Статті в журналах з теми "Оптична мережа"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Оптична мережа.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-17 статей у журналах для дослідження на тему "Оптична мережа".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kunakh, Nataliia, Liudmila Kharlai, Оleksii Konovalov, Kostiantyn Nikiforenko, Yuliia Sotnichenko та Yurii Matiushychev. "ОСОБЛИВОСТІ БЕЗПРОВІДНОГО АБОНЕНТСЬКОГО ДОСТУПУ З ВИКОРИСТАННЯМ ОПТИЧНИХ ТЕХНОЛОГІЙ". TECHNICAL SCIENCES AND TECHNOLOG IES, № 2 (12) (2018): 127–35. http://dx.doi.org/10.25140/2411-5363-2018-2(12)-127-135.

Повний текст джерела
Анотація:
Актуальність теми дослідження. Технологія Wi-Fi використовується для побудови безпровідних локальних мереж Wi-Fi. Недоліками Wi-Fi технології є використання радіоканалу, інтерференція, низька безпека й захищеність даних і самих мереж Wi-Fi. Тому є потреба в модифікації безпроводового доступу. Постановка проблеми. Усунення недоліків дасть змогу забезпечити користувачів високонадійним та швидкісним зв’язком. Запропоновано модифікацію безпроводового доступу. Аналіз останніх досліджень і публікацій. Були розглянуті останні публікації з досвіду використання в локальних мережах оптичних технологій. Виділення недосліджених частин загальної проблеми. Можливість перехоплення інформаційних сигналів, що випромінюються через віконні отвори. Відсутність всеспрямованих оптичних антен. Постановка завдання. Вдосконалення параметрів та характеристик локальних оптичних мереж доступу, зокрема підвищення рівня інформаційної захищеності. Виклад основного матеріалу. У роботі проведено порівняльний аналіз двох систем безпровідного абонентського доступу. Показано, що система безпровідного доступу з використанням оптичних технологій має певні переваги, серед яких можна відзначити відсутність завад від сусідніх мереж та практично повну захищеність від перехоплення інформації. Запропоновано застосування світлодіодів ультрафіолетового діапазону для забезпечення відсутності витоку світлового сигналу через віконні отвори. Для побудови багатоточкових систем локального оптичного зв’язку з випадковим розташуванням абонентів запропоновано використання оптичних циліндричних елементів із високим показником заломлення. Висновки відповідно до статті. Побудова оптичних систем безпровідного зв’язку з використанням оптичних технологій має певні переваги перед безпровідними системами, що використовують радіотехнології.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Петров, В. В., А. А. Крючин, Є. В. Беляк та О. Г. Мельник. "Перспективи оптичної пам’яті". Реєстрація, зберігання і обробка даних 23, № 3 (21 вересня 2021): 3–14. http://dx.doi.org/10.35681/1560-9189.2021.23.3.244782.

Повний текст джерела
Анотація:
Представлено результати аналізу методів збільшення ємності оптич-них носіїв, у першу чергу, для систем архівного зберігання даних, виз-начено можливості застосування в перспективних типах оптичних носіїв нанокомпозитних матеріалів. Показано, що головним напрямком створення оптичних носіїв з надщільним записом в останні роки стало використання плазмонних резонансів у металевих наноструктурах і реалізація технології ближньопольового запису. Суттєве збільшення щільності запису може забезпечити використання штучної нейронної мережі при відтворенні даних з оптичного носія з нанорозмірними інформаційними елементами.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mozhayev, M. "УДОСКОНАЛЕННЯ МАТЕМАТИЧНОЇ МОДЕЛІ ОПТИЧНИХ КАНАЛІВ ПЕРЕДАЧІ ІНФОРМАЦІЇ". Системи управління, навігації та зв’язку. Збірник наукових праць 1, № 63 (26 лютого 2021): 153–57. http://dx.doi.org/10.26906/sunz.2021.1.153.

Повний текст джерела
Анотація:
Об'єктом дослідження є методи побудови математичної моделі оптичних каналів передачі інформації в інформаційній системі судової експертизи, предметом дослідження – оптичні канали передачі інформації. Наводяться результати аналізу передачі інформації у інформаційній системі судової експертизи, які встановили, що при використанні оптичних каналах зв'язку найбільші проблеми виникають через неоднорідність середовища поширення. Тому задача організації контролю стану обміну інформації в комп'ютерних мережах інформаційної системи є бузумовна актуальною. Вирішення цієї складної і багатогранної задачі в статті базується на попередніх дослідження, які біли виконані з використанням формалізму континуальних інтегралів (КІ) Феймана .Метою даної статті є удосконалення математичної моделі оптичних каналів передачі інформації в інформаційній системі судової експертизи.В ході дослідження використовуються методи математичної фізики, теорії поля, математичної статистики та теорії ймовірностей, нелінійної оптики, теорії систем. Дані методи були інтегровані в загальний метод, що дозволило удосконалити математичну модель оптичних каналів передачі інформації.Використовуючи аналітичні співвідношення, отримані в попередній статті, були сформульовані рівняння кореляційних функцій, в тому числі, і довільного порядку. Це стало можливим при використанні континуальних інтегралів Феймана. В статті наведено аналіз отриманих рівнянь для деяких часткових умов. У статті встановлено, що використання КІ дозволяє просто записувати як рішення рівнянь будь-якого порядку (хоча звичайно запис рішень у вигляді КІ є перенесенням труднощів з однієї області - рішення рівнянь в приватних похідних в іншу, тому що точно обчислюються КІ лише спеціального виду - гаусові ), так і вирази для таких величин, які не можуть бути описані замкнутими рівняннями, уникаючи при цьому введення зайвих параметрів. Складність і труднощі рішення рівнянь для моментів зростає з ростом їх порядку: якщо рівняння навіть для просторових функцій когерентності першого і другого порядків вирішуються в загальному вигляді, то аналітичне рішення рівняння для більш високих моментів отримати вже не вдається. Зазвичай для розчеплення ланцюжка і отримання замкнутих рівнянь для моментів даного порядку приймаються певні статистичні гіпотези про рішення. При формулюванні завдання в терміналах КІ такі статистичні гіпотези проявляються як деякі наближення для подинтегрального вираження, що дозволяє простежити за характером наближень і визначити межі їх застосовності. Таким чином, з'явилася теоретична можливість удосконалення математичної моделі оптичних каналів передачі інформації на основі використання формалізму КІ для отримання рівняння кореляційних функцій
Стилі APA, Harvard, Vancouver, ISO та ін.
4

CМОЛЯР, С. В., С. В. РАДЧЕНКО, О. С. ЖУЧЕНКО, С. І. ПРИХОДЬКО та М. А. ШТОМПЕЛЬ. "Аналіз особливостей моделей оптичних транспортних мереж". Інформаційно-керуючі системи на залізничному транспорті, № 5 (30 жовтня 2018): 50–54. http://dx.doi.org/10.18664/ikszt.v0i5.146829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Karachevtsev, A. V., O. V. Dubolazov, M. Yu Sakhnovsky, O. V. Olar, and P. M. Grigorishin. "Fourier principles of polarimetry of optically anisotropic networks." Optoelectronic Information-Power Technologies 1, no. 35 (2019): 30–35. http://dx.doi.org/10.31649/1681-7893-2018-35-1-30-35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Karachevtsev, A. V., O. V. Dubolazov, M. Yu Sakhnovsky, O. V. Olar, and P. M. Grigorishin. "Fourier Principles of Polarimetry of Optically Anisotropic Networks." Optoelectronic Information-Power Technologies 35, no. 1 (2019): 30–35. http://dx.doi.org/10.31649/1681-7893-2019-35-1-30-35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Яцків, Ярослав Степанович, та Володимир Ілліч Присяжний. "Про співпрацю Національної академії наук України і Державного космічного агентства України зі створення системи контролю та аналізу космічної обстановки". Visnik Nacional noi academii nauk Ukrai ni, № 12 (15 грудня 2021): 85–89. http://dx.doi.org/10.15407/visn2021.12.085.

Повний текст джерела
Анотація:
Співдоповідь присвячено результатам співробітництва Національної академії наук України та Державного космічного агентства України щодо виконання вкрай актуального для України завдання — створення національної Системи контролю та аналізу космічної обстановки. Окреслено шляхи подальшої співпраці з використання радіоастрономічних інструментів та розширення мережі оптичних станцій для спостереження космічних об'єктів у навколоземному просторі.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Malinovsky, V. I., V. O. Boichuk, and I. S. Baidakov. "Fiber optic system for signal transmission in industrial networks of control systems of modern industrial enterprises." Optoelectronic Information-Power Technologies 37, no. 1 (November 2019): 123–32. http://dx.doi.org/10.31649/1681-7893-2019-37-1-123-132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Malinovsky, V. I. "Organization of knowledge bases in multicomponent optical information networks." Optoelectronic Information-Power Technologies 1, no. 35 (2019): 93–97. http://dx.doi.org/10.31649/1681-7893-2018-35-1-93-97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Malinovsky, V. I. "Organization of knowledge bases in multicomponent optical information networks." Optoelectronic Information-Power Technologies 35, no. 1 (2019): 93–97. http://dx.doi.org/10.31649/1681-7893-2019-35-1-93-97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Andrushchak, V. S., M. V. Kaidan, T. A. Maksymyuk, S. S. Dumych, and Y. V. Pyrih. "INTELLIGENT DATA FLOW MANAGEMENT IN OPTICAL TRANSPORT NETWORK." Telecommunication and information technologies, no. 3 (2019): 4–16. http://dx.doi.org/10.31673/2412-4338.2019.030416.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Шевчук, В. В., О. М. Сукач, Ю. І. Габрієль та Г. А. Худавердян. "ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ДІАГНОСТИКИ ЕЛЕТРОННОЇ СИСТЕМИ КЕРУВАННЯ СІВАЛКОЮ HORSCH PRONTO DC". СІЛЬСЬКОГОСПОДАРСЬКІ МАШИНИ, № 46 (30 травня 2021): 111–23. http://dx.doi.org/10.36910/acm.vi46.499.

Повний текст джерела
Анотація:
У статті запропоновано методику діагностики електронних систем керування, якими оснащені сучасні посівні комплекси. Використання електронних систем дозволяє в автоматичному режимі контролювати якість посіву, адаптувати роботу сівалки до зміни параметрів руху, відображати основні параметри системи під час роботи, сигналізувати про несправності чи недотримання агротехнічних вимог. Для вивчення будови, принципу роботи, налаштувань й технічного обслуговування сівалки зручно використовувати навчальні стенди, перевагою яких є компактність та зручність розташування основних елементів електронної системи керування, а його використання не потребує значних затрат часу й ресурсів, застосування додаткового обладнання й техніки. Визначено характеристики та параметри вихідних сигналів сенсорів за різних режимів роботи. З’ясовано принципи роботи бортової мережі та технології передачі даних основних елементів електронної системи керування сівалкою. За характером та закономірностями зміни отриманих осцилограм інформаційних сигналів встановлено нормативні діагностичні параметри сенсорів сівалки, що в подальшому забезпечить швидку та ефективну діагностику. Встановлено, що оптичні сенсори використовують UART протокол передачі даних. Один із контактів роз’єму сенсора контролю висіву є приймачем (RX), а другий – є передавачем (TX) цифрового сигналу, відповідно, це дозволяє розташувати велику кількість сенсорів на одній лінії передачі даних. Результати досліджень забезпечать швидку діагностику техніки.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Shulga, A. V., S. G. Kravchuk, Y. S. Sybiryakova, A. I. Bilinsky, Ya T. Blagodyr, E. B. Vovchyk, V. P. Epishev, et al. "Development of Ukrainian network of optical stations UMOS as component of control systems for near-earth space." Kosmìčna nauka ì tehnologìâ 21, no. 3(94) (May 30, 2015): 74–82. http://dx.doi.org/10.15407/knit2015.03.074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Karachevtsev, A. O., O. V. Dubolazov, O. V. Olar, Yu O. Ushenko, L. Y. Pidkamin, and Yu Ya Tomka. "Interconnection of polarization-singular and polarization-correlation approaches to the analysis of optical properties of biological polycrystalline networks." Optoelectronic information-power technologies 36, no. 2 (2019): 43–52. http://dx.doi.org/10.31649/1681-7893-2018-36-2-43-52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Мінцер, О. П., та В. М. Заліський. "САМООРГАНІЗАЦІЯ ПЕПТИДНИХ НАНОСТРУКТУРОВАНИХ НАПІВПРОВІДНИКІВ — ПОТЕНЦІЙНА ОСНОВА ПОДОЛАННЯ РОЗРИВУ МІЖ НЕОРГАНІЧНИМИ ТА ОРГАНІЧНИМИ ЕЛЕМЕНТАМИ ЖИВОГО". Medical Informatics and Engineering, № 1 (22 червня 2020): 29–37. http://dx.doi.org/10.11603/mie.1996-1960.2020.1.11127.

Повний текст джерела
Анотація:
Дослідження присвячено проблемам використання біологічних інструментів для нанотехнологічних застосувань, не пов'язаних із біологією, таких як мікроелектроніка та наноелектроніка, мікроелектромеханічні та наноелектронні системи. Здійснено узагальнення досвіду використання біологічних інструментів і каркасів для створення пептидних наноструктУрованих напівпровідників. У результаті дослідження з'ясовано, що забезпечення більшої селективності, яке проявляється білками в біологічній хімії, можна досягти одночасним використанням декількох неорганічних матеріалів для паралельної конструкції, наприклад, як перша комбінація самозборки на основі ДНК і молекулярного розпізнавання пептидів для демонстрації візерункової синтетичної біомінералізації. Короткі пептиди, що містять ароматичні амінокислоти, можуть самоорганізовуватися в різні надмолекулярні структури, які залишаючись кінетично та термодинамічно стабільними, утворюють агрегати дифенілаланіну або фенілаланін-триптофану. Різні методи утворення агрегатів можуть бути використані для ініціації специфічної функціоналізованої організації нано-струткурних блоків із точно настроєною структурною геометрією та контрольованими напівпровідниковими характеристиками. Такі методи налаштування включають мікрофлюїдику, молекулярну модифікацію, хімічні та фізичні методи осадження з пароподібного стану, збірний стратегічний метод одночасного укладання, а також використання зовнішнього електромагнітного поля. Залучення теорії молекулярної щільності показало, що великі спрямовані ароматичні амінокислотні при взаємодії з мережами, які зв'язують водень, призводять до утворення квантово замкнутих областей в органічних наноструктурах, які лежать в основі молекулярного походження їх напівпровід-ності. Останні дослідження додатково виявили деякі фізико-хімічні особливості біоінспірованих надмолекулярних органічних напівпровідників, включаючи стійкі спектри поглинання, характерні для одновимірних квантових точок, або двомірних квантових свердловин, емісію фотолюмінесценції оптичних хвилеводів, залежну від температури електропровідність, а також сегнетоелектричні (п'єзо- та піроелектричні) властивості.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Борщевич, Лариса Вікторівна, та Надія Вікторівна Стець. "Мультимедійні засоби в науці та освіті". Theory and methods of e-learning 4 (13 лютого 2014): 13–18. http://dx.doi.org/10.55056/e-learn.v4i1.363.

Повний текст джерела
Анотація:
Серед пріоритетних напрямів розвитку галузі освіти, визначених у «Національній доктрині розвитку освіти», важливе місце займає застосування освітніх інновацій, інформаційних технологій, створення індустрії сучасних засобів навчання та виховання. Комп’ютеризація та інформатизація є новітніми процесами, що впроваджуються у сферу навчання, набуваючи статус не лише об’єкта вивчення, але й засобу навчання тієї чи іншої дисципліни, зокрема хімії.Мультимедійні технології є на сьогоднішній день найбільш необхідним та новим напрямом використання інформаційно-комп’ютерних технологій у сфері освіти. Мультимедійному навчанню присвячений багато фундаментальних досліджень [1; 2] як в теорії педагогіки, так і в частинних методиках викладання окремих навчальних дисциплін. Однак, незважаючи на це, проблема використання мультимедіа, як в теорії навчання, так і в реальній педагогічній практиці залишається дуже актуальною і викликає гострі дискусії.З 2012-2013 навчального року на хімічному факультеті Дніпропетровського національного університету ім. О. Гончара введена нова дисципліна «Мультимедійні засоби в науці та освіті». Вона викладається студентам ІІІ курсу (34 години лекційні та 34 години відведено на практичні заняття) та IV курсу (відповідно 32 та 16 годин).Цілями даної дисципліни є застосування знань у сфері комп’ютерних технологій при проведенні наукових досліджень та в освітньому процесі. Завданнями вивчення дисципліни є формування загальнотеоретичного кругозору, професійних знань і практичних навичок, необхідних бакалавру, спеціалісту та магістру напряму підготовки «Хімія» для успішної професійної діяльності в інформаційному суспільстві.Дисципліна «Мультимедійні засоби в науці та освіті» належить до вибіркової частини загальнонаукового циклу. Вона базується на знанні наступних предметів, що викладаються в рамках бакалаврату: педагогіка, інформатика, методологія наукових досліджень, методика викладання хімії тощо. Ця дисципліна носить узагальнюючий характер. Знання та навички, отримані при вивченні дисципліни, сприяють більш успішній роботі над дипломними та магістерськими роботами.У результаті освоєння дисципліни «Мультимедійні засоби в науці та освіті» студент повинен знати базис сучасних комп’ютерних технологій, основи організації сучасних інформаційних мереж, перспективи розвитку комп’ютерних технологій в науці та освіті. Студенти повинні вміти використовувати мережні та мультимедіа-технології в освіті і науці, виконувати підготовку документів (тези доповідей, реферати, аналітичні довідки, плани-конспекти уроків, лекцій та практичних занять, науково-дослідні роботи), використовуючи різні методи обробки інформації.Після вивчення даної дисципліни студенти володітимуть методами розв’язування спеціальних завдань із застосуванням комп’ютерних та мультимедіа-технологій у професійній і науковій діяльності з хімії, термінологією сучасних інформаційних технологій та навичками забезпечення інформаційної безпеки науково-технічної та освітньої інформації. Засоби мультимедіа сприяють:– стимулюванню когнітивних аспектів навчання, таких як сприйняття та усвідомлення інформації;– підвищенню мотивації студентів до навчання;– розвитку навичок самостійної роботи студентів;– глибшому підходу до навчання, формуванню глибшого розуміння навчального матеріалу [3].У широкому сенсі «мультимедіа» означає спектр інформаційних технологій, що використовують різноманітні програмні та технічні засоби з метою найбільш ефективного впливу на користувача. Завдяки застосуванню в мультимедійних продуктах і послугах одночасної дії графічної, аудіо (звукової) і візуальної інформації, ці засоби мають великий емоційний заряд і активно включають увагу користувача.Засобами мультимедіа можна осмислено і гармонійно інтегрувати різні види інформації. Це дозволяє за допомогою комп’ютера подавати інформацію в різноманітних формах: зображення, включаючи відскановані фотографії, креслення, карти і слайди; звукозапис, звукові ефекти і музику; відео, складні відеоефекти; анімації та анімаційне імітування [4].До засобів мультимедіа можна віднести практично будь-які засоби, здатні привнести в навчання та інші види освітньої діяльності інформацію різних видів. В даний час широко використовуються:– засоби для запису і відтворення звуку (електрофони, магнітофони, CD-програвачі);– системи та засоби телефонного, телеграфного та радіозв’язку (телефонні апарати, факсимільні апарати, телетайпи, телефонні станції, системи радіозв’язку);– системи та засоби телебачення, радіомовлення (теле- та радіоприймачі, навчальне телебачення і радіо, DVD-програвачі);– оптична та проекційна кіно- і фотоапаратура (фотоапарати, кіно-камери, діапроектори, кінопроектори, епідіаскопи);– поліграфічна, копіювальна, розмножувальна та інша техніка, призначена для документування і розмноження інформації (ротапринти, ксерокси, різографи, системи мікрофільмування);– комп’ютерні засоби, що забезпечують можливість електронного подання, обробки і зберігання інформації (комп’ютери, принтери, сканери, графічні пристрої), телекомунікаційні системи, що забезпечують передачу інформації по каналах зв’язку (модеми, мережі дротових, супутникових, радіорелейних та інших видів каналів зв’язку, призначених для передачі інформації) [5].Про всі ці мультимедійні засоби навчання студенти отримують інформацію під час вивчення дисципліни «Мультимедійні засоби в науці та освіті».Крім того, вони знайомляться з різноманітними програмними продуктами, що використовуються при викладанні хімічних дисциплін та в хімічних наукових дослідженнях. Ці продукти можна умовно класифікувати за основним призначенням (рис. 1) [6].Рис. 1. Програми, що використовуються при викладанні хімічних дисциплін Значна частина курсу «Мультимедійні засоби в науці та освіті» присвячена застосуванню мультимедійних засобів навчання у викладанні хімічних дисциплін, оскільки випускники хімічного факультету отримують після закінчення університету спеціальність «хімік, викладач хімії».Головним питанням сьогодення в системі нової освіти є опанування учнями вмінь і навичок саморозвитку особистості, що значною мірою досягається шляхом впровадження інноваційних технологій, організації процесу навчання. Нові форми розвитку вимагають нових правил і нових шляхів досягнення результатів. Така позиція вимагає від сучасної освіти реформаційних кроків щодо оновлення її змісту та застосування нових педагогічних підходів, впровадження інформаційних і комунікаційних технологій, що модернізують навчальний процес. У зв’язку з цим студенту, як майбутньому вчителю, слід вміти застосовувати інформаційні технології у викладанні хімії. Ці вміння вони формують при вивченні дисципліни «Мультимедійні засоби в науці та освіті».Мультимедійні засоби навчання є універсальними, оскільки можуть бути використані на різних етапах заняття:– під час мотивації як постановка проблеми перед вивченням нового матеріалу;– у поясненні нового матеріалу як ілюстрації;– під час закріплення та узагальнення знань;– для контролю знань.Майбутнім учителям та викладачам слід дати уявлення стосовно методичних аспектів застосування мультимедійних засобів на різних етапах викладання хімії. Студенти повинні засвоїти, що використання засобів мультимедіа з метою повторення, узагальнення та систематизації знань не тільки допомагає створити конкретне, наочно-образне уявлення про предмет, явище чи подію, які вивчаються, але й доповнити відоме новими даними. При цьому відбувається не лише процес пізнання, відтворення та уточнення вже відомого, але й поглиблення знань. Студенти повинні усвідомлювати, що під час роботи з навчальною програмою важливо зосередити увагу учнів на найбільш складну для засвоєння частину, активізувати самостійну пошукову діяльність учнів [7].Метою застосування відеоматеріалів та інших мультимедійних засобів є ліквідація прогалин у наочності викладання хімії в середніх загальноосвітніх та вищих навчальних закладах. На одному з практичних занять з дисципліни «Мультимедійні засоби в науці та освіті» студенти створюють відеофрагменти хімічних демонстраційних дослідів, які можна використовувати на уроках хімії в середніх навчальних закладах та на лекціях з курсу «Загальна та неорганічна хімія». При розробці та виготовленні відеофрагментів студенти застосовують основні принципи створення відеоматеріалів з демонстраційного експерименту:– ілюстративність (надають можливість ілюструвати матеріал, що викладається, не розкриваючи зміст теми замість викладача);– фрагментарність (надають можливість дозовано викладати матеріал, залежно від швидкості сприйняття учнями та студентами);– методична інваріантність (відео фрагменти можна використовувати на розсуд викладача на різних етапах заняття);– лаконічність (ефективного викладення більшої кількості інформації за короткий час);– евристичність (подання нового матеріалу настільки зрозуміло, щоб нові знання виявились доступними для свідомого засвоєння учнями та студентами).Створені студентами відео продукти розглядаються на узагальнюючому занятті, обговорюються всіма членами групи та викладачем, що проводить практичне заняття. Найкращі з них застосовуються під час проведення педагогічного практикуму та на заняттях з «Методики викладання хімії».Використовуючи мультимедійні засоби навчання, можна проводити повноцінні уроки і заняття з хімії поза кабінетом хімії або в кабінетах без спеціального обладнання: витяжної шафи, демонстраційного стола, водопроводу тощо. Це дає змогу розширити можливості проведення уроків хімії в інших навчальних кабінетах, забезпечуючи мобільність.Засоби мультимедіа дозволяють одночасно використовувати різні канали обміну інформацією між комп’ютером і навколишнім середовищем. Одним із достоїнств застосування засобів мультимедіа в освіті є підвищення якості навчання.Розвиток сучасної освіти дозволяє чітко визначити місце та роль мультимедійних технологій у системі засобів навчання. Викладачі різних дисциплін використовують мультимедійні засоби в процесі відбору й накопичення інформації з даного предмету, систематизації й передачі знань, організації навчальної діяльності, створення різних її видів і форм. Це сприяє розробленню різноманітних мультимедійних навчальних продуктів та методичних рекомендацій щодо їх застосування в загальноосвітній та вищій школі. Модернізація системи освіти, яка характеризується впровадженням мультимедійних технологій у навчальний процес, призводить до значної корекції навчальних планів, програм, підручників, методичних розробок. Усвідомлення особливої ролі мультимедійних технологій приведе до ще більшої суттєвої інтеграції навчальних дисциплін. У зв’язку із зростаючим значенням комп’ютеризації виникає потреба в усвідомленому використанні цього потужного інтелектуального засобу. А це під силу буде лише досвідченому кваліфікованому спеціалісту-викладачу. Саме введення нової дисципліни «Мультимедійні засоби в науці та освіті» дозволить майбутнім фахівцям з хімії набути відповідних знань і вмінь.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Николайчук, Ярослав, Юрій Кудряшов, Василь Яцків та Тарас Лендюк. "Стратегія та перспективи створення в Україні багаторівневих комп’ютерних мереж з відкритими оптичними каналами". International Journal of Computing, 31 грудня 2002. http://dx.doi.org/10.47839/ijc.1.2.2204.

Повний текст джерела
Анотація:
В статті аналізуються проблеми і напрямки створення широкого класу розподілених комп’ютерних мереж та ефективних принципів кодування даних при реалізації цифрових каналів зв ’язку. Автори розглядають напрямки розвитку діапазону систем частотної передачі оптичних сигналів для даних багаторівневих комп’ютерних мереж. Порівнюються переваги волоконно­оптичних ліній зв’язку з використанням відкритих оптичних каналів. Показано перспективи розвитку розподілених комп’ютерних мереж на основ і відкритих оптичних каналів. В статті також наводяться теоретичні основи побудови багаторівневих комп’ютерних мереж з відкритими оптичними каналами. Також наводиться архітектура різних класів багаторівневих комп’ютерних мереж з відкритими оптичними каналами. Крім того розглядаються переваги використання комп’ютерних мереж, які використовують відкриті оптичні канали.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії