Статті в журналах з теми "Обмежене керування"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Обмежене керування.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-41 статей у журналах для дослідження на тему "Обмежене керування".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ковриго, Ю. М., та П. В. Новіков. "Двоканальний нечіткий контролер для регулювання технологічних параметрів в умовах нестаціонарності динамічних характеристик об’єкта керування". Automation of technological and business processes 11, № 1 (26 квітня 2019): 4–13. http://dx.doi.org/10.15673/atbp.v11i1.1328.

Повний текст джерела
Анотація:
Розглянуто схему системи автоматичного керування з двоканальним нечітким контролером при регулюванні технологічних параметрів в умовах нестаціонарності динамічних характеристик об’єкта керування. Актуальність даного дослідження полягає у використанні більш складних структур керування, коли необхідно добитися малих відхилень показників якості керування за умов зміни параметрів моделі керування. Застосування схем з предикторами і алгоритмами адаптації обмежене на об’єкта теплоенергетики, зокрема прямоточних котлоагрегатах. Як вдосконалення існуючих систем розповсюдженим підходом є реалізація ПІД-алгоритму регулювання за допомогою нечіткого регулятора, а потім за рахунок підбору функцій належності і побудови бази правил відбувається вдосконалення алгоритму регулювання. На відміну від описаної схеми, в основі побудови двоканального нечіткого контролера лежить не ПІД-закон, а знання і досвід оператора при регулюванні технологічного параметра в ручному режимі. Визначені діапазони вхідних і вихідних змінних fuzzy-контролера. На основі експертних знань і аналізу дій оператора укладено базу правил для блоків нечіткої логіки. Виконано математичне моделювання спроектованої системи. Проведено порівняння одноконтурної системи при незмінних налаштуваннях регулятора і двоканального нечіткого контролера для різних режимів роботи об’єкта, що визначаються змінним навантаженням енергоблоку ТЕС. Розраховано показники якості функціонування обох систем. Застосування двоканального нечіткого контролера забезпечує сталість показників якості функціонування системи автоматичного регулювання. При цьому забезпечується робастність системи автоматичного регулювання за стійкістю в умовах параметричної нестаціонарності досліджуваного об’єкта.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Капустян, О. А. "Усереднений синтез параметричного оптимального керування швидкоосцілюючим тепловим процесом з обмеженим відокремленим керуванням". Вісник Київського університету. Серія "Фізико-математичні науки", вип. 1 (2000): 247–53.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Капустян, О. А. "Усереднений синтез параметричного оптимального керування швидкоосцілюючим тепловим процесом з обмеженим відокремленим керуванням". Вісник Київського університету. Серія "Фізико-математичні науки", вип. 1 (2000): 247–53.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhuchenko, Oleksii. "УПРАВЛІННЯ ДИНАМІЧНИМИ ОБ’ЄКТАМИ З РОЗПОДІЛЕНИМИ ПАРАМЕТРАМИ З ВИКОРИСТАННЯМ ПРОГНОЗУЮЧИХ МОДЕЛЕЙ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 1 (15) (2019): 172–80. http://dx.doi.org/10.25140/2411-5363-2019-1(15)-172-180.

Повний текст джерела
Анотація:
Актуальність теми дослідження. Одним із сучасних формалізованих підходів до аналізу і синтезу систем керування, що базуються на математичних методах оптимізації, є теорія управління динамічними об’єктами з використанням прогнозуючих моделей. Постановка проблеми. Існує проблема управляти багатовимірними і багатозв’язними об’єктами зі складною структурою, що включає нелінійність, оптимізувати процеси в режимі реального часу в рамках обмежень на керуючі й керовані змінні, враховувати невизначеності об’ктів і збурень. Аналіз останніх досліджень і публікацій. За останні роки МРС-керуванню була присвячена значна кількість наукових досліджень. Питання робастної стійкості та збіжності алгоритмів керування МРС-систем розглядались у багатьох робітах. Крім того, досліджувались гібридні системи, які складаються як із неперервних, так і дискретних елементів. Виділення недосліджених частин загальної проблеми. Незважаючи на численні дослідження методу керування з прогнозуючою моделлю для різних об’єктів і умов функціонування, існує проблема використання даного методу для об’єктів з розподіленими параметрами, пов’язана із складністю математичного опису таких об’єктів. Постановка завдання. Існує проблема використання даного методу для об’єктів з розподіленими параметрами, пов’язана із складністю математичного опису таких об’єктів. Виклад основного матеріалу. Синтезовано систему керування з прогнозуючою моделлю для об’єктів із розподіленими параметрами на основі спрощеної математичної моделі останніх. Висновки відповідно до статті. МРС – керування показало себе як ефективний інструмент для керування об’єктами з розподіленими параметрами, які математично описуються диференціальними рівняннями в частинних похідних. Застосування МРС – керування виглядає більш пріоритетним і щодо оптимального ЛК – керування у зв’язку з тим, що коригування керування здійснюється на кожному кроці.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Denisov, Yuri, Oleg Shapovalov, Oleg Sereda та Yevhenii Kuts. "ОПТИМІЗАЦІЯ ЕНЕРГОДИНАМІЧНИХ ПРОЦЕСІВ У СИСТЕМІ КЕРУВАННЯ ПРИВОДОМ СТАБІЛІЗАЦІЇ ПОЛЬОТУ БЕЗПІЛОТНОГО ЛІТАЛЬНОГО АПАРАТА". TECHNICAL SCIENCES AND TECHNOLOG IES, № 3(13) (2018): 187–95. http://dx.doi.org/10.25140/2411-5363-2018-3(13)-187-195.

Повний текст джерела
Анотація:
Актуальність теми дослідження. З огляду на зростання ролі безпілотних літальних апаратів у народному господарстві й у військовій сфері проблема підвищення їхньої енергоефективності та якості управління є актуальною. Постановка проблеми. Через обмежений енергетичний ресурс безпілотного літального апарата (БПЛА) є необхідність збільшення тривалості його польоту за рахунок якісного управління процесом енергоспоживання від акумулятора обмеженої ємності. Аналіз останніх досліджень і публікацій. Аналіз останніх публікацій за рішенням поставленої проблеми свідчить про те, що питання підвищення енергоефективності БПЛА практично не обговорюються. Наявні публікації переважно присвячені побудові їх систем управління. Виділення недосліджених частин загальної проблеми. У роботах, присвячених зазначеній проблемі, питання підвищення енергоефективності систем управління БПЛА за рахунок забезпечення високої якості їхніх динамічних процесів не досліджуються. Постановка завдання. При обмеженій ємності акумулятора необхідно підвищити тривалість польоту БПЛА за рахунок зниження перерегулювання і тривалості перехідних процесів у системах його електроприводів. Виклад основного матеріалу. Для вирішення поставленої проблеми запропоновано систему електроприводів БПЛА виконувати на основі трьох контурів. Внутрішнім контуром є контур струму з оптимальним за швидкодією і без перерегулювання перехідним процесом. Він підпорядкований контуру швидкості, де структура й параметри регулятора синтезовані їх критерієм швидкодії. Головним контуром є контур кута крила БПЛА з оптимальною швидкодією. Висновки відповідно до статті. Запропоноване рішення структури системи електроприводу БПЛА дає змогу значно підвищити автономність його польоту.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Бондаренко, Д. В. "ДИНАМІЧНЕ З’ЄДНАННЯ ФОТОЕЛЕМЕНТІВ В СОНЯЧНИХ ПАНЕЛЯХ". Vidnovluvana energetika, № 3(66) (30 вересня 2021): 45–51. http://dx.doi.org/10.36296/1819-8058.2021.3(66).45-51.

Повний текст джерела
Анотація:
Метою даної роботи є дослідження принципів динамічного з’єднання фотоелементів в сонячних панелях. У роботі показано переваги використання таких з’єднань, оскільки розвиток техніки потребує живлення пристроїв з різними напругами та струмами. Відмічено, що динамічні з’єднання можуть формувати довільну топологію ланцюгів генерування електричної енергії шляхом зміни з’єднань з послідовних на паралельні і навпаки. Також відмічено, що є можливість динамічної зміни параметрів безпосередньо при експлуатації системи. Відзначено, що для динамічної коммутації паралельних і послідовних з’єднань потрібно три елементи електричного кола, показно елементарне коло динамічних з’єднань, та коло для динамічної зміни полярності вихідної напруги сонячної панелі. Побудована базова схема динамічної комутації фотоелементів в сонячній панелі з використанням польових транзисторів. Запропоновано шляхи вирішення проблем, які пов’язані з паралельним з’єднанням та паразитними елементами. Розглянуто використання двох, з‘єднаних на зустріч, MOSFET-транзисторів для динамічної комутації. Відмічено, що для керування таким колом доцільно використовувати програмовані логічні контролери, які можуть керувати коммутацією з використанням зазделегідь завантаженої мікропрограми та є гнучкими в оперативному керуванні і мають додаткові функції моніторингу та зв’язку з віддаленими пристроями. На прикладі чотирьох фотоелементів показана конструкція сонячної панелі з динамічними з’єднаннями фотоелементів і використанням SMD-транзисторів та керуванням за допомогою контролера. Відмічено, що в такій конструкції всі елементи можуть бути максимально інтегрованими. Наголошено, що застосування динамічної комутації також є кроком до формування змінного струму різної форми. Відмічено певні обмеження запропонованої системи, зокрема кратність кількості фотоелементів в панелях, та намічено її подальший розвиток. Бібл. 14, рис. 5.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lievi, L., та O. Zyma. "СУЧАСНІ ІНТЕЛЕКТУАЛЬНІ МЕТОДИ МОДЕЛЮВАННЯ СКЛАДНИХ ТЕХНОЛОГІЧНИХ ОБ'ЄКТІВ". Системи управління, навігації та зв’язку. Збірник наукових праць 1, № 63 (26 лютого 2021): 49–53. http://dx.doi.org/10.26906/sunz.2021.1.049.

Повний текст джерела
Анотація:
Одним з ключових питань синтезу систем автоматичного регулювання є розробка адекватних математичних моделей об'єктів керування. Розробка моделей фізичних систем - це дуже складна і трудомістка робота, яка займає від 80 до 90 % зусиль, необхідних для аналізу і синтезу систем керування, і включає такі етапи: визначення параметрів процесу, які впливають на об'єкт керування; визначення зв'язків між параметрами; складання матеріальних та енергетичних балансів об'єктів керування; лінеаризація цих балансів; одержання диференціального рівняння. Результатом моделювання майже всіх технологічних об'єктів є складне диференціальне рівняння великого порядку, яке надалі використовується для розрахунку систем автоматичного регулювання. Під математичною моделлю зазвичай розуміють сукупність співвідношень (рівнянь, логічних умов, операторів тощо), що визначають характеристики станів об'єкту моделювання. Сучасні наука й технологія як об'єкти дослідження розглядають матеріальні об'єкти навколишнього світу та їхні фізико-хімічні перетворення. Практична реалізація цих досліджень від лабораторних установок до промислових виробництв використовує моделювання як процес пізнання, а також для оптимальної організації, функціонування й керування виробництвом. Сучасним технологіям притаманна висока складність, яка виявляється у великій кількості й різноманітті параметрів, що визначають хід процесів, внутрішніх зв'язків між параметрами, у їхньому взаємному впливі, причому зміна одного параметра може викликати нелінійну зміну інших параметрів. Ця складність підсилюється при виникненні множинних зворотних зв'язків між параметрами, а також неконтрольованими збуреннями, випадковим чином розподіленими в часі. Інформаційний потенціал, генерований технологічними процесами, надзвичайно великий. При обмежених можливостях його сприйняття необхідно зменшувати цей потенціал, що остаточно призведе до скорочення альтернатив під час прийнятті керуючих рішень. Це досягається пізнанням процесу через моделі - спрощені системи, які відображають окремі, обмежені в потрібному напрямку, сторони процесу, що розглядається. Існує багато способів одержання моделей технологічних процесів. Кожен спосіб дає можливість побудувати модель, адекватну процесу в певному сенсі, що залежить від обраного критерію. Це означає, що існує деяка абстрактна відповідність між безліччю моделей і модельованим об'єктом. Моделювання, власне кажучи, засновано на використанні динамічної аналогії, яка означає нетотожну подобу властивостей або співвідношень
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mazko, A. G. "Зважене гасіння зовнішніх і початкових збурень у дескрипторних системах керування". Ukrains’kyi Matematychnyi Zhurnal 73, № 10 (11 жовтня 2021): 1377–90. http://dx.doi.org/10.37863/umzh.v73i10.6698.

Повний текст джерела
Анотація:
УДК 517.925.51; 681.5.03Дослiджується проблема узагальненого -керування для класу лiнiйних дескрипторних систем. Запропоновано критерiй та достатнi умови iснування законiв керування, при яких замкнена система є регулярною, стiйкою, неiмпульсною i гарантується бажана оцiнка зваженого рiвня гасiння зовнiшнiх i початкових збурень. Основнi обчислювальнi процедури синтезу регуляторiв зводяться до розв’язання лiнiйних i квадратичних матричних нерiвностей без рангових обмежень. Наведено приклад робастної стабiлiзацiї гiдравлiчної системи з трьома резервуарами.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

ПРИДАЛЬНИЙ, Борис, та Павло ГЕЗУН. "Мехатронна система керування виконавчими механізмами металообработних машин". СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 1, № 16 (19 травня 2021): 23–29. http://dx.doi.org/10.36910/automash.v1i16.504.

Повний текст джерела
Анотація:
За результатами інженерно-пошукових досліджень розроблено та втілено у вигляді діючого стенда структуру мехатронної системи керування рухами виконавчих механізмів. Отриманий діапазон зміни передатних відношень в приводі головного руху та приводі подач дає можливість забезпечення широкого ряду швидкостей та зусиль взаємних переміщень деталі і інструмента, що визначає можливості продуктивної обробки поверхонь широкого діапазону діаметрів і твердих матеріалів. Для більш оптимального способу отримання діапазону характеристик формоутворюючих рухів реалізована можливість управління характеристиками роботи двигуна привода головного руху. Розроблена система також дає можливість встановлення жорсткого кінематичного зв'язку між обертальними та поступальними формоутворюючими рухами, що необхідно для обробки гвинтових поверхонь. Система керування також забезпечує необхідні елементи захисту обладнання і персоналу та передбачає загальмовування двигуна при вимкненні живлення і можливості встановлення обмежень на переміщення. Запропоновані рішення розширюють можливості взаємодії з іншими підсистемами технологічного обладнання, наприклад, механізмом затиску заготовок та інструментів у шпиндельних вузлах верстатів. Використання персонального комп’ютера як програматора контролера, що формує команди керування, а також доступність та поширеність елементної бази на основі якої розроблено представлену систему розширює можливості її виготовлення для використання у складі технологічного обладнання і навчально-дослідних стендів в умовах необхідності економії коштів. Ключові слова: шпиндельний вузол, система керування, мехатронна система.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mazko, A. G. "Зважена оцінка і пониження рівня впливу обмежених збурень у дескрипторних системах керування". Ukrains’kyi Matematychnyi Zhurnal 72, № 11 (20 листопада 2020): 1510–23. http://dx.doi.org/10.37863/umzh.v72i11.2389.

Повний текст джерела
Анотація:
УДК 517.925.51; 681.5.03 Для класу лінійних дескрипторних систем встановлено нові критерії існування законів керування, що забезпечують асимптотичну стійкість та задану оцінку зваженого рівня гасіння обмежених збурень. Запропоновано методику узагальненої -оптимізації дескрипторних систем з керованими і спостережуваними виходами. Основні обчислювальні процедури відповідного алгоритму зводяться до розв'язання лінійних та квадратичних матричних нерівностей при додаткових рангових обмеженнях. Наведено приклад дескрипторної системи стабілізації електричного кола.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Hashchuk, L., та P. Hashchuk. "ІНФОРМАЦІЙНІ ПРИНЦИПИ ТЕОРІЇ СИНТЕЗУ ЗАКОНІВ ПЕРЕМИКАННЯ ПЕРЕДАЧ В ТРАНСМІСІЯХ АВТОМОБІЛЬНОЇ ПОЖЕЖНО-РЯТУВАЛЬНОЇ ТЕХНІКИ". Fire Safety 39 (29 грудня 2021): 21–31. http://dx.doi.org/10.32447/20786662.39.2021.03.

Повний текст джерела
Анотація:
Ідеться про загальні принципи, на які повинна б спиратись теорія синтезу законів (стратегій) керування пе-ремиканням передач в автоматизованій механічній трансмісії (AMT — Automated Manual Transmission) автомо-більної пожежно-рятувальної машини. Без застосування конкретних оптимізаційних критеріїв за допомогою низки наочних міркувань розглядається початковий етап розвитку концепції автоматизованого перемикання пе-редач в автомобільній трансмісії. На підставі проведеного дослідження сформульовано десять основних питань, на які теорія має знайти вмотивовані відповіді. Ці питання охоплюють зокрема такі теми й поняття: протистояння різних тенденцій в царині автоматизації трансмісії мобільної машини й об’єктивність підстав для цього проти-стояння; мапа перемикань як засіб ідентифікації та відображення законів перемикання передач; існування пріори-тетів режимів роботи двигуна на різних передачах в трансмісії; сумісність/несумісність вимог енергоощадності, екологічності, динамічності, керованості при формуванні законів (стратегій) керування системою «двигун — трансмісія»; .активна участь двигуна у синхронізаційних процесах; режим керування штибу Kickdown та необ-хідність в ньому; явище зациклення процесу перемикання передач; алгоритмічні обмеження технічного штибу; Zeroshift-технологія керування трансмісією.Стверджується, що автоматизазована механічна трансмісія — це надзвичайно ефективна альтернатива ав-томатичній трансмісії з її внутрішнім автоматизмом. Наголошується, що так звана «зовнішня» автоматизація трансмісії машини стає неперехідною потребою. До того ж, застосування технології Zeroshift в значній мірі може знівелювати втрату енергетичної ефективності через можливе зростання частоти перемикання передач. Наполя-гається на тому, що теорію автоматичного керування трансмісією мобільної машини доречно розглядати в термінах концепцій, а не варіацій технічних рішень.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Maruhlenko, O. V. "Планування інвестицій в інноваційну продукцію на основі матриці інноваційного потенціалу регіону". Bulletin of the Dnipropetrovsk University. Series: Management of Innovations, № 7 (25 грудня 2016): 229. http://dx.doi.org/10.15421/191625.

Повний текст джерела
Анотація:
Ефективне керування інноваційним процесом для виробництва інноваційної продукції передбачає обґрунтування джерел, визначення обсягів і об’єктів фінансування інноваційних розробок. Оскільки один із важливих елементів керування інвестиційним забезпеченням інноваційного розвитку – планування вартості та витрат на інноваційну продукцію, обраний напрям дослідження вважаємо актуальним.Мета роботи – характеристика методу визначення обсягів інвестицій в інноваційну продукцію за її типами і підприємствами на основі матриці інноваційного потенціалу регіону для формування оптимального інвестиційного портфелю.Перелічено основні види форсайтних досліджень науково-технічного розвитку, які проведені в Україні. Зроблено висновок, що не зважаючи на множинність варіантів такого розвитку, його напрями поряд з іншими факторами обмежені фінансовим забезпеченням виробництва інноваційної продукції, складник якого – визначення потрібних обсягів та об’єктів для інвестування.Охарактеризовано метод відбору видів інноваційної продукції як об’єкту для інвестування. Для відбору інвестиційних об’єктів визначають перелік пріоритетних для регіону критичних технологій та інноваційних підприємств, оцінюють інвестиційні ризики на різних стадіях виробництва інноваційної продукції, розраховують дисконтований дохід і ціни ризиків, розв’язують задачу оптимального розподілу інвестицій за типами продукції і підприємствами із урахуванням дисконтованого доходу й ціни ризиків.Новизна дослідження полягає у алгоритмізації відбору пріоритетних для інвестування інноваційних технологій на основі матриці інноваційного потенціалу регіону.Результати дослідження можуть бути застосовані для формування інвестиційного портфелю, що містить найбільш перспективні з економічного погляду інноваційні технології.Перспективний напрям для подальших досліджень – здійснення порівняльного інвестиційного портфельного аналізу інноваційних виробництв для різних галузей діяльності на основі запропонованого алгоритму.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

ГЛАДЧЕНКО, Володимир, та Юрій ОВЕРЧЕНКО. "МЕТОДИКА СКЛАДАННЯ МАТЕМАТИЧНОЇ МОДЕЛІ ТА РЕЗУЛЬТАТИ РОЗРАХУНКУ ПОКАЗНИКІВ РУХУ ПЕРЕОБЛАДНАНОГО ЕЛЕКТРИЧНОГО КТЗ КАТЕГОРІЇ М1 В ЇЗДОВОМУ ЦИКЛІ". СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 1, № 16 (19 травня 2021): 46–53. http://dx.doi.org/10.36910/automash.v1i16.507.

Повний текст джерела
Анотація:
У роботі запропонована методика складання та результати розрахунку за математичною моделлю. Проблема математичного опису функціональних елементів електричних колісних транспортних засобів (ЕКТЗ) ускладнюється необхідністю опису електричних процесів що відбуваються та впливом системи керування на силову установку. Розроблена методика є оригінальною, розглядається система «Силова акумуляторна батарея – Тяговий електродвигун – Трансмісія» в умовах руху за їздовим циклом. Для складання математичної моделі був обраний математичний пакет OpenModelica, це відкрите середовище моделювання та моделювання на основі Modelica. Модель має блок «Водій», який представляє собою замкнений контур контролера керування. Він відслідковує фактичну швидкість електромобіля і порівнює її з необхідною, заданою їздовим циклом. Визначені тягово-швидкісні та енергетичні показники переобладнаного автомобіля категорії М1 в батарейний електромобіль. За допомогою розробленої методики, можливо прогнозувати експлуатаційні показники електричного колісного транспортного засобу до виконання переобладнання. В якості вихідних числових значень параметрів переобладнаного автомобіля для проведення числового експерименту з використанням ПК, було обрано серійний автомобіль категорії М1 ЗАЗ–965 «Запорожець». Методика проведення числового експерименту передбачає проведення великої кількості обчислень в різних поєднаннях вихідних параметрів. В подальшому на ньому передбачено проведення дорожніх та стендових випробовувань. Технічний рівень переобладнання визначається питомою масою та питомою вартістю як окремих агрегатів так і всього електронного обладнання в цілому. Однак, показник вартості обладнання має сильну волатильність, тож його важко оцінити об’єктивно. В роботі пропонується критерій можливості збереження величини повної маси переобладнаного ЕКТЗ, умова обмеження за габаритними розмірами, максимальної кутової швидкості ротора тягового електродвигуна, максимального струму та напруги в силових елементах системи керування. Ключові слова: електромобіль, переобладнання, ефективність, математична модель, контролер, числовий експеримент, енергетична ефективність.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Горбань, А. В., О. В. Маранов, Ю. П. Клочков та З. Я. Дорофєєва. "ІНФОРМАЦІЙНЕ ЗАБЕЗПЕЧЕННЯ ДЛЯ МОНІТОРИНГУ ТА УПРАВЛІННЯ РУХОМ СУДЕН З ВИКОРИСТАННЯМ ДАНИХ СУПУТНИКОВОЇ НАВІГАЦІЇ". Vodnij transport, № 1(32) (27 січня 2021): 114–27. http://dx.doi.org/10.33298/2226-8553.2021.1.32.12.

Повний текст джерела
Анотація:
У статті досліджена можливість інформаційного забезпечення для моніторингу та управління рухом суден з використанням даних супутникової навігації. Розглянуті елементи системи безпеки судноводіння. Вирішення завдань, пов'язаних з безпекою судноводіння і своєчасною доставкою вантажів, екологічним захистом прибережної зони, вимагає чіткого моніторингу руху суден і управління швидкостями потоків судів або окремих суден. Для цієї мети необхідне впровадження нових сучасних радіотехнічних засобів на базі високоточних супутникових навігаційних технологій та застосування систем, які забезпечують безпеку плавання судів. Дані обставини вимагають створення в регіонах систем керування судноплавством з таким навігаційним забезпеченням, яке б у максимальному ступені знижувало ризик аварій судів при плаванні в прибережних водах, на підходах до портів, у портових водах, у вузкостях, на внутрішніх водних шляхах, де свобода маневрування обмежена. У дослідженні представлене рішення актуальної наукової задачі з розробки математичного забезпечення формування високоточних полів місцевизначення, річкової диференціальної підсистеми GPS, для створення суцільних високоточних телекомунікаційних полів у СХ та ПХ діапазонах з урахуванням впливу полі компонентної підстилаючої поверхні, параметрів приймально-передаючого обладнання та урахування загоризонтної рефракції, яка має важливе значення для водного транспорту. Ключові слова:
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ostapiuk, Z. V., та T. O. Korotyeyeva. "Застосування графів для відображення життєвого циклу сутностей під час розроблення системи опрацювання відгуків безпосередніх користувачів програмних продуктів". Scientific Bulletin of UNFU 29, № 9 (26 грудня 2019): 147–52. http://dx.doi.org/10.36930/40290926.

Повний текст джерела
Анотація:
Важливою для безпосереднього користувача здатністю будь-якого програмного продукту є гнучкість застосування та налаштування. Проблема, описана та частково досліджена у цій науковій роботі, стосується питання забезпечення цієї гнучкості, а саме – підходів до задавання в межах програмної системи набору станів певної сутності, а також накладення обмеження на множину станів, у які згадана вище сутність може перейти, перебуваючи в одному із них. Тут і далі під правилами переходу сутності в різні стани мають на увазі обмеження множини наступних станів. Оглянуто сучасні системи для керування відгуками до програмного забезпечення, як приклад предметної області зі сутностями, які не мають наперед визначеної множини станів та переходів між ними. Проаналізовано основні переваги та недоліки аналогічних систем та їх підходу до зберігання станів. Наведено приклади та описи можливих станів сутностей та правил їх переходів. Досліджено перспективи застосування теорії графів для вирішення поставленої у статті проблеми. На підставі проведеного дослідження спроектовано архітектуру та реалізовано згідно з нею систему, що складається з мобільного та браузерного (веб-сайт та розширення веб-переглядача Google Chrome) клієнтів. Ціль системи – забезпечити проектні команди легким для освоєння засобом для збирання та оброблення різноманітних відгуків безпосередніх користувачів та зацікавлених сторін. Зокрема, розроблена система дає змогу створювати шаблони відгуків із різними наборами полів та різним типом кожного із них. Результати дослідження застосовано для реалізації функціональності зберігання та опрацювання динамічних станів сутності відгуку в межах розробленої програмної системи. Обґрунтовано вибір інтерфейсного рішення для представлення правил переходів між станами сутності для безпосередніх користувачів. Досліджено та застосовано алгоритм перевірки коректності завдання станів та правил їх переходів.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Сакалюк, О. Ю. "Реалізація проекту розробки програмного забезпечення автоматизованого керування процесом формування розкладу навчальних занять засобами пакета Gantt Project". Automation of technological and business processes 13, № 3 (4 листопада 2021): 57–63. http://dx.doi.org/10.15673/atbp.v13i3.2142.

Повний текст джерела
Анотація:
Основою якісної організації освітнього процесу будь-якого навчального закладу, особливо закладу вищої освіти є розклад навчальних занять. Якість підготовки спеціалістів в значній мірі залежить від методично правильного сформованого розкладу навчальних занять. Розклад навчальних занять та екзаменів є одним з найбільш відповідальних, трудомістких та стомлюючих завдань планування освітнього процесу [1]. Дослідники доклали значних зусиль для розробки універсальної автоматизованої системи керування процесом формування розкладу навчальних занять. Однак на сьогоднішній день немає ідеального рішення цієї проблеми, тому що ми повинні враховувати численні параметри та обмеження. Жодна з раніше розроблених систем не є універсальною і не може задовольнити потреби всіх вищих навчальних закладів. Більшість систем використовують велику кількість вхідної інформації, що зберігається в базах даних. За допомогою складних алгоритмів на основі аналізу вхідної інформації складається розклад. Однак підсумковий графік не завжди ідеальний і може потребувати багато ресурсів та часу. Розклад повинен задовольняти інтереси всіх учасників процесу [2]. Для розробки такої системи потрібно якісно розподілити роботи між виконавцями. Створення, будь-якого проекту завжди починається з його плануванням. Для виконання цих завдань уже давно багато компаній використовують системи управління проектами, які дозволяють ставити певні завдання, визначати людей, слідувати за процесом виконання завдань та виділенням необхідних ресурсів. Завдання управління проектом програмного забезпечення може бути надзвичайно складним, виходячи з багатьох особистих, командних та організаційних ресурсів. Якість програмного продукту залежить від процесу завершення проекту. Час затримок у проекті з розробки програмного забезпечення та низька продуктивність, як правило, впливають на кінцевий результат. Останнім часом еволюція інструментів управління проектами як для програмних, так і для непрограмних додатків прискорюється швидкими темпами, а кількість доступних продуктів значно зросла. Щодня розробляється багато інструментів та програмного забезпечення для управління проектами, які допомагають менеджерам автоматизувати адміністрування окремих проектів або груп проектів протягом їх життєвого циклу [3].
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Tolochko, O. I., V. S. Bovkunovych, and O. O. Burmelov. "CURRENT AND VOLTAGE STATOR LIMITATION IN THREE-ZONE SPEED CONTROL SYSTEM OF MOTOR WITH PERMANENT MAGNETS USING OPTIMAL CONTROL STRATEGIES." Tekhnichna Elektrodynamika 2018, no. 5 (August 9, 2018): 61–64. http://dx.doi.org/10.15407/techned2018.05.061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Прочухан, Д. В. "Нейромережеве моделювання в реалізації системи визначення правильності носіння медичної маски". Системи обробки інформації, № 1(164) (17 березня 2021): 65–72. http://dx.doi.org/10.30748/soi.2021.164.07.

Повний текст джерела
Анотація:
Розглянуто актуальну проблему визначення правильності одягнення медичної маски у людини. Для її вирішення запропоновано побудування моделі з використанням штучного інтелекту. Розглянуто механізм класифікації та обробки вхідних даних. Розроблено структуру згорткової нейронної мережі у вигляді моделі послідовної реалізації шарів згортки, агрегування, повного зв’язку. Обґрунтовано доцільність використання функції ReLU для активації вузлів. Застосовано метод Dropout для запобігання перенавчанню нейронної мережі. Вихідний шар реалізовано у вигляді одного нейрону з використанням функції активації сигмоїда. Оптимізація згорткової нейронної мережі здійснена методом стохастичного градієнтного спуску. Використано метод зворотного поширення помилки для навчання нейронної мережі. Розроблено програмний додаток на мові програмування Python. Використано бібліотеку Keras для забезпечення точності, правильності, повноти побудованої моделі. Проведено компіляцію з використанням бінарної перехресної ентропії в якості цільової функції. За допомогою розробленого додатку проведено ефективне навчання згорткової нейронної мережі на тестових вхідних зображеннях. Зважаючи на значні вимоги до апаратного забезпечення і програмних ресурсів, цей процес було здійснено під керуванням операційної системи Linux. Обмежена кількість періодів навчання забезпечила зменшення підсумкового часу навчання. Здійснено перевірку побудованої системи на контрольній множині. Отримано високі показники розпізнавання зображень. Працездатність програмного додатку перевірена з використанням різної апаратної і програмної конфігурації. Розроблена система може бути використані у галузях, які потребують контролю виконання правил безпеки під час пандемії.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Котов, Ігор Анатолійович. "Формалізація моделей онтологій у навчальних комплексах електроенергетичних спеціальностей". New computer technology 15 (25 квітня 2017): 68–72. http://dx.doi.org/10.55056/nocote.v15i0.640.

Повний текст джерела
Анотація:
Метою дослідження є автоматизація прийняття управлінських рішень у кризових ситуаціях, обґрунтування застосування формально-лінгвістичного підходу до подання професійних знань у системі підтримки рішень диспетчера енергосистеми, а також до опису евристик під час реалізації логічного висновку. Теоретична розробка і практичне впровадження уніфікованої, інтегральної моделі подання знань в системі підтримки прийняття рішень є актуальною науковою проблемою. Задачами дослідження є проведення аналізу форм представлення знань, застосування формальних моделей для різних форм представлення знань, формулювання підходу до методу ієрархічної уніфікації різних форм представлення знань, розробка формальних моделей для кожної форми представлення знань, розробка формальної моделі уніфікації кожної форми подання знань. Об’єктом дослідження є процес автоматизації підтримки прийняття управлінських рішень у кризових ситуаціях на основі використання уніфікованої моделі представлення професійних знань. Предметом дослідження є моделі уніфікації форм представлення знань у системах штучного інтелекту та методи автоматизації процесів управління підтримкою прийняття рішень у кризових ситуаціях. Передбачається розробка інтегральних програмних систем, заснованих на знаннях, для автоматизації процесів керування прийняттям рішень у кризових ситуаціях. При такому підході кожна використана форма представлення знань повинна розглядатися окремим випадком (частковою формою) загальної моделі. Результатом роботи є єдиний підхід до подання та аналізу професійних знань. Запропонована взаємопов’язана ієрархія форм представлення знань, що включає в себе знання різних рівнів про когнітивну діяльність системи підтримки рішень диспетчера. Розроблена формальна модель уніфікації форм представлення знань, формальна система введення обмежень для специфікації форм представлення знань.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Kalnysh, V. V., A. V. Shvets та S. M. Pashkovsky. "Характеристика діяльності зовнішніх пілотів безпілотних авіаційних комплексів та їх професійно важливі якості : теоретико-практичні аспекти". Ukrainian Journal of Military Medicine 2, № 1 (19 квітня 2021): 38–51. http://dx.doi.org/10.46847/ujmm.2021.1(2)-038.

Повний текст джерела
Анотація:
Актуальність. Наявна інформація щодо професійних вимог до операторів безпілотних авіаційних комплексів (БпАК) та їх психофізіологічних якостей, що дозволяють виконувати керування цими комплексами в звичайних та екстремальних ситуаціях, є обмеженою, розрізненою та несистематизованою. Всі ці причини стимулюють детальну розробку та уточнення переліку професійно важливих якостей та психофізіологічних критеріїв професійної придатності операторів БпАК потрібних для успішного виконання своєї діяльності. Метою даної роботи є пошук в сучасній літературі переліку професійно важливих якостей операторів БпАК та адекватних методів проведення професійного психофізіологічного відбору. Матеріали та методи. З використанням методів системного, бібліосемантичного та ретроспективного аналізу вивчено наукові публікації щодо переліку професійно важливих якостей операторів БпАК та адекватних методів проведення професійного психофізіологічного відбору. Для цього здійснено пошук доступних джерел інформації з 1982 по 2020 роки, які стосувались характеристик професійної діяльності операторів безпілотних літальних апаратів, безпілотних авіаційних комплексів (систем), дронів. Вивчали характеристики діяльності зовнішніх пілотів безпілотних авіаційних комплексів та їх професійно важливі якості. На основі наявних даних було узагальнено класифікацію внутрішніх та зовнішніх шкідливих чинників в професійній діяльності особового складу пілотів БпАК та характеристики їх професійно важливих якостей, що були зазначені у доступних публікаціях. Результати. Проведено попередній аналіз літературних даних щодо визначення професійної придатності операторів БпАК. Запропоновано узагальнений перелік психологічних та психофізіологічних показників, що можуть застосовуватися для визначення ступеня професійної придатності операторів. Цей перелік може використовуватися для визначення критеріїв професійної придатності. Світовий досвід показує, що складна та відповідальна робота оператора БпАК потребує не тільки первинного відбору до цієї роботи, але й постійного моніторингу психофізіологічних характеристик оператора для збереження його здоров’я, забезпечення високої працездатності та надійності при виконанні бойових завдань, підвищення професійного довголіття. Висновки. Проведено аналіз професійної діяльності операторів безпілотних авіаційних комплексів (БпАК) та визначено основні функціональні обов’язки та стрес-навантаження цих осіб. Запропоновано класифікацію внутрішніх та зовнішніх шкідливих чинників в професійній діяльності особового складу пілотів БпАК. Виявлено та запропоновано перелік психологічних та психофізіологічних професійно важливих якостей пілотів БпАК, що забезпечують успішність виконання професійної діяльності, та є необхідними для проведення професійного відбору персоналу з керування безпілотними авіаційними комплексами і моніторингу їх психофізіологічних якостей, а також якості, що перешкоджають ефективності професійної діяльності. Визначено комплекс методичних засобів, використання яких сприятиме проведенню професійного психофізіологічного відбору операторів БпАК.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Мурашковська, Віра Петрівна, Ярослав Володимирович Кужельний, Василь Михайлович Скляр та Олена Сергіївна Слєднікова. "Аналіз впливу технічного стану автомобіля на рівень аварійності на дорогах". Технічна інженерія, № 1(87) (16 червня 2021): 28–37. http://dx.doi.org/10.26642/ten-2021-1(87)-28-37.

Повний текст джерела
Анотація:
Однією з провідних галузей економіки багатьох країн є транспортна галузь. У сучасному світі автомобільний транспорт вважається одним із двигунів прогресу. Середній вік парку автомобілів Євросоюзу становить 8 років, США – 11 років, України – 22,4 роки. На сьогоднішній день в Україні склалася така невтішна економічна ситуація, коли вигідніше придбати автомобіль з пробігом, зокрема легковий, ніж новий із автосалону. Зазвичай, ці автомобілі мають знижені показники технічного стану та експлуатаційні характеристики. Також на ці параметри негативно впливають несвоєчасні регламентований технічний огляд, заміна витратних матеріалів, ремонт автомобіля, якими досить часто зловживають водії та власники автомобілів. Це все впливає на активну безпеку та рівень аварійності на дорогах.У статті розглянуто аналіз впливу технічного стану автомобіля на рівень аварійності на дорогах. Наведено показники смертності від дорожньо-транспортних пригод деяких країн світу, смертність в Європейському Союзі від дорожньо-транспортних пригод за віковими категоріями, кількість дорожньо-транспортних пригод в Україні за 2017–2020 роки, ефективність функціонування системи «водій – автомобіль – дорога – середовище» щодо попередження дорожньо-транспортних пригод і забезпечення безпеки дорожнього руху, швидкісні обмеження по тяжкості наслідків дорожньо-транспортних пригод, вплив швидкості на ймовірність отримання смертельних травм при наїзді транспортного засобу на пішохода, довжину гальмівного шляху при екстреному гальмуванні, динаміку насичення Європейського парку транспортними засобами з максимальною швидкістю руху більше 150 км/год, інфографіку автопарку України. Проаналізовано вплив технічного стану рульового керування, елементів підвіски та гальмівної системи на керованість і стійкість автомобілів.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Яровий, Ігор Іванович, та Віта Петрівна Алі. "Ініціювання механодифузійного режиму вологовідведення в процесах зневоднення рослинної сировини". Scientific Works 84, № 1 (14 грудня 2020): 61–66. http://dx.doi.org/10.15673/swonaft.v84i1.1871.

Повний текст джерела
Анотація:
Стаття містить результати експериментальної частини дослідження, що проводиться за загальним напрямом впровадження технологій адресної доставки енергії (АДЕ) в типових процесах харчової та переробної промисловості. В роботі визначено мету та засоби досягнення результатів, методи проведення дослідження, приведено аналіз отриманих результатів. Основний зміст роботи полягає в дослідженні умов та обмежень при яких можливо та доцільно ініціювання та підтримка в стабільному стані механодифузійного режиму вилучення вологи при зневодненні вологих матеріалів з капілярно-пористою структурою. Визначено актуальність та доцільність використання ефекту механодифузії в процесах зневоднення сировини рослинного походження та вологих матеріалів з схожою будовою внутрішніх шарів. Обґрунтовано необхідність використання додаткових рушійних сил для інтенсифікації процесу вологовідведення з поверхні частинок матеріалу. Зокрема запропоновано використати для цього принцип фільтраційного способу сушіння. Визначено основні переваги комбінування енергопідведення за допомогою мікрохвильового електромагнітного поля та вологовідведення способом фільтраційного сушіння. Експериментально доведено принципову можливість та ефективність такої комбінації. Описано причини обрання даного напряму досліджень, місце дослідження в системі наукової діяльності наукового колективу, зв’язки з іншими дослідженнями. Обґрунтовано актуальність дослідження, обрано конструкцію дослідного стенда, способи проведення експерименту та методи оцінки отриманих результатів. Приведено структурну схему та порядок проведення експерименту, обґрунтовано способи та методику збору інформації про хід експерименту. Описано принципи керування процесом енергопідводу та процесом вологовідведення. Надано обґрунтування обраного способу впливу на процес зневоднення, та доцільність його реалізації в стрічковій сушильній установці. Визначено модельну сировину та параметри процесу, що підлягають контролю в ході експерименту. Надано зразки графіків залежностей між основними параметрами процесу, отримані в ході експерименту. Виконано оцінку отриманих результатів. Визначено залежності кінетики процесу від питомої величини енергопідведення. Надано принципову схему удосконаленого сушильного модуля стрічкової мікрохвильової сушильної установки з реалізацією режиму механодифузійного вологовидалення. Приведено висновки, щодо завершеного етапу дослідження.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Smirnova, Tetiana. "ФОРМАЛІЗАЦІЯ ТА РЕАЛІЗАЦІЯ СТРУКТУРИ ТЕХНОЛОГІЧНОГО ПРОЦЕСУ ЕЛЕКТРОДУГОВОГО НАПИЛЕННЯ ДЛЯ ОПТИМІЗАЦІЙНОЇ ЕКСПЕРТНОЇ СИСТЕМИ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 1(19) (2020): 104–13. http://dx.doi.org/10.25140/2411-5363-2020-1(19)-104-113.

Повний текст джерела
Анотація:
Актуальність теми дослідження. У наш час будь-яка галузь виробництва потребує застосування інформаційних технологій. Виготовлення деталей із покриттями, їх зміцнення та відновлення не є винятком. У цій роботі запропонована формалізація структури технологічного процесу електродугового напилення для оптимізаційної експертної системи, наведена її реалізація. Постановка проблеми. Комбінаторна складність технологічного процесу налічує чотири можливих варіанти. Для такої кількості варіантів, є доцільним проведення оптимізації для чотирьох ланцюгів технологічних операцій, з обранням результату, що матиме кращий результат згідно ваговій функції. Аналізування руху інформації при проведені оптимізації технологічного процесу на основі ланцюга технологічних операцій виявляє потребу в забезпеченні в інформаційній системі, що є актуальною задачею. Також актуальним є необхідність підтримки в інформаційній системі визначення залежностей між величинами аналітичними методами, таблично, алгоритмічно та за допомогою імітаційних моделей. Аналіз останніх досліджень і публікацій. У теперішній час активно розроблюються інформаційні системи підтримки прийняття рішень для забезпечення оптимізації окремих технологічних процесів. Однак не вистачає систем для вирішення задачі побудови оптимізованого ланцюга технологічного процесу та систем вибору більш оптимального технологічного процесу. Аналіз останніх досліджень та публікацій показав, що питання застосування інформаційних технологій у вигляді відповідних експертних систем в технологічних процесах дуже актуальне. Тому проблема оптимізації ланцюга технологічного процесу в інформаційному забезпеченні експертних систем, актуальна. Виділення недосліджених частин загальної проблеми. Інформаційні одиниці є функціонально різними, деякі величини мають здатність змінювати функціональну здатність переходом від шуканих величин до обмежень на технологічну операцію, що накладає на систему керування змінними додаткові функціональні можливості та універсальність до трансформації моделювання технологічного процесу. Постановкою завдання є формалізація та реалізація структури технологічного процесу електродугового напилення для оптимізаційної експертної системи. Виклад основного матеріалу. Зроблено формалізацію технологічного процесу електродугового напилення та запропоновано реалізацію структури технологічного процесу електродугового напилення для оптимізаційної експертної системи. Висновки відповідно до статті. У результаті аналізу руху інформації при проведені оптимізації технологічного процесу на основі ланцюга технологічних операцій виявлено потребу в забезпеченні в інформаційній системі.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Andrusevych, M. M., Yu A. Moiseeva, A. I. Tzipkalo, O. V. Batiukh та T. V. Kharkovska. "РОЛЬ МЕДИЧНОЇ СЕСТРИ У ПРОФІЛАКТИЦІ АЛІМЕНТАРНОГО ОЖИРІННЯ: ВІД РЕКОМЕНДАЦІЙ ДО ПРАКТИЧНОГО ЗАСТОСУВАННЯ". Вісник медичних і біологічних досліджень, № 2 (16 вересня 2020): 5–9. http://dx.doi.org/10.11603/bmbr.2706-6290.2020.2.11378.

Повний текст джерела
Анотація:
Резюме. З кожним роком зростає інтерес науковців та медичних працівників до аліментарного ожиріння як серйозної загрози здоров’ю. Сьогодні надмірна маса тіла зустрічається у понад 30 % населення, тому ожиріння розглядається як глобальна епідемія, що охопила різні верстви населення. Мета дослідження – проаналізувати наукові дані щодо профілактики аліментарного ожиріння та ролі медсестри у цьому процесі. Матеріали і методи. Було проаналізовано рекомендації щодо керування масою тіла Американської асоціації серця, Американського коледжу кардіологів, Американської асоціації клінічних ендокринологів, Товариства ожиріння, Ендокринного товариства, Європейського товариства ендокринології та запропоновано власний алгоритм. Результати. Проведений систематичний огляд літератури щодо ролі медичних сестер у профілактиці хронічних захворювань у Великобританії, США, Фінляндії, Нідерландах та Новій Зеландії свідчить про ефективність заходів, спрямованих на корекцію способу життя таких пацієнтів. При цьому медсестри проводили вимірювання маси, контроль за артеріальним тиском та холестерином, заохочення здорових харчових звичок та занять фізичними навантаженнями. У Великобританії, Нідерландах та скандинавських країнах медсестри проводять консультації щодо здорового способу життя з метою контролю маси тіла. У США діяльність медичних сестер у напрямку оптимізації маси тіла до цього часу не визначена чітко, тому вони працюють за власною ініціативою. При цьому зазначається, що медсестри є більш доступнішими для спілкування з пацієнтами, аніж лікарі. В Україні проводяться дослідження щодо ролі медичних сестер в оптимізації маси тіла осіб з ожирінням, проте практично запропоновані алгоритми не впроваджуються. Висновки. Хоча медичні сестри мають обмежений час та ресурси, проте регулярна підтримка пацієнтів із надмірною масою тіла та ожирінням покращує результати щодо зменшення маси. Профілактика аліментарного ожиріння має включати звичайні заходи: чітку мотивацію, зміну способу життя (харчування й фізична активність) та підтримку зменшеної маси. При цьому медична сестра повинна надавати необхідну для пацієнта допомогу на кожному з цих етапів.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Dolya, I. M. "Проблеми комунікації влади і населення в зоні АТО". Grani 19, № 1 (4 грудня 2015): 24–29. http://dx.doi.org/10.15421/1716004.

Повний текст джерела
Анотація:
У контексті відновлення основ організації керування й місцевої влади в регіонах підданих зовнішній агресії особливої актуальності заслуговує дослідження проблематики комунікації публічної влади. Саме діалог й ефективний обмін інформацією між населенням і місцевою владою важлива складова реінтеграції територій Донбасу охоплених антитерористичною операцією. Специфікою більшості територій Донбасу стало безвладдя, у результаті відхилення законно обраних ще в 2010 році органів місцевого самоврядування. По суті, втеча мерів, депутатів місцевих рад у найважчий період життя регіону активізував у місцевих жителів почуття незахищеності й зрадництва з боку місцевої влади. Тим самим можна констатувати, що до проблем підвищення ефективності каналів комунікації зберігає свою актуальність до початку зовнішньої агресії й часткової окупації Донбасу, сьогодні додалася проблема налагодження комунікаційних зв’язків між населенням і новою місцевою українською владою фактично із чистого аркуша. При цьому необхідно враховувати, що умови військового конфлікту зберігаються й, безумовно, відкладають свій відбиток на взаємодію. У той же час саме розвиток комунікації в зоні АТО, особливо в населених пунктах, які пережили окупацію й звільнені може стати основою для гармонійного входження жителів в український соціум. Створення військово­цивільних адміністрацій з метою тимчасово замінити нефункціонуючі органи місцевого самоврядування на Донбасі – унікальний досвід для України. Незважаючи на законодавче закріплення за ВЦА прав і обов’язків органів місцевого самоврядування, необхідно розуміти, що діють вони в умовах «неоголошеної війни» і тим самим у більшій мірі обирають модель обмеженої взаємодії з населенням. Проведений у статті аналіз показує, що серед традиційних каналів подачі інформації ВЦА віддають перевагу прийому громадян посадовими особами; вивішуванню інформаційних оголошень. При цьому такі форми, як ЗМІ, Інтернет­ресурс, звіти, збори громадян практично не використовуються в роботі ВЦА, що в цілому викликає невдоволення в населення. Але головне, що в зоні АТО абсолютно відсутні такі важливі компоненти комунікації, як обмін інформацією й включення населення в процес прийняття рішень місцевої влади. Хоча дана тенденція характеризує й рівень взаємин не тільки влади з населенням у зоні АТО, навпаки, дослідження, проведені Всеукраїнською асоціацією органів місцевого самоврядування «Асоціація міст України» разом з Норвезьким інститутом міських і регіональних досліджень, показують, що й у мирних містах України населення також зазнає труднощів у комунікації із владою. Це підсилює рівень недовіри до місцевої влади як у зоні АТО, так і в цілому по країні. Автор статті приходить до висновків про необхідність перегляду комунікаційної складової в роботі органів місцевої влади. Саме в зоні АТО склалися унікальні умови створити формат відкритого діалогу, залучення громадян у відродження інфраструктури і тим самим формувати почуття причетності до керування. Виходячи з підпорядкованості ВЦА державним структурам переломити ситуацію й налагодити комунікацію можливо тільки при сприянні й бажанні держави. Як найбільш діючий механізм може стати залучення державою в даний регіон представників третього сектора як волонтерів по створенню інформаційних служб при ВЦА, які б оперативно відбивали й поширювали інформацію серед населення й здійснювали зворотний діалог.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Pasov, Hennadii, та Volodymyr Venzhega. "АНІМАЦІЙНЕ МОДЕЛЮВАННЯ ГІДРОЦИЛІНДРІВ ТА ПНЕВМОКАМЕР ДЛЯ СТВОРЕННЯ ПРЯМОЛІНІЙНОГО ПОСТУПАЛЬНОГО РУХУ". TECHNICAL SCIENCES AND TECHNOLOG IES, № 4 (14) (2018): 34–40. http://dx.doi.org/10.25140/2411-5363-2018-4(14)-34-40.

Повний текст джерела
Анотація:
Актуальність теми дослідження. Сучасна освіта має бути яскравою, чіткою, швидкою й дешевою. Використання анімаційного моделювання і дає змогу досягти цього. Постановка проблеми. Освіта є основою будь-якого суспільства. Нині в процесі вивчення ізноманітних навчальних дисциплін використовується багато джерел різноманітної інформації: підручники, посібники, журнали, нтернет. У сучасних умовах широкі можливості відкриває використання в навчальному процесі персональних комп’ютерів (ПК) і високоінтелектуальних програмних продуктів. Аналіз останніх досліджень і публікацій. Традиційно при засвоєнні будь-якої навчальної дисципліни студент повинен вивчити її на лекціях, лабораторних та практичних заняттях. Але при цьому як методичний наочний матеріал використовуються, здебільшого, ілюстрації зовнішнього вигляду, будови та конструкції різноманітних механізмів у вигляді двовимірних статичних схем елементів. Саме використання ПК та відповідних програмних продуктів і дає змогу вдосконалити навчальний процес (та освіту загалом), надаючи йому інтенсивності та інтерактивного змісту. Виділення недосліджених частин загальної проблеми. Для вдосконалення навчального процесу необхідно запропонувати анімаційні моделі для створення прямолінійного поступального руху за допомогою гідроциліндрів та пневмокамер. Постановка завдання. Метою цієї роботи є демонстрація можливостей анімаційного моделювання прямолінійного поступального руху механізмів за допомогою гідроциліндрів та пневмокамер. Виклад основного матеріалу. У Чернігівському національному технологічному університеті (ЧНТУ) на кафедрі «Автомобільний транспорт та галузеве машинобудування» для вивчення навчальних дисциплін «Підйомно-транспортне обладнання і роботи», «Спеціалізований рухомий склад автотранспортних і вантажно-розвантажувальних машин», «Обладнання та транспорт механоскладальних цехів», «Промислові роботи», «Металообробне обладнання» розроблено навчальні продукти: «Анімація роботи гідроциліндрів для створення прямолінійного поступального руху» та «Анімація роботи пневмокамер для створення прямолінійного поступального руху». Анімація розроблена для лабораторій «Промислові роботи» з реальними роботами: МП-11, М10П, М20П, РМ-01 та «Металообробне обладнання». Висновки відповідно до статті. Запропоновані програмні продукти дозволяють зробити процес навчання більш яскравим, наочним та дешевим. Запропоновані програмні продукти мають деяке обмеження, зокрема відсутня можливість інтерактивного керування цими механізмами. Тому перспективним напрямком подальших досліджень є створення візуалізації впливу конструктивних та експлуатаційних параметрів на роботу механізмів.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Боєва, О. "Обмеження розвитку інституту судового захисту трудових прав в Україні в період 1937-1945 рр. (частина 1)". Юридичний вісник, № 6 (16 лютого 2021): 54–61. http://dx.doi.org/10.32837/yuv.v0i6.2029.

Повний текст джерела
Анотація:
Наукова стаття присвячена розкриттю аспектів розвитку інституту судового захисту прав людини у сфері праці. Здійснено аналіз стану захисту трудових прав в Радянській Україні з періоду прийняття Конституції УРСР 1937 р. та за часів Другої світової війни. Наприкінці 30-х рр. ХХ сторіччя Україна починає втрачати свою суверенність та незалежність, що є закономірним наслідком здійсненої зміни конституційно-правового статусу республіки. Це вбачається зі змісту конституційних положень різних років. Так, якщо взяти до уваги зміст доповнень до Конституції УСРР, прийнятих у 1925 році, то можна побачити, що там було закріплено, що УСРР входить до складу СРСР як «незалежна республіка», згодом у Конституції УСРР 1929 р. зазначалася «суверенна договірна держава», а про створення союзної держави не йшлося. Проте в Конституції 1937 року (найменування УСРР було змінено на УРСР на Надзвичайному XIV з'їзді Рад в січні 1937 р.) ці положення відсутні, є лише запис про об'єднання республік у союзну державу. Конституція УРСР 1937 р. замість з'їздів Рад, ЦВК УРСР та їх Президій визначала найвищим органом державної влади республіки Верховну Раду УРСР. Верховна Рада УРСР обирала Президію -колегіальний постійно діючий орган влади у періоди між сесіями Верховної Ради. В Україні поступово на перший план виходило керування загальносоюзних органів управління республіканськими об'єктами господарства, пріоритетною ставала дія загальносоюзного законодавства над республіканським як у вигляді копіювання змісту загальносоюзних законодавчих актів, так і щодо застосування союзних нормативних актів як актів прямої дії. Такі негативні тенденції не оминули галузь трудового права. Теоретично прийняття у 1937 р. Конституції УРСР мало би бути важливим кроком на шляху встановлення прогресивних принципів трудового права та закріплення нових підходів до вдосконалення захисту прав працівників, проте демократичні засади й положення Конституції залишилися декларативними. Конституцією проголошувалося право кожного на працю (положення про загальну трудову повинність було відсутнє), але проголошене Конституцією УРСР право на працю фактично було обов'язком працювати, а іншими нормативним актами відбувалося закріплення працівників за підприємствами, установами, заборонялося виїжджати на заробітки тощо. Наприкінці30-х - початку 40-хрр. минулого століття у всій союзній державі (зокрема, в УРСР) задля збільшення випуску продукції у всіх галузях народного господарства та підвищення продуктивності вводилися початкові засади примусової праці. Зокрема, особи, які не працювали без поважних причин (так звані тунеядці, дармоїди, нероби), притягувалися до адміністративної або кримінальної відповідальності; було більш жорстке покарання за порушення трудової дисципліни, виробництво продукції з браком, недотримання правил техніки безпеки. У період Другої світової війни відбулося значне погіршення умов праці, падіння рівня прав та гарантій працівників, взагалі була відсутня можливість захисту їх трудових прав, тобто трудове право, покликане захищати права працівників, набуло певних регресивних ознак. Такий відступ від основних засад і принципів трудового права був обумовлений тим, що суттєва частина працездатного населення (переважно чоловічої статі) поповнила лави збройних сил. Задля забезпечення кадрами підприємств оборонного значення та сільгосппідприємств (колгоспів, радгоспів) слід було змінювати політику держави у сфері регулювання праці, оскільки на теренах УССР, РСФСР та інших союзних республік діяли Кодекси законів про працю 19221924 рр., за змістом яких передбачалися засади добровільної праці. Трудовим законодавством трудова повинність була передбачена лише за необхідності боротьби зі стихійними лихами та для виконання найважливіших державних завдань, а також лише на підставі конкретних постанов Ради Народних Комісарів. Такі демократичні засади не в змозі були забезпечити безперервну роботу оборонної промисловості, проведення оборонних і будівельних робіт, заготівку палива, безперебійного функціонування транспорту тощо. Для забезпечення виконання цих завдань радянський уряд прийняв певну кількість Указів Президії Верховної Ради СРСР та Постанов РНК СРСР, за якими вся держава переходила на воєнний стан, фактично руйнувалися всі набуті раніше демократичні досягнення у сфері трудового права. Цей період характеризується мілітаризацією праці, мобілізацією працездатного населення, залученням до праці підлітків з 14 років, збільшенням тривалості робочого часу, скасуванням відпусток та введенням надурочних робіт. Унікальність цього явища щодо дослідження генези судового захисту трудових прав населення України полягає в тому, що такі регресивні тенденції переважно були не на території УРСР, а на території РСФСР, куди були евакуйовані українські підприємства разом зі своїми працівниками та їх родинами у зв'язку з тимчасовою окупацією німецько-фашистськими військами території України. Також на території РСФСР у період із серпня 1941 р. до лютого 1943 р. здійснювали свою діяльність законодавчі та виконавчі органи влади української республіки (вони були евакуйовані до Саратова, а пізніше перебували в Уфі та Москві). Під час війни трудове законодавство союзних республік фактично не діяло, було повністю підкорено принципам і положенням законодавства СРСР, як мало на меті не забезпечення та захист прав і гарантій працівників, а застосування таких методів і заходів в організації праці, які б у найко-ротші строки сприяли налагодженню оборонної промисловості та випуску воєнної продукції в таких обсягах, щоб можна було отримати перемогу над німецько-фашистськими загарбниками.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Боєва, О. "Обмеження розвитку інституту судового захисту трудових прав в Україні у період 1937–1945 рр. (частина 2)". Юридичний вісник, № 1 (12 квітня 2021): 56–64. http://dx.doi.org/10.32837/yuv.v0i1.2081.

Повний текст джерела
Анотація:
Наукова стаття присвячена розкриттю аспектів розвитку інституту судового захисту прав людини у сфері праці. Здійснено аналіз стану захисту трудо-вих прав у Радянській Україні з періоду прийняття Конституції УРСР 1937 року та за часів Другої світової війни. Наприкінці 30-х років ХХ сто-річчя Україна починає втрачати свою суверенність та незалеж-ність, що є закономірним наслідком здійсненої зміни конституційно-правового статусу республіки. Це вбачається зі змісту конститу-ційних положень різних років. Так, якщо взяти до уваги зміст допов-нень до Конституції УСРР, при-йнятих у 1925 році, то там було закріплено, що УСРР входить до складу СРСР як «незалежна рес-публіка», згодом у Конституції УСРР 1929 року зазначалося, як «суверенна договірна держава», а про створення союзної держави мови не було. Проте в Конститу-ції 1937 року (найменування УСРР було змінене на УРСР на Надзви-чайному XIV з’їзді Рад у січні 1937 року) ці положення відсутні, є лише запис про об’єднання респу-блік у союзну державу. Конститу-ція УРСР 1937 року замість з’їздів Рад, ЦВК УРСР та їх Президій визначала найвищим органом дер-жавної влади республіки Верховну Раду УРСР. Верховна Рада УРСР вибирала Президію – колегіальний постійно діючий орган влади у пері-оди між сесіями Верховної Ради. В Україні поступово на перший план виходило керування загально-союзних органів управління респу-бліканськими об’єктами господар-ства, пріоритетною ставала дія загальносоюзного законодавства над республіканським як у вигляді копiювання змiсту загальносо-юзних законодавчих актів, так і застосуванням союзних норматив-них актів як актів прямої дії. Такі негативні тенденції не оминули і галузь трудового права. Теоретично прийняття у 1937 році Конституції УРСР мало б бути важливим кроком на шляху встановлення прогресивних принципів трудового права та закріплення нових підходів до удосконалювання захисту прав працівників, проте демократичні засади і положення Конституції залишилися деклара-тивними. Конституцією проголошувалося право кожного на працю (положення про загальну трудову повинність було відсутнє), але проголошене Конституцією УРСР право на працю фактично було обов’язком працювати, а іншими нормативним актами відбувалося закріплення працівників за під-приємствами, установами, заборо-нялося виїжджати на заробітки тощо. Наприкінці 30-х – початку 40-х років минулого століття у всій союзній державі (у тому числі і в УРСР) з метою збільшення випуску продукції у всіх галузях народного господарства та підви-щення продуктивності вводилися початкові засади примусової праці. Зокрема, особи, які не працювали без поважних причин (так звані «тунеядці», «дармоїди», «нероби»), притягувалися до адміністратив-ної або до кримінальної відповідаль-ності; мало місце більш жорстке покарання за порушення трудової дисципліни, за виробництво про-дукції з браком, за недотримання правил техніки безпеки. У період Другої світової війни відбулося значне погіршення умов праці, падіння рівня прав та гаран-тій працівників, взагалі була від-сутня можливість захисту їхніх трудових прав, тобто трудове право, покликане захищати права працівників, набуло певних регре-сивних ознак. Такий відступ від основних засад і принципів трудового права був зумовлений тим, що суттєва частина працездатного населення (в основному чоловічої статі) поповнила лави збройних сил. З метою забезпечення кадрами підприємств оборонного значення та сільгосппідприємств (колгос-пів, радгоспів) слід було змінювати політику держави у сфері регулю-вання праці, оскільки на теренах УССР, РСФСР та інших союзних республік діяли Кодекси законів про працю 1922–1924 років, за зміс-том яких передбачалися засади добровільної праці. Трудовим зако-нодавством трудова повинність була передбачена лише у разі необ-хідності боротьби зі стихійними лихами та для виконання найважливіших державних завдань, та лише на підставі конкретних постанов Ради Народних Коміса-рів. Такі демократичні засади не в змозі були забезпечити безперервну роботу оборонної промисловості, проведення оборонних і будівель-них робіт, заготівлю палива, без-перебійного функціонування тран-спорту тощо. Для забезпечення виконання цих завдань радянський уряд прийняв певну кількість ука-зів Президії Верховної Ради СРСР та постанов РНК СРСР, за якими вся держава переходила на воєнний стан і фактично руйнувалися всі набуті раніше демократичні досяг-нення в сфері трудового права. Цей період характеризується міліта-ризацією праці, мобілізацією пра-цездатного населення, залученням до праці підлітків з 14 років, збіль-шенням тривалості робочого часу, скасуванням відпусток та введен-ням надурочних робіт. Унікальність цього явища у плані дослідження ґенези судового захисту трудових прав населення України полягає в тому, що такі регресивні тенденції в основному мали місце не на території УРСР, а на території РСФСР, куди були евакуйовані українські підприєм-ства разом зі своїми працівниками та їхніми родинами у зв’язку з тимчасовою окупацією німець-ко-фашистськими військами тери-торії України. Також на території РСФСР у період із серпня 1941 року до лютого 1943 року здійснювали свою діяльність законодавчі та виконавчі органи влади української республіки (вони були евакуйовані до Саратова, а пізніше перебували в Уфі та Москві). Під час війни трудове законодавство союзних республік фактично не діяло, було повністю підкорене принципам і положенням законодавства СРСР, яке, своєю чергою, мало на меті не забезпечення та захист прав і гарантій працівників, а застосування таких методів і заходів в організації праці, які б у найкоротші строки сприяли налагодженню оборонної промисловості та випуску воєнної продукції в таких обсягах, щоб можна було здобути перемогу над німецько-фашистськими загарбниками.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ванькевич, Дмитро Євгенійович. "Навчальний полігон на базі дистрибутиву Proxmox VE для проведення лабораторних робіт з курсу «Системне адміністрування ОС Linux»". Theory and methods of e-learning 4 (13 лютого 2014): 25–29. http://dx.doi.org/10.55056/e-learn.v4i1.365.

Повний текст джерела
Анотація:
Виконання лабораторних робіт в рамках курсу «Системне адміністрування ОС Linux» вимагає наявності більше ніж одного комп’ютера на одного студента. Наприклад, проведення лабораторних робіт із встановлення та налагодження маршрутизатора передбачає, як мінімум, наявності двох комп’ютерів: маршрутизатора і робочої станції.Одним з варіантів є використання у якості маршрутизаторів старих комп’ютерів, звісно, за їх наявності. Але такі комп’ютери мають вже відпрацьований ресурс і, як наслідок, невелику надійність. Тому в ході виконання лабораторної роботи важко визначити причину, через яку виникла помилка – внаслідок неправильного конфігурування програмного забезпечення чи через апаратну несправність. До того ж апаратне забезпечення застарілої ПЕОМ може не відповідати вимогам сучасного програмного забезпечення.Також можливий варіант, коли студенти об’єднуються у групи для вивільнення необхідної кількості комп’ютерів. Лабораторні роботи з встановлення маршрутизатора передбачають наявність в ПЕОМ двох мережевих контролерів, для чого потрібно встановити в системному блоці ще один мережевий контролер, а також замінити жорсткий диск з робочою операційною системою на інший. На жаль, така можливість є не завжди через відсутність додаткових жорстких дисків та мережевих контролерів або через умови гарантійного обслуговування комп’ютерної техніки, які не дозволяють відкривати опломбовані системні блоки.Оптимальним варіантом, на думку автора, є використання технологій віртуалізації [1; 2]. В якості системи віртуалізації було використано дистрибутив з вільним вихідним кодом Proxmox Virtual Environment (Proxmox VE), який дозволяє використовувати у якості гіпервізорів KVM (Kernel-based Virtual Machine) та OpenVZ [3].Для виконання лабораторних робіт був створений полігон, схема якого зображена на рис. 1.Для кожної групи студентів були створені користувачі в системі Proxmox VE (grp00..grp5). Кожному з користувачів було надано доступ до двох віртуальних машин і до сховища, де зберігаються ISO-образи з операційними системами. Причому, з міркувань безпеки, доступ до параметрів конфігурації віртуальних машин був примусово обмежений. Користувач мав право змінювати тільки один параметр – назву файла з образом операційної системи. На рис. 2 зображено інтерфейс керування віртуальними машинами, які доступні користувачу grp00. Комп’ютерна лабораторія під’єднана до загальноуніверситетської мережі через маршрутизатор комп’ютерної лабораторії. Це дає змогу уникнути небажаних наслідків у разі неправильного конфігурування ПЕОМ в лабораторії. Мережа лабораторії розділена на підмережі (рис. 1). У підмережу 192.168.30.X увімкнені фізичні ПЕОМ, маршрутизатор та фізичний комутатор а також сервер віртуальних машин з системою віртуалізації Proxmox VE. На сервері віртуальних машин створено декілька віртуальних підмереж з віртуальними маршрутизаторами та комутаторами. Підмережа 192.168.34.X створена з метою унеможливити втрату непрацездатності комп’ютерної лабораторії через некоректне конфігурування студентами віртуальних маршрутизаторів grp00 – grp05. Підмережі 192.168.1.X – 192.168.6.X створені, відповідно, для користувачів grp00 – grp05. Інтерфейс керування для створення віртуальних комутаторів зображено на рис. 3, де vmbr0 – віртуальний комутатор підмережі 192.168.30.X, за допомогою якого здійснюється під’єднання до ПЕОМ та маршрутизатора і комутатора навчальної лабораторії, vmbr34 – віртуальний комутатор підмережі 192.168.34.X, vmbr9000 – vmbr9005 – віртуальні комутатори підмереж 192.168.1.X – 192.168.6.X.Студенти з ПЕОМ навчальної лабораторії за допомогою Інтернет-переглядача мають доступ до екранів своїх віртуальних машин (рис. 4). У разі втрати працездатності підмереж 192.168.30.X та 192.168.1.X – 192.168.6.X доступ до екранів віртуальних машин збережеться завдяки тому, що ПЕОМ навчальної лабораторії та сервер віртуальних машин знаходяться в підмережі 192.168.30.X, доступ до якої студентам заборонено. Наведену схему навчального полігону можна використовувати у комп’ютерних класах загального використання, тому що вона не потребує зміни критичних параметрів операційної системи на ПЕОМ класу і зводить ризик втрати працездатності комп’ютерного класу до мінімуму.У разі виникнення потреби збільшення обчислювальної потужності можна використати декілька серверів віртуальних машин, об’єднавши їх у кластер [4].
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Halushka, A. M., L. V. Rushchak, V. V. Herasymenko та O. V. Chyslitska. "Аналіз проблеми оптимізації критеріїв оцінки ступеню придатності зовнішніх пілотів безпілотних авіаційних комплексів до роботи за фахом під час проведення лікарсько-льотної експертизи". Ukrainian Journal of Military Medicine 2, № 1 (19 квітня 2021): 5–18. http://dx.doi.org/10.46847/ujmm.2021.1(2)-005.

Повний текст джерела
Анотація:
Вступ. Важливе місце у надійності зовнішнього пілота БпАК належить психофізіологічній підготовці, оскільки при експлуатації сучасної техніки гостро постає питання психофізіологічного бар’єру, причини якого лежать у психофізіологічних спроможностях та факторі часу, який виділяється на прийняття рішення. Вище зазначене вказує на необхідність пошуку нових методичних підходів до адекватного використання людського потенціалу враховуючи специфіку праці зовнішнього пілота БпАК. Мета. Аналіз проблеми оптимізації критеріїв оцінки ступеню придатності зовнішніх пілотів безпілотних авіаційних комплексів до роботи за фахом під час проведення лікарсько-льотної експертизи. Матеріали та методи. Бібліосемантичний, історичний, структурно-логічний та системного підходу. Результати. В Україні до сих пір використання БпАК мало обмежений характер. Нажаль, досі не існує державної програми розробки та експлуатації БпАК, тому немає загальної стратегії розвитку безпілотної авіації, виникає певна плутанина у технічній та дозвільній документації, термінології, невирішеними залишаються проблеми підготовки та добору операторів. Складність застосовуваних БпАК та різноманітність завдань, що реалізовуються з їх допомогою, визначають максимально широкий спектр вимог до професійної підготовленості операторів, які здійснюють керування такими авіаційними комплексами. Практика показує, що забезпечення надійності діяльності операторів БпАК та успішності виконання ними завдань за призначенням має реалізовуватися починаючи з етапу професійного відбору кандидатів на навчання за відповідною спеціальністю. Саме якісний науково обґрунтований та методично забезпечений професійний відбір дасть змогу уникнути значних фінансових і часових витрат на підготовку професійно не придатних фахівців, зменшити втрати високовартісних БпАК і не допустити створення прецедентів небезпек від непрофесійної експлуатації наведеної техніки. Усе зазначене вище актуалізує необхідність якісного здійснення професійного відбору кандидатів на посади операторів (зовнішніх пілотів) безпілотних авіаційних комплексів тактичних класів для потреб ЗС України, НГУ та інших силових структур нашої країни. Важливою умовою профвідбору та аналізу ефективності спеціальної підготовки є вивчення психологічної готовності, а саме: індивідуально-психологічних та психофізіологічних особливостей операторів БпАК. Таким чином, одним з першорядних завдань в підготовці фахівців даної галузі є розробка діагностичного інструментарію вивчення готовності до здійснення професійної діяльності. Висновки. Незважаючи на дослідження окремих питань, проблема комплексної оцінки, з позиції системного підходу до професійного здоров’я, у тому числі, умов, причин і економічних наслідків захворюваності експлуатантів, досліджена недостатньо. Виявлені в результаті системно-структурного аналізу чинники, умови і причини, що визначають професійне здоров’я зовнішнього пілота, дозволять скласти комплексне уявлення про його професійне здоров’я, що вкрай необхідно для розробки комплексу заходів з оптимізації медичного забезпечення та збереження здоров’я зовнішніх пілотів. Враховуючи те, що у Збройних Силах України з початку 2020 року триває робота стосовно набуття доктринальної взаємосумісності з державами-членами НАТО, актуальним напрямом є розроблення критеріїв оцінки ступеню придатності операторів безпілотних авіаційних комплексів до роботи за фахом під час проведення лікарсько-льотної експертизи.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Матвієнко, Юрій Сергійович. "Огляд навчальних Web-систем та аспекти їх використання у вітчизняних навчальних закладах". New computer technology 5 (7 листопада 2013): 73–74. http://dx.doi.org/10.55056/nocote.v5i1.87.

Повний текст джерела
Анотація:
Останніми роками набув широкого поширення термін E-learning, що означає процес навчання в електронній формі через мережу Інтернет або Інтранет з використанням систем управління навчанням. Поняття «Електронне навчання» (ЕН) сьогодні є розширенням терміну «дистанційне навчання». ЕН – ширше поняття, що означає різні форми і способи навчання на основі інформаційних і комунікаційних технологій (ІКТ). Ефективність електронного навчання істотно залежить від, технології, що в ній використовується. Складне у використанні програмне забезпечення не тільки ускладнює сприйняття навчального матеріалу, але й викликає певне несприйняття використання інформаційних технологій в навчанні. Програмне забезпечення для ЕН представлене на сьогоднішній день як простими статичними HTML-сторінками, так і складними системами управління навчанням і навчальним контентом (Learning Content Management Systems), що використовуються в корпоративних комп’ютерних мережах. Успішне впровадження електронного навчання ґрунтується на правильному виборі програмного забезпечення, що відповідає конкретним вимогам.У всьому різноманітті засобів організації електронного навчання можна виділити наступні групи:авторські програмні продукти (Authoring Packages);системи управління навчанням (Learning Management Systems – LMS);системи управління контентом (Content Management Systems – CMS);системи управління навчальним контентом (Learning Content Management Systems – LCMS).Існують дві основні групи систем організації електронного навчання:комерційні LMS\LCMS;вільно поширювані LMS\LCMS.Комерційні LMS\LCMS“Бітрікс: Керування сайтом”. Продукт доступний в різних версіях, які відрізняються одна від одної набором модулів, а отже і можливостями (“Старт” – 199 у.о., “Бізнес” – 1699 у.о.). Доступні версії, що працюють не тільки з MySQL, а й з Oracle. Розробку дизайну сайту і його первинне налаштування можуть провести лише PHP-програмісти. Так само система вельми вимоглива до ресурсів сервера.“Amiro.CMS”. Збалансована і багатофункціональна CMS, що має багато серйозних переваг, серед яких глибокий рівень контролю над сайтом через веб-сервер-інтерфейс, високий рівень юзабіліті, орієнтація на пошукову оптимізацію, невисока ціна рішень (від 90 до 499 у.о., причому можливі варіанти з орендою і щомісячною оплатою).Система “Прометей” – це програмна оболонка, яка не тільки забезпечує дистанційне навчання і тестування, але і дозволяє управляти всією діяльністю віртуального навчального закладу, що сприяє швидкому впровадженню дистанційного навчання і переходу до широкого комерційного використання. Інтерфейс перекладений кількома національними мовами, серед яких українська.Серед інших систем варто відмітити “NetCat” (“Standard” – 300 у.о., “Plus” – 750 у.о., “Extra” – 1200 у.о., “Small Business” – 4 у.о.) та “inDynamic 2.3” (базова поставка – 1100 у.о., розширена – 1500-3500, максимальна комплектація системи модулями – 9000 у.о.).Нажаль, у сучасних умовах масове використання таких систем вітчизняними вузами не представляється можливим через їх високу вартість і жорсткі апаратні вимоги. Крім того комерційні системи надають вельми обмежені можливості для розширення і масштабування.Вільно поширювані LMS\LCMSAtutor.Розроблена з урахуванням ідей доступності та адаптованості, має україномовний інтерфейс.Claroline (Classroom Online). Claroline дозволяє створювати уроки, редагувати їх вміст, управляти ними. Додаток включає генератор вікторин, форуми, календар, функцію розмежування доступу до документів, каталог посилань, систему контролю за успіхами, модуль авторизації.Dokeos. Більше орієнтована на професійну клієнтуру, наприклад, на персонал підприємства.LAMS (Learning Activity Management System). LAMS є революційно новою системою для створення і управління електронними освітніми ресурсами. Вона надає викладачеві інтуїтивно зрозумілий інтерфейс (заснований на EML) для створення освітнього контента.Moodle. Проект був задуманий для поширення соціоконструктивістського підходу в навчанні. Moodle підходить для використання більш класичних стилів, зокрема, гібридного навчання, що перетворює систему на додаток до презентаційного навчання.Існує також низка вільно поширюваних LMS\LCMS з функціональними можливостями, схожими до вище розглянутих. Серед них варто відмітити OLAT, OPENACS та Sakai.Отже, системи з відкритим кодом дозволяють вирішувати ті ж завдання, що і комерційні, але при цьому у користувачів є можливість доопрацювання і адаптації конкретної системи до своїх потреб і поточної освітньої ситуації.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Поліщук, Олександр Павлович, та Євген Володимирович Гожев. "Дослідження динаміки та прогнозування курсів цінних паперів". New computer technology 5 (7 листопада 2013): 77–78. http://dx.doi.org/10.55056/nocote.v5i1.89.

Повний текст джерела
Анотація:
Розвиток людини, суспільства й економіки має спрямованість у майбутнє, що знайшло відображення у виникненні таких понять, як «передбачення», «прогноз». Прогнозування («наукове передбачення») – це та сторона пізнавальної діяльності суб’єкта, результатом якого є одержання знань про майбутні події.Моделі складних систем, таких як фінансові ринки, не завжди можуть давати однозначні рекомендації або прогноз.Серед факторів, що характеризують динаміку ринку та впливають на неї, є велика кількість даних нечислової природи, значення яких мають імовірнісну природу.Для подолання проблем, з якими доводиться зіштовхуватися при аналізі фінансової ситуації, робляться спроби застосування таких розділів сучасної фундаментальної й обчислювальної математики, як нейрокомп’ютери, теорія стохастичного моделювання (теорія хаосу) і теорія ризиків, теорія катастроф, синергетика й теорія систем, що самоорганізуються (включаючи генетичні алгоритми), теорія фракталів, нечіткі логіки й навіть віртуальна реальність.Правильне розуміння ситуації на ринку, аналіз його динаміки, прогнозування поводження ринку приводить до обґрунтованого прийняття рішень.Основна мета роботи полягала у розробці програмного забезпечення для дослідження динаміки й прогнозування курсу цінних паперів.Вiдповiдно до мети, було необхiдно вирiшити наступнi задачi:Розглянути основні підходи до аналізу ринку цінних паперів.Дослідити можливості програмного комплексу MetaTrader 4 по керуванню ринком цінних паперів.Проаналізувати можливості мови MQL 4 по створенню ринкових індикаторів і експертних систем аналізу ринку цінних паперів.Розробити й протестувати індикатор для аналізу динаміки курсів валют і експертну систему для короткочасного прогнозування й прийняття рішень на валютному ринку.Аналіз літератури з проблеми дослідження дозволив виділити наступні суттєві характеристики об’єкта дослідження:валютний ринок Forex має високу ліквідність;відсутність обмежень за часом роботи забезпечує неперервність процесу дослідження;децентралізованість забезпечує незалежність від локальних геополітичних факторів;велика кількість учасників ринку дозволяє абстрагуватися від індивідуальних особливостей гравців;об’єкт дослідження являє собою складну систему з великою кількістю нелінійних зв’язків.Виділені властивості валютного ринку дозволяють розглядати його як динамічну систему, що може бути проаналізована. Прогноз стану системи є актуальною проблемою, безпосередньо пов’язану з отриманням прибутку.Розгляд алгоритмів отримання якісних і кількісних характеристик ринку засобами фундаментального, технічного та комп’ютерного аналізу дозволив зробити наступні висновки:1. На практиці можна знайти випадки, коли кожен з представлених підходів до аналізу ринку дасть прийнятний результат. Для трейдерів, що не є ринкоутворювачами, найбільш прийнятним є комп’ютерний індикаторний аналіз з автотрейдингом за короткочасними прогнозами.2. Автоматичні індикатори є ефективним засобом графічного аналізу часових рядів, надаючи трейдеру можливість прийняття обґрунтованого рішення.3. При розробці експертної системи для робочого місця трейдера необхідно розрізняти поняття «прогнозування руху цін на ринку», з одного боку, та «ігрові робочі гіпотези», зважені за ймовірністю подій, з іншого.4. Критеріями вибору трейдингової системи є підтримка великого набору індикаторів і експертів, можливість розширення системи компонентами користувача, наявність вбудованої мови програмування та локалізація.В результаті дослідження було створено експертну систему, призначену для автоматичного ведення торгів на ринку цінних паперів. Експертна система реалізована засобами мови програмування MQL 4, що вбудована в термінал MetaTrader 4.Розгляд підходів до написання технічних індикаторів та експертних систем для підтримки прийняття рішень на основі аналізу динаміки курсу цінних паперів та короткочасного прогнозування дозволило зробити наступні висновки:Мова програмування MQL 4 має всі необхідні інструменти для забезпечення якісного технічного аналізу курсу валют.Можливість написання та тестування експертів в торговій системі MetaTrader дозволяє користувачу створити систему торгівлі, що приносить прибуток.Аналіз присутніх на ринку торгових систем виявив типові помилки в написанні експертних систем, що були враховані при розробці власного автотрейдингового експерта.Подальший розвиток даної роботи планується у напрямку дослідження динаміки валютних ринків з метою удосконалення алгоритмів прогнозування курсу та оптимізації роботи торгових експертних систем із застосування механізму нейронних мереж.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Угрин, Любомир Степанович. "Підвищення ефективності практичних занять з фундаментальних дисциплін у технічному вищому навчальному закладі". Theory and methods of learning fundamental disciplines in high school 1 (2 квітня 2014): 166–70. http://dx.doi.org/10.55056/fund.v1i1.426.

Повний текст джерела
Анотація:
Тенденція до скорочення кількості годин фундаментальних дисциплін примушує шукати нові шляхи для підвищення ефективності викладання. Одним із способів такого підвищення є введення у навчальний процес елементів проблемності [1]. Проблемне навчання полягає у створенні для студентів проблемних ситуацій, усвідомленні і вирішенні цих ситуацій у ході активної пошукової діяльності, в процесі вирішення студентами проблемно-пізнавальних задач. Це все відбувається при максимальній самостійності і під загальним керівництвом викладача.Проблемне навчання дозволяє формувати особливий стиль розумової діяльності і дослідницької активності студентів.До останнього часу вважалося, що єдиним способом навчити студентів вирішувати задачі є практика у розв’язуванні великої кількості задач. Значна частина всього навчального часу, власне, на це витрачається. Та результати такої роботи, зазвичай, скромні: більшість студентів так і не оволодіває загальним підходом до вирішення задач і при зустрічі з незнайомим типом завдання, губиться, не знаючи з чого почати. В кінцевому рахунку ці задачі розв’язуються лише за допомогою викладача. Отже, потреба в зміні цього застарілого методу є нагальною. Але повністю побудувати навчання на основі проблемності – нереально. У студентів, переважно, різний рівень підготовки і різний інтелект. І якщо для когось проблемне завдання виявиться непосильним, то це вносить дезорганізацію у навчальну роботу.Для того, щоб вияснити рівень інтелекту студентів, а також їх здібності до вивчення таких фундаментальних дисциплін як фізика чи теоретична механіка, пропонується на першому практичному занятті провести ряд психологодіагностичних тестів. Це дасть можливість отримати достовірний прогноз оцінки (і, відповідно, рівня набутих і усвідомлених знань) на кінець вивчення студентами даного навчального предмету (фізики, теоретичної механіки), а також дозволить визначити наскільки інтенсивно можна застосовувати елементи проблемного навчання у конкретній групі.До сих пір для перевірки знань, необхідних для вивчення предмету, застосовувався вхідний контроль. За його допомогою можна було виявити той багаж знань, з яким студенти підходять до вивчення дисципліни. Але, як свідчить досвід викладання, вхідний контроль не показує реального рівня базових знань студентів, частина з яких просто забула за час канікул необхідний матеріал, інша частина ставиться до вхідного контролю формально, без інтересу. Використання ж комплексного тестування, яке включатиме відносно полегшений вхідний контроль, тест на визначення рівня інтелекту та тест на розуміння техніки, дасть можливість отримати достовірні дані про потенціал кожного студента в царині конкретної дисципліни (у даному випадку йдеться про фізику і теоретичну механіку).Існує досить значна кількість тестів для вимірювання рівня інтелектуального розвитку. Вартими уваги слід визнати шкали вимірювання інтелекту за Векслером [2], методику Равена [3] та тести Айзенка [4]. Але шкали Векслера є занадто громіздкими, а методика Равена більше підходить для оцінювання логіки мислення. Для здійснення нашої мети найбільш придатними слід вважати тести розроблені англійським психологом Г. Айзенком. Вони дають змогу визначити “коефіцієнт інтелектуальності”, який скорочено позначають “IQ”. У цих тестах використовується словесний, цифровий і графічний матеріал у поєднанні з різними способами формулювання і постановки задачі (зразки завдань наведені нижче, мал. 1).Вставте пропущене число 6 ( 96 ) 1210 ( ... ) 15Вставте слово, яке було б закінченням першого слова і початком другогоКОНТР ( ... ) ИВВставте пропущене число 4 1 22 6 33 2 ?Виберіть потрібну фігуру з шести пронумерованих Мал. 1 Такий змішаний характер тестів дозволяє більш об’єктивно дати загальну оцінку “IQ” студента. Для вирішення завдань встановлюється обмежений час (30 хв.). За кожну правильно вирішену задачу нараховуються бали. Сума цих балів по спеціальній шкалі перераховується в “IQ”. Головне у тестах Айзенка – їх модельний характер.Що стосується тестів на розуміння техніки, то для застосування у комплексному тестуванні краще за все підходить тест Беннета [3]. Його методика використовується з метою визначення технічних здібностей. Студентам пропонується 60 малюнків, які представляють собою технічні задачі. Час проведення тесту не повинен перевищувати 40 хв. Зразок завдань наведений на мал. 2. Особливістю тесту Беннета, на відміну від тестів інтелекту, є його спрямованість на вимірювання досягнень студентів у даній області на момент тестування, в той час як дослідження інтелекту передбачає і прогноз подальшої критеріальної діяльності, тобто передбачення майбутнього розвитку.Отже, провівши за дві академічні години таке комплексне тестування, ми можемо отримати “важелі” для ефективного керування навчальним процесом кожного студента. Звичайно, що тут можливі різні варіанти: трапляються студенти з добрим володінням базовими знаннями, але з посереднім інтелектом і поганим розумінням техніки, а буває і навпаки. Якраз у другому випадку слід застосовувати індивідуальний підхід, аби не втратити потенційно сильного студента. Хоча ідеальним слід вважати варіант, при якому всі три тестування дадуть високі результати. Таким чином, можна зорієнтуватися, наскільки інтенсивним може бути застосування проблемного навчання у даній студентській групі. Який аероплан повертає направо? Яка шестерня здійснює більше обертів у хвилину? Який візок має більше шансів перевернутися на горбі? Які колеса чинять більший тиск на рейки? Мал. 2 “Левова” частка практичних занять з фундаментальних дисциплін витрачається на розв’язування задач. Тому формування культури вирішення задач – є одним з найважливіших завдань. Культура розв’язку задач полягає в тому, що пошук вирішення здійснюється на основі всестороннього аналізу задачі, кожна гіпотеза обґрунтовується, після відшукання правильного розв’язку проводиться ретроспективний аналіз з метою виявлення загальних методів, які були застосовані у даному вирішенні. При цьому слід використовувати особливу систему вправ, де конкретні задачі виявляються лише матеріалом, а метою є послідовне здійснення таких операцій: а) розчленування задачі на елементарні умови та вимоги; б) виявлення залежностей між окремими даними і вимогами; в) побудова схематичної моделі задачі.Обов’язково слід враховувати, що у всіх цих вправах сама запропонована задача не вирішується, щоб не відволікати студентів від головного – аналізу задачі. Особливу роль у формування в студентів культури розв’язуванні задач відіграє завершальний аналіз проведеного вирішення з метою виявлення і засвоєння загальних методів і прийомів розв’язування задач. Доцільно проводити також одночасне вирішення декількох однотипних задач, щоб прищепити студентам розумний підхід до пошуків і конструювання методів розв’язування. Студент повинен набути уміння ставити навчальну задачу і вирішувати її.Тільки детальне знання можливостей конкретного студента, яке викладач повинен отримати буквально на перших заняттях, дозволяє відчути ту межу в студентській свідомості на якій закінчується бездумний перебір варіантів і починається справжній творчий пошук.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Вдовіна, Олена Василівна, та Андрій Володимирович Полонський. "Досвід впровадження інтернет-технологій в організацію контролю знань студентів". Theory and methods of e-learning 3 (5 лютого 2014): 45–49. http://dx.doi.org/10.55056/e-learn.v3i1.315.

Повний текст джерела
Анотація:
Стрімкий розвиток мережевих інформаційних технологій, окрім помітного зниження бар’єрів часу і просторових бар’єрів у розповсюдженні інформації, відкрив нові перспективи у сфері освіти.Можна з упевненістю стверджувати, що в сучасному світі має місце тенденція злиття освітніх і інформаційних технологій і формування на цій основі принципово нових інтегрованих технологій навчання, заснованих, зокрема, на Інтернет-технологіях. З використанням таких технологій з’явилася можливість необмеженого і дуже дешевого тиражування навчальної інформації, швидкої і адресної її доставки. Навчання при цьому стає інтерактивним, зростає значення самостійної роботи тих, хто навчається, а також серйозно посилюється інтенсивність навчального процесу.Ці переваги зумовили активізацію роботи колективів вищих навчальних закладів І-ІІ рівнів акредитації, в тому числі колективу Дніпропетровського технікуму залізничного транспорту, щодо подальшого впровадження інформаційних технологій в традиційну модель навчального процесу.Прикладом інноваційного підходу до організації контролю знань студентів є використання методики проведення тестування в системі навчання за допомогою освітнього сервісу WEB-test конструктора – «Майстер-тест» (http://master-test.net) зі спеціальності «Обслуговування комп’ютерних систем і мереж». Даний інноваційний досвід роботи було адаптовано до умов навчального закладу і впроваджено студентами під час роботи над дипломним проектом.WEB-test конструктор «Майстер-тест» – це безкоштовний сучасний Інтернет-сервіс, який надає можливість легко створювати онлайн-тести, використовуючи сучасні Інтернет-технології. Для Інтернет-тестування на комп’ютер користувача непотрібно встановлювати ніяких додаткових програм. Також безперечним плюсом використання «Майстер-тест» є те, що на сторінках сайту немає реклами та надлишкової інформації, яка буде відволікати користувача від тестування. А викладачу, що створює тест, крім знань з дисципліни, необхідно мати лише початкові навички в користуванні комп’ютером та застосування Інтернет-технологій.В основі розробленого програмного продукту закладений принцип динамічного формування html-сторінки, що містить текст WEB-тесту. Для цього авторами був розроблений шаблон універсальної html-сторінки, яка включає в себе програми мовою JavaScript, написаної на основі вихідних даних (кількість і тексти завдань у тесті, кількість пропонованих відповідей і самі варіанти відповідей, «ціна» правильної відповіді і необхідні суми набраних балів для одержання тієї чи іншої оцінки, час, що відводиться на виконання тесту і ряд інших) формують Web-тест.При завантаженні html-документа в браузер робочої станції клієнта завантажується відповідна програма, написана на JavaScript, яка здійснює динамічне формування Web-тесту відповідно до вихідних даних. Інші скриптові програми, що містяться в документі, здійснюють контроль за правильністю заповнення полів форми, яка відсилається на сервер для реєстрації, роблять обробку результатів виконання тесту з виставленням оцінки і ведуть хронометраж роботи над тестом. Інструментальне середовище «Майстер-тест» має простий і зручний інтерфейс і дозволяє швидко скласти нове навчальне завдання чи відредагувати наявне.Дана програма написана в програмному середовищі Delphi і цілком інваріантна предметній області. Програма генерує html-файл тесту, що може використовуватися локально на комп’ютері користувача чи розміщуватись на Web-сервері. Програмою передбачена можливість реєстрації студентів (за допомогою заповнення ними відповідної форми) і результатів виконання тесту. Ці дані пересилаються на сервер і обробляються спеціальним CGI-скриптом.При роботі з програмою викладач може вводити тексти завдань і варіантів відповідей із вказуванням правильних, замовляти колір тексту і фону майбутнього документу. При формуванні тесту існує можливість вставки графічних зображень.Корисною властивістю розробленого програмного середовища є здатність включення в продукти також мультимедійних даних, що дозволяє створювати Web-тести з аудіо і відео супроводом. Крім того, передбачене використання гіперпосилань при формуванні завдань, що істотно розширює можливості тестування, дозволяючи використовувати для цього матеріали, що знаходяться в будь-якому місці Інтернет. «Майстер-тест» надає змогу додавати не тільки графічне зображення до питань тесту, а й надає можливість додавати його до будь-якого з варіантів відповідей.«Майстер-тест» включає розвинену систему допомоги, у якій міститься докладний опис всіх полів робочого вікна і розділів меню. Кількість варіантів відповідей на питання тесту – до 6. Кількість запитань у тесті може бути до 90000.«Майстер-тест» – одна з небагатьох програм, яка надає можливість коментувати та спілкуватись за допомогою власного інтерфейсу викладачу зі студентом. Однією з переваг застосування «Майстер-тест» є й те, що як викладач, так і студент має змогу працювати в зручний для нього час та у зручних умовах. Але головною прерогативою програми є обмеження доступу до програми та облікового запису викладача або студента.Описуючи інтерфейс «Майстер-тест», зупинимось детальніше на огляді процедури роботи з програмою.Робота з даною системою починається з реєстрації користувача. Кожен користувач системи має можливість обирати власних викладачів та студентів, додаючи їх через запрошення, надіслане на електронну скриньку. Якщо викладач надіслав студентові запрошення, то не має необхідності самостійно додавати викладача, замість цього потрібно лише перейти по посиланню в отриманому листі на сторінку реєстрації, заповнити поля «Ім’я», «Прізвище», «Пароль» та «Електронна пошта» і зареєструватися. Остаточним етапом реєстрації є отримання листа із запрошенням до активації користувача та перехід за цим посиланням.Після реєстрації користувач переміщується на головну сторінку облікового запису, де потрапляє в панель керування користувача. При першому вході в систему користувачу буде запропоновано вказати параметри налаштування часового поясу та визначитись, в якому статусі буде використана дана система – тобто будете ви, використовувати свій обліковий запис як викладач, чи як студент.«Майстер-тест» також має можливість одночасного застосування і облікового запису викладача і облікового запису студента. За для використання цього сервісу необхідно перемикатись між записами, вибираючи при цьому потрібне вкладення. Якщо обирається саме цей спосіб користування системою, то одночасно будуть доступними два меню, й можна буде користуватись обома сервісами, обираючи потрібну вкладку.Меню викладача складається з наступних пунктів: «Мої тести», в якому знаходиться опис списку існуючих тестів; «Результати студентів», де містяться результати проходження тестів студентами; «Мої групи» – даний пункт містить список груп, в які викладач може об’єднувати студентів (використання даного пункту буде раціональним якщо викладач має кілька десятків студентів); «Мої студенти» – в даному пункті знаходиться список студентів, для яких викладач може активувати online-тести.Система «Майстер-тест» має кілька способів додавання студентів до облікового запису викладача:1. За допомогою відправлення запрошення студенту на електронну скриньку.Процедура висилання запрошення проходить з використанням стандартної форми, яка міститься зліва на сторінці викладача. Для здійснення запрошення викладачу потрібно ввести електронну адресу студента та вибрати параметр виконання запрошення, а потім натиснути кнопку «Відправити». Система виведе на екран форму, в якій можна написати текст повідомлення, котре буде додане до листа запрошення. Після виконання процедури відсилання запрошення, студенту на електронну поштову скриньку надійде лист із посиланням на реєстрацію. Якщо студент зареєструється, скориставшись даним посиланням, то після проходження реєстрації він автоматично з’явиться у списку студентів.Якщо скористатись першим способом не має можливості, то існує ще один спосіб.2. Спосіб з використанням коду викладача – даний спосіб має на увазі, що студент самостійно реєструється в системі, не використовуючи при цьому запрошення викладача. Для цього потрібно повідомити студенту адресу ресурсу системи «Майстер-тест», де він повинен пройти процедуру реєстрації і надати йому персональний код викладача. Студенту ж для реєстрації викладача потрібно ввести заздалегідь отриманий від викладача персональний код та закінчити процедуру активації.Меню студента «Майстер-тест» складається з наступних пунктів: «Активні тести», де містяться активні тести, доступні на теперішній час (тести стають активними, тільки після того, як їх активує викладач); «Мої результати» – даний пункт містить результати пройдених студентом тестів; «Мої викладачі» – в пункті перераховані викладачі, які активують тести студентам.Після реєстрації та активації викладач має змогу користуватись сервісом створення тестів, для цього йому необхідно перейти на вкладення «Мої тести» та натиснути на кнопку «Створити новий тест». Після завантаження редактору online-тестів викладач додає запитання тесту, змінює титул тестових питань, задає опції результату та виконує пробний тест. Для завершення процедури створення тестів викладач натискає кнопку «Зберегти тест». Новостворений тест з’явиться у вкладці «Мої тести», де його потрібно активувати, або відкрити для подальшого редагування. При активації тесту викладач повинен визначитись, хоче він провести тестування одного чи групи студентів, хоче він опублікувати тест, чи завантажити його, як файл, та користуватися ним без підключення до мережі Інтернет. Надалі викладач визначає термін часу активації даного тесту та вибирає студента, або групу студентів для тестування.Студенти, яким призначено тест, у довільний час можуть пройти тестування, а саме: після проходження авторизації в системі, студентові потрібно зайти у вкладення «Активні тести» та вибрати тест необхідний для здачі. Вкладення «Активні тести» містить інформацію щодо назви тесту, прізвища викладача, терміну часу, виділеного на тест, та параметри обмеження часу, протягом якого буде існувати можливість проходження тестування. Після тестового контролю студент має можливість переглянути отримані результати. На екрані він побачить кількість набраних балів, відсоток проходження тесту, загальну кількість заданих питань, кількість наданих правильних та неправильних відповідей на запитання. Також студентові надається можливість більш детального аналізу пройденого тесту, а саме: система «Майстер-тест» виведе на екран всі тестові питання, в яких буде висвітлено правильну відповідь та відповідь, дану студентом.Викладач також може отримати розгорнуті результати відповідей студентів, для цього йому потрібно у власному обліковому записі зайти у вкладення «Результати студентів», де буде висвітлено детальні результати тестування, які при необхідності викладач може надрукувати.Запропоновані студентам тестові завдання з дисципліни «Комп’ютерні мережі» були підібрані так, що одні з них вимагали простого відтворення матеріалу, інші спонукали до порівнянь, треті передбачали застосування знань у нових ситуаціях. Аналіз впровадження даної форми тестового контролю у порівнянні з іншими формами тестування показав покращення якості на 10% при відсутності незадовільних оцінок, а в порівнянні з результатами останнього рубіжного контролю, підвищення якості склало більше 13 %.Отже, тестова перевірка має ряд переваг порівняно з традиційними формами і методами, вона природно убудована в сучасні педагогічні концепції, дозволяє більш раціонально використовувати зворотний зв’язок зі студентами і визначати результати засвоєння матеріалу, зосередити увагу на прогалинах у знаннях та внести відповідні корективи. Тестовий контроль не тільки полегшує роботу викладача, забезпечує одночасну перевірку знань студентів усієї групи та формує в них мотивацію для підготовки до кожного заняття, дисциплінує студентів, але й дозволяє вести навчання на якісно-новому, сучасному рівні та підвищує мотивацію навчальної діяльності студентів, одночасно знижуючи їхню емоційну напруженість у процесі контролю.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Гуржій, Андрій Миколайович, Валерій Яковлевич Жуйков, Анатолій Тимофійович Орлов, Віктор Михайлович Співак, Олександр Володимирович Богдан, Микола Іванович Шут, Людмила Юріївна Благодаренко та ін. "Викладання фізики з використанням вітчизняної електронної цифрової лабораторії, створеної на основі ІКТ". Theory and methods of e-learning 4 (17 лютого 2014): 69–78. http://dx.doi.org/10.55056/e-learn.v4i1.372.

Повний текст джерела
Анотація:
У зв’язку із загальною інформатизацією освіти і швидким розвитком цифрових засобів обробки інформації назріла необхідність впровадження в лабораторні практикуми вищих та середніх навчальних закладів цифрових засобів збору, обробки та оформлення експериментальних результатів, в тому числі під час виконання лабораторних робот з основ електротехнічних пристроїв та систем. При цьому надмірне захоплення віртуальними лабораторними роботами на основі комп’ютерного моделювання в порівнянні з реальним (натурним) експериментом може призводити до втрати особової орієнтації в технології освіти і відсутності надалі у випускників навчальних закладів ряду практичних навичок.У той же час світові компанії, що спеціалізуються в учбово-технічних засобах, переходять на випуск учбового устаткування, що узгоджується з комп’ютерною технікою: аналого-цифрових перетворювачів і датчиків фізико-хімічних величин, учбових приладів керованих цифро-аналоговими пристроями, автоматизованих учбово-експеримен­тальних комплексів, учбових експериментальних установок дистанційного доступу.У зв’язку із цим в області реального експерименту відбувається поступовий розвиток інформаційних джерел складної структури, до яких, у тому числі, відносяться комп’ютерні лабораторії, що останнім часом оформлюються у новий засіб реалізації учбового натурного експерименту – цифрові електронні лабораторії (ЦЕЛ).Відомі цифрові лабораторії для шкільних курсів фізики, хімії та біології (найбільш розповсюджені компаній Vernier Software & Technology, USA та Fourier Systems Inc., Israel) можуть бути використані у ВНЗ України, але вони мають обмежений набір датчиків, необхідність періодичного ручного калібрування, використовують застарілий та чутливий до електромагнітних завад аналоговий інтерфейс та спрощене програмне забезпечення, що не дозволяє проводити статистичну обробку результатів експерименту та з урахуванням низької розрядності аналого-цифрових перетворювачів не може використовуватись для проведення науково-дослідних робіт у вищих навчальних закладах, що є однією із складових підготовки висококваліфікованих спеціалістів, особливо в університетах, які мають статус дослідницьких.Із вітчизняних аналогів відомі окремі компоненти цифрових лабораторій, що випускаються ТОВ «фірма «ІТМ» м. Харків. Вони поступаються продукції компаній Vernier Software & Technology, USA та Fourier Systems Inc. та мають близькі цінові характеристики на окремі компоненти. Тому необхідність розробки вітчизняної цифрової навчальної лабораторії є нагальною, проблематика досліджень та предмет розробки актуальні.Метою проекту є створення сучасної вітчизняної цифрової електронної лабораторії та відпрацювання рекомендацій по використанню у викладанні на її основі базового переліку науково-природничих та біомедичних дисциплін у ВНЗ I-IV рівнів акредитації при значному зменшенні витрат на закупку приладів, комп’ютерної техніки та навчального-методичного забезпечення. В роботі використані попередні дослідження НДІ Прикладної електроніки НТУУ «КПІ» в галузі МЕМС-технологій (micro-electro-mechanical) при створенні датчиків фізичних величин, виконано огляд технічних та методичних рішень, на яких базуються існуючі навчальні цифрові лабораторії та датчики, розроблені схемотехнічні рішення датчиків фізичних величин, проведено конструювання МЕМС – первинних перетворювачів, та пристроїв реєстрації інформації. Розроблені прикладні програми інтерфейсу пристроїв збору інформації та вбудованих мікроконтролерів датчиків. Сформульовані вихідні дані для розробки бездротового інтерфейсу датчиків та програмного забезпечення цифрової лабораторії.Таким чином, у даній роботі пропонується нова вітчизняна цифрова електронна лабораторія, що складається з конструкторської документації та дослідних зразків обладнання, програмного забезпечення та розробленого єдиного підходу до складання навчальних методик для цифрових лабораторій, проведення лабораторних практикумів з метою економії коштів під час створення нових лабораторних робіт із реєстрацією даних, обробки результатів вимірювань та оформленням результатів експерименту за допомогою комп’ютерної техніки.Цифрова електронна лабораторія складається із таких складових частин: набірного поля (НП); комплектів модулів (М) із стандартизованим вихідним інтерфейсом, з яких складається лабораторний макет для досліджування об’єкту (це – набір електронних елементів: резисторів, ємностей, котушок індуктивності, цифро-аналогових та аналого-цифрових перетворювачів (ЦАП та АЦП відповідно)) та різноманітних датчиків фізичних величин; комп’ютерів студента (планшетного комп’ютера або спеціалізованого комп’ютера) з інтерфейсами для датчиків; багатовходових пристроїв збору даних та їх перетворення у вигляд, узгоджений з інтерфейсом комп’ютера (реєстратор інформації або Data Logger); комп’ютер викладача (або серверний комп’ютер із спеціалізованим програмним забезпеченням); пристрої зворотного зв’язку (актюатори), що керуються комп’ютером; трансивери для бездротового прийому та передачі інформації з НП.Таким чином, з’являється новий клас бездротових мереж малої дальності. Ці мережі мають ряд особливостей. Пристрої, що входять в ці мережі, мають невеликі розміри і живляться в основному від батарей. Ці мережі є Ad-Hoc мережами – високоспеціалізованими мережами з динамічною зміною кількісного складу мережі. У зв’язку з цим виникають завдання створення та функціонування даних мереж – організація додавання і видалення пристроїв, аутентифікація пристроїв, ефективна маршрутизація, безпека даних, що передаються, «живучість» мережі, продовження часу автономної роботи кінцевих пристроїв.Протокол ZigBee визначає характер роботи мережі датчиків. Пристрої утворюють ієрархічну мережу, яка може містити координатор, маршрутизатори і кінцеві пристрої. Коренем мережі являється координатор ZigBee. Маршрутизатори можуть враховувати ієрархію, можлива також оптимізація інформаційних потоків. Координатор ZigBee визначає мережу і встановлює для неї оптимальні параметри. Маршрутизатори ZigBee підключаються до мережі або через координатор ZigBee, або через інші маршрутизатори, які вже входять у мережу. Кінцеві пристрої можуть з’єднуватися з довільним маршрутизатором ZigBee або координатором ZigBee. По замовчуванню трафік повідомлень розповсюджується по вітках ієрархії. Якщо маршрутизатори мають відповідні можливості, вони можуть визначати оптимізовані маршрути до визначеної точки і зберігати їх для подальшого використання в таблицях маршрутизації.В основі будь-якого елементу для мережі ZigBee лежить трансивер. Активно розробляються різного роду трансивери та мікроконтролери, в які потім завантажується ряд керуючих програм (стек протоколів ZigBee). Так як розробки ведуться багатьма компаніями, то розглянемо та порівняємо новинки трансиверів тільки кількох виробників: СС2530 (Texas Instruments), AT86RF212 (Atmel), MRF24J40 (Microchip).Texas Instruments випускає широкий асортимент трансиверів. Основні з них: CC2480, СС2420, CC2430, CC2431, CC2520, CC2591. Всі вони відрізняються за характеристиками та якісними показниками. Новинка від TI – мікросхема СС2530, що підтримує стандарт IEEE 802.15.4, призначена для організації мереж стандарту ZigBee Pro, а також засобів дистанційного керування на базі ZigBee RF4CE і обладнання стандарту Smart Energy. ІС СС2530 об’єднує в одному кристалі РЧ-трансивер і мікроконтролер, ядро якого сумісне зі стандартним ядром 8051 і відрізняється від нього поліпшеною швидкодією. ІС випускається в чотирьох виконаннях CC2530F32/64/128/256, що розрізняються обсягом флеш-пам’яті – 32/64/128/256 Кбайт, відповідно. В усьому іншому всі ІС ідентичні: вони поставляються в мініатюрному RoHS-сумісному корпусі QFN40 розмірами 6×6 мм і мають однакові робочі характеристики. СС2530 являє собою істотно покращений варіант мікросхеми СС2430. З точки зору технічних параметрів і функціональних можливостей мікросхема СС2530 перевершує або не поступається CC2430. Однак через підвищену вихідну потужність (4,5 дБм) незначно виріс струм споживання (з 27 до 34 мА) при передачі. Крім того, ці мікросхеми мають різні корпуси і кількість виводів (рис. 1). Рис. 1. Трансивери СС2530, СС2430 та СС2520 фірми Texas Instruments AT86RF212 – малопотужний і низьковольтний РЧ-трансивер діапазону 800/900 МГц, який спеціально розроблений для недорогих IEEE 802.15.4 ZigBee-сумісних пристроїв, а також для ISM-пристроїв з підвищеними швидкостями передачі даних. Працюючи в діапазонах частот менше 1 ГГц, він підтримує передачу даних на малих швидкостях (20 і 40 Кбіт/с) за стандартом IEEE 802.15.4-2003, а також має опціональну можливість передачі на підвищених швидкостях (100 і 250 Кбіт/с) при використанні модуляції O-QPSK у відповідності зі стандартом IEEE 802.15.4-2006. Більше того, при використанні спеціальних високошвидкісних режимів, можлива передача на швидкості до 1000 Кбіт/с. AT86RF212 можна вважати функціональним блоком, який з’єднує антену з інтерфейсом SPI. Всі критичні для РЧ тракту компоненти, за винятком антени, кварцового резонатора і блокувальних конденсаторів, інтегровані в ІС. Для поліпшення загальносистемної енергоефективності та розвантаження керуючого мікроконтролера в ІС інтегровані прискорювачі мережевих протоколів (MAC) і AES- шифрування.Компанія Microchip Technology виробляє 8-, 16- і 32- розрядні мікроконтролери та цифрові сигнальні контролери, а також аналогові мікросхеми і мікросхеми Flash-пам’яті. На даний момент фірма випускає передавачі, приймачі та трансивери для реалізації рішень для IEEE 802.15.4/ZigBee, IEEE 802.11/Wi-Fi, а також субгігагерцового ISM-діапазону. Наявність у «портфелі» компанії PIC-мікроконтролерів, аналогових мікросхем і мікросхем пам’яті дозволяє їй запропонувати клієнтам комплексні рішення для бездротових рішень. MRF24J40 – однокристальний приймач, що відповідає стандарту IEEE 802.15.4 для бездротових рішень ISM-діапазону 2,405–2,48 ГГц. Цей трансивер містить фізичний (PHY) і MAC-функціонал. Разом з мікроспоживаючими PIC-мікроконтролерами і готовими стеками MiWi і ZigBee трансивер дозволяє реалізувати як прості (на базі стека MiWi), так і складніші (сертифіковані для роботи в мережах ZigBee) персональні бездротові мережі (Wireless Personal Area Network, WPAN) для портативних пристроїв з батарейним живленням. Наявність MAC-рівня допомагає зменшити навантаження на керуючий мікроконтролер і дозволяє використовувати недорогі 8-розрядні мікроконтролери для побудови радіомереж.Ряд компаній випускає завершені модулі ZigBee (рис. 2). Це невеликі плати (2÷5 кв.см.), на яких встановлено чіп трансивера, керуючий мікроконтролер і необхідні дискретні елементи. У керуючий мікроконтролер, у залежності від бажання і можливості виробника закладається або повний стек протоколів ZigBee, або інша програма, що реалізує можливість простого зв’язку між однотипними модулями. В останньому випадку модулі іменуються ZigBee-готовими (ZigBee-ready) або ZigBee-сумісними (ZigBee compliant).Всі модулі дуже прості в застосуванні – вони містять широко поширені інтерфейси (UART, SPI) і управляються за допомогою невеликого набору нескладних команд. Застосовуючи такі модулі, розробник позбавлений від роботи з високочастотними компонентами, так як на платі присутній ВЧ трансивер, вся необхідна «обв’язка» і антена. Модулі містять цифрові й аналогові входи, інтерфейс RS-232 і, в деяких випадках, вільну пам’ять для прикладного програмного забезпечення. Рис. 2. Модуль ZigBee із трансивером MRF24J40 компанії Microchip Для прикладу, компанія Jennic випускає лінійку ZigBee-сумісних радіомодулів, побудованих на низькоспоживаючому бездротовому мікроконтролері JN5121. Застосування радіомодуля значно полегшує процес розробки ZigBee-мережі, звільняючи розробника від необхідності конструювання високочастотної частини виробу. Використовуючи готовий радіомодуль, розробник отримує доступ до всіх аналогових і цифрових портів вводу-виводу чіпу JN5121, таймерам, послідовного порту і інших послідовних інтерфейсів. У серію входять модулі з керамічної антеною або SMA-коннектором з дальністю зв’язку до 200 метрів. Розмір модуля 18×30 мм. Версія модуля з підсилювачем потужності і підсилювачем вхідного сигналу має розмір 18×40 мм і забезпечує дальність зв’язку більше 1 км. Кожен модуль поставляється з вбудованим стеком протоколу рівня 802.15.4 MAC або ZigBee-стеком.За висновками експертів з аналізу ринку сьогодні одним з найперспективніших є ринок мікросистемних технологій, що сягнув 40 млрд. доларів станом на 2006 рік зі значними показниками росту. Самі мікросистемні технології (МСТ) почали розвиватися ще з середини ХХ ст. і, отримуючи щоразу нові поштовхи з боку нових винаходів, чергових удосконалень технологій, нових галузей науки та техніки, динамічно розвиваються і дедалі ширше застосовуються у широкому спектрі промислової продукції у всьому світі.Прилад МЕМС є об’єднанням електричних та механічних елементів в одну систему дуже мініатюрних розмірів (значення розмірів механічних елементів найчастіше лежать у мікронному діапазоні), і достатньо часто такий прилад містить мікрокомп’ютерну схему керування для здійснення запрограмованих дій у системі та обміну інформацією з іншими приладами та системами.Навіть з побіжного аналізу структури МЕМС зрозуміло, що сумарний технологічний процес є дуже складним і тривалим. Так, залежно від складності пристрою технологічний процес його виготовлення, навіть із застосуванням сучасних технологій, може тривати від кількох днів до кількох десятків днів. Попри саме виготовлення, доволі тривалими є перевірка та відбраковування. Часто виготовляється відразу партія однотипних пристроїв, причому вихід якісної продукції часто не перевищує 2 %.Для виготовлення сучасних МЕМС використовується широка гама матеріалів: різноманітні метали у чистому вигляді та у сплавах, неметали, мінеральні сполуки та органічні матеріали. Звичайно, намагаються використовувати якомога меншу кількість різнорідних матеріалів, щоби покращити технологічність МЕМС та знизити собівартість продукції. Тому розширення спектра матеріалів прийнятне лише за наявності специфічних вимог до елементів пристрою.Спектр наявних типів сенсорів в арсеналі конструктора значно ширший та різноманітніший, що зумовлено багатоплановим застосуванням МЕМС. Переважно використовуються ємнісні, п’єзоелектричні, тензорезистивні, терморезистивні, фотоелектричні сенсори, сенсори на ефекті Холла тощо. Розроблені авторами в НДІ Прикладної електроніки МЕМС-датчики, їх характеристики, маса та розміри наведені у табл. 1.Таблиця 1 №з/пМЕМС-датчикиТипи датчиківДіапазони вимірюваньГабарити, маса1.Відносного тиску, тензорезистивніДВТ-060ДВТ-1160,01–300 МПа∅3,5–36 мм,5–130 г2.Абсолютного тиску,тензорезистивніДАТ-0220,01–60 МПа∅16 мм,20–50 г3.Абсолютного тиску, ємнісніДАТЄ-0090,05–1 МПа5×5 мм4.Лінійного прискорення,тензорезистивніДЛП-077±(500–100 000) м/с224×24×8 мм,100 г5.Лінійного прискорення,ємнісніАЛЄ-049АЛЄ-050±(5,6–1200) м/с235×35×22 мм, 75 г6.Кутової швидкості,ємнісніДКШ-011100–1000 °/с
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Кухаренко, Володимир Миколайович. "Теорії навчання на сучасному етапі розвитку дистанційного навчання". Theory and methods of e-learning 3 (10 лютого 2014): 153–61. http://dx.doi.org/10.55056/e-learn.v3i1.333.

Повний текст джерела
Анотація:
У теперішній час розглядають три етапи розвитку дистанційного навчання. Перший етап почався з відомих проектів PLATO і TICET, які виконував Іллінойський університет на замовлення Департаменту освіти США. В основу тоді ще комп’ютерних курсів (лише у 1990-ті роки вони з’явилися в Інтернет) були покладені біхевіористська та когнітивна педагогічні теорії. До основних підходів та технологій можна віднести методику Ганьє (педагогічне проектування), поштові послуги, телебачення та радіо, книги, телефон, презентаційні технології на електронних носіях та інтерактивні технології (анімації, інтерактивні тести, адаптивна гіпермедіа на останніх етапах).Другий етап розвитку дистанційного навчання пов’язаний з використанням соціального конструктивізму, почався орієнтовно у 2000 році, коли в Україні почався розвиток дистанційного навчання. Домінуючими технологіями були електронна пошта, форуми, конференції. Це був крок уперед, але і біхевіористські підходи лишилися актуальними.З 2008 року почався третій етап розвитку дистанційного навчання, який базується на коннективістському підході. Домінуючими технологіями є блоги, вікі, соціальні закладки, обмін файлами, соціальні мережі, агрегатори та інші, які мають узагальнюючу назву «соціальні сервіси». Дистанційні курси на цьому етапі мають вільний та відкритий характер та спираються на вільні освітні ресурси, які почав 10 років тому назад пропонувати Массачусетський технологічний інститут.У теперішній час практично існують дистанційні курси усіх етапів та їх особливістю є наявність інформаційного освітнього середовища, для роботи у якому студент створює персональне навчальне середовище для роботи з навчальними ресурсами. Дехто вважає, що персональне навчальне середовище – це щось на зразок Moodle. Насправді, це набір інструментів (соціальних сервісів, які дозволяють організувати навчальний процес у Інтернет, наприклад, масові відкриті дистанційні курси).Біхевіористський підхід базується на роботах Е. Л. Торндайка, І. П. Павлова, Б. Ф. Скіннера. На основі цього підходу і під впливом ідей кібернетики – науки про оптимально організований процес діяльності, була створена система програмованого навчання, яка показала непогані результати у процесі алгоритмізації діяльності. Для керування навчальною діяльністю тут були запропоновані тести з відповідями «так» – «ні» і обов’язковий зворотний зв’язок для відпрацювання згідно з еталоном потрібної якості виконання дій. У відповідності до цього підходу, саме це свідчило, чи засвоїв студент матеріал заняття і як це відбивається на якості отриманого результату. До речі, ці ідеї вдало контактували з методами психологічної теорії поетапного формування розумової діяльності і методикою алгоритмізації навчальної діяльності (П. Я Гальперін, Н. Ф. Тализіна, Л. Н. Ланда та ін.).Це погляд на навчання, при якому не розглядаються внутрішні процеси мислення, а вивчається поводження, що трактується як сума реакцій на які-небудь ситуації [1]. Один з основоположників біхевіоризму Е. Л. Торндайк (1874–1948) вважав, що навчання людини повинне має будуватися на базі суто механічних, а не свідомих принципів. Тому він намагався описати навчання людини за допомогою простих правил, справедливих одночасно і для тварин. Серед цих правил виділимо два закони, що слугували платформою для подальшого розвитку цього погляду на процес навчання. Перший з них, названий законом тренування, говорить про те, що, чим частіше повторюється визначена реакція на ситуацію, тим міцніше буде зв’язок між ними, а припинення тренування (повторення) призводить до ослаблення цього зв’язку. Другий закон був названий законом ефекту: якщо зв’язок між ситуацією і реакцією супроводжується станом задоволеності індивіда, то міцність цього зв’язку зростає і навпаки: міцність зв’язку зменшується, якщо результат дії приводить до стану незадоволеності. Спираючись на ці закони, послідовник Торндайка Б. Ф. Скіннер (1904–1990) розробив на початку 50-х років минулого сторіччя дуже технологічну методику навчання, названу надалі лінійним програмуванням. В основу своєї методики Б. Ф. Скіннер поклав універсальну формулу: ситуація → реакція → підкріплення.Застосування програмованих посібників Б. Ф. Скіннера в професійно-технічних училищах США виявилося успішним: істотно скоротився час навчання, підвищилася кваліфікація студентів. Але одразу же виявилися і недоліки методики лінійного програмування: нудність і механістичність програмованих текстів; відсутність системності, цілісності в сприйнятті навчального матеріалу (велика кількість дрібних доз не сприяє узагальненням); правильність виконання простих завдань є позитивним підкріпленням лише спочатку читання посібника, надалі правильне виконання простих ситуацій уже не приносить почуття задоволеності; відсутність адаптації (всі учні виконують ту ж саму програму, йдуть по одній лінії).Незважаючи на гостру критику за принципове невтручання в мислення студента (біхевіористи керують лише його поводженням), біхевіористський підхід до навчання одержав широке поширення і був реалізований в ряді технічних навчальних закладів. І сьогодні універсальна схема цього підходу (ситуація – реакція – підкріплення) у її лінійній чи розгалуженій формі є стрижневим фрагментом багатьох комп’ютерних навчальних програм, користується популярністю у корпоративному навчанні СНД.Біхевіористська школа розглядає розум людини як «чорну скриньку» у тому сенсі, що реакція на стимул, зокрема, може розглядатися кількісно, повністю ігноруючи процес мислення.Особливості залучення у цьому випадку студентів до навчаннястудентам треба чітко формулювати кінцеві результати навчання таким чином, щоб вони могли визначитися щодо своїх дій і очікувань та зрозуміти, чи досягли вони результату наприкінці заняття;студентів треба тестувати, щоб визначити, чи досягли вони результатів навчання. Тестування та оцінювання мусять об’єднуватися у навчальну послідовність для перевірки рівня досягнень студентів та забезпечення відповідних відгуків;навчальні матеріали повинні об’єднуватися у такий спосіб, щоб вони забезпечували навчання. Форма об’єднання може бути від простого до складного, від відомого до невідомого, від знань до використання;студенти мають очікувати на своєчасний відгук викладача, щоб вони могли спостерігати за своїми успіхами та приймати відповідні дії для їх досягнення.Але оскільки алгоритми навчальної діяльності відтворювали її досить формально, деякі педагоги зазначали, що навчання – це процес, значно глибший, ніж тільки зміни у поведінці. Тому і з’явився пізнавальний (когнітивний) підхід, де за основу результатів навчання брали знання і роботу з ними.Когнітивний підхід стверджує, що навчання включає пам’ять, мотивацію та мислення, і що міркування грають важливу роль у навчанні. Когнітивісти розглядають навчання як внутрішній процес та звертають увагу на те, що кількість і якість отриманих знань залежить від здібностей студента, від якості і кількості досягнень, які зроблені під час навчального процесу, а також від рівня здібностей та існуючої структури знань студента.Цей підхід знайшов своє втілення у педагогічних технологіях розвиваючого навчання (В. В. Давидов, Д. Б. Ельконін), проблемного навчання (І. Я. Лернер, М. І. Махмутов, О. М. Матюшкін), особистісно-орієнтованого навчання (І. С. Якиманська) та ін. У цих технологіях знайшли відбиток усвідомлена навчальна діяльність, пошукове і творче мислення, врахування особистісних можливостей навчання у індивідуальному підході та ін.Когнітивний підхід розглядає навчання як внутрішній процес, який включає пам’ять, мислення, міркування, абстрагування, мотивацію та мету пізнання [2]. Цей підхід поглядає на навчання з точки зору процесу інформування, де студент використовує різні типи пам’яті під час навчання. Відчуття попадають через сенсори до сенсорного відділу перед переробкою інформації, де зберігаються протягом не більш за одну секунду. Тривалість короткотермінової робочої пам’яті 20 сек. і, якщо інформацію не буде оброблено, то вона не зможе перейти до довготермінової пам’яті на збереження. Якщо інформація не переходить до робочої пам’яті терміново, то вона втрачається назавжди.Кількість інформації, що запам’ятовується, залежить від уваги, яка була приділена інформації, та готовності структур пам’яті її прийняти.Отже при підготовці навчальних матеріалів, їх бажано поділяти на невеличкі порції, використовуючи принцип 7±2 (нові поняття) для компенсації обмежених можливостей короткотермінової пам’яті.Обсяг інформації, що перейшла до довготермінової пам’яті, залежить від якості та глибини обробки інформації у робочій пам’яті. У процесі засвоєння інформація змінюється, щоб відповідати існуючим у людини пізнавальним структурам.Технологія пізнавальної діяльності стверджує, що інформація розміщується у довготерміновій пам’яті у формі вузлів, які з’єднуються з вже існуючою мережею вузлів. З цієї нагоди корисно використовувати інформаційні карти пам’яті, які виявляють основні правила та взаємозв’язки у просторі відповідної теми. Як показують західні педагоги, карти пам’яті вимагають, у тому числі, критичного мислення і є засобом для формування пізнавальних структур у студента. Бажано рекомендувати студентам створювати особисті інформаційні карти пам’яті. Приклади таких карт і рекомендації з питань їхнього створення можна знайти у книжках відомого британського психолога Тоні Б’юзена [3]РекомендаціїТреба використовувати стратегії, що забезпечують максимальне сприйняття і розуміння інформації. Оскільки носієм окремих порцій інформації у тренінгу виступає поле екрана презентації, треба використовувати всі можливі засоби (колір, розташування, іконки, розмір та характер шрифту, побудову структурних схем та ін.), щоб підвищити ефективність сприйняття і визначення смислових взаємозв’язків між окремими фрагментами наведеної інформації. Це можуть бути такі рекомендації: а) важлива інформація має бути розміщена у центрі поля екрана; б) важлива інформація найвищого рівня має бути виділена у будь-який спосіб порівняно з рештою матеріалу, щоб привернути увагу студента. Наприклад, можна використовувати незвичайні або яскраві заголовки для упорядкування матеріалу; в) студенти мусять усвідомити, чому саме навчальний матеріал даного заняття вони мають опанувати протягом визначеного терміну; г) рівень складності первісного подання матеріалу зобов’язаний відповідати наявним пізнавальним здібностям студентів, щоб вони могли його зрозуміти і не виникало підстав для формування психологічних бар’єрів та інших перешкод.Стратегія пізнавальної діяльності має допомагати студентам формувати зв’язки у довготерміновій пам’яті між новою та існуючою інформацією для швидкого пошуку та вилучення звідти потрібної інформації. З цією метою стратегія мусить використовувати такі допоміжні засоби: ключові слова; вхідні тести для активізації студентів, які спрямовані допомагати у пригадуванні вивченого; питання самоконтролю, які активізують процес навчання і допомагають студентові вибрати особистий шлях вивчення матеріалу.Навчальну інформацію треба розбивати на смислові частини, щоб студент міг уникнути перевантаження під час обробки матеріалу у робочій пам’яті. На полі екрана повинно бути від п’яти до дев’яти пунктів, оскільки ця кількість відповідає умовам ефективної обробки інформації у робочій пам’яті. Якщо пунктів більше – треба конструювати допоміжні засоби навчання, наприклад інформаційну карту пам’яті всього заняття, і під час навчання – розглядати окремі його частини, не втрачаючи з уваги міжфрагментні зв’язки.Треба використовувати інші стратегії для організації аналізу, синтезу, оцінювання, які створюють умови переводу інформації з робочої пам’яті у довготермінову. Стратегії мусять допомагати студентам використовувати інформацію у реальному житті.Швидке зростання обсягів інформації і, у зв’язку з цим, необхідність у розвитку гнучкого ситуативного мислення і пов’язаної з ним діяльності наприкінці минулого сторіччя призвели до появи конструктивізму.Прибічники конструктивістського підходу (базується на роботах Л. С. Виготського) стверджують, що студенти розуміють інформацію та світ залежно від своєї персональної реальності, і вчаться через спостереження, участь та розуміння, які потім інтегрують як інформацію у свої знання. Тобто, конструктивізм певним чином змоделював відомий у техніці процес створення артефактів (у навчанні – особистих знань і умінь), у якому використовуються всі можливі корисні доробки у їх оптимальному поєднанні.Конструктивісти розглядають студентів як активних учасників навчального процесу [4]. Знання не переходять від когось, це індивідуальна інтерпретація студентів та обробка отриманої інформації. Студент знаходиться у центрі навчання з викладачем, який виконує роль радника та підтримує навчання. Основний акцент у цій теорії робиться на навчанні, яке проводиться у контексті. Якщо інформація має використовуватись у декількох контекстах, тоді треба забезпечити багатоконтекстні навчальні стратегії та впевнитись, що студенти можуть широко використовувати отриману інформацію. Навчання – це перехід від однобічних настанов до тлумачень, від відкриттів до знань.Навчання мусить бути активним процесом. Активний процес – це надання студентам завдань на використання отриманої інформації у практичних ситуаціях.Студенти повинні конструювати свої особистісні знання замість сприйняття без перетворення інформації від викладача.Повинні заохочуватись сумісне та кооперативне навчання. Робота студентів один з одним є життєвим досвідом для роботи у групах та дозволяє використовувати успіхи інших студентів і вчитися на них.Студентам треба надавати можливість контролювати навчальний процес.Студентам необхідно надавати час на роздуми і ретроспективний аналіз своєї діяльності (рефлексію).Студент мусить відчувати, що навчання має для нього особисте значення. Отже корисно, щоб навчальні матеріали містили приклади, що близькі інтересам студентів і цікаві як додаткова інформація.Навчання має бути інтерактивним з метою забезпечення його високого рівня та соціальної значущості. Навчання – це розширення простору нових знань, навичок та відношень при взаємодії з інформацією та середовищем.Конструктивістський простір навчання, який формує викладач, складається з 8 складових: активності, конструктивності, співробітництва, цілеспрямованості, комплексності, змістовності, комунікативності, рефлексивності.Конструктивізм набув широкого поширення на другому етапі розвитку дистанційного навчання, який орієнтовно розпочався після 2000 р.У коннективістському підході [5] навчання ‑ це процес створення мережі. Вузли такої мережі ‑ це зовнішні сутності (люди, організації, бібліотеки, сайти, книги, журнали, бази даних, або будь-який інший джерело інформації). Акт навчання полягає у створенні зовнішньої мережі вузлів.Принципами коннективізму є: 1) різноманітність підходів; 2) представлення навчання як процесу формування мережі та прийняття рішення; 3) навчання і пізнання відбуваються постійно – це завжди процес, а не стан; 4) ключова навичка сьогодні – це здатність бачити зв’язки і розуміти смисли між областями знань, концепціями та ідеями; 5) знання можуть існувати поза людиною в мережі; 6) технології допомагають нам у навчанні. Коннективізм базується на концепції, що інновації потребують відкритості, яка породжує себе (масові відкриті дистанційні курси); відкритість та інновації вимагають творчості та участі; особисті знання повинні структуруватися та взаємодіяти; у студента повинна бути можливість розкрити себе. Ключовими компонентами коннективізму є автономія, зв’язність, різноманітність та відкритість. Він робить акцент [6] на використанні Веб 2.0 та вмінні вчитися; спонукає студентів досліджувати нові засоби сприйняття навчання та знань, пропонує їм бути незалежними, брати ініціативу та відповідальність за навчання на себе, заохочує студентів підключатися до інформації, ідеям та людям для створення мережі знань та сумісно конструювати знання, які є відносними та контекстними.Аналіз цих підходів показує, що у багатьох своїх ідеях та правилах вони збігаються, адже основною метою їх всіх є можливість удосконалення діяльності через інформацію.Проектування навчальних матеріалів для навчання може включати елементи усіх трьох підходів. Стратегії біхевіоризму можуть використовуватись для вивчення фактів («що»), когнітивізм – для вивчення процесів та правил («як»), а стратегії конструктивізму – для відповіді на питання «чому» (високий рівень мислення, який забезпечує персональне розуміння та навчання, згідно із ситуацією та контекстом).Всі псих
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Hart, L. L., T. O. Firsova та N. Y. Yatsechko. "ЧИСЕЛЬНА РЕАЛІЗАЦІЯ СІТКОВИХ АЛГОРИТМІВ РОЗВ’ЯЗАННЯ КОЕФІЦІЄНТНОЇ ОБЕРНЕНОЇ ЗАДАЧІ ДЛЯ ЕЛІПТИЧНОГО РІВНЯННЯ". Problems of applied mathematics and mathematic modeling, 11 січня 2022. http://dx.doi.org/10.15421/322105.

Повний текст джерела
Анотація:
Розроблено, алгоритмізовано та програмно реалізовано сіткові регуляризуючі схеми для розв’язання коефіцієнтної оберненої задачі для еліптичного рівняння другого порядку з мішаними крайовими умовами. Вивчено властивості еквівалентної задачі оптимального керування за наявності диференціальних обмежень еліптичного типу зі змінними коефіцієнтами та обмежень на керуючий вплив. Досліджено практичну збіжність та ефективність обчислювальних алгоритмів, заснованих на методі сіток і ітераційних методах градієнтного типу, проведено порівняльний аналіз результатів роботи зазначених алгоритмів на прикладі розв’язання конкретних задач.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Волянська, Я. Б., В. В. Голіков, О. М. Мазур, О. А. Онищенко та В. А. Шевченко. "СИСТЕМА СТАБІЛІЗАЦІЇ КУРСУ МОРСЬКОГО СУДНА, ЧАСТКОВО-ІНВАРІАНТНА ДО ВІТРО–ХВИЛЬОВИХ НАВАНТАЖЕНЬ". Automation of technological and business processes 10, № 2 (17 липня 2018). http://dx.doi.org/10.15673/atbp.v10i2.980.

Повний текст джерела
Анотація:
У статті показана можливість застосування у сучасних системах стабілізації курсу морського судна принципів частково-інваріантного керування до вітро-хвильових навантажень. Метою статті є встановлення можливостей підвищення точності стабілізації судна на заданому курсі і, відповідно, зниження витрати палива за рейс. Мета досягається за допомогою удосконалення алгоритму роботи автокермового. Запропоновано структурну схему двоканальної системи керування, що дозволяє: а) виділити точку прикладання основного навантаження; б) провести оцінку впливу, що збурює; в) сформувати передатну функцію коригуючої ланки позитивного зворотного зв'язку за допомогою додаткового каналу керування. Частково-інваріантну систему керування синтезовано на основі спрощеної математичної моделі динаміки судна – моделі Номото другого порядку і ПІД-регулятора, налаштованого на технічний оптимум у припущенні, що результуюче навантаження приведено до кута повороту керма. Основна відмінність запропонованої системи керування укладена у використанні принципу непрямої оцінки й виміру збурення за рахунок обробки інформаційних сигналів штатних датчиків судна і його навігаційно-вимірювальної системи. Результат роботи запропонованої системи керування ілюструється математичним моделюванням системи стабілізації курсу морського судна криголамного типу. Моделювання проведено засобами MatLab/Simulink при стрибкоподібних вітро-хвильових навантаженнях, що суттєво відхиляють курс судна від заданого значення. При аналізі динаміки запропонованої системи керування використано математичний опис судна, отриманий методами ідентифікації параметрів нелінійної моделі Номото другого порядку. У результаті встановлено, що запропонована система має суттєво кращі динамічні властивості – час входження у зону стабілізації і максимальне динамічне відхилення знижуються, приблизно, у 8 разів при умові, що обмеження рівня сигналів у системі відсутнє.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Berezutskyi V. V. та Ilinska O. I. "ПІДСИСТЕМА «ПРАЦІВНИК» У СИСТЕМІ КЕРУВАННЯ ОХОРОНОЮ ПРАЦІ НА ПІДПРИЄМСТВІ". World Science, № 8(60) (24 вересня 2020). http://dx.doi.org/10.31435/rsglobal_ws/31102020/7213.

Повний текст джерела
Анотація:
Розглянуто теоретичні засади щодо підходів у вирішенні проблеми зменшення травматизму та покращення умов праці. Показано, що складність питання щодо забезпечення ефективного рівня безпеки працівників, вимагає застосування багатофакторних методів дослідження. Наведені результати у теоретичному досліджені довели необхідність та можливість використання теорії системного аналізу у поєднанні із теорією автоматичного керування та теорії надійності для досягнення цієї мети. Визначено, що виробничі умови праці та завдання, які висуваються керівниками до працівників, у 21 сторіччі, все більше набувають формалізованого (детермінованого) вигляду. Працівники на виробництві щодо питань безпечного поводження, повинні дотримуватись правил, які обмежують їх активність, а це накладає відбиток на їх поведінку. Доведено, що треба враховувати можливі збурення та протидію щодо виконання цих правил та обмежень. Необхідно реєструвати усі помилки та відхилення від нормального стану працівника починаючи із самих незначних. Показано, що система керування безпекою базується на ефективній та безпомилкової роботи підсистеми «працівник», яка носить ймовірнісний характер (за природою свого походження), тобто помилки можуть мати місце у роботі. Вказується на необхідність врахування усіх складових дуалістичної схеми керування СУПБЗ. Наголошується на тому, що необхідно переглянути усі інструкції з охорони праці із урахуванням ризиків не виконання вимог безпеки та з урахуванням їх наслідків. Звертається увага на те, що системи автоматичного контролю у системах автоматичного керування, повинні бути втілені на виробництві для забезпечення реєстрації безпомилкової роботи працівників, та надання їм допомоги у разі складних виробничих ситуацій.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Шестопалов, С., та В. Хобiн. "ОПТИМІЗАЦІЯ ЗАВАНТАЖЕННЯ ПТЛ ЕЛЕВАТОРІВ ЗЕРНОМ: ФОРМАЛІЗАЦІЯ ТА ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ АЛГОРИТМУ КЕРУВАННЯ". Automation of technological and business processes 9, № 3 (26 листопада 2017). http://dx.doi.org/10.15673/atbp.v9i3.721.

Повний текст джерела
Анотація:
Практика показує, що у логістичному ланцюгу руху зерна від виробника до споживача задіяно, усередньому, три – чотири елеватори різного призначення та обсягу збереження. На елеваторах, у ході процесівприймання, підробітки та відвантаження, зерно переміщається потоково-транспортними лініями (ПТЛ). Такимчином, обсяги зерна, що переміщується ПТЛ елеваторів багаторазово, майже на порядок, перевершують обсяги йоговиробництва, які на Україні становлять десятки мільйонів тонн зерна щорічно. Оскільки процес переміщення зернаПТЛ досить енергоємний та впливає на час простою під завантаженням/розвантаженням рухливого потягу, щотранспортує зерно між елеваторами, то задача зниження часу та питомих енерговитрат на переміщення ПТЛактуальна.Разом з тим, функція керування завантаженням ПТЛ, у т.ч. – її оптимізації за критерієм максимальноїпродуктивності та енергоеффективності, через складність їхніх властивостей як об'єкта керування (ОК), завждизберігалася за людиною-оператором, як і відповідальність за результати неефективного керування. Ця складністьвизначається наявністю у ОК сукупності специфічних особливостей. До них відносяться: обмеження типу «аварійнаситуація» на режимні змінні процесу транспортування; апріорна невідомість значень цих меж; неможливістьпрямого виміру деяких важливих режимних змінних; досить істотні зміни динамічних властивостей ОК за каналамикерування при зміні маршруту транспортування; а також, і це принципово важливо, те, що оптимальні режимироботи ПТЛ наближаються до аварійних. Забезпечити роботу ПТЛ у таких режимах можливо тільки при створенніефективних систем автоматичного керування (САК), що враховують всі особливості ОК.У статті розглядається повний математичний опис базового алгоритму керування САК зі структурою, щокомутється, який забезпечує роботу ПТЛ із максимально досяжною продуктивністю та енергоефективністю пригарантованому запобіганні аварійних ситуацій (АС) та аварійних зупинок ПТЛ. Розглядається також один зперспективних шляхів підвищення показників якості такої САК – застосування каскадної структури формування їїкеруючого впливу. Здійснюється порівняльний аналіз динаміки процесів керування в САК базової та каскадноїструктури.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Зайончковський, Г. Й. "Забезпечення стійкості гідравлічних слідкувальних рульових приводів систем керування літаків при обмеженій жорсткості опор їх кріплення з урахуванням впливу експлуатаційних факторів". Proceedings of the National Aviation University 8, № 1 (2 червня 2001). http://dx.doi.org/10.18372/2306-1472.8.11938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії