують на теперішній час. Виклад основного матеріалу. Методами фізичних експериментів за вже існуючими методиками, спеціально розробленого математичного опису, отримання та детального опису й аналізу мікрошліфів покриттів при різних способах їх отримання встановлюються переваги покриттів, які нанесені способом плазмового напилення, при цьому підкреслено, що якісні покриття можуть бути отримані як в контрольованій, так не в контрольованій атмосфері. Висновки відповідно до статті. Встановлено, що здебільшого на стійкість напиленого шару щодо теплових впливів впливає склад матеріалу для напилення, при цьому необхідно виконувати тришарове напилення різними за складом матеріалів для кожного шару при певних відстанях сопла плазмотрона від поверхні. Також необхідно враховувати потужність плазмотрона при виконанні процесу.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Matsevytyi, Yu M., M. O. Safonov, and I. V. Hroza. "Method for Identification of the Power of a Source of Thermal Energy By Solving the Internal Reverse Problem of Thermal Conductivity." Èlektronnoe modelirovanie 43, no. 2 (April 6, 2021): 19–28. http://dx.doi.org/10.15407/emodel.43.02.019.

Повний текст джерела
Анотація:
Запропоновано підхід до вирішення внутрішньої оберненої задачі теплопровідності (ОЗТ) на основі використання принципу регуляризації Тихонова та методу функцій впливу. Потужність джерела енергії подано у вигляді лінійної комбінації сплайнів Шьонберга першого порядку, а температуру — у вигляді лінійної комбінації функцій впливу. Метод функцій впливу дає можливість використовувати один і той же вектор невідомих коефіцієнтів для джерел енергії та температури. Невідомі коефіцієнти визначено за допомогою розв’язання системи рівнянь, яка є наслідком необхідної умови мінімуму функціонала Тихонова з ефективним алгоритмом пошуку параметра регуляри­зації, використання якого дає можливість одержати сталий розв’язок ОЗТ. Для регуляри­зації розв’язку ОЗТ в цьому функціоналі використовується також стабілізуючий функ­ціонал з параметром регуляризації як мультиплікативним множником. Наведено обчис­лю­вальні результати ідентифікації потужності теплової енергії по температурі, яка вимірюється з похибкою, що характеризується випадковою величиною, розподіленою за нормальним законом.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

КРИШТОПА, Святослав, Людмила КРИШТОПА, Іван МИКИТІЙ, Марія ГНИП та Федір КОЗАК. "ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ ЗНИЖЕННЯ ВТРАТ ЕНЕРГІЇ В АГРЕГАТАХ ТРАНСМІСІЇ ПІДЙОМНИХ УСТАНОВОК ДЛЯ РЕМОНТУ СВЕРДЛОВИН". СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 2, № 17 (14 листопада 2021): 89–103. http://dx.doi.org/10.36910/automash.v2i17.638.

Повний текст джерела
Анотація:
Стаття спрямована на вирішення проблеми зниження втрат енергії в трансмісійних агрегатах підйомних установок для ремонту свердловин. Були проаналізовані основні напрямки з скорочення енергоспоживання підйомних установок для ремонту свердловин. Проведений аналіз особливостей конструкції трансмісій підйомних установок для ремонту свердловин. Виконані дослідження в'язкісно-температурних характеристик сучасних трансмісійних олив та температурного режиму в трансмісійних агрегатах. Був запропонований метод швидкого прогріву та підтримання оптимального температурного режиму в трансмісійних агрегатах підйомних установок за рахунок використання теплоти відпрацьованих газів. Досліджена типова механічна трансмісія підйомної установки для ремонту свердловин на колісному шасі. Наведена методика та засоби експериментальних досліджень енергоефективності трансмісій підйомних установок. Виконані експериментальні дослідження реалізації запропонованого методу зниження втрат енергії в трансмісійних агрегатах. Встановлена залежність зміни температури трансмісійної оливи в коробці перемикання передач при різних режимах обертання первинного валу коробки передач. Одержана залежність втрат потужності в коробці перемикання передач підйомної установки моделі УПА 60/80А в залежності від температури та сорту трансмісійної оливи. Наведені результати розрахунків перевитрат палива в коробці перемикання передач підйомної установки моделі УПА 60/80А з різними силовими приводами та за різних температур трансмісійної оливи. Ключові слова: підйомна установка для ремонту свердловин, нафтогазовий технологічний транспорт; дизельний двигун; трансмісійний агрегат; коробка перемикання передач; утилізація теплоти; відпрацьовані гази; потужність; питома витрата палива.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Коновалов, Д. В., та Г. О. Кобалава. "Застосування контактного охолодження повітря аеротермопресором в циклі газотурбінної установки". Refrigeration Engineering and Technology 54, № 5 (30 жовтня 2018): 62–67. http://dx.doi.org/10.15673/ret.v54i5.1248.

Повний текст джерела
Анотація:
Проведено аналіз існуючих газотурбінних установок (ГТУ) із застосуванням проміжного охолодження циклового повітря різних фірм-виробників, визначені основні технічні характеристики та головні параметри роботи цих ГТУ. Розглянуто основні шляхи реалізації проміжного охолодження циклового повітря ГТУ, а саме охолодження в поверхневому теплообміннику та контактне охолодження при упорскуванні диспергованої води. Перспективним способом зволоження робочого середовища ГТУ може бути застосування аеротермопре-сорного апарату, в основу роботи якого покладено процес термогазодинамічної компресії (термопресії). Особливістю цього процесу є підвищення тиску в результаті миттєвого випаровування рідини, що упорскується в повітряний потік, який прискорений до швидкості близько звуковій. При цьому на випаровування води відводиться теплота від газу, в результаті чого знижується його температура. В роботі проведено порівняльний аналіз існуючих та аеротермопресорних технологій для проміжного охолодження повітря ГТУ. Виявлено, що аеротермопресор дозволяє підвищити тиск циклового повітря між ступенями компресора на 2…9 %, що призводить до зменшення роботи на стиснення в ступенях компресора, а упорскування води, відповідно, до збільшення кількості робочого тіла в циклі на 2…5 %, і, як наслідок, збільшується питома потужність на 3…10 % та ККД ГТУ на 2…4 %.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ярошенко, В. М. "Термодинамічна ефективність газодинамічного наддуву двигунів внутрішнього згоряння". Refrigeration Engineering and Technology 55, № 5-6 (28 березня 2020): 304–11. http://dx.doi.org/10.15673/ret.v55i5-6.1660.

Повний текст джерела
Анотація:
Енергетична ефективність суднових двигунів внутрішнього згоряння суттєво залежить від ефективності систем утилізації теплоти вихідних газів, так як їх термічні потенціали складають більше половини теплового потоку, який формується при згорянні палива. Одним із ефективним методів утилізації теплоти вихідних газів являються системи газотурбінного наддуву, що дозволяє підвищити ефективний коефіцієнт корисної дії та суттєво збільшити потужність двигунів внутрішнього згоряння без допоміжного збільшення їх габаритів. При термодинамічному аналізі термомеханічних систем найбільш доцільним являється метод функцій (ексергетичний), який по відношенню до традиційного методу циклів є більш простим та універсальним, так як не потребує визначення та аналізу допоміжних моделей порівняння. Застосування ексергетичного методу при термодинамічному аналізі систем газотурбінного наддуву дозволяє враховувати не тільки кількісні показники при енергетичних перетворюваннях в процесах , але і визначати якісні характеристики енергетичних потоків. В роботі приводиться методологія розрахунку енергетичних та ексергетичних потоків в системі газотурбінного наддуву на основі турбоагрегату з газовою турбіною та відцентровим компресором, які найбільш часто використовуються в двигунах внутрішнього згоряння. Проведені розрахунки ексергетичних показників вихідного газового потоку суднового двигуна внутрішнього згоряння з системою газотурбінного наддуву та побудована на їх основі діаграма ексергетичних потоків дозволяють визначити при цьому процеси з найбільшим рівнем необоротності (рівнем деградації енергії), як в абсолютних так і в відносних показниках. Такий підхід дозволяє рекомендувати першочергові заходи для оптимізації процесів енергетичних перетворень в двигунах внутрішнього згоряння з метою підвищення їх загальної техніко-економічної ефективності
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Bordakov, M. "ОСОБЛИВОСТІ КОНСТРУКЦІЇ ЧАСТИНИ СИЛОВОЇ ЕЛЕКТРОНІКИ В СОНЯЧНИХ МЕРЕЖЕВИХ ІНВЕРТОРАХ". Vidnovluvana energetika, № 1(60) (30 березня 2020): 23–28. http://dx.doi.org/10.36296/1819-8058.2020.1(60).23-28.

Повний текст джерела
Анотація:
При дослідженні роботи інвертора було визначено параметри, які впливають на ефективність його роботи. Одним з таких парметрів є внутрішні компоненти інвертора від яких залежить ефективність його роботи. Основним силовим компонентом є Power Stack (силовий модуль). Основним компонентом силового модуля є IGBT (біполярний транзистор з ізольованим затвором). Даний тип транзисторів поєднує в собі характеристики двох напівпровідникових пристроїв: Біполярного транзистора (утворює силовий канал). Польового транзистора (утворює канал управління). При розрахунку ефективності роботи інвертора потрібно розуміти як працює його силова частина і як силова частина перетворює постійний струм у змінний. Робота силових транзисторів керується драйвером, який пристрій керує частотою відкриття і закриття транзисторів та вихідними характеристиками напруги інвертора. Для регулювання роботи інвертора драйвер отримує сигнал та відправляє команду на сам силовий модуль. Таким чином відбувається регулювання вихідних параметрів інвертора. Для регулювання вихідної потужності інвертором також застосовується алгоритм зменшення вхідної потужності. Це досягається шляхом переходу робочої точки поля ФЕМ з точки МРРТ до робочої точки, ближчої до режиму холостого ходу сонячної панелі. Регулювання рівня реактивної потужності також відбувається за рахунок роботи силового модуля. Для роботи інвертора, його силовий модуль повинен мати якісне охолодження. Охолодження має забезпечити відвід тепла від силового модуля, що в свою чергу попередить руйнування транзистора. В сучасних інверторах використовується активна і пасивна система охолодження. Зазвичай інвертори з пасивним охолодженням мають потужність до 100 кВт. Також у деяких виробніків є тестові моделі інверторів з водяним охолодженням. Потужність даних інверторів очікується більшою ніж 2500 кВт. Бібл. 10, рис. 5.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Зінченко, Володимир Юрійович, Віктор Ілліч Іванов, Юрій Миколайович Каюков та Володислав Ростиславович Румянцев. "РОЗРОБКА АЛГОРИТМУ УПРАВЛІННЯ ТЕПЛОВОЮ РОБОТОЮ ТЕРМІЧНИХ ПЕЧЕЙ КАМЕРНОГО ТИПУ". Scientific Journal "Metallurgy", № 1 (22 липня 2021): 67–73. http://dx.doi.org/10.26661/2071-3789-2021-1-09.

Повний текст джерела
Анотація:
Під час використання локальних систем автоматичного регулювання температури та надлишкового тиску нагрівального середовища у робочому об’ємі полуменевої термічної печі камерного типу налагоди, як правило, вибирають незалежно одна від одної без урахування їх взаємозв’язку. В той же час за управлінням витратою палива та повітря змінюється не лише температура, але і тиск нагрівального середовища у робочому об’ємі печі, що, в свою чергу, супроводжується змінюванням газообміну з довкіллям та значно впливає на температуру в робочому об’ємі. Все це призводить до суттєвої пере- витрати газоподібного палива, та, як наслідок, підвищення вартості термічної обробки металу. За використанням схеми опалювання з постійним об’ємом продуктів горіння у печах такого типу управління їх тепловою потужністю зводиться до комбінування різних компонентів газоподібного палива за умови забезпечення заданої температури нагрі- вального середовища у робочому об’ємі. За принципом динамічного програмування Беллмана оптимізацію управління за цикл термічної обробки металу забезпечують шляхом вибирання для кожного періоду квантування оптимального за вартістю складу вживаного палива. Поточна вартість палива є лінійною функцією середніх витрат його окремих компонентів у періоди квантування. Тому знаходження його мінімального значення для кожного дискретного моменту часу подавали як розв’язання задачі ліній- ного програмування. Розроблено алгоритм визначення раціональних значень витрат окремих компонентів газоподібного палива, а також витрати надлишкового повітря, котрі використовують як управляльні дії для автоматичних систем регулювання темпе- ратури та надлишкового тиску нагрівального середовища у робочому об’ємі печей. Запропоновано функціональну схему автоматичної системи управління, реалізація якої дозволяє не лише оптимізувати технологію опалювання за вартістю окремих компо- нентів палива, але і шляхом самонастроювання забезпечити автономність управління температурою та надлишковим тиском нагрівального середовища у робочому об’ємі печей. Під час управління за режимом реального часу з оптимізацією щодо вартості окремих компонентів палива виконується самонастроювання системи управління.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Petrovskiy, О., T. Kuznetsova, S. Leyko та L. Azarova. "ФІЗИКО-МАТЕМАТИЧНА МОДЕЛЬ ЕЛЕКТРИЧНИХ ВЛАСТИВОСТЕЙ БІОЛОГІЧНИХ ТКАНИН НАСІННЯ ПШЕНИЦІ ТА ЇХ ЗМІНА ПІД ВПЛИВОМ ЕЛЕКТРОМАГНІТНОГО ВИПРОМІНЕННЯ ВИСОКОЧАСТОТНОГО ДІАПАЗОНУ". Системи управління, навігації та зв’язку. Збірник наукових праць 2, № 54 (11 квітня 2019): 139–43. http://dx.doi.org/10.26906/sunz.2019.2.139.

Повний текст джерела
Анотація:
Висвітлено результати експериментальних досліджень роботи біотехнічної системи опромінення насіння високочастотним електромагнітним полем, безперервним синусоїдальним сигналом із різною вихідною потужністю для насіння пшениці. Визначений тепловий та осциляторний вплив електромагнітного поля на біологічну тканину. Запропонована фізико-математична модель структури біологічної тканини на рівні клітинних мембран, внутрішньо і міжклітинного середовищ з точки зору електричних властивостей. На основі будови клітин визначені електричні властивості біологічної тканини, з якої складається насіння рослин. Показана зміна складових комплексного опору в залежності від частоти електромагнітного випромінювання за допомогою якого проводилась стимуляція. Побудовано рівняння реґресії і проведено оцінку їх адекватності за критерієм Фішера. Аналіз рівнянь реґресії дозволив визначити оптимальне співвідношення незалежних факторів для досягнення максимального відсотка схожості насіння. Отримані результати дозволили конкретизувати критерії оцінювання опромінення насіння. Експериментально доведено, що еквівалентну електричну схему неможливо звести до простих випадків з’єднання опорів і ємностей, а саме насіння не можна вважати нейтральним діелектриком. Розроблена методика оцінки інтенсивності обмінних процесів залежно від електричного опору насіння.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Popovych, Vasyl, та Andriy Hapalo. "ТЕМПЕРАТУРНИЙ ВПЛИВ ЛАНДШАФТНИХ ПОЖЕЖ НА ЕКОЛОГІЧНИЙ СТАН ЕДАФОТОПУ". Zeszyty Naukowe SGSP 76 (21 грудня 2020): 29–45. http://dx.doi.org/10.5604/01.3001.0014.5977.

Повний текст джерела
Анотація:
В Україні лісові пожежі набувають значних обсягів та перетворюються на надзвичай- ні ситуації загальнодержавного значення. Внаслідок локалізації та ліквідації великих і особливо великих лісових пожеж, пожеж у природних екосистемах, залучається значна кількість особового складу та техніки. Знищуються практично усі компоненти довкілля – флора, фауна, ґрунти, забруднюються річки, водойми, повітря. Пожежі у природних екосистемах спричиняють потрапляння в атмосферу значної кількості летких продуктів горіння та небезпечних речовин і сполук. Метою роботи є висвітлення результатів досліджень моніторингу довготривалого впливу лісових пожеж на один із найважливіших компонентів екосистеми – едафотоп. Для досягнення поставленої мети були сформовані такі основні завдання: провести аналіз наукових та літературних джерел щодо проблематики впливу лісових пожеж на едафотоп у вітчизняному та зарубіжному контекстах; дослідити модельне вогнище стосовно температурного та вологісного режимів; встановити температуру полум’я на різних ділянках модельного вогнища; встановити потужність еквівалентної дози фотонного іонізуючого випромінювання на місці проведення експерименту. Теплові режими Малого Полісся є достатніми для розвитку багатьох рослин. Веге- таційний період триває понад 200 днів, а період з активними температурами (понад + 10°С) – 150–160 днів. Більше 100 днів у році мають середньодобову температуру понад + 15°С (період інтенсивної вегетації). Відлиги, які понижують морозостійкість лісових та сільськогосподарських культур, затяжні весни у зв’язку з повільним таненням снігу гальмують швидкий прихід тепла. Експериментальні дослідження з вивчення впливу ландшафтних пожеж на екологіч- ний стан едафотопу здійснювалися на території Малого Полісся поблизу Рава-Руського лісництва в селі Лавриків Жовківського району Львівської області. Відбір проб ґрунтів для досліджень їхнього екологічного стану здійснювався із врахуванням давності (за роками) горіння рослинності та лісової підстилки. Також було створено штучне модельне вогнище ландшафтної пожежі (низової, лісової) на відкритому просторі з дотриманням усіх вимог Правил пожежної безпеки в лісах України з метою фіксування температури та вологості ґрунту в зоні горіння, а також аналізу відібраних ґрунтових проб із ділянок горіння. Встановлено, що температура полум’я під час горіння лучної рослинності в початковий момент часу становила +66,7°С. У процесі горіння, через 20 секунд, температура полум’я сягнула +352,5°С, максимальною температура полум’я була +715,7°С після вигорання всього горючого матеріалу (через 2,5 хв після початку досліду). Водночас, на глибині 5 см у початкових точках горіння температура едафотопу підвищується із +7°С до +20 ± 24°С. Яскраво вираженого діапазону зміни вологості на глибині 5 см не спостерігалося. Отримані результати є важливими з точки зору вивчення впливу підвищених температур на компоненти біосфери, а також відновлення девастованих територій.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Sinchuk, Oleg, Serhii Boiko, Oleksiy Gorodny, Andrey Nekrasov, Andrey Onishchenko та Maryna Nozhnova. "АСПЕКТИ ВПРОВАДЖЕННЯ СОНЯЧНИХ ЕЛЕКТРОСТАНЦІЙ В УМОВАХ ГІРНИЧОРУДНИХ ПІДПРИЄМСТВ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 1(19) (2020): 168–76. http://dx.doi.org/10.25140/2411-5363-2020-1(19)-168-176.

Повний текст джерела
Анотація:
Актуальність теми дослідження. Перспектива розвитку залізорудної галузі зумовлюється перспективою розвитку металургійного виробництва й експорту сировини. Нині проведено реформування гірничо-металургійного комплексу. У зв’язку із загостренням енергетичних проблем та необхідністю енергозбереження, останніми роками дедалі більше уваги у світі приділяється використанню відновлюваної енергії. Серед лідерів є використання сонячної енергії. Сонячну енергію використовують для отримання гарячої води, тепла та електроенергії. Завдяки впровадженню сонячних колекторів з’явились значні можливості енергозабезпечення будівель для систем гарячого водопостачання та опалення. Сонячні установки екологічно чисті, за їх допомогою можна отримувати енергію, що не шкодить навколишньому середовищу. Постановка проблеми. Проблемою цієї роботи є визначення основних аспектів впровадження сонячних електростанцій в умовах гірничорудних підприємств. Аналіз останніх досліджень і публікацій. Багато авторів досліджували питання експлуатації та проєктування сонячних електростанцій. Обґрунтовано позитивний ефект від впровадження системи очищення сонячних панелей від пилу та від впровадження системи нахилу сонячної панелі. Дослідження, які були проведені раніше, вказують на те, що енергетичні характеристики сонячних панелей при роботі в умовах гірничих підприємств будуть на достатньо ефективному рівні, враховуючи природні вентиляційні потоки, що будуть їх охолоджувати. Між тим, залишаються недослідженими питання впровадження сонячних електростанцій в умовах гірничорудних підприємств. У попередніх дослідженнях нами обґрунтовано позитивний ефект від впровадження сонячних електростанцій в умовах гірничорудних підприємств, а саме модульність, надійність, зменшення негативного впливу на екологію. Виділення недосліджених частин загальної проблеми. Враховуючи нові, раніше не досліджені фактори, що у мовах гірничорудних підприємств впливають на енергетичні характеристики сонячних електростанцій, актуальним науково-практичним завданням є дослідження потенціалу сонячної енергії в умовах цих підприємств, та особливості експлуатації сонячних електростанцій. Постановка завдання. Отже, актуальним науково-практичним завданням є дослідження потенціалу сонячної енергії в умовах цих підприємств та особливості експлуатації сонячних електростанцій, враховуючи фактори, що впливають на їхні енергетичні показники. Виклад основного матеріалу. Гірничорудні підприємства України розташовані на території, що сприятлива для впровадження сонячної енергетики. Використання системи очистки та системи нахилу панелі генерована потужність становила 2000 кВт, при використанні системи очистки генерована потужність зросла на 300 кВт. Тобто можна зробити висновок і зазначити що застосування системи очистки та нахилу сонячних панелей має кращий ефект на роботу сонячної електростанції. Висновки відповідно до статті. На гірничорудних підприємствах актуальним та можливим є впровадження в загальну структуру систем електроживлення сонячних електростанцій, враховуючи специфіку їх експлуатації. Сонячні панелі при експлуатації в умовах гірничорудних підприємств, повинні мати систему очищення та орієнтації з метою підвищення ефективності їх функціонування в розподільчих мережах цих підприємств.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Рудик, Олександр Юхимович. "Методика використання ІКТ у курсі «Контроль якості покриттів»". Theory and methods of e-learning 3 (11 лютого 2014): 273–78. http://dx.doi.org/10.55056/e-learn.v3i1.349.

Повний текст джерела
Анотація:
Підвищення рівня надійності і збільшення ресурсу машин та інших об’єктів техніки можливо тільки за умови випуску продукції високої якості у всіх галузях машинобудування. Це вимагає безперервного вдосконалення технології виробництва і методів контролю якості покриттів. У даний час все більш широкого поширення набуває 100%-вий неруйнівний контроль покриттів на окремих етапах виробництва. Для забезпечення високої експлуатаційної надійності машин і механізмів велике значення має також періодичний контроль їх стану без демонтажу або з обмеженим розбиранням, який проводиться при обслуговуванні в експлуатації або при ремонті.Висока якість машин, приладів, устаткування – основа успішної експлуатації, отримання великого економічного ефекту, конкурентоспроможності на світовому ринку. Тому комплекс глибоких знань і певних навичок в області контролю якості покриттів є необхідною складовою частиною професійної підготовки фахівців з машинобудування.Існуючі методики викладання інженерних дисциплін, як правило, не відповідають змінам у розвитку суспільства. У зв’язку з невеликим обсягом годин, що приділяються на вивчення дисципліни, й сучасними високими вимогам до рівня підготовки фахівців такий курс необхідно ввести не традиційним способом, а з використанням інформаційних технологій. Для цього:– студенти повинні мати попередню комп’ютерну підготовку;– викладач повинен розробити відповідну технологію навчання.Відомо [1], що під технологією навчання мається на увазі системна категорія, орієнтована на дидактичне застосування наукового знання, наукові підходи до аналізу й організації навчального процесу з урахуванням емпіричних інновацій викладачів і спрямованості на досягнення високих результатів у розвитку особистості студентів.Суть пропонованої технології полягає у створенні модульного середовища навчання (МСН) «Контроль якості покриттів» і впровадженні його у процес навчання, що забезпечує систематизацію навчання й формалізацію інформації. Метою технології є індивідуалізація навчання, а визначеність МСН полягає в її алгоритмічній структурі. Тому зміст МСН розроблений у вигляді систематизуючої ієрархічної схеми, куди увійшли основні розділи робочої програми курсу. Структура МСН складається з наступних блоків:1. «Методичне забезпечення дисципліни», у якому пропонуються відповідні дії, що сприяють засвоєнню інформації на заданому рівні:– першоджерела;– робоча програма;– робочий план;– опис дисципліни;– загальні методичні вказівки;– методичні вказівки до вивчення лекційного матеріалу;– методичні вказівки до виконання самостійної роботи;– методичні вказівки до виконання лабораторних робіт;– методичні вказівки до виконання домашнього завдання №1;– методичні вказівки до виконання домашнього завдання №2;– зразок титульної сторінки домашнього завдання.2. «Лекції», у якому представлені html-файли відповідного лекційного матеріалу, контрольні питання й тести до кожної теми:– дефекти і фізико-хімічні властивості покриттів;– оцінка механічних властивостей покриттів; класифікація видів і методів неруйнівного контролю (НК); візуально-оптичний, радіохвильовий і тепловий види НК;– вихореструмовий і радіаційний види неруйнівного контролю покриттів;– магнітний та електричний види НК покриттів;– акустичний метод НК покриттів;– НК покриттів проникаючими речовинами;– технологічні випробування покриттів;– методи і засоби статистичного контролю якості; автоматизація контролю якості покриттів.Викладання лекцій проводиться у режимі комп’ютерної презентації.3. «Самостійне опрацювання теоретичного матеріалу» з тестами.Відомо, що викладач у процесі своєї роботи повинен не тільки передавати студентам певний об’єм інформації, але і прагнути сформувати у них потребу самостійно здобувати знання, застосовуючи різні засоби, зокрема комп’ютерні. Чим краще організована самостійна пізнавальна активність студентів, тим ефективніше і якісніше проходить навчання. Тому деякі матеріали, що відносяться до лекційних тем, пропонуються для самостійного вивчення. При цьому організований доступ студентів до розділів МСН без звернення за допомогою до викладача. При необхідності подальшого використання матеріалів МСН можна копіювати ресурси, компонувати, редагувати і згодом відтворювати їх.4. «Лабораторні роботи» з інструкціями з техніки безпеки при виконанні робіт у лабораторіях і при роботі на персональному комп’ютері й з тестами до кожної теми:– вплив товщини покриття на міцність деталі;– контроль мікротвердості покриттів;– моделювання технологічних випробувань покриттів;– контроль внутрішніх напружень покриттів;– вплив дефектів покриття на якість деталі;– корозійний та електрохімічний контроль якості покриттів;– використання х– та s–діаграм для визначення причин погіршення якості покриттів.5. «Домашні завдання» (умова з варіантами даних і методичні вказівки до виконання, зразок оформлення):– оцінити вплив мікротвердості покриття на міцність деталі;– оцінити вплив корозії покриття на міцність деталі.Для ефективного використання МСН необхідне його планомірне включення в учбовий процес. Тому ще на етапі тематичного планування були розглянуті варіанти можливого використання усіх модулів МНС.Для розвитку розумової діяльності студентів і виховання у них пізнавальної активності самостійну роботу потрібно добре методично забезпечити. У свою чергу, ефективність самостійної роботи студентів багато в чому залежить від своєчасного контролю за її ходом. Тому для оцінки ефективності використання ІКТ у учбовому процесі створена система визначення якості навчання і на її основі побудовані тестові процедури оцінки знань з усіх тем курсу. Перевірку і контроль знань студентів можна здійснити як під час занять, так й інтерактивно. Основними перевагами програми автоматизованого контролю знань є:– випадковий характер вибору тестових завдань, порядок проходження завдань і відповідей, що сприяє об’єктивності оцінок;– представлення варіантів відповідей у вигляді формул і малюнків, що дозволяє розширити коло текстових завдань;– диференційована оцінка кожного варіанту відповіді, що забезпечує детальний аналіз результатів тестування.Комп’ютерне тестування дозволяє [2] розширити можливості проведення індивідуально адаптованих процедур контролю і коректування знань конкретних тем, підвищити об’єктивності контролю знань студентів, забезпечити можливість проведення їх попереднього самоконтролю, підвищити рівень стандартизації вимог до об’єму і якості знань та умінь.Розв’язування експрес-тестів проходить під час лабораторних занять протягом фіксованого проміжку часу. Крім режиму контролю передбачений режим навчання.Важливим елементом навчання є використання моделюючих програм у процесі навчання. У цьому випадку студенти самостійно задають різні параметри задачі, що дає можливість детальніше перевірити характер поведінки моделі за різних умов.Особливістю МСН є застосування комп’ютерного моделювання для лабораторних робіт, оскільки постійні бюджетні проблеми останніх років виключають придбання необхідних установок і приладів. Моделювання контролю якості покриттів дозволило істотно наситити заняття експериментальним і теоретичним змістом. При цьому учбові і учбово-дослідницькі задачі розв’язуються як з формуванням практичних навиків у вивченні фізичних явищ, так і дослідницького мислення, а розроблені методичні вказівки дозволяють разом з типовими лабораторними роботами виконувати роботи евристичного змісту. І, що особливо важливо, використання ІКТ, методів комп’ютерного моделювання дозволяє істотно розширити можливості лабораторних робіт.Використання електронних лабораторних робіт дозволяє більш повно реалізувати диференційований підхід у процесі навчання, ніж роботи і завдання на паперових носіях. Це пов’язано з можливістю включення в роботи необхідної кількості завдань різного рівня складності або об’єму. Істотною перевагою є можливість легко адаптувати наявні роботи до нових версій програм, що з’являються [3].Домашні завдання також виконуються з використанням САПР: на етапі побудови 3D моделі деталі з покриттям студенти працюють в SolidWorks; потім, перейшовши до реальної конструкції, використовують SimulationXpress і SolidWorks Simulation (додатки для аналізу проектних розв’язків, повністю інтегровані в SolidWorks). Оформлення робочої документації досягається засобами Microsoft Office. Така організація роботи дозволяє у процесі навчання побудувати модель контролю якості покриттів на якісно новому рівні й підготувати студентів до використання сучасних інструментаріїв інженера.В SolidWorks Simulation студенти виконують наступне:– прикладають до деталей з покриттями рівномірний або нерівномірний тиск в будь-якому напрямі, сили із змінним розподілом, гравітаційні та відцентрові навантаження, опорну та дистанційну силу;– призначають не тільки ізотропні, а й ортотропні та анізотропні матеріали;– застосовують дію температур на різні ділянки деталі (умови теплообміну: температура, конвекція, випромінювання, теплова потужність і тепловий потік; автоматично прочитується профіль температур, наявний в розрахунку температур, і проводиться аналіз термічного напруження);– знаходять оптимальний розв’язок, який відповідає обмеженням геометрії та поведінки; якщо допущення лінійного статичного аналізу незастосовні, застосовують нелінійний аналіз– за допомогою аналізу втоми оцінюють ефект циклічних навантажень у моделі;– при аналізі випробування на ударне навантаження вирішують динамічну проблему (створюють епюру і будують графік реакції моделі у вигляді тимчасової залежності);– обробляють результати частотного і поздовжнього вигину, термічного і нелінійного навантажень, випробування на ударне навантаження й аналіз втоми;– будують епюри поздовжніх сил, деформацій, переміщень, результатів для сил реакції, форм втрати стійкості, резонансних форм коливань, результатів розподілу температур, градієнтів температур і теплового потоку;– проводять аналізи контактів у збираннях з тертям, посадок з натягом або гарячих посадок, аналізи опору термічного контакту.Змінюючи при чисельному моделюванні деякі вхідні параметри, експериментатор може прослідити за змінами, які відбуваються з моделлю. Основна перевага методу полягає у тому, що він дозволяє не тільки поспостерігати, але і передбачити результат експерименту за якихось особливих умов.Метод чисельного моделювання має наступні переваги перед іншими традиційними методами [4]:– дає можливість змоделювати ефекти, вивчення яких в реальних умовах неможливе або дуже важке з технологічних причин;– дозволяє моделювати і вивчати явища, які передбачаються будь-якими теоріями;– є екологічно чистим і не представляє небезпеки для природи і людини;– забезпечує наочність і доступний у використанні.Але щоб приймати технічно грамотні рішення при роботі з САПР, необхідно уміти правильно сприймати і осмислювати результати обчислень. Цілеспрямований пошук шляхом ряду проб оптимального або раціонального рішення у проектних задачах набагато цікавіший і повчальніший для майбутнього інженера, ніж отримання тільки одного оптимального проекту, який не можна поліпшити і ні з чим порівняти.При великій кількості варіантів проекту аналіз машинних розрахунків дозволяє виявити основні закономірності зміни характеристик проекту від варійованих проектних змінних і сприяє тим самим швидкому і глибокому вивченню властивостей об’єктів проектування.Упровадження сучасних САПР для контролю якості покриттів не тільки забезпечує підвищення рівня комп’ютеризації інженерної праці, але й дозволяє приймати оптимальні рішення. При створенні і використанні таких систем сучасний інженер повинен мати навички роботи з комп’ютерними системами, уміти розробляти математичні моделі формування параметрів оцінки якості покриттів.У цих умовах молодий інженер не має достатнього резерву часу для надбання на виробництві необхідних навичок моделювання складних процесів і систем – він повинен одержати такі навички у процесі навчання у вузі. Таким чином, йдеться про володіння прийомами постановки і розв’язування конструкторсько-технологічних задач сучасними методами моделювання.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Danylyan, A. H., I. Z. Maslov та N. B. Tiron-Vorobiova. "СТВОРЕННЯ ТА ДОСЛІДЖЕННЯ НОВИХ НАУКОЄМНИХ ТЕХНОЛОГІЙ ЩОДО ЗНИЖЕННЯ ШКІДЛИВИХ ВИКИДІВ У ВИПУСКНИХ ГАЗАХ СУДНОВИХ ДИЗЕЛІВ". Transport development, № 4(11) (14 січня 2022): 116–28. http://dx.doi.org/10.33082/td.2021.4-11.11.

Повний текст джерела
Анотація:
Вступ. Бурхливий розвиток світового транспорту завдає непоправної шкоди довкіллю всього людства земної кулі. Морський і річковий транспорт робить свій внесок у питанні карбонізації до 18% від загального обсягу шкідливих викидів в атмосферу. Мета. Основна мета науково-дослідної роботи авторів статті підпорядкована зниженню шкідливих викидів в атмосферу суден морського та річкового транспорту. Використана методика розкриття мети заснована на аналітичній і практичній дослідницькій роботі. Результати. У статті проведено аналітику кращих світових технологій щодо зниження шкідливих викидів у випускних газах в атмосферу суднових дизелів, проведено аналіз науково-дослідної роботи Дунайського інституту Національного університету «Одеська морська академія» та НВФ «Еко-Авто-Титан», Україна. Протягом останніх 6 років на суднах Українського дунайського пароплавства проведено випробування паливних каталізаторів різних модифікацій, продукції НВФ «Еко-Авто-Титан», Україна з контролем Українського аудитора «Науково-дослідного інституту «Охорони навколишнього середовища та економії палива», м. Київ. Отриманий матеріал досліджень на суднах пароплавства дав позитивні результати й показав зниження оксиду азоту NOx на 38%, оксиду вуглецю СОх до 50%, діоксиду вуглецю 7%, викиди сажі за показаннями димомеру знизилися на 55%, економія палива становила до 10%. Сам паливний каталізатор касетного типу є досить складною конструкцією. У металеву оболонку паливного каталізатора вмонтовано хімічні реагенти різних оксидів металів, що реструктурують дизельне паливо на молекулярному рівні. Каталізатор установлюється на гнучких звʼязках перед насосом високого тиску, ресурс каталізатора 500 т палива до заміни в ньому хімічних реагентів. Відпускна ціна каталізатора залежить від потужності двигуна, на який він планується до встановлення та знаходиться в діапазоні від 400 у.о. (автомобільний транспорт), 10 000 у.о. (суднові двигуни потужністю до 3 тис. кВт). Розглянуто технології використання у двигунах внутрішнього згоряння автомобільного, залізничного, річкового й морського транспорту палива рослинного походження. Наведено аналіз можливого використання газового палива на суднах річкового флоту Українського дунайського пароплавства. Більш детально розглянуто питання виробництва водню з використанням останніх інноваційних технологій, розроблених у створенні ядерних реакторів останнього покоління, які успішно інтегровані у виробничі хімічні модулі, що дають змогу отримувати гідроплазму в перегрітій водяній парі до 8000 С з отриманням водню й кисню. Собівартість одного літра водню із застосуванням цієї технології не перевищує 1,6 у.о., що дає повний пріоритет виробництва водню в промислових обсягах. Незважаючи на успіх виробництва водню за новою технологією, авторами статті розкрито серйозні недоліки при спалюванні водню в теплових машинах (двигунах внутрішнього згоряння, газових турбінах і котлах). Основний недолік спалювання водню – це наявність закису азоту N20 у випускних газах теплових машин, який є парниковим газом із високим ступенем згубного впливу на довкілля. Висновки. Отриманий дослідницький матеріал спільної роботи Дунайського інституту НУ «ОМА» із НВФ «Еко-Авто-Титан», Україна отримав своє схвалення на внутрішніх водних шляхах Європи. Паливні каталізатори почали купувати Індія, Туреччина, Казахстан. У статті зроблено конкретні пропозиції щодо локалізації закису азоту при згорянні водню. Узагальнено досвід використання авангардних технологій щодо використання ядерних інтегрованих сольових реакторів для отримання промислового водню.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Жихарєва, Н. В., та М. Г. Хмельнюк. "МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ НЕСТАЦІОНАРНОГО ТЕПЛОВОГО ОБМІНУ ПРИМІЩЕНЬ". Refrigeration Engineering and Technology 52, № 6 (28 травня 2017). http://dx.doi.org/10.15673/ret.v52i6.479.

Повний текст джерела
Анотація:
Розроблено математичну модель нестаціонарного теплового обміну приміщень. Тепловий баланс об'єкта моделюється системою звичайних неоднорідних диференціальних рівнянь з нелінійними коефіцієнтами. В розробленій моделі враховуються нестаціонарні характери процесу передачі тепла через конструкції, що обгороджують поверхні, інтенсивності сонячної радіації ,від людей, обладнання та освітлення. За результатами розрахунку підібране кліматичне обладнання, яке дозволить: забезпечити необхідні параметри мікроклімату в кондиціонованих приміщеннях за умовами максимальних теплоприпливів влітку і максимальних тепловтрат взимку, та забезпечити високу енергетичну ефективність при невеликому тепловому навантаженні в міжсезоння. Результати математичного моделювання дозволили визначити по середньомісячним температур необхідну холодопродуктивність або теплопродуктивність і відповідну споживану потужність системи та доповняють набір коректних вихідних даних для розрахунку повних витрат на забезпечення мікроклімату об'єкта, включаючи проектування, придбання обладнання, монтаж і експлуатаційні витрати протягом терміну служби системи та дозволяє оцінити термін окупності системи.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Розіна, О. Ю., та В. Б. Роганков. "ВИЗНАЧЕННЯ ОПТИМАЛЬНИХ УМОВ ФОРМУВАННЯ ПОТОКУ ТЕПЛА В АКУСТИЧ-НОМУ ПОЛІ НА ПЕРЕРІЗІ КАПІЛЯРА". Refrigeration Engineering and Technology 52, № 1 (28 червня 2016). http://dx.doi.org/10.21691/ret.v52i1.43.

Повний текст джерела
Анотація:
З використанням спеціально розробленого програмного забезпечення проведено чисельне дослідження впливу параметрів ультразвукової кавітації на потік тепла, спрямованого через переріз капіляра, зануреного в рідину, якщо кавітація збуджена під каналом капіляра. Проведений аналіз впливу частоти ультразвукових коливань, рівноважної температури рідини, діаметру капіляра на потужність сформованого теплового потоку. Знайдені обмеження, які накладає частота ультразвукових коливань на діапазон максимальних радіусів кавітаційних порожнин та припустимий діаметр капілярів. Визначені оптимальні значення параметрів, при яких потужність теплового потоку є максимальною.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

LYSENKO, V. M., M. Y. KRESTIANOV, R. O. BALATSKY, O. A. POTAPOVІ, YE D. DZYUBA, V. V. PEREKREST та D. D. KUNKIN. "Електромагнітні і теплові процеси в перетворювачах при зварюванні очеревини в експерименті". Шпитальна хірургія. Журнал імені Л. Я. Ковальчука, № 3 (22 жовтня 2015). http://dx.doi.org/10.11603/2414-4533.2015.3.5019.

Повний текст джерела
Анотація:
<p>У статті представлено модель опору біологічної тканини та алгоритм керування перетворювачем для високочастотної електрокоагуляції. Розглянуто особливості побудови моделі процесу нагріву біологічної тканини з урахуванням необхідних параметрів та допущень при розрахунках. В експериментальних умовах при зварюванні країв очеревини у кролів була перевірена електрична та теплова модель опору біологічної тканини. Результати є основою для вдосконалення існуючих та створення нових алгоритмів керування вихідною потужністю високочастотного хірургічного апарата (ЕХВА). Модель використовували для розробки алгоритму процесу біполярного з’єднання біологічних тканин, який враховує імпеданс тканини і максимальний час електрохірургічного впливу на тканини.</p>
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Маренченко, Олена Іванівна, та Олександр Вікторович Зиков. "Методика розрахунку стрічкових сушарок з комбінованим електромагнітним енергопідведенням для сушіння насіння кукурудзи, соняшнику та сої". Scientific Works 85, № 1 (31 серпня 2021). http://dx.doi.org/10.15673/swonaft.v85i1.2080.

Повний текст джерела
Анотація:
На основі детального аналізу літературних джерел з досліду використання інфрачервоного та мікрохвильового підведення енергії в процесі сушіння сировини зроблено висновок про перспективність розробки обладнання, що реалізує комбінований вплив інфрачервоного та мікрохвильового випромінювання для сушіння оліє місткої сировини, зокрема кукурудзи, соняшнику та сої. Попередні дослідження кінетики сушіння кукурудзи, соняшнику та сої дозволили отримати рівняння для визначення часу сушіння цих продуктів в таких сушарках, що, в свою чергу, стало відправною точкою для створення методик проектного та перевірного розрахунків таких сушарок. Аналіз цих досліджень дозволяє зробити висновок, що використання мікрохвильового випромінювання прискорює перенесення вологи з середини матеріалу назовні, а інфрачервоне випромінювання ефективно передає енергію вологи на поверхню матеріалу. Таким чином, поєднання послідовного впливу мікрохвильового та інфрачервоного випромінювання може значно прискорити процес сушіння та покращити його енергоефективність. Мета конструктивного розрахунку сушарки - визначити габаритні розміри сушарки та потужність встановлених випромінювачів. На першому етапі розрахунку такі властивості продукту, як рівноважна вологість продукту та коефіцієнт активності води, визначаються параметрами продукту та навколишнього середовища. Далі визначаються парціальний тиск водяної пари в атмосферному повітрі та теплофізичні властивості водяної пари, такі як тиск насиченої водяної пари, питома теплота випаровування та коефіцієнт дифузії водяної пари у повітрі. На наступному етапі ми визначаємо швидкість руху конвеєра. Далі визначаємо відповідні значення коефіцієнтів масообміну та узагальненого коефіцієнта масообміну. Величина узагальненого коефіцієнта масопереносу визначає швидкість висихання в перший період та час висихання. Тривалість установки та кількість модулів масообміну визначаються визначеним значенням часу перебування продукту в установці. На останньому етапі розраховується потужність ІЧ -випромінювачів окремого ІЧ -модуля та потужність НВЧ -випромінювачів одного мікрохвильового модуля.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Гаєвський, Валерій, Володимир Кочмарський та Віктор Филипчук. "Вплив ефективності роботи оборотних систем охолодження ТЕС на величину викидів оксиду вуглецю". Матеріали міжнародної науково-практиченої конференції "Екологія. Людина. Суспільство", 20 травня 2021, 115–18. http://dx.doi.org/10.20535/ehs.2021.233178.

Повний текст джерела
Анотація:
Згідно стратегії екологічного розвитку України до 2030 року для підвищення індекса екологічної ефективності (Environmental Performance Index, EPI) планується зменшення енергоємності ВВП з 0.286 кг (2020 рік) до 0,186 кг (2030 рік) умовного палива на один долар США. Оскільки одним із найбільш енергоємних галузей промисловості є енергетика, то така задача безпосередньо стосується цієї галузі. З точки зору екологічних проблем електричні станції взагалі та їх основні елементи повинні відповідати екологічним нормативам. Згідно виробленої електроенергії у 2020 році ТЕС України використали мінімум 5,9 млрд м3 води з якої кількість свіжої води складає близько 10-20%. Основна частина спожитої води ТЕС (близько 90%) використовується оборотними системами охолодження (ОСО) Таким чином, ТЕС потребує великої кількості водних ресурсів, використання яких у кінцевому результаті призводить до зміни природного водного балансу навколишнього середовища, гідрологічних і водно-хімічних режимів водотоків. Все це у свою чергу призводить до небажаних змін в локальних і в перспективі глобальних екосистемах. Метою даної роботи є разрахунок викидів оксиду вуглецю на прикладі ТЕС потужністю 2500 МВт і оцінка наслідків недостатньо ефективної роботи ОСО для паросилової частини ТЕС. Згідно розглянутої методики розраховано основні екологічні показники оксиду вуглецю для ТЕС, потужністю 2500 МВт, що використовує вугілля марки АСШ, які наведені у таблиці. Таким чином, валові викиди шкідливих речовин за рахунок недогріву води ОСО на 1⁰С складають 0,75 тис. т/рік. При цьому досліджувана умовна ТЕС за рік утворює стовп димових газів над містом Київ близько 47 метрів. Такий результат вказує на малу перспективність розвитку вугільної теплової енергетики і важливість розробки заходів покращення її ефективності.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії