Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Насосний режим.

Статті в журналах з теми "Насосний режим"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-27 статей у журналах для дослідження на тему "Насосний режим".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Bosak, M. P., M. S. Odukha, O. H. Hvozdetskiy та V. Ye Fasuliak. "Дослідження експлуатаційного режиму свердловин водозабору та водогону". Scientific Bulletin of UNFU 29, № 9 (26 грудня 2019): 126–31. http://dx.doi.org/10.36930/40290922.

Повний текст джерела
Анотація:
Наведено результати гідравлічних досліджень експлуатаційних режимів роботи водогону на ділянці від водозабору до підвищувальної насосної станції. Визначено та обґрунтовано режим експлуатації водогону на підставі гідравлічних досліджень і експлуатаційних показників роботи свердловин. Через наявність рельєфного водорозділу траса водогону за довжиною знижується від водозабору на 52 м до підвищувальної насосної станції. З'ясовано експлуатаційний режим роботи насосів свердловин включно з фактичним їх напором. Встановлено, що експлуатаційний напір насосів свердловин, який становить 30 м, є надлишковим для цих умов. Отож, доцільно замінити та модернізувати насоси свердловин на насоси з нижчим напором, та вищим коефіцієнтом корисної дії. З'ясовано наявність безнапірної і напірної течії води у водогоні залежно від величини подачі води. Встановлено, що безнапірна течія характерна для витрат води, близьких до середньогодинних у діапазоні 3000-4000 м3/год. За більших витрат води у водогоні наявний напірний режим течії. Визначено необхідний напір насосів свердловин з урахуванням режиму роботи водогону. Величина подачі води у водогоні насосами свердловин водозабору і подача води підвищувальною насосною станцією переважно не збігаються, тому тиск води у водогоні змінний. Обґрунтовано доцільність експлуатації свердловин у режимі з перервою роботи насосів свердловин на 2 год за добу. Відтак водогін, у межах водозабірних свердловин, спорожниться і режим роботи свердловинних насосів буде в області малих напорів та більшої подачі води. Внаслідок цього зменшиться витрата електроенергії. Виконано порівняння економічності експлуатації насоса ЕЦВ 12-255-30 та насоса SP 270-1L-G. Запропонований режим роботи свердловин дає можливість зменшення експлуатаційних витрат електроенергії.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Яшин, Антон Николаевич, та Марат Ильгизович Хакимьянов. "УРАВНОВЕШЕННОСТЬ УСТАНОВОК СКВАЖИННЫХ ШТАНГОВЫХ НАСОСОВ НА ОСНОВЕ АНАЛИЗА ВАТТМЕТРОГРАММ". Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 332, № 8 (22 серпня 2021): 36–44. http://dx.doi.org/10.18799/24131830/2021/8/3303.

Повний текст джерела
Анотація:
Актуальность. Значительная часть фонда нефтедобывающих скважин нашей страны эксплуатируется установками скважинных штанговых насосов. В качестве приводов установок скважинных штанговых насосов используются низкоскоростные асинхронные электродвигатели с повышенным пусковым моментом. Электродвигатели таких установок работают в недогруженном по мощности режиме с циклически изменяющейся нагрузкой. Такие режимы отрицательно влияют как на работу самих электродвигателей, так и на электрическую сеть. Ухудшаются энергетические характеристики двигателей, такие как коэффициент полезного действия и коэффициент мощности. Балансировка установок скважинных штанговых насосов путем регулирования грузов противовесов позволяет сделать нагрузку более равномерной, улучшив режимы работы приводов и снизив расход электроэнергии. Однако оценить сбалансированность работающих установок достаточно сложно, так как скважины обычно не оборудованы датчиками для измерения ваттметрограмм и оценки сбалансированности. На месторождениях часто балансировку проводят при помощи обычных мультиметров с токовыми клещами. Поэтому важно оценить влияние сбалансированности насосных установок скважин действующего фонда на потери электроэнергии. Цель: исследовать скважинные насосные установки действующего фонда с точки зрения сбалансированности; определить, какая часть фонда скважинных насосных установок является сбалансированной, какой коэффициент неуравновешенности имеют другие скважины; оценить влияние сбалансированности установок скважинных штанговых насосов на потребление электроэнергии; сделать выводы о перерасходе потребления электроэнергии в результате недостаточной сбалансированности. Объекты: нефтедобывающие скважины, скважинные штанговые насосные установки, асинхронные электроприводы. Методы: статистический анализ ваттметрограмм; математические методы анализа ваттметрограмм с определением среднего значения потребляемой мощности, коэффициента неуравновешенности, потенциала энергосбережения. Результаты. Установлено, что сбалансированными можно считать только 2 % скважинных насосных установок. При этом 35 % скважинных насосных установок имеют коэффициент неуравновешенности хуже 0,5. Показано отрицательное влияние недостаточной балансировки установок скважинных штанговых насосов на потребление электроэнергии. В результате доуравновешивания энергопотребление приводов скважинных насосов может быть снижено более чем в 2 раза при сохранении объемов добычи.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

(Anatoliy M. Zyuzev), Зюзев Анатолий Михайлович, та Бубнов Матвей Владимирович (Matvei V. Bubnov). "ДИАГНОСТИКА УРАВНОВЕШЕННОСТИ ШТАНГОВОЙ ГЛУБИННОЙ НАСОСНОЙ УСТАНОВКИ ПО ВАТТМЕТРОГРАММЕ". Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 330, № 4 (22 квітня 2019): 178–87. http://dx.doi.org/10.18799/24131830/2019/4/226.

Повний текст джерела
Анотація:
Актуальность исследования обусловлена широким распространением штанговых глубинных насосных установок с нерегулируемым приводом, которые в основной своей массе оснащены исключительно средствами механической настройки. Эксплуатация установок данного типа сопровождается значительными потерями как потребляемой электроэнергии, так и добытой нефти, связанными с работой установки в неоптимальном режиме. Для решения данной проблемы как новые, так и уже эксплуатируемые штанговые глубинные насосные установки оборудуют станциями управления, в состав которых входят преобразователь частоты и программируемый логический контроллер, оснащенный средствами интеллектуального управления и диагностики. Реализация данных функций на контроллере станции управления штанговых глубинных насосных установок требует разработки соответствующих алгоритмов, обеспечивающих автономное, высокоэффективное, экономичное и надежное функционирование установки в течение всего срока эксплуатации. Цель: разработка алгоритмов определения уравновешенности станка-качалки, оптимального положения противовеса и моментов прохождения штоком «мертвых точек». Объекты: штанговая глубинная насосная установка в различных режимах работы, уравновешенность станка-качалки, определяемая положением противовесов на кривошипе. Методы: математический аппарат дифференциальных уравнений и передаточных функций, компьютерное моделирование, сопоставление и анализ графиков и диаграмм. Результаты. Рассмотрены способы определения уравновешенности, существующие в настоящий момент, и выявлены их недостатки. Наиболее доступным и надёжным средством диагностирования штанговых глубинных насосных установок, не требующим установки дополнительных навесных датчиков, является ваттметрирование. Для исследования закономерностей и режимов работы разработана компьютерная модель штанговых глубинных насосных установок. На основе данных, полученных в ходе моделирования, разработаны алгоритмы определения уравновешенности станка-качалки, оптимального положения противовеса и «мертвых точек», которые не требуют установки на станок внешних датчиков, могут работать в составе программного обеспечения интеллектуальных станций управления штанговых глубинных насосных установок, обеспечивая простоту контроля, обслуживания и сокращение издержек.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Цвіркун, Леонід, Лілія Бешта та Сергій Ткаченко. "АЛГОРИТМИ ЕНЕРГОЕФЕКТИВНОГО ВИКОРИСТАННЯ ШАХТНИХ ВОДОВІДЛИВНИХ УСТАНОВОК ІЗ ЗАСТОСУВАННЯМ МЕТОДУ ПЕРЕДПІКОВОГО ВМИКАННЯ". System technologies 5, № 136 (29 травня 2021): 88–97. http://dx.doi.org/10.34185/1562-9945-5-136-2021-09.

Повний текст джерела
Анотація:
Розглянуто проблему застосування алгоритмів керування насосними агрегатами вугільної шахти при дотриманні методу передпікового вмикання відповідно до графіка навантаження енергосистеми. Виконано аналіз алгоритмів вмикання насосних агрегатів в оптимальному режимі навантаження енергосистеми в залежності від тарифних зон. Обґрунтовано, що в умовах шахти імені М.І. Сташкова доречним є ал-горитм керування по трьох точках, що відрізняється високою точністю і надійністю організації роботи водовідливу. Показано, що запропонований алгоритм дозволяє розподілити процес відкачування протягом доби так, щоб результуючі грошові вит-рати виявилися мінімальними.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Бахтизин, Рамиль Назифович, Камил Рахматуллович Уразаков, Салават Фаритович Исмагилов та Филюс Фанизович Давлетшин. "ДВУХУРОВНЕВЫЙ МЕТОД ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ШТАНГОВЫХ НАСОСНЫХ УСТАНОВОК". Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 331, № 2 (18 лютого 2020): 188–98. http://dx.doi.org/10.18799/24131830/2020/2/2505.

Повний текст джерела
Анотація:
Актуальность. Значительное число крупнейших нефтяных месторождений в России находится на завершающей стадии разработки, характеризующейся снижением объемов добычи, увеличением доли осложненного фонда скважин. Одним из наиболее распространенных способов эксплуатации скважин малодебитного фонда являются штанговые насосные установки. Эксплуатация штанговых установок в осложненных условиях эксплуатации в ряде случаев сопровождается снижением межремонтного периода работы, повышением удельных энергетических и экономических затрат при добыче. В этих условиях одной из наиболее актуальных является задача обеспечения рентабельной разработки скважин за счет своевременной диагностики технического состояния и условий работы насосного оборудования. Объекты: штанговая насосная установка, работающая в нефтяных добывающих скважинах, в том числе при наличии осложняющих факторов, и устьевая динамограмма работы штанговой установки, отражающая техническое состояние и условия работы внутрискважинного оборудования. Цель: разработка нового подхода к диагностике состояния штанговых насосных установок по динамограмме, базирующаяся на решении обратных задач динамики штанговой установки. Методы: методы численного решения уравнений в частных производных для прямых задач, включающих моделирование теоретической динамограммы работы штанговой установки; методы решения обратных задач, направленных на определение параметров модели, характеризующих работу штанговой установки. Результаты. Разработан двухуровневый метод диагностирования состояния штанговых насосных установок по динамограмме. Предлагаемый метод диагностики включает: на первом уровне обработку практических динамограмм системой распознавания образов и на втором уровне – количественное определение последствий неисправностей решением задачи динамики штанговой установки, исходя из физических законов формирования конфигурации динамограмм. Путем анализа конфигурации динамограмм при эксплуатации насосного оборудования (нормальная работа, высокое содержание газа на приеме насоса, утечки в нагнетательном клапане насоса, низкая посадка плунжера в цилиндре) показаны примеры решения задач количественной диагностики и выдачи рекомендаций по корректировке технологического режима на основе разработанного алгоритма.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Пачин, Максим Гелиевич, Антон Николаевич Яшин, Андрей Сергеевич Бодылев та Марат Ильгизович Хакимьянов. "РАЗРАБОТКА ИНТЕЛЛЕКТУАЛЬНОЙ СТАНЦИИ УПРАВЛЕНИЯ ДЛЯ УСТАНОВОК ШТАНГОВЫХ ГЛУБИННЫХ НАСОСОВ". Bulletin of the Tomsk Polytechnic University Geo Assets Engineering 333, № 3 (10 березня 2022): 68–75. http://dx.doi.org/10.18799/24131830/2022/3/3465.

Повний текст джерела
Анотація:
Ссылка для цитирования: Разработка интеллектуальной станции управления для установок штанговых глубинных насосов / М.Г. Пачин, А.Н. Яшин, А.С. Бодылев, М.И. Хакимьянов // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2022. – Т. 333. – № 3. – С. 68-75. Актуальность. Одним из основных способов скважинной механизированной добычи нефти является использование штанговых глубиннонасосных установок. Данные насосные установки появились более 100 лет назад и до сих пор широко эксплуатируются. Однако при добыче нефти штанговыми глубинными насосами возникает ряд проблем: повышенный расход электроэнергии, низкие значения КПД и коэффициента мощности асинхронного электродвигателя, неисправности глубинного и наземного оборудования. Диагностика неисправностей и контроль работы скважинных насосных установок затруднен из-за большого количества скважин и их рассредоточенности на обширных территориях. Внедрение интеллектуальных станций управления установками скважинных насосов позволяет производить диагностику и контроль автоматически с передачей результатов на диспетчерский пункт. Использование систем ваттметрирования и динамометрирования позволяет своевременно определять развивающиеся дефекты нефтедобывающего оборудования, скважинный контроллер корректирует режим эксплуатации с тем, чтобы обеспечить необходимый дебит скважины с минимальным расходом электроэнергии. Цель: исследовать функции современных интеллектуальных станций управления скважинными насосами для добычи нефти; сформулировать основные требования к интеллектуальным станциям управления, к скважинным контроллерам; определить основные функции в области анализа динамограмм и ваттметрограмм установок штанговых глубинных насосов. Объекты: скважины для добычи нефти, станции управления скважинными штанговыми глубинными насосными установками, скважинные контроллеры, алгоритмы управления. Методы: методы многокритериальной оптимизации; математические методы анализа ваттметрограмм и динамограмм, теория автоматического управления. Результаты. Разработаны скважинный контроллер, интеллектуальная станция управления, алгоритм управления электроприводом скважинной насосной установкой. Станция управления имеет функции измерения и анализа динамограмм и ваттметрограмм, диагностики состояния нефтедобывающего оборудования, позволяет проводить оптимизацию режимов эксплуатации скважины по нескольким параметрам.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Тимашев, Эдуард Олегович, Булат Маратович Латыпов та Камил Рахматуллович Уразаков. "ИССЛЕДОВАНИЕ ТРИБОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК РАБОЧИХ ОРГАНОВ ВИНТОВОГО НАСОСА". Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 332, № 6 (22 червня 2021): 19–27. http://dx.doi.org/10.18799/24131830/2021/6/3232.

Повний текст джерела
Анотація:
Актуальность исследования обусловлена необходимостью повышения точности расчетов возникающих крутящих нагрузок, что позволит обеспечить условия для уточнения алгоритмов диагностики и прогнозирования ресурса винтовых насосных установок со штанговым и погружным приводом. Винтовые насосные установки используются в скважинных условиях, характеризующихся высокой вязкостью откачиваемой пластовой жидкости и высоким содержанием механических примесей в ней (коэффициент взвешенных частиц более 500 мг/л). Опыт эксплуатации винтовых насосных установок показывает, что надежность насосных установок зависит от состояния рабочих органов. В процессе эксплуатации эластомер статора набухает, что приводит к росту потерь на трение или к разрушению эластомера. Для повышения эффективности подбора, расчета и диагностики винтовых насосных установок важно понимание процессов, происходящих при трении металлического ротора по эластомеру статора в условиях смазки пластовой жидкостью. Цель исследования заключается в определении зависимости коэффициента трения пары рабочих органов винтового насоса от числа Зоммерфельда для эластомерного материала статора винтового насоса, построении участка кривой Штрибека, характерной для условий работы погружных винтовых насосных установок, и определении характерных режимов трения материала резина–сталь. Методы: экспериментальные исследования на триботехнической установке ИИ-5018 пар металл–эластомер в условиях сухого трения и при различных смазочных средах; статистическая обработка результатов экспериментов. Результаты. Установлена зависимость коэффициента трения от числа Зоммерфельда для пары трения ротор–статор винтового насоса. Определены режимы трения, характерные для условий эксплуатации винтовых насосных установок.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Теряєв, В. І., С. О. Бур’ян та В. П. Стяжкін. "УЗГОДЖЕНЕ РЕГУЛЮВАННЯ КООРДИНАТ ДВИГУНА-ГЕНЕРАТОРА В РЕЖИМІ ЕЛЕКТРИЧНОГО ГАЛЬМУВАННЯ". Vidnovluvana energetika, № 3(62) (28 вересня 2020): 62–69. http://dx.doi.org/10.36296/1819-8058.2020.3(62).62-69.

Повний текст джерела
Анотація:
Існує ряд установок і технологічних процесів, рух в яких здійснюється за рахунок зовнішнього джерела енергії, а електрична машина, не будучи основним джерелом руху, постійно або періодично перебуває в режимі генераторного електричного гальмування для забезпечення потрібних характеристики робочого процесу. Завдання даного дослідження полягає в розширенні функціональних можливостей генератора і двигуна в режимі електричного гальмування. Поставлена задача вирішується за рахунок регулювання координат електричної машини в генераторному режимі. Особливістю запропонованого способу управління є те, що одна або кілька координат генератора або двигуна в режимі електричного гальмування примусово задаються зовнішнім джерелом енергії, а метою узгодженого регулювання інших координат електричної машини є забезпечення заданого закону перетворення механічної енергії в електричну або алгоритму руху виконавчого органу робочої машини. У статті наведено приклад синтезу алгоритму управління регульованим електроприводом на основі принципу узгодженого регулювання координат. У прикладі розглядається обернений режим роботи насосної установки гідроакумулюючої електростанції. За критерієм незмінності потужності генерації в умовах зміни рівня рідини синтезований алгоритм частотного управління асинхронної машиною, який реалізується шляхом регулювання розрахункової швидкості холостого ходу двигуна, ротор якого обертається зовнішнім джерелом руху зі швидкістю, яка в загальному випадку може змінюватися за довільним законом. Завданням алгоритму управління є підтримка постійної потужності генерації енергії, незалежно від фактичної швидкості обертання ротора. Поєднання функцій генератора і електродвигуна в єдиному функціональному комплексі забезпечує енергозбереження та поліпшення якісних характеристики технологічних процесів і установок з регульованими електромеханічними системами. Бібл. 9, рис. 6.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Зюзев, Анатолий Михайлович, та Самуэль Исаак Текле. "ДИНАМИЧЕСКИЕ СИМУЛЯТОРЫ В ЗАДАЧАХ ДИАГНОСТИКИ ШТАНГОВЫХ ГЛУБИННО-НАСОСНЫХ УСТАНОВОК". Bulletin of the Tomsk Polytechnic University Geo Assets Engineering 333, № 1 (24 січня 2022): 168–77. http://dx.doi.org/10.18799/24131830/2022/1/3285.

Повний текст джерела
Анотація:
Ссылка для цитирования: Зюзев А.М., Текле С.И. Динамические симуляторы в задачах диагностики штанговых глубинно-насосных установок // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2022. – Т. 333. – № 1. – С.168-177. Актуальность. Эффективность работы штанговых глубинно-насосных установок во многом зависит от качества системы мониторинга и диагностики неисправностей агрегата. Когда штанговый насос эксплуатируется в критических рабочих состояниях, частота отказов оборудования увеличивается, а эффективность производства снижается. Кроме того, поскольку штанговый насос работает глубоко под землей, затраты на его ремонт и обслуживание весьма высокие, а добыча при этом прерывается на длительное время. Следовательно, улучшение системы мониторинга и диагностики работы штангового насоса является важной задачей. Информация о рабочем состоянии штангового насоса отражается в динамограмме усилий в подвеске колонны штанг и в диаграмме мгновенной мощности двигателя – ваттдиаграмме. Мониторинг штангового насоса с использованием кривой мощности двигателя более эффективен, чем динамометрирование, так как его можно использовать для оценки состояния как наземного, так и подземного оборудования. Кроме того, диаграмма мощности двигателя, в отличие от динамограммы, получается с помощью более простых и надежных средств измерений тока и напряжения. Таким образом, диаграмму мощности двигателя можно признать лучшим альтернативным методом для разработки оперативных систем мониторинга и диагностики для штанговых насосных установок. Основная цель: рассмотреть проблемы построения диагностических моделей с использованием диаграммы мощности двигателя штанговых глубинно-насосных установок. Объекты: электропривод, штанговая насосная установка, нефтедобывающая скважина. Методы: имитационное моделирование; метод извлечения признаков, который создает вектор признаков для уникального представления каждого рабочего состояния – метод опорных векторов. Результаты. Проанализированы 72 расчётных диаграммы мощности двигателя, представляющие шесть рабочих состояний, а именно: нормальное рабочее состояние; утечка всасывающего клапана; воздействие газа; недостаточная подача жидкости; низкая и высокая посадка плунжера. Показано, что вектор признаков, построенный на основе оценки мощности в момент переключения клапанов, уникально представляет каждое рабочее состояние. Также было замечено, что метод опорных векторов правильно классифицирует образцы в нормальном режиме работы штанговых глубинно-насосных установок, утечки во впускном клапане и заполнение насоса газом. Однако некоторые образцы с недостаточной подачей жидкости были ошибочно классифицированы как заполнение насоса газом или нормальные.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Уразаков, Камил Рахматуллович, Павел Михайлович Тугунов та Шамиль Агаметович Алиметов. "МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ ГАЗОЖИДКОСТНОГО ПОТОКА НА ПРИЕМЕ ЭЛЕКТРОЦЕНТРОБЕЖНЫХ НАСОСНЫХ УСТАНОВОК С КАРКАСНО-ПРОВОЛОЧНЫМ ФИЛЬТРОМ". Bulletin of the Tomsk Polytechnic University Geo Assets Engineering 332, № 11 (19 листопада 2021): 68–77. http://dx.doi.org/10.18799/24131830/2021/11/2879.

Повний текст джерела
Анотація:
Ссылка для цитирования: Уразаков К.Р., Тугунов П.М., Алиметов Ш.А. Моделирование течения газожидкостного потока на приеме электроцентробежных насосных установок с каркасно-проволочным фильтром // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2021. – Т. 332. – № 11. – С. 68-77 Актуальность. На сегодняшний день одним из наиболее неблагоприятных факторов, осложняющих механизированную добычу нефти, является взаимодействие механических примесей, переносимых скважинной продукцией, с узлами внутрискважинного оборудования. Согласно статистическим исследованиям, механические примеси являются определяющей причиной возникновения осложнений неисправностей в работе установок электроцентробежных насосов. Объект: каркасно-проволочные фильтры, обладающие наилучшими гидравлическими характеристиками в сравнении с другими видами механических фильтров. Несмотря на широкую распространенность, на сегодняшний день не существует общепринятой методики расчета технологического режима скважин, оборудованных электроцентробежными насосами с механическими фильтрами. Вместе с тем в работе показано, что механические фильтры за счет гидравлического сопротивления оказывают существенное влияние на геометрию линий тока жидкости в области приема насоса, следовательно, газовой фазы и фракции механических примесей, движущихся в потоке. Цель: исследование влияния гидравлических характеристик механических фильтров на особенности течения откачиваемой продукции в интервале приема электроцентробежного насоса; разработка математической модели многокомпонентного течения газожидкостного потока, содержащего механические примеси, в интервале приема электроцентробежной насосной установки, оборудованной каркасно-проволочным фильтром. Результаты. Показано, что для насоса с фильтром за счет создаваемого им гидравлического сопротивления интервал приема работает более равномерно, причем по мере снижения гидравлического параметра достигается более равномерный профиль радиального притока жидкости в области приема насоса. Исследованы особенности течения пузырьков газа и взвешенных частиц механических примесей, движущихся в потоке жидкости в области приема насоса. Показано, что условия сепарации газа на приеме, а также распределение концентрации механических примесей изменяются при варьировании гидравлических характеристик фильтра в составе насоса, что необходимо учитывать при проектировании технологического режима эксплуатации скважин. Исследовано влияние гидравлических характеристик фильтра на величину потерь давления при течении жидкости через фильтрующий элемент.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Алаева, Наталья Николаевна, Юрий Борисович Томус та Лариса Геннадьевна Тугашова. "РАЗРАБОТКА И ПРИМЕНЕНИЕ СТАЦИОНАРНОГО СКВАЖИННОГО ПРИБОРА В СИСТЕМЕ УПРАВЛЕНИЯ ПРОЦЕССОМ НЕФТЕДОБЫЧИ". Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 331, № 1 (23 січня 2020): 87–96. http://dx.doi.org/10.18799/24131830/2020/1/2450.

Повний текст джерела
Анотація:
Актуальность исследования заключается в получении достоверных измеренных технологических параметров (как минимум давления и плотности добываемой продукции) в скважине, полученных в режиме реального времени, для качественного управления нефтедобывающей скважиной и повышения эффективности ее эксплуатации. Цель: разработка стационарного скважинного прибора для измерения давления на приеме и выкиде насоса, внутри насосно-компрессорных труб и межтрубного пространства нефтедобывающей скважины; составление математической модели получения необходимых технологических параметров для решения основных задач при добыче нефти; применение стационарного скважинного прибора в предлагаемой системе управления процессом нефтедобычи. Объект – нефтедобывающая скважина. Методы: моделирование и оценка работы предлагаемой системы управления процессом нефтедобычи с применением разработанного стационарного скважинного прибора в программе Matlab/Simulink. Результаты. Разработан стационарный скважинный прибор для измерения давления на приеме и выкиде насоса, внутри НКТ и межтрубного пространства скважины и показана его конструкция; представлена математическая модель получения необходимых технологических параметров для решения основных задач при добыче нефти; предложена система управления с применением разработанного прибора; поставлена и решена задача создания эффективной системы управления процессом нефтедобычи. Выводы. Получен положительный результат при моделировании системы управления процессом нефтедобычи с применением разработанного скважинного прибора для измерения давления в нескольких контрольных точках ствола нефтедобывающей скважины в программе Matlab/Simulink. Реализация разработанного стационарного скважинного прибора в предлагаемой системе управления процессом нефтедобычи обеспечивает точность и быстродействие вывода скважины на стационарный режим работы, его стабилизацию и увеличение отбора добываемой продукции.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Arsent'yev, O. V., and D. K. Dushechkin. "OPTIMIZATION OF THE PUMP ELECTRIC EQUIPMENT CONTROL MODE." Modern Technologies and Scientific and Technological Progress 1, no. 1 (April 12, 2019): 216–17. http://dx.doi.org/10.36629/2686-9896/2019-1-1-216-217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Юрченко, О. Ю., та Г. В. Барсукова. "ВИКОРИСТАННЯ ЧАСТОТНОГО ПЕРЕТВОРЮВАЧА – ДІЄВИЙ ТА ЗРУЧНИЙ СПОСІБ РЕГУЛЮВАННЯ ШВИДКОСТІ НАСОСНОГО АГРЕГАТУ". Bulletin of Sumy National Agrarian University. The series: Mechanization and Automation of Production Processes 45, № 3 (21 лютого 2022): 57–63. http://dx.doi.org/10.32845/msnau.2021.3.8.

Повний текст джерела
Анотація:
У статті розглянуто систему, що дає можливість автоматизованого керування роботою насосного агрегату за різних режимів роботи. Системою забезпечуються ручний та автоматичний режими керування, що дає змогу переважно за автоматичного режиму керування виключити відсоток відмов через людський фактор. Робота системи базується головним чином на використанні перетворювача частоти, що є основним елементом у системі, яка розглядається, та допоміжних структурних елементів, таких як реле захисту від «сухого ходу», реле для захисту від перепаду тиску в основному та резервному насосах, датчики температури та тиску. Потреба у постійній високоточній зміні швидкості обертання насосного агрегату здатна бути вирішена за рахунок такої системи, принцип роботи якої полягає у надходженні періодичних, коли це необхідно буде здійснювати, сигналів до перетворювача частоти, який залежно від того, яку швидкість обертання насосного агрегату потрібно досягти, буде регулювати частоту, яка безпосередньо має вплив на швидкість обертання електричного двигуна, що є приводним двигуном для насосного агрегату. У разі наприклад зменшення тиску води у системі через датчики температури та реле перепаду тиску буде подано сигнал до частотного перетворювача, яким буде збільшено частоту електромагнітного поля. За рахунок збільшення частоти і при цьому незмінного числа пар полюсів у електричному двигуні буде досягнуто більшу швидкість обертання електродвигуна, що призведе до збільшення продуктивності насосного агрегату, яким накачується певна кількість рідини, тиск якої заздалегідь визначений та запрограмований як стандартне значення тиску у системі. Збільшивши частоту, а відповідно, і продуктивність насосного агрегату, тиск у системі буде піднято до стандартного значення, після чого насосний агрегат буде здійснювати роботу на звичній для себе швидкості. Таким чином, будь-які відхилення параметрів системи від робочих є контрольованими та регулюються за рахунок датчиків та реле температури, а також перетворювача частоти, який за рахунок зміни частоти здійснює зміну швидкості обертання і, як наслідок, зміну продуктивності роботи насосного агрегату, що може бути використаний у системах тепло- або водопостачання як житлових будинків, так і промислових підприємств окремо взятих груп споживачів.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

В. В. Рындин, А. Н. Шахаев, Р. М. Шокан, А. Яновский та Ю. П. Макушев. "ИССЛЕДОВАНИЕ РЕЖИМОВ РАБОТЫ МАГИСТРАЛЬНОГО НЕФТЕПРОВОДА В СИСТЕМЕ MATHCAD". Science and Technology of Kazakhstan, № 3.2021 (27 вересня 2021): 147–59. http://dx.doi.org/10.48081/psvu1308.

Повний текст джерела
Анотація:
В статье приведена программа расчёта магистрального нефтепровода в системе Mathcad, позволяющая исследовать влияние числа насосов на работоспособность системы, а также выбрать рациональные режимы при циклической перекачке для получения плановой пропускной способности трубопровода. Программа позволяет автоматически строить QH-характеристики трубопроводов и перекачивающих станций, определять положение станций в точках пересечения линий напоров от каждой насосной станции с линией сжатого профиля. Даётся компактная запись (одна строка) расчёта рабочей точки для произвольного числа работающих насосов путём использования программного блока Given-Find. Всё это, наряду с наглядностью записи математических выражений и простотой построения графиков, даёт основание рекомендовать данную программу для использования как в учебном процессе при написании дипломов и магистерских диссертаций, так и в проектных организациях при проектировании и исследовании режимов работы нефтепроводов. Данная программа может быть также использована для отладки более сложных программ, выполняемых с использованием менее наглядных языков программирования.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Bibik, O. V., O. M. Popovych, and S. P. Shevchuk. "POWER EFFECTIVE MODES ELECTROMECHANICAL SYSTEM OF PUMP INSTALLATION OF THE MULTISTOREY BUILDING." Tekhnichna Elektrodynamika 2016, no. 5 (September 6, 2016): 38–45. http://dx.doi.org/10.15407/techned2016.05.038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Абдикулова, Загипа Киргизбаевна, та Канышбек Уразбекович Абдраимов. "Оптимизация работы Кентауской ТЭЦ". Bulletin of Toraighyrov University. Energetics series, № 3.2020 (14 жовтня 2020): 12–19. http://dx.doi.org/10.48081/pbxz4519.

Повний текст джерела
Анотація:
В статье рассматриваются пути оптимизации работы Кентауской ТЭЦ за счет изменения водно-химического режима системы подготовки подпиточной воды с целью повышения температуры сетевой воды до 140–145 0С, предлагается метод коррекционной обработки воды с помощью ингибиторов отложений минеральных солей, приведены экспериментальные исследования и результаты влияния ингибиторов отложений минеральных солей и его композиций на кристаллизацию труднорастворимых соединений. Обработка воды ингибитором отложений минеральных солей практически не увеличивает ее минерализации, не усиливает ее коррозионно-агрессивные свойства, не оказывает влияния на биологические обрастания или насосные отложения. Механизм стабилизирующего действия заключается в адсорбции комплексона на микрозародышах кристаллизирующейся соли, что препятствует дальнейшему росту кристаллов и образованию отложений и обеспечивает стабильность пересыщенных растворов. Контроль процесса накипеобразования проводился по показателям общей жесткости и щелочности воды.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Волошин, М. М. "РОЗРОБКА СХЕМИ ОПТИМІЗАЦІЇ РОБОТИ КОМБІНОВАНОГО ГОЛОВНОГО КОЛЕКТОРА «КНС-5 – КНС-4» ЦЕНТРАЛІЗОВАНОЇ СИСТЕМИ ВОДОВІДВЕДЕННЯ МІСТА ХЕРСОНА". Таврійський науковий вісник. Серія: Технічні науки, № 4 (26 листопада 2021): 61–67. http://dx.doi.org/10.32851/tnv-tech.2021.4.7.

Повний текст джерела
Анотація:
У статті наведено схему оптимізації роботи комбінованого головного колектора «КНС-5 – КНС-4» централізованої системи водовідведення міста Херсона. Представ- лена актуальність модернізації та розвитку водовідведення. Наведені проблеми, які потребують негайного розв’язання. Наведена мета дослідження – питання стосовно можливості та доцільності розробки схеми оптимізації роботи системи водовідве- дення міста Херсона. Представлено кількісні характеристики наявних основних кана- лізаційних насосних станцій у місті Херсоні. Наведена технологічна схема перекачки стічних вод та система водовідведення міста. Представлено характеристики каналіза- ційних мереж, їх довжина, матеріал, зношеність. Наведено споживачів води і скидання стічної води до ділянки каналізаційного колектора № 22. Розраховано розподіл обсягів скидання стічної води за категоріями споживачів. Представлено тарифи без ПДВ на послуги централізованого водовідведення, затверджені на 2021 рік. Наведено схему комбінованої ділянки каналізаційного колектора «КНС-4 і КНС-5» та її трасування. Виконана детальна характеристика двох ниток напірних трубопроводів від КНС-5. Представлена довжина, матеріал, рік побудови. Наведено характеристику колектора № 22 (кількість обслуговуючих житлових будинків та населення, довжина, матеріал). Представлено результати паспортизації каналізаційної мережі. Проведений аналіз сучасного стану каналізаційної мережі, виявлено низку недоліків та зауважень. Аналіз гідравлічного розрахунку реконструйованої комбінованої ділянки каналізаційного колек- тора № 22 у разі транспортування теоретично обґрунтованої максимальної секундної витрати виявив низку зауважень. Запропоновано нормальний режим роботи розподіль- ної системи водовідведення, можливість забезпечити за умови реалізації наведених заходів стосовно її реконструкції.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Сарачева, Диана Азатовна, Роза Ильгизовна Вахитова та Камил Рахматуллович Уразаков. "РАСЧЕТ ПАРАМЕТРОВ СТРУЙНОГО АППАРАТА ДЛЯ ОПТИМАЛЬНОГО РЕЖИМА СОВМЕСТНОЙ РАБОТЫ С УСТАНОВКОЙ ЭЛЕКТРОЦЕНТРОБЕЖНОГО НАСОСА". Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 330, № 10 (11 жовтня 2019): 91–101. http://dx.doi.org/10.18799/24131830/2019/10/2301.

Повний текст джерела
Анотація:
Актуальность исследования обусловлена необходимостью решения проблемы удаления газа, скапливающегося в затрубном пространстве нефтедобывающих скважин, на приеме погружного электроцентробежного насоса. Избыточное количество свободного газа в пространстве между обсадной колонной и насосно-компрессорными трубами способствует образованию гидратных пробок, снижению динамического уровня в скважине, в результате чего может наступить срыв подачи и возможна полная остановка добычи нефти. Для откачки свободного газа предлагается использовать струйный аппарат при совместной эксплуатации с электроцентробежным насосом, при этом важно правильно рассчитать место расположения эжектора в скважине и диаметр сопла. Цель: разработать и предложить методику расчета параметров струйного аппарата для оптимального режима совместной работы с электроцентробежным насосом. Объект: струйный аппарат для удаления затрубного газа в скважинах, оборудованных установками электроцентробежных насосов и имеющих высокий газовый фактор. Методы. Поставленная проблема решалась на базе статистического анализа промысловых данных с применением информационных современных методов обработки результатов. Использован метод математического моделирования при расчете основных параметров струйного аппарата для обеспечения оптимального режима при их совместной работе с установками электроцентробежных насосов. Результаты. Предложена математическая модель комплектования электроцентробежного насоса совместно со струйным аппаратом, предназначенным для откачки затрубного газа, в результате этого получены аналитические зависимости, определяющие оптимальные параметры и расчетные величины струйного аппарата, обеспечивающие устойчивую работу системы «электроцентробежный насос – струйный аппарат». Разработана методика расчета места расположения эжектора в скважине, эксплуатируемой установкой электроцентробежного насоса.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kurnosenko, D. V., V. P. Savchuk та E. V. Bilousov. "ДОСЛІДЖЕННЯ ВПЛИВУ ХАРАКТЕРИСТИК МАСЛЯНИХ ФІЛЬТРІВ ТИПУ «SPIN-ON» НА РОБОЧІ ПАРАМЕТРИ МАСЛЯНОЇ СИСТЕМИ". Transport development, № 4(11) (14 січня 2022): 52–64. http://dx.doi.org/10.33082/td.2021.4-11.05.

Повний текст джерела
Анотація:
Вступ. Шляхом підвищення ефективності високообертових дизельних двигунів (ВОД) є оптимізація роботи елементів системи мащення – зменшення насосних витрат. Підвищені витрати на привід масляних насосів пов’язані з роботою двигуна на високов’язких маслах, роботою непрогрітого двигуна й експлуатація двигуна із забрудненим масляним фільтром. На ступінь забруднення моторного масла впливає режим роботи дизельного двигуна, кліматичні умови експлуатації, якість дизельного палива, марка застосовуваного моторного масла. Мета. Стаття присвячена стендовим дослідженням робочих параметрів масляних фільтрів і їх впливу на експлуатаційні показники масляного насоса в широкому діапазоні частот обертання. Результати виконаних досліджень наведено у вигляді графічних залежностей. У статті представлено залежності витрати моторного масла в напірну магістраль, лінію зливу та значення продуктивності масляного насосу при використанні чотирьох різних моделей масляних фільтрів: ФМ 009-1012005, WL7133, SM 108 і M-019 (забруднений). Додатково отримано залежності тиску після масляного насоса, після масляних фільтрів і значення падіння тиску на масляних фільтрах від частоти обертання вхідного валу масляного насосу. Висновки. У статті після проведення експериментальних досліджень контуру подачі й очистки моторного масла системи мащення з використанням чотирьох моделей масляних фільтрів типу «spin-on» нами отримано графічні залежності витрати моторного масла масляним насосом до головної масляної магістралі й до лінії зливу. Додатково визначено вплив досліджуваних режимів на розподіл тиску моторного масла, що створюється масляним насосом, тиску в напірній магістралі, перепаду масляного тиску на досліджуваних масляних фільтрах і з урахуванням розрідження на лінії всмоктування. Представлені залежності дають можливість здійснити оцінку роботи запобіжного клапану масляної системи і стану фільтруючого елементу.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Yurchenko, O. M., O. V. Chermalykh, and O. V. Danilin. "RESEARCH OF THE WORK OF PUMPING UNITS IN THE MODE OF STABILIZATION OF THE LIQUID LEVEL IN THE RESERVOIR BASED ON THE IMITATION MODEL." Tekhnichna Elektrodynamika 2019, no. 2 (February 19, 2019): 72–77. http://dx.doi.org/10.15407/techned2019.02.072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Яремак, І. І., та В. С. Костишин. "Керування режимами електрогідравлічного комплексу на підставі системного підходу". Scientific Bulletin of UNFU 30, № 3 (4 червня 2020): 83–88. http://dx.doi.org/10.36930/40300314.

Повний текст джерела
Анотація:
Розроблено закони координатно-параметричного поліоптимального керування перехідними та усталеними режимами експлуатаційної ділянки магістрального нафтопроводу. За допомогою системного підходу магістральний нафтопровід представлено як складний ієрархічний електрогідравлічний комплекс, який містить електричну та гідравлічну підсистеми. Поєднано поліоптимальне керування усталеними та динамічними режимами роботи ієрархічної електрогідравлічної системи. Встановлено, що режими роботи нафтоперекачувальних станцій України відрізняються від номінальних і потребують розроблення та реалізації алгоритмів оптимального керування. Визначено критерії глобальної оптимізації верхнього рівня та локальної оптимізації нижнього рівня ієрархічної системи експлуатаційної ділянки магістрального нафтопроводу. Встановлено, що ці критерії взаємозв'язані та мають суперечливий характер. Розроблено закони дискретно-неперервного керування збудженням синхронного електродвигуна. За допомогою регулятора змінної структури реалізовано алгоритми координатно-параметричного поліоптимального керування, що дало змогу підвищити стійкість та ефективність роботи електродвигуна та насоса з одночасним збереженням необхідної якості електропостачання та нафтоперекачування. Вимоги до характеристик регулятора сформовано на підставі отриманих законів керування. Вперше виконано комплексне дослідження роботи ієрархічної електрогідравлічної системи, що дало змогу поєднати закони поліоптимального керування усталеними та динамічними режимами електроприводних насосних агрегатів. Розроблено функціональну схему автоматичного регулятора для реалізації координатно-параметричного керування режимами експлуатаційної ділянки магістрального нафтопроводу. Розв'язок оптимізаційної задачі керування перехідними режимами електрогідравлічного комплексу дає змогу за незначного збільшення часу перехідного процесу досягти розширення результуючої області стійкості насосного агрегату. Підвищення стійкості зумовлено реалізацією алгоритмів локально-оптимального керування, вибір яких здійснюється за допомогою запропонованого координатно-параметричного керування.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Вахитова, Роза Ильгизовна, Камил Рахматуллович Уразаков та Елена Борисовна Думлер. "ТЕПЛООБМЕННОЕ УСТРОЙСТВО ДЛЯ ПОГРУЖНЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ УСТАНОВОК ЭЛЕКТРОЦЕНТРОБЕЖНЫХ НАСОСОВ". Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 332, № 4 (20 квітня 2021): 17–23. http://dx.doi.org/10.18799/24131830/2021/4/3144.

Повний текст джерела
Анотація:
Актуальность разработки технического устройства обусловлена необходимостью решения задач, связанных с охлаждением высокооборотных вентильных и асинхронных погружных двигателей, в том числе при выводе добывающих скважин на рабочий режим. Особенно актуальна разработка эффективных систем охлаждения таких двигателей при использовании высокооборотных двигателей в малодебитных скважинах, поскольку мощность источников теплоты резко увеличивается по квадратичному закону в зависимости от числа оборотов. Основная цель: разработать конструкцию теплообменного устройства, позволяющего интенсифицировать теплообменные процессы в погружном электродвигателе для увеличения его межремонтного периода работы. Объектом исследования является модуль-теплообменник, применяемый в серийно выпускаемых электропогружных центробежных насосных установках с асинхронными погружными маслозаполненными двигателями и в высокоборотных погружных установках с вентильными электродвигателями. Модуль-теплообменник предназначен для снижения тепловой напряженности, повышения его эффективности при работе в условиях воздействия высоких температур. Методы. Для решения поставленной задачи был использован метод проектных исследований путем модернизации существующей конструкции модуля-теплообменника с низкой эффективностью теплообмена между пластовой жидкостью и нагретым маслом в электродвигателе с небольшими перепадами температур между ними. Результаты. Предложена усовершенствованная конструкция модуля-теплообменника, которая в условиях малых внутренних габаритов скважины и относительно невысоких температурных градиентов между нагретым маслом погружного электродвигателя и омывающей его пластовой жидкостью позволяет обеспечить максимальную степень интенсификации теплообменных процессов. Для эффективного охлаждения маслосистемы электродвигателя предложено использовать двухконтурную систему охлаждения. Для увеличения общей площади поверхности активного теплообмена выполнено оребрение внутреннего канала сквозного протока пластовой жидкости. Для обеспечения активной циркуляции нагретого масла предложено на поверхности внутренних стенок маслоканалов установить элементы закрутки потока, позволяющие выровнять температурные показатели пластовой жидкости и масла.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Кузьмин, В. А., О. А. Ломинога, and Е. Г. Колоскова. "Introduction of membrane technologies at the wastewater treatment facilities of Molodezhnoe settlement." Vodosnabzhenie i sanitarnaia tehnika, no. 3 (March 15, 2021): 26–32. http://dx.doi.org/10.35776/vst.2021.03.05.

Повний текст джерела
Анотація:
Представлен опыт внедрения технологии мембранной очистки сточных вод на канализационных очистных сооружениях поселка Молодежное (Санкт-Петербург). В состав очистных сооружений входят: главная насосная станция, комбинированная установка механической очистки сточных вод, усреднитель, биореактор (аэротенк, работающий по технологии нитри-денитрификации) для глубокого удаления азота, мембранный биореактор, установка ультрафиолетового обеззараживания сточных вод, шнековый пресс обезвоживания избыточного активного ила, станция дозирования реагента сульфата алюминия для химического удаления фосфорных соединений (фосфатов). Очищенные и обеззараженные сточные воды сбрасываются через глубоководный выпуск в Финский залив. Мембранная фильтрация обеспечивает глубокую доочистку от мелкодисперсных взвешенных веществ и коллоидных частиц. Для достижения стабильного качества очищенных сточных вод при эксплуатации мембранных модулей необходимо строго выполнять следующие требования: высокая эффективность удаления отбросов на решетках; предотвращение попадания посторонних включений в биореактор после механической очистки; обеспечение высокой концентрации ила в аэротенке и мембранном блоке; своевременная химическая промывка мембран. В ходе опытной эксплуатации очистных сооружений пос. Молодежное была отмечена неравномерность нагрузки как гидравлической, так и по загрязняющим веществам. За период эксплуатации были отлажены режимы работы станции с учетом неравномерности характеристик поступающего стока с выходом на проектные параметры технологической линии очистки сточных вод. The experience of introducing membrane wastewater treatment technology at the wastewater treatment facilities in Molodezhnoe settlement (St. Petersburg) is presented. The treatment facilities include: a main pumping station, a combined mechanical wastewater treatment plant, a wastewater regulator, a bioreactor (aeration tank operating using nitri-denitrification technology) for enhanced nitrogen removal, a membrane bioreactor, an ultraviolet effluent disinfection unit, a screw press for excess activated sludge dewatering, aluminum sulfate dosing unit for the chemical removal of phosphorus compounds (phosphates). The effluent after disinfection is discharged through a deep-water outlet into the Gulf of Finland. Membrane filtration provides for the enhanced tertiary treatment to remove fine suspended solids and colloidal particles. To achieve a stable quality of the effluent during the operation of membrane modules, the following requirements shall be strictly met: the high efficiency of screenings removal; prevention of the ingress of foreign particles into the bioreactor after mechanical treatment; high concentration of sludge in the aeration tank and membrane unit; timely chemical washing of the membranes. During the trial operation of the treatment facilities in Molodezhnoe, the irregular hydraulic and pollution loading was noted. During the operation period the operating modes of the facilities were adjusted with account of the irregular characteristics of the incoming flow while achieving the design parameters of the process line of wastewater treatment.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Senchishak, Vasyl, Vasyl Popovych, Viktor Kharun та Ivan Tsidylo. "Дослідження режиму роботи верстата-гойдалки під час розгону". International scientific and technical conference Information technologies in metallurgy and machine building, 24 березня 2020, 249–54. http://dx.doi.org/10.34185/1991-7848.itmm.2020.01.025.

Повний текст джерела
Анотація:
Розроблена математична модель свердловинної штангової насосної установки з балансирним приводом – верстатом-гойдалкою. Більшість свердловин Українських нафтових родовищ знаходяться на пізній стадії розробки, тобто їх дебіт нижчий ніж подача штангових насосів. Така робота верстатів-гойдалок приводить до зниження динамічного рівня рідини в свердловині, а отже й до зміни навантаження привода. Таким чином порушується усталений режим роботи. Коли рівень рідини досягає прийому глибинного штангового насоса, верстат-гойдалку відключають. На кривошипах верстата-гойдалки встановлено противаги, які зрівноважують навантаження, що діє в точці підвіски штанг. Зміна динамічного рівня призводить до порушення зрівноваження. Таким чином двигун привода перевантажується під час пуску верстата-качалки. Проведено аналітичне дослідження свердловинної штангової насосної установки під час її пуску.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Usachev, A. "Методика оценки эффективности частотного регулирования производительности насосных агрегатов КНС". Vodosnabzhenie i sanitarnaia tehnika, № 1 (20 січня 2020). http://dx.doi.org/10.35776/mnp.2020.01.06.

Повний текст джерела
Анотація:
Рассматривается методика оценки экономии электроэнергии от использования частотного регулирования производительности насосных агрегатов на канализационных насосных станциях. Методика основана на графическом анализе параметров рабочей точки насосов рабочей группы и рассчитана на использование в системах водоотведения, работа которых осуществляется по уровню в приемном резервуаре. Предлагаемая методика оценки эффективности частотного регулирования на канализационных насосных станциях проверена многолетним опытом ее использования и является именно оценочной. Экономия электроэнергии на канализационных насосных станциях существенно ниже, чем на водопроводных. Это относится к системам с регулированием в режиме старт-стоп . Данное обстоятельство связано с тем, что эффект от частотного регулирования заключается в снижении скорости движения жидкости в напорном трубопроводе. Эффект проявляется тем сильнее, чем больше динамическая составляющая характеристики сети относительно ее статической составляющей (в диапазоне изменения производительности станции). Практически это встречается крайне редко. Экономия электроэнергии в приведенных примерах с режимом старт-стоп не превышает 10 (без учета потерь в преобразователе частоты).The method of evaluating energy savings through the use of frequency regulation of the pumping unit performance at sewage pumping stations is considered. The method is based on a graphical analysis of the parameters of the operation point of the pumps in the working group and is developed for the use in sewer networks that operate according to the level in the receiving tank. The proposed method of evaluating the effectiveness of frequency regulation at sewage pumping stations has been proved by many years of experience of using and is precisely evaluative. Energy savings at sewage pumping stations are significantly lower than at water pumping stations. This applies to the systems with start/stop control because the effect of frequency regulation consists in reducing the velocity of fluid in the pressure pipeline. The bigger the dynamic component of the network characteristic in relation to its static component (in the range of the station capacity change), the stronger effect is manifested. In practice, this is extremely rare. The energy savings in the above examples with the start/stop mode does not exceed 10 (excluding the losses in the frequency converter).
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Rozhnov, E. "Рациональное использование свободного напора". Vodosnabzhenie i sanitarnaia tehnika, № 4 (15 квітня 2020). http://dx.doi.org/10.35776/mnp.2020.04.07.

Повний текст джерела
Анотація:
Линейная удаленность объектов в г. Новокузнецке достигает 40 км с разницей высотных отметок 157 м. Два главных водозабора города удалены друг от друга на расстояние 20 км, что предполагает наличие зон с разным свободным напором. Управление давлением и распределение воды по районам традиционно осуществлялось дросселированием запорной арматурой, а в исходной схеме водоснабжения функционировали 119 насосных станций с агрегатами мощностью от 0,75 до 1250 кВт. По результатам анализа возможных путей решения проблемы были сформированы предложения по установке редукционных клапанов, разработана схема их установки и определены режимы работы новой системы. Установка регуляторов по всему городу решалась в два этапа. В 2016 г. в результате установки семи регуляторов были остановлены 13 повысительных насосных станций общей мощностью более 150 кВт. На втором этапе в 2017 г. были установлены еще 12 регуляторов и остановлены 8 станций общей мощностью 40 кВт, а на пяти станциях была выполнена оптимизация с заменой насосов агрегатами меньшей мощности. Окупаемость проекта составила 4 года.The linear remoteness of the water facilities in the city of Novokuznetsk reaches 40 km with a difference in elevations of 157 m. The two main water intakes of the city are located at the distance of 20 km from each other, which suggests the availability of zones with different free head. Pressure control and water distribution among the districts was traditionally carried out by throttling shutoff valves, and 119 pumping stations with pumps of 0.751250 kW capacity were operating in the initial water supply scheme. Based on the analysis of possible solutions to the problem, proposals were made for the installation of pressure reducing valves, an installation diagram was developed, and the operating modes of the new system were determined. The installation of regulators throughout the city was carried out in two stages. In 2016, as a result of the installation of 7 regulators, 13 booster pumping stations with a total energy consumption of more than 150 kW were phased out at the second stage in 2017, 12 more regulators were installed and 8 more pumping stations with a total energy consumption of 40 kW were put out of operation and 5 pumping stations were upgraded with pump replacement for lower capacity. The project payback period was 4 years.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Халадов, А. Ш., А. А. Умаев, И. И. Алиев, М. М. Дудаев, and Х. Р. Хутаев. "Measures to prevent and combat complications during well operation." Естественные и технические науки, no. 11(149) (December 8, 2020). http://dx.doi.org/10.25633/etn.2020.11.14.

Повний текст джерела
Анотація:
Эксплуатация скважин на поздних этапах разработки месторождения характеризуется увеличением объема ремонтных работ в результате износа и последующего отказа подземного оборудования. Причиной, осложняющей эксплуатацию скважины, является процесс выноса механических примесей в скважину совместно с добываемой продукцией. Это явление вызвано недостаточной прочностью коллектора под действием депрессии и репрессии на пласт, высокой скоростью фильтрации пластовых флюидов в призабойной зоне пласта (ПЗП), которая приводит к разрушению коллектора. Вынос песка из слабосцементированного коллектора вызывает интенсивное изнашивание элементов центробежных и штанговых насосов, насосно-компрессорных труб (НКТ), резьбовых соединений, фонтанной арматуры, заиливание внутрискважинных фильтров, образование песчаных пробок. Песчаные пробки перекрывают интервал перфорации, нарушая режим работы скважины.Основным осложнением при эксплуатации верхнемеловой залежи месторождения Правобережное является интенсивное обводнение скважин, обусловленное большой скоростью продвижения водонефтяного контакта (ВНК) в период интенсивного отбора нефти из залежи. Wells operation in the late stages of field development is characterized by an increase in the volume of workovers as a result of wear and subsequent failure of underground equipment. The reason that complicates the operation of the well is the process of removing mechanical impurities into the well together with the produced product. This phenomenon is caused by the insufficient strength of the reservoir under the influence of depression and repression on the formation, high filtration rate of formation fluids in the bottomhole formation zone (BHZ), which leads to the destruction of the reservoir. The removal of sand from a poorly cemented reservoir causes intensive wear of the elements of centrifugal and sucker rod pumps, tubing (tubing), threaded connections, christmas tree, siltation of downhole filters, the formation of sand plugs. Sand plugs block the perforation interval, disrupting the well operation.The main complication in the operation of the Upper Cretaceous reservoir of the Pravoberezhnoye field is the intensive watering of the wells due to the high speed of the oil-water contact (OWC) advance during the period of intensive oil withdrawal from the reservoir.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії