Зміст
Добірка наукової літератури з теми "Паладій"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Паладій".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Паладій"
Trypolskyi, A., G. Kosmambetova, S. Soloviev, A. Kapran та P. Strizhak. "МЕТАЛОКСИДНІ КАТАЛІЗАТОРИ НА СТРУКТУРОВАНИХ КЕРАМІЧНИХ НОСІЯХ ДЛЯ НИЗЬКОТЕМПЕРАТУРНОГО СПАЛЮВАННЯ МЕТАНУ". Vidnovluvana energetika, № 3(58) (25 вересня 2019): 91–99. http://dx.doi.org/10.36296/1819-8058.2019.3(58).91-99.
Повний текст джерелаLyubymenko, O. M., and O. A. Shtepa. "Features of the Gradient Palladium-Hydrogen Alloy Formation." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 43, no. 12 (December 30, 2021): 1639–51. http://dx.doi.org/10.15407/mfint.43.12.1639.
Повний текст джерелаHorda, R., and E. Tsyganovich. "COLLOID-CHEMICAL PATTERNS OF SORPTION OF PALLADIUM (II) ON PHYTOSORBENTS." Bulletin of Taras Shevchenko National University of Kyiv. Chemistry, no. 2(54) (2017): 64–66. http://dx.doi.org/10.17721/1728-2209.2017.2(54).12.
Повний текст джерелаСенченко, М. "100 років Книжковій палаті України". Вісник Книжкової палати, № 12 (269), грудень (2018): 3–5.
Знайти повний текст джерелаМозер, М. "Що нам дає погляд з польських палаців". Україна модерна, Число 5 (16) (2010): 295–302.
Знайти повний текст джерелаКараванович, Х. Б., та Н. І. Глібовицька. "Здатність деревних видів акумулювати важкі метали в умовах нафтозабруднених ґрунтів". Scientific Bulletin of UNFU 30, № 1 (27 лютого 2020): 83–87. http://dx.doi.org/10.36930/40300114.
Повний текст джерелаСтець, С. "Сто років у палаці Владислава Лозинського". Пам"ятки України: історія та культура, № 1 (210) (2015): 56–63.
Знайти повний текст джерелаКушлик, О. М. "Художні ансамблі Стамбульського і Бахчисарайського палаців: досвід порівняльного аналізу". Праці Центру пам"яткознавства, Вип. 26 (2014): 40–52.
Знайти повний текст джерелаЗахарченко, Т. "Створено Третейський суд при Торгово-промисловій палаті України". Право України, № 12 (2004): 5–7.
Знайти повний текст джерелаЯцишин, Михайло Михайлович. "НОТАРІАТ У КИЇВСЬКІЙ СУДОВІЙ ПАЛАТІ (1881–1918 РР.)". Історико-правовий часопис 17, № 2 (30 березня 2022): 42–50. http://dx.doi.org/10.32782/2409-4544/2021-2/6.
Повний текст джерелаДисертації з теми "Паладій"
Афоніна, Ірина Олександрівна, Лариса Василівна Ляшок, Тетяна Василівна Орєхова, С. Ю. Скобліков та Я. М. Масовець. "Композитний ПАн-Pd-електрод як індикаторний електрод для детектування водню в сенсорах амперометричного типу". Thesis, НТУ "ХПІ", 2011. http://repository.kpi.kharkov.ua/handle/KhPI-Press/18463.
Повний текст джерелаКривоносова, О. В., та Л. О. Зюзя. "Бурштинова кислота та її похідні, способи отримання, застосування у фармації". Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/9297.
Повний текст джерелаТищенко, Костянтин Володимирович, Константин Владимирович Тищенко та Kostiantyn Volodymyrovych Tyshchenko. "Кристалічна будова та тензорезистивні властивості плівок паладію". Thesis, Видавництво СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/22151.
Повний текст джерелаЯновська, Еліна Станіславівна. "Комплексоутворення паладію та платини з сірковмісними лігандами, закріпленими на кремнеземах". Дис. канд. хім. наук, КУ ім. Т.Шевченка, 1996.
Знайти повний текст джерелаА, Пивоварчук А., Пивоварчук А. А та Pivovarchuk A. "Сучасні тенденції формування палаців урочистих подій". Thesis, НАУ, 2016. http://er.nau.edu.ua/handle/NAU/25222.
Повний текст джерелаШепіда, Мар'яна Володимирівна. "Осадження наноструктурованих металів (Ag, Au, Pd) на кремній електролізом і гальванічним заміщенням з розчинів DMSO та DMF". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/43987.
Повний текст джерелаThesis for the degree of candidate of chemical sciences (PhD) in speciality 05.17.03 – Technical Electrochemistry. – Lviv Polytechnic National University, Lviv. – Kharkiv Polytechnic Institute National Technical University, Ministry of education and science of Ukraine, Kharkiv, 2019. The scientific direction of the controlled electrochemical deposition of nanostructured metals (Ag, Au, Pd) on the silicon surface by electrolysis and the method of galvanic substitution in the medium of organic aprotic solvents is developed. It is established that the combination of the pulsed mode of electrolysis and non-aqueous medium promotes the formation of metal nanoparticles. The effect of the concentration of reducing metal ions on the geometry of the nanoparticles and their distribution on the surface of the substrate were investigated. The dependence of the size of metal nanoparticles on the duration of the process of galvanic substitution was studied. The regularities of the influence of the process temperature, the type of silicon surface, the nature of organic solvents on the formation of nanostructured metal sediments (Ag, Au, Pd) and their morphology are revealed. Herefore, the value of cathode potentials, the duration of electrodeposition and the concentration of metal ions are the main factors influencing the morphology of the metal precipitate and the geometry of its structural particles, which is crucial for the controlled formation of nanostructures based on them. The complex of experimental data allowed to modify the silicon surface with metal nanoparticles to produce silicon nanostructures and plasmonically active surfaces based on them. The methods of pulsed electrolysis implemented in the work allow to obtain nanostructured sediments of metals of a given shape and size fixed on the substrate surface for the production of highly sensitive sensors with the subsequent conversion of sunlight into electrical energy. The dependence of geometry of nanoparticles of metals (Ag, Au, Pd) and sediment morphology on electrodeposition conditions (values of cathode potential, concentration of metal ions and process duration) are investigated. It is established that with increasing values of these values there is a tendency to form sediments from discrete particles (from 30 nm to 70 nm) to agglomerates (from 120 nm to 200 nm) and nanoporous films. It is established that the nature of the metal ion, its concentration, temperature and duration of the process of galvanic substitution are the main factors influencing the size of the deposited nanoparticles and the parameters of the controlled formation of Si/MNPs nanostructures. Nanoscale galvanic substitution of silver, palladium, and gold in organic aprotic solvents ensures the formation of nanostructured metal deposits on the silicon surface without the occurrence of side processes. This makes it possible to obtain Si/MNPs systems with nanoparticle sizes up to 100 nm with a relatively small size range. A schematic technological scheme of deposition of metal nanoparticles (Ag, Au, Pd) on silicon electroplating substitution in the environment of organic aprotic solvents was proposed, which allowed to obtain silicon/nanomaterial nanomaterials with functional properties. It has been found that Si/PdNPs, Si/AuNPs systems are more effective in forming silicon nanostructures than Si/AgNPs, due to the difference in metals by the values of standard electrode potentials. The scientific direction of the controlled electrochemical deposition of nanostructured metals (Ag, Au, Pd) on the silicon surface by electrolysis and the method of galvanic substitution in the medium of organic aprotic solvents is developed. It is established that the combination of the pulsed mode of electrolysis and non-aqueous medium promotes the formation of metal nanoparticles. The effect of the concentration of reducing metal ions on the geometry of nanoparticles and their distribution on the surface of the substrate were investigated. The dependence of the size of metal nanoparticles on the duration of the process of galvanic substitution was studied. The regularities of the influence of the process temperature, the type of silicon surface, the nature of organic solvents on the formation of nanostructured metals (Ag, Au, Pd) and their morphology are revealed. The feasibility of deposition of metal nanoparticles (Ag, Au, Pd) on the silicon surface is grounded, based on the high value of their standard electrode potentials and the efficiency of Si/MNPs systems in the formation of functional nanostructures and plasmonically active surfaces. The efficiency of combining the pulsed electrolysis regime and the environment of organic aprotic solvents for the controlled deposition of MNPs of a given geometry on a semiconductor surface is proved. The rational conditions for electrodeposition of nanostructured metals (Ag, Au, Pd) were experimentally established: the composition of the electrolyte, the pulse electrolysis parameters (cathode potential value, pulse duration and pauses) and the process duration (number of cycles). For E = -1,6 ...- 2,2 V from solutions (0,002 ... 0,008)M H[AuCl₄] + 0,05M Bu₄NClO₄ in DMSO; (0,001… 0,006)M Pd(NO₃)₂ + 0,05M Bu₄NClO₄ in DMSO and PC; (0,025… 0,1)M (NH₄)[Ag(CN)₂] in DMF, τon.:τoff. = 6: 300 ms, 25… 800 cycles, at a temperature of 25 °C silver, gold and palladium are deposited on the silicon surface to form nanoparticles. The dependence of geometry of nanoparticles of metals (Ag, Au, Pd) and sediment morphology on electrodeposition conditions (values of cathode potential, concentration of metal ions and process duration) are investigated. It is established that with increasing values of these values, there is a tendency to form sediments from discrete particles (from 30 nm to 70 nm) to agglomerates (from 120 nm to 200 nm) and nanoporous films. The conditions of controlled deposition of metal nanoparticles on a silicon surface according to their geometry are proposed. It is shown that within the cathodic potentials of -0,2 ... -2,5 V, solutions of reducing ions of a wide range of concentrations of silver, gold and palladium are deposited on the silicon surface in the form of discrete nanoparticles, which are uniformly distributed over the surface of the substrate. Therefore, due to the nature of the 3D semiconductor substrate, the growth of the recovered metal occurs by the Volmer-Weber mechanism. It is shown that in non-aqueous solutions of solvated and complex ions in the wide range of concentrations and temperatures on the silicon surface processes of nanosized galvanic substitution occur. The formation of the precipitate is carried out by the Volmer-Weber mechanism with the formation of discrete (islet) nanoparticles on a semiconductor substrate similarly to their deposition by electrolysis. High-donor molecules of organic aprotic solvent (L) due to donor-acceptor interaction L:→form surface complexes with fixed MNPs. The latter undergo a kind of "blocking", complicating their growth. This contributes to the formation of spherical MNPs due to the "smoothing" effect. It is established that the nature of the metal ion, its concentration, temperature and duration of the process of galvanic substitution are the main factors influencing the size of deposited nanoparticles and the parameters of the controlled formation of Si/MNPs nanostructures. Nanoscale galvanic substitution of silver, palladium, and gold in organic aprotic solvents ensures the formation of nanostructured metal deposits on the silicon surface without the occurrence of side processes. This makes it possible to obtain Si/MNPs systems with nanoparticle sizes up to 100 nm with a relatively small size range. The results of investigations, the use of electrochemically deposited metal nanoparticles (Ag, Au, Pd) on the silicon surface to create plasmonically active surfaces and silicon nanostructures are presented. The dependence of the morphology of the latter on the geometry of the nanoparticles deposited as activators of metal-active chemical etching. Si/PdNPs, Si/AuNPs systems have been found to be more effective in the formation of silicon nanostructures than Si/AgNPs. This is due to the difference of metals in the values of standard electrode potentials. The results of the research trials at the Research Center of the Committee of Forensic Expertise of the Republic of Belarus have shown the effectiveness of the materials obtained for highly sensitive sensors. Results of work in the educational process of the Department of Chemistry and Technology of Inorganic Substances of Lviv Polytechnic National University were introduced for specialized work 161 "Chemical technologies and engineering" specialization "Technical electrochemistry" in theoretical and laboratory classes in the discipline "Electrochemistry of nanomaterials".
Захарченко, Борис Володимирович. "Координаційні сполуки паладію (II) з 5-заміщеними-3-(2-піридил)-1,2,4-триазолами". Дис. канд. хім. наук, Київ. нац. ун-т ім. Тараса Шевченка, М-во освіти і науки України, 2019.
Знайти повний текст джерелаШепіда, Мар'яна Володимирівна. "Осадження наноструктурованих металів (Ag, Au, Pd) на кремній електролізом і гальванічним заміщенням з розчинів DMSO та DMF". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/43982.
Повний текст джерелаThesis for the degree of candidate of chemical sciences (PhD) in speciality 05.17.03 – Technical Electrochemistry. – Lviv Polytechnic National University, Lviv. – Kharkiv Polytechnic Institute National Technical University, Ministry of education and science of Ukraine, Kharkiv, 2019. The scientific direction of the controlled electrochemical deposition of nanostructured metals (Ag, Au, Pd) on the silicon surface by electrolysis and the method of galvanic replacement in the medium of organic aprotic solvents is developed. It is established that the combination of the pulsed mode of electrolysis and non-aqueous medium promotes the formation of metal nanoparticles. The effect of the concentration of reducing metal ions on the geometry of the nanoparticles and their distribution on the surface of the substrate were investigated. The dependence of the size of metal nanoparticles on the duration of the process of galvanic replacement was studied. The regularities of the influence of the process temperature, the type of silicon surface, the nature of organic solvents on the formation of nanostructured metal sediments (Ag, Au, Pd) and their morphology are revealed. Herefore, the value of cathode potentials, the duration of electrodeposition and the concentration of metal ions are the main factors influencing the morphology of the metal precipitate and the geometry of its structural particles, which is crucial for the controlled formation of nanostructures based on them. The dependence of geometry of nanoparticles of metals (Ag, Au, Pd) and sediment morphology on electrodeposition conditions (values of cathode potential, concentration of metal ions and process duration) are investigated. It is established that with increasing values of these values there is a tendency to form sediments from discrete particles (from 30 nm to 70 nm) to agglomerates (from 120 nm to 200 nm) and nanoporous films. It is established that the nature of the metal ion, its concentration, temperature and duration of the process of galvanic replacement are the main factors influencing the size of the deposited nanoparticles and the parameters of the controlled formation of Si/MNPs nanostructures. Nanoscale galvanic replacement of silver, palladium, and gold in organic aprotic solvents ensures the formation of nanostructured metal deposits on the silicon surface without the occurrence of side processes. This makes it possible to obtain Si/MNPs systems with nanoparticle sizes up to 100 nm with a relatively small size range. A schematic technological scheme of deposition of metal nanoparticles (Ag, Au, Pd) on silicon electroplating substitution in the environment of organic aprotic solvents was proposed, which allowed to obtain silicon/nanomaterial nanomaterials with functional properties. It has been found that Si/PdNPs, Si/AuNPs systems are more effective in forming silicon nanostructures than Si/AgNPs, due to the difference in metals by the values of standard electrode potentials. The results of the research trials at the “Research Center of the Committee of Forensic Expertise of the Republic of Belarus” proved the effectiveness of the materials obtained for the highly sensitive sensors. The results of work in the educational process of the Department of Chemistry and Technology of Inorganic Substances of NU “Lviv Polytechnic” in teaching the disciplines on the specialty 05.17.03 – “Technical Electrochemistry” were introduced.
Афоніна, Ірина Олександрівна, Борис Іванович Байрачний, Лариса Василівна Ляшок, Г. М. Щічка та Тетяна Василівна Орєхова. "Модифікація поверхні допованим електронпровідниковим полімером і високодисперсним паладієм". Thesis, НТУ "ХПІ", 2010. http://repository.kpi.kharkov.ua/handle/KhPI-Press/18460.
Повний текст джерелаАндріанова, О. Б. "Сорбційне концентрування та визначення золота(3), платини(4) та паладію(2) з використанням сорбентів різної хімічной природи". Дис. канд. хім. наук, КНУТШ, 2005.
Знайти повний текст джерела