Зміст
Добірка наукової літератури з теми "Металеві труби"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Металеві труби".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Металеві труби"
Лукін, О. Ю., та В. М. Шестопалов. "Срібненська кільцева структура (Дніпровсько-Донецька западина) — можливий полігон освоєння вод- невого потенціалу земних надр". Reports of the National Academy of Sciences of Ukraine, № 5 (27 жовтня 2021): 50–60. http://dx.doi.org/10.15407/dopovidi2021.05.050.
Повний текст джерелаЗдещиц, Валерій Максимович, та Анастасія Валеріївна Здещиц. "Гальмування постійного магніту токами Фуко при його русі біля металевих поверхонь". Theory and methods of learning mathematics, physics, informatics 13, № 3 (25 грудня 2015): 118–28. http://dx.doi.org/10.55056/tmn.v13i3.992.
Повний текст джерелаPoberezhny, L. Ya, A. V. Hrytsanchuk та V. V. Hrytsanchuk. "ВПЛИВ ГАЗОГІДРАТІВ НА ДОВГОВІЧНІСТЬ СТАЛІ ТРУБОПРОВОДУ". Scientific Bulletin of UNFU 25, № 8 (29 жовтня 2015): 226–31. http://dx.doi.org/10.15421/40250838.
Повний текст джерелаМартинець, О. Р., та Б. В. Копей. "Дослідження та аналіз способів ремонту насосних штанг". Prospecting and Development of Oil and Gas Fields, № 1(78) (18 травня 2021): 43–50. http://dx.doi.org/10.31471/1993-9973-2021-1(78)-43-50.
Повний текст джерелаBobukh, O. S., A. S. Vovk, O. M. Kuzmina, A. K. Andreev, Y. V. Frolov та A. A. Samsonenko. "Випробування кільцевих зразків на розтягування". Обробка матеріалів тиском, № 1(50) (31 березня 2020): 104–13. http://dx.doi.org/10.37142/2076-2151/2020-1(50)104.
Повний текст джерелаKosminska, Yu O., V. I. Perekrestov, and G. S. Kornyushchenko. "Calculation of Elemental Composition Distribution of Multicomponent Metallic Coatings Deposited onto Inner Surfaces of Low Diameter Pipes." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 41, no. 6 (September 13, 2019): 733–49. http://dx.doi.org/10.15407/mfint.41.06.0733.
Повний текст джерелаLevchuk, K. G. "Diagnosing of a Freeze-In of Metal Drill Pipes by Their Stressedly-Deformed State in the Controlled Directional Bore Hole." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 40, no. 5 (September 11, 2018): 701–12. http://dx.doi.org/10.15407/mfint.40.05.0701.
Повний текст джерелаYarovoy, S., S. Slobodianyuk, and A. Tityuk. "PHYSICAL-STATISTICAL METHOD FOR ASSESSING THE RELIABILITY OF ELEMENTS OF METAL CHIMNEY AND VENTILATION PIPES AND THEIR CARRYING TOWERS." Scientific Bulletin of Civil Engineering 96, no. 2 (2019): 264–69. http://dx.doi.org/10.29295/2311-7257-2019-96-2-264-269.
Повний текст джерелаШевченко, Т. О., А. Є. Педаченко та І. А. Сребняк. "Оцінка ефективності стапедопластики у пацієнтів з отосклерозом з використанням різних видів протезів". Шпитальна хірургія. Журнал імені Л. Я. Ковальчука, № 2 (27 серпня 2021): 81–86. http://dx.doi.org/10.11603/2414-4533.2021.2.12167.
Повний текст джерелаДисертації з теми "Металеві труби"
Бабаєв, Володимир Миколайович, Володимир Петрович Червінський та Р. Ю. Мельник. "Особливості застосування колтюбінгових технологій при капітальному ремонту свердловин". Thesis, Івано-Франківський національний технічний університет нафти і газу, 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48185.
Повний текст джерелаСтрельцова, Юлія Валеріївна. "Характеристики металевих пористих матеріалів: вплив на теплообмін у теплових трубах хімічно-енергетичного призначення". Thesis, КПІ ім. Ігоря Сікорського, 2017. https://ela.kpi.ua/handle/123456789/20601.
Повний текст джерелаThe dissertation is devoted to the investigation of two types of metal porous materials, which can be used as capillary structures of heat pipes – monofibrous and composite fibrous-powder structures. The dependences for engineering calculations of frame thermal conductivity for monofibrous and composite materials were obtained after the experiments of heat conduction processes in metallic porous materials. Multi-factor dependence for calculations of temperature difference of the water boiling beginning on metallic porous surfaces was proposed on the basis of the experimental studies of boiling in free water flow. The obtained experimental data allowed to compare the real values of heat transfer coefficients α with the data obtained by the model of boiling on porous surfaces (the KPI model) specified in the dissertation. As a result of model elaboration, It became possible to bring the calculated values obtained by the experiments to the model calculated α values and to confirm the adequacy of the model. It was refined the method of internal thermal resistance determining in heat pipes with metal porous structures by the application of the KPI model. The cycle of experimental studies of heat pipes with monofibrous and composite capillary structures showed, that in horizontal position heat pipes with composite structures do not concede with the main characteristics (maximum heat transfer capacity and thermal resistance) to the heat pipes with monofibrous capillary structures. In addition, maximum heat transfer capacity of composite heat pipes has higher values, than the same one of mono-fibrous pipes, when working against the forces of gravity.
Диссертация посвящена исследованию двух типов металлических пористых материалов, которые могут быть использованы в качестве капиллярных структур тепловых труб – моноволокнистых и композиционных волокнисто-порошковых структур. В результате исследований процессов теплопроводности металлических пористых материалов получены зависимости для инженерных расчетов теплопроводности каркаса моноволокнистих и композиционных материлов. Многофакторные зависимости характеризуют взаимосвязь между теплопроводностью каркаса материалов и их структурными характеристиками. Однофакторные функции вида λ кс = f(П) позволили сравнить теплопроводность композиционных и моноволокнистих структур, в результате чего было установлено, что коэффициенты теплопроводности λ кс композиционных капиллярных структур несколько ниже, чем у моноволокнистых структур, для одинаковых диапазонов пористости. Однако это различие в значениях λ кс является незначительным. На основе экспериментальных исследований влияния характеристик металлических волокнистых материалов на процессы кипения в условиях свободного движения воды предложено формулу для инженерных расчетов температурных напоров начала кипения воды на металловолокнистых пористых поверхностях. Полученные в работе результаты удовлетворительно коррелируются с известными данными, однако существуют и определенные различия, которые влияют на уменьшение температурных напоров закипания при одинаковых значениях пористости капиллярных структур. Исследование температурного напора начала кипения на пористых поверхностях позволило определить, что для пористых медных образцов данный температурный напор составляет 0,5-2,0 ⁰С, в то время как температурный напор начала кипения на относительно «гладких» технических поверхностях – от 7 до 12 ⁰С. Экспериментальные данные позволили сравнить реальные значения коэффициентов теплоотдачи α с данными, полученными по уточненной в данной работе модели кипения на пористых поверхностях (модель КПИ). В результате уточнения удалось значительно приблизить рассчитаные по модели величины α к экспериментальным значениям и подтвердить адекватнисть модели. Анализ полученных экспериментальных данных кипения на металлических пористых поверхностях свидетельствует о том, что медные волокнистые структуры средней пористости (40-50 %) в диапазоне толщин от 0,5 до 1,0 мм позволяют обеспечить наибольшие значения коэффициентов теплоотдачи α, по сравнению с металлическими волокнистыми структурами других диапазонов пористостей и толщин, исследованными в данной работе. Также с применением модели кипения КПИ была уточнена методика определения внутреннего термического сопротивления тепловых труб с металлическими пористыми структурами. Выполненный цикл экспериментальных исследований тепловых труб с металло-волокнистыми и композиционными капиллярными структурами с использованием этанола в качестве теплоносителя показал, что в горизонтальном положении и в положении «режим термосифона» тепловые трубы с капиллярными структурами обоих типов обеспечивают стабильное функционирование в диапазоне тепловых потоков до 70 Вт. При этом термические сопротивления тепловых труб с «новым» типом капиллярных структур не превышают термические сопротивления труб, изготовленных на основе моноволокнистых структур. В положениях, когда зона нагрева трубы находится выше, чем зона охлаждения, композиционные капиллярные структуры нового типа обеспечивают стабильное функционирование для тепловых потоков до 25 Вт, что является более высоким показателем, чем у тепловых труб с моноволокнистыми структурами (10-15 Вт). Последний факт нужно учитывать при конструировании аппаратов и приборов с тепловыми трубами.