Статті в журналах з теми "Мережеве моделювання"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Мережеве моделювання.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-31 статей у журналах для дослідження на тему "Мережеве моделювання".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ролик, Александр Иванович. "Моделювання управління потоками даних в корпоративних IP-мережах". Адаптивні системи автоматичного управління 1, № 18 (11 грудня 2011): 93–102. http://dx.doi.org/10.20535/1560-8956.18.2011.33509.

Повний текст джерела
Анотація:
Розглянуто моделі трьох методів управління мережевим трафіком, що забезпечують недопущення перевантажень телекомунікаційних каналів. В основу апаратної моделі лягла технологія обмеження потоків даних через мережеві вузли. Програмна модель є регулятором, який на основі порівняння вхідного та бажаного значень завантаженості каналів виробляє команди для джерел трафіку. Третя модель використовує методи теорії автоматичного управління для обмеження потоків трафіку, а саме оптимальний по швидкодії регулятор. Наводиться структура і опис всіх цих моделей, а також проаналізовані переваги та недоліки кожної з моделей за такими критеріями: швидкодія регулятора, тобто швидкість, з якою регулятор виробляє необхідну керуючу дію; вплив затримок передачі даних на своєчасність регулюючої дії; види трафіку, які здатен регулювати регулятор; простота розрахунку та реалізації регулятора; ефективне використання наявних мережевих ресурсів.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bushuyev, S. D., V. B. Bushuyeva та I. P. Zasukha. "Застосування стохастичних мереж у проєктах цифровізації державного сектору". Herald of the Odessa National Maritime University, № 65 (16 листопада 2021): 159–72. http://dx.doi.org/10.47049/2226-1893-2021-2-159-172.

Повний текст джерела
Анотація:
Мережевий аналіз широко застосовується для планування і управління проектами. PERT і CPM, найбільш відомі методи мережевого моделювання, застосовувалися в різних проєктах для цілей планування і управління. Однак можливості PERT і CPM обмежені, що забороняє моделювання багатьох складних мережевих форм проєкту. Більш гнучким універсальним мережевим інструментом, якому останнім часом приділяється підвищена увага, є GERT (Graphical Evaluation and Review Technique), GERT включає такі функції, як імовірнісне розгалуження (стохастичні моделі), сітьова петля (петлі зворотного зв'язку), кілька вузлів − приймачі (множинні результати) і реалізація декількох вузлів (повторювані події), які недоступні в PERT / CPM. Ці функції GERT надають користувачеві можливість моделювати і аналізувати проекти і системи самого загального виду. Оскільки багато системних проблем реального світу дійсно пов'язані з імовірними подіями, помилковими запусками, повторенням дій і множинними результатами, GERT є ідеальним інструментом для моделювання і аналізу. Мета даної статті − описати методику моделювання мережі GERT і пакет імітаційного моделювання, а також продемонструвати його можливості на прикладі планування проєкту формалізованої моделі «КОНСТРУКТИВНИЙ РОЗВИТОК ПРОДУКТУ Х», як результат науково-дослідної роботи. В цей огляд GERT буде включено обговорення використання вихідних даних GERT для управлінського планування і контролю, включаючи аналіз чутливості і реалізацію.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Globa, L., O. Romanov та S. Sulima. "МЕТОД РЕКОНФІГУРАЦІЇ МЕРЕЖІ ЗВ'ЯЗКУ З ВІРТУАЛІЗОВАНИМИ РЕСУРСАМИ". Системи управління, навігації та зв’язку. Збірник наукових праць 1, № 53 (5 лютого 2019): 137–41. http://dx.doi.org/10.26906/sunz.2019.1.137.

Повний текст джерела
Анотація:
З врахуванням величезного зростання мобільного трафіку даних, з одного боку, та помірного середнього доходу на кожного користувача, з іншого боку, оператори мобільного зв'язку вивчають технології мережевої віртуалізації та технології хмарних обчислень для побудови економічно ефективних та еластичних мобільних мереж та їх пропонування як хмарних сервісів. Предметом вивчення в статті є процеси конфігурування телекомунікаційної мережі для вирішення завдань обробки службового навантаження. Метою є підвищення ефективності роботи мережі шляхом здійснення реконфігурації топології. Завдання: розробити математичну модель та відповідну процедуру еконфігурації ресурсів телекомунікаційної мережі при перевантаженнях або відмовах. Використовуваними методами є: графовий підхід та математичні моделі оптимізації для задачі перерозташування мережевих функцій, імітаційне моделювання для дослідження роботи запропонованого методу реконфігурації ресурсів в мережах з віртуалізацією. Отримані такі результати. У статті представлено метод локальної реконфігурації обчислювальних ресурсів віртуальної мережі у випадку відмови або перевантаження. Висновки. Отриманий метод враховує динамічну зміну топології мережі обслуговування та на відміну від існуючих дозволяє гнучко визначати конфігурацію обчислювальних ресурсів обслуговування, розміщати мережеві функції з мінімальними витратами та децентралізовано контролювати показники якості. Метод використовує евристичну модель для визначення оптимального місця міграції віртуалізованих мережевих функцій з фізичного вузла з відмовою або перевантаженням, а результати моделювання у системі Mathcad показують підвищення ефективності використання ресурсів. Проведені дослідження показали доцільність використання запропонованих рішень при вдосконаленні існуючих телекомунікаційних мереж та при побудові нових перспективних гнучких добре масштабованих мереж оператора зв’язку із повним або частковим застосуванням принципу віртуалізації мережевих функцій.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Мінцер, О. П., та В. М. Заліський. "ПРИНЦИПИ МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ мікроРНК-ОПОСЕРЕДКОВАНИХ СИГНАЛЬНИХ МЕРЕЖ ПРИ ЗАХВОРЮВАННЯХ ЛЮДИНИ". Medical Informatics and Engineering, № 3 (11 серпня 2021): 70–77. http://dx.doi.org/10.11603/mie.1996-1960.2020.3.11610.

Повний текст джерела
Анотація:
Розглянуто підходи до обчислювального моделювання нових функціональних асоціацій між диференційованою експресією miRNAs і захворюваннями, а також фенотипових патернів експресії miRNAs у генних регуляторних мережах. Метою концептуалізації стали результати порівняно недавніх досліджень системної біології, в яких використано різні методи кінетичного моделювання, що допомагають виявити можливості стосовно регуляторної функції і терапевтичного потенціалу miRNAs при захворюваннях людини. Розглянуто також деякі з ключових обчислювальних аспектів математичного моделювання, що включають: регуляції опосередкованих miRNAs мережевих мотивів у регуляції експресії генів, моделі біогенезу miRNAs і взаємодії miRNA-мішеней, включення таких моделей у складні шляхи розвитку захворювань, системного розуміння їх патофізіологічного контексту. Зроблено висновок про ефективність і практичність використання невеликих miRNA-асоційованих мережевих мотивів, спрощених до декількох компонентів, для вивчення прогностичних характеристик модельованої мережевої динаміки при захворюваннях і фізіологічних станах. Підкреслюється, що більшість експериментальних досліджень зосереджуються на прямих взаємодіях miRNA-мішеней. Отже, розкривається роль мікроРНК у системах, забезпечуючи системне розуміння опосередкованої мікроРНК репресії генів. однак, окрім звичайних взаємодій miRNA-мішеней, нещодавні експерименти показали, що первинні miRNA або попередники miRNA, що утворюються під час біогенезу miRNA, також можуть конкурувати зі зрілими miRNA за місця зв'язування на цільових miRNA. Також важливо перейти від тимчасової динаміки регуляції генів за допомогою miRNAs, до аналізу та моделювання просторової інформації miRNA в клітинах, як різних субклітинних розташуваннях.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Клочко, Оксана, та Олександр Михайлюк. "SMART-ТЕХНОЛОГІЯ В МОДЕЛЮВАННІ МІЖПРЕДМЕТНИХ ЗВ’ЯЗКІВ МАТЕМАТИКИ ТА ІНФОРМАТИКИ". Науковий вісник Інституту професійно-технічної освіти НАПН України. Професійна педагогіка, № 17 (27 грудня 2018): 34–42. http://dx.doi.org/10.32835/2223-5752.2018.17.34-42.

Повний текст джерела
Анотація:
Пріоритетним напрямом розбудови системи освіти нового покоління є впровадження принципів відкритої освіти шляхом розробки електронних освітніх ресурсів із використанням SMART- технологій. У статті розкрито цілі, зміст і шляхи розв’язування проблеми моделювання процесу забезпечення міжпредметних зв’язків математики та інформатики із використанням комп’ютерно орієнтованих систем; побудовано функціональну схему макроблоку розроблення електронного навчально-методичного комплексу навчальної дисципліни. Процес розроблення електронного навчально-методичного комплексу пропоновано здійснювати шляхом використання користувачем (викладачем) можливостей блоку формування та розбудови контенту навчальної дисципліни на основі інтелектуальних алгоритмів Data Mining, макроблоку моделювання процесу навчання, електронних ресурсів метадисципліни, макроблоку пошуку, макроблоку онлайн-консультування. Реалізація метадисциплінарного підходу дасть змогу застосовувати механізми інтеграції (поєднання, взаємопроникнення, взаємозближення, утворення взаємозв’язків) та систематизації даних різних навчальних дисциплін. Планування міжпредметних зв’язків здійснюється за допомогою побудови мережевого графіка, що є формою представлення моделі навчального процесу. З метою побудови календарного графіка забезпечення міжпредметних зв’язків пропонуємо використовувати комп’ютерно орієнтовані системи інформаційно-динамічного моделювання, що дасть змогу забезпечити автоматизацію багатьох функцій управління навчальним процесом. У дослідженні за основу було взято продукт Microsoft Corporation – Microsoft Project 2016. Такі напрями реалізації SMART-технологій у моделюванні процесу навчання дадуть викладачеві можливість: визначити найбільш ефективні підходи до вирішення завдань забезпечення міжпредметних зв’язків математики та інформатики; на основі створених мережевих (календарних) графіків розробити моделі процесу забезпечення міжпредметних зв’язків; здійснювати управління процесом навчання на основі створених мережевих моделей та відслідковувати міжпредметні зв’язки, необхідні для оптимізації планування навчального процесу.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kuchuk, N. "СИНТЕЗ МЕРЕЖЕВОЇ МОДЕЛІ КОМП’ЮТЕРНОЇ СИСТЕМИ НА ГІПЕРКОНВЕРГЕНТНІЙ ПЛАТФОРМІ". Системи управління, навігації та зв’язку. Збірник наукових праць 1, № 59 (26 лютого 2020): 86–92. http://dx.doi.org/10.26906/sunz.2020.1.086.

Повний текст джерела
Анотація:
Метою статті є розробка методу синтезу мережевих моделей на основі часових мереж Петрі. Розроблена модель дозволить побудувати модель, що дозволяє досягти ступеня адекватності для прогнозування продуктивності програмного комплексу з необхідною достовірністю. Результати дослідження. Запропоновано метод синтезу часової мережі Петрі, що базується на трасуванні даних. Даний метод був використаний при моделюванні процесу функціонування комплексу програм. Основним недоліком запропонованого підходу є необхідність постійного збору вимірювальної інформації в комп'ютерній системі. Показано, що від точності вимірювальної інформації залежить ступінь адекватності моделі. Проаналізована адекватність опису динаміки досліджуваного процесу. Для оцінки ефективності запропонованої моделі вона була використана для прогнозу продуктивності пакета композитних застосунків, що використовуються при продажі авіаквитків. Висновок. Для практичних застосувань у більшості випадків достатньо синтезувати мережеву модель комп’ютерної системи на гіперконвергентній платформі на основі 30-35 вимірювань. Вибір більшого значення з метою зменшення розміру довірчого інтервалу одержуваних оцінок не буде виправданим, якщо основне завдання прогнозування - мінімізація помилки прогнозу
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ситник, О. В. "Стратегія особистісно-орієнтованого моделювання інформаційних мережевих ЗМІ". Наукові записки Інституту журналістики 57, жовтень - грудень (2014): 52–56.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Доброштан, Олена Олегівна. "Використання мережевого навчально-методичного комплексу у процесі вивчення природничо-математичних дисциплін для майбутніх судноводіїв". Theory and methods of e-learning 3 (10 лютого 2014): 78–82. http://dx.doi.org/10.55056/e-learn.v3i1.320.

Повний текст джерела
Анотація:
Впровадження інформаційно-комунікаційних технологій в освіту обумовило появу мережевих технологій навчання. Розвиток Інтернет-технологій відкриває нові шляхи для впровадження дистанційних технологій у вищу освіту та потребують необхідного сучасного мережевого навчально-методичного забезпечення. Специфікою вищого навчального закладу морського профілю є наявність проходження курсантами довготривалої морської практики, а в таких умовах найбільш ефективною є дистанційна форма навчання.Таким чином, створення мережевих освітніх ресурсів у вищому навчальному закладі морського профілю є актуальною проблемою, розв’язання якої обумовить перехід на новий рівень використання телекомунікаційних технологій, дозволить організацію навчальної діяльності на основі інформаційних освітніх ресурсів в глобальних мережах.Питання використання ІКТ у навчальному процесі ВНЗ розглядалися багатьма вітчизняними та закордонними науковцями такими, як Є. С. Полат, М. І. Жалдак, Н. В. Морзе, С. А. Раков, В. В. Олійник, О. В. Співаковський, В. Ю. Биков, В. М. Кухаренко та інші. У структурі інформаційної культури вчителя Н. В. Морзе серед інших складових виділяє культуру використання ІКТ і культуру спілкування через засоби ІКТ [3].Розробці методичної підтримки засобів ІКТ присвячені роботи таких науковців, як В. Ю. Биков, А. Ф. Верлань, Т. Л. Архіпова, О. М. Гончарова, А. М. Гуржій, Ю. О. Жук, Л. І. Білоусова та ін. У своїх працях науковці відмічають високу ефективність використання інформаційно-комунікаційних технологій в навчальному процесі. Значна кількість досліджень присвячених створенню нової системи інформаційного забезпечення освіти, розробленню автоматизованих навчальних систем тощо.О. В. Співаковський проводить дослідження методики викладання із використанням мультимедійних навчальних програм, застосування Інтернет-технологій, електронних бібліотек, мережевих навчальних систем; реалізації дистанційного навчання [4].В роботах Р. С. Гуревича, Л. В. Жиліної, Т. І. Чепрасової розглядається необхідність електронних навчально-методичних комплексів для якісного здійснення процесу навчання та його методичного забезпечення, структура яких включає: електронний навчальний посібник; комп’ютерний практикум лабораторного моделювання; систему тестування; мережеву Web-версію курсу тощо [1; 5].Визначення електронного навчально-методичного комплексу можна сформулювати так: навчально-методичний комплекс-це навчальна програмна система комплексного призначення, що забезпечує неперервність та повноту дидактичного циклу процесу навчання. Вона являє собою теоретичний матеріал, контроль рівня знань та умінь, інформаційно-пошукову діяльність, математичне та імітаційне моделювання з комп’ютерною візуалізацією та сервісні функції при умові здійснення інтерактивного зворотного зв’язку [2].Освітні мережеві навчально-методичні комплекси (МНМК) є програмно-інформаційним посередником між тими, хто навчаються і викладачами, тому функції навчально-методичного комплексу створенні підтримки користувачів.Мережеві навчально-методичні комплекси повинні забезпечувати всі традиційні форми навчання у вищому навчальному закладі:лекції, практичні заняття, консультації. В ході роботи з МНМК можуть бути також здійснені консультацій в он-лайн режимі з викладачем для студентів, що не мають змогу отримати допомогу на території ВНЗ.Мережевий навчально-методичний комплекс в процесі навчання подає навчальні матеріали у доступній формі, наочно, згідно змісту та методики навчання; грає роль помічника в розв’язанні вправ та контролера в прийнятті результатів тестувань, контрольних робіт, звітів тощо, наявність журналу успішності допомагає контролювати рівень засвоєння матеріалу. При розробці мережевого навчально-методичного комплексу необхідно поєднати технологічні етапи створення навчальних курсів з дидактичними принципами навчання та основними ступенями учбового процесу.Мережевий навчально-методичний комплекс містить всі необхідні матеріали такі, як план роботи, робоча програма, електронний лекторій, можливо відео лекторій, практикум, бібліотеку електронних посібників, тренажери, варіанти контрольних та розрахунково-графічних робіт, засоби он-лайн тестування, теми проектів, рефератів тощо.МНМК є основним засобом для організації навчального процесу в нових освітніх умовах для очної, заочної та дистанційної форм навчання. Навчально-методичний комплекс спонукає тих, хто навчається, до активної пошукової навчальної діяльності, самостійного оволодіння знаннями, шукати та знаходити джерела необхідної інформації, розвитку творчих здібностей тощо.Нами було створено МНМК навчання курсу «Вищої математики» майбутніх судноводіїв. При цьому самостійна робота курсантів стає переважаючою в структурі навчально-освітньої діяльності.МНМК курсу «Вища математика» складається з блоків: інструктивний, інформаційний, комунікативний та контролювальний (рис. 1). Рис. 1 Кожен блок являє собою комплект дидактичних ресурсів (рис. 2).МНМК є результатом розвитку та інформатизації традиційних навчально-методичних комплексів. Комплекс здатен забезпечити в належному об’ємі всі традиційні види занять у вузі (лекції, практичні заняття, науково-дослідницьку роботу, самостійну роботу, модульні контрольні роботи, заліки).Кожен курсант має вільний доступ до необхідного навчального матеріалу. Реєструючись у системі і отримуючи доступ до навчального матеріалу, який відповідає його спеціальності та академічному рівню, курсант може розпочати свою самостійну роботу скрізь, де є вільний доступ до мережі Інтернет.Весь матеріал комплексу розподілений на курси:1. Класики 1 курс.2. Класики 2 курс.3. СП 1 курс.4. СП 2 курс.5. Заочне відділення 1 курс.6. Заочне відділення 2 курс.7. СП заочне відділення 1 курс. Рис. 2 Мережевий навчально-методичний комплекс для забезпечення самостійної роботи курсантів Херсонської державної морської академії з вивчення курсу вищої математики, здійснення перевірки сформованості знань, вмінь та навичок курсантів розраховано і на користування викладачів інших спеціальностей кафедри.Сучасний судноводій або судновий механік – це людина, яка крім знання спеціальних дисциплін, повинна володіти ІКТ, вміти інтегрувати свої знання у інноваційні технологій, самостійно творчо вирішувати наукові, технічні, суспільні задачі, критично мислити, захищати свою точку зору. Він повинен вміти працювати в злагоді з оточуючими, постійно поповнювати і поновлювати свої знання шляхом самоосвіти, самовдосконалення. Вища школа реалізує цю задачу при особливій організації освітнього процесу, спрямовану на активну самостійну роботу курсантів.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gorokhovatsky, V. O., D. V. Pupchenko та K. G. Solodchenko. "АНАЛІЗ ВЛАСТИВОСТЕЙ, ХАРАКТЕРИСТИК ТА РЕЗУЛЬТАТІВ ЗАСТОСУВАННЯ НОВІТНІХ ДЕТЕКТОРІВ ДЛЯ ВИЗНАЧЕННЯ ОСОБЛИВИХ ТОЧОК ЗОБРАЖЕННЯ". Системи управління, навігації та зв’язку. Збірник наукових праць 1, № 47 (8 лютого 2018): 93–98. http://dx.doi.org/10.26906/sunz.2018.1.093.

Повний текст джерела
Анотація:
Вирішується задача інваріантного розпізнавання візуальних об’єктів з використанням структурнихметодів на основі описів у вигляді множини особливих точок зображення. Проведено аналіз характеристикта засобів програмного моделювання сучасних методів ORB та BRISK для визначення особливих точок.Запропоновано метод бінарного аналізу для формування центрів класів та подальшої класифікації. Проведено програмне моделювання методу у порівнянні з мережею Кохонена, отримано підтвердження результативності розробленого методу для прикладної бази зображень.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Лосєв, Ю. І., та М. Ю. Лосєв. "Моделювання процесу збору інформації в розподілених ієрархічних мережах". Системи обробки інформації, № 1(160), (30 березня 2020): 59–66. http://dx.doi.org/10.30748/soi.2020.160.07.

Повний текст джерела
Анотація:
В роботі розглядаються можливості підвищення ефективності управління комп'ютерною мережею шляхом моделювання процесу інформаційного забезпечення розподілених та ієрархічних систем з одним або декількома керуючими центрами. Виконується порівняльний аналізу варіантів обміну інформацією за ініціативою керуючих центрів, за ініціативою керованих центрів та при періодичному способі передачі даних. При виборі метода інформаційного забезпечення керуючого центру враховуються час збору інформації і необхідні ресурси мережі.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Лосєв, М. Ю. "Оцінка цінності та ступеню старіння інформації при централізованому способі управління мережею". Наука і техніка Повітряних Сил Збройних Сил України, № 2(43), (11 травня 2021): 140–44. http://dx.doi.org/10.30748/nitps.2021.43.19.

Повний текст джерела
Анотація:
В роботі розглядаються можливості підвищення ефективності управління комп'ютерною мережею шляхом моделювання процесу інформаційного забезпечення з урахуванням цінності та старіння інформації, що передається центром управління елементам мережі. Запропонована методика оцінки цінності інформації управління, яка доставляється до центрів комутації, при цьому враховується інтенсивність завантаження центрів комутації, їх відносну відстань від центру управління, час затримки доставки та обробки даних в мережі.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Feshchenko, Andrey, Alexander Zakora та Larisa Borisova. "Розробка імовірнісної моделі типового фрагмента відомчої цифрової телекомунікаційної мережі ДСНС". Problems of Emergency Situations, № 33 (2021): 222–33. http://dx.doi.org/10.52363/2524-0226-2021-33-17.

Повний текст джерела
Анотація:
Проведений аналіз призначення, умов роботи складових елементів, ієрархічності структури відомчої цифрової телекомунікаційної мережі Державної служби з надзвичайних ситуацій України, яка розглядається як сукупність типових мережевих фрагментів. Представлена структура типового фрагменту відомчої цифрової телекомунікаційної мережі у вигляді структурної схеми надійності без резервування, яка складається з центрального, регіонального і районного вузлів, послідовно з'єднаних каналами зв'язку. Обґрунтовані потрібні значення ймовірності безвідмовної роботи вузлів і каналів відомчої цифрової телекомунікаційної мережі в залежності від потрібного значення структурної надійності типового фрагменту. Запропоновано застосування структурного роздільного двократного резервування вузлів з різними ступенями ієрархії для типових фрагментів з метою одночасного зниження вимог до надійності вузлів відомчої цифрової телекомунікаційної мережі. Розроблена імовірнісна модель типового фрагменту відомчої цифрової телекомунікаційної мережі у вигляді блок-схем надійності для структур з багатократним резервуванням центральних, регіональних районних вузлів і каналів зв'язку. Отримані аналітичні вирази для дослідження впливу структури типового фрагменту відомчої цифрової телекомунікаційної мережі на його надійність шляхом статистичного математичного моделювання. Приводяться аналітичні й графічні матеріали статистичного математичного моделювання по дослідженню залежності ймовірності справного стану типового фрагмента відомчої телекомунікаційної мережі від структури типового фрагменту з резервуванням і надійності відповідних мережевих вузлів і каналів зв'язку. Рекомендована доцільність з метою підвищення імовірності справного стану типового фрагмента відомчої цифрової телекомунікаційної мережі на етапі проектування обирати структури з двократним резервуванням вузлів як мінімум на центральному рівні, як максимум на всіх рівнях, та розраховуючи на проміжні значення надійності при резервуванні вузлів центрального та регіонального рівня
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Романюк, А. О., П. Г. Берднік, О. В. Першин та В. М. Павленко. "Метод побудови моделей діяльності бойових обслуг автоматизованих командних пунктів за рахунок оптимального поєднання методів аналізу і моделювання діяльності операторів автоматизованих систем управління". Системи озброєння і військова техніка, № 1(65), (17 березня 2021): 42–50. http://dx.doi.org/10.30748/soivt.2021.65.06.

Повний текст джерела
Анотація:
З метою вирішення дослідницьких, інформаційних та тренажних завдань для уніфікації моделей діяльності бойових обслуг, необхідним є врахування вимог наочності і доступності при збереженні можливості проведення аналітичних і експериментальних досліджень. Для визначення ступеня відповідності зазначеним вимогам різних поєднань методів побудови моделей, визначені можливі варіанти групування методів. На основі морфологічного аналізу варіантів поєднань методів моделювання діяльності обслуг автоматизованого командного пункту показано, що для комплексного вирішення поставлених завдань раціональним є доповнення існуючої методики методом структурно-алгоритмічного аналізу та методом узагальнених мережевих моделей діяльності.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Сергієнко, А. І., В. І. Нікітченко, Д. В. Башинський та А. Г. Дмитрієв. "Оптимізація законів поздовжнього контуру управління керованої авіаційної бомби за результатами чисельного моделювання польоту в турбулентній атмосфері". Системи озброєння і військова техніка, № 2(62), (8 червня 2020): 102–8. http://dx.doi.org/10.30748/soivt.2020.62.13.

Повний текст джерела
Анотація:
У статті розглянуто питання підвищення ефективності управління науковими проектами у вищих військових навчальних закладах (ВВНЗ) за рахунок особливостей планування діяльності наукових та науково-педагогічних працівників, оптимізації організаційної системи управління науковою і науково-технічною діяльністю (НіНТД), введення більш гнучкої – мережевої системи управління, комерціалізації результатів НіНТД, підвищення інтеграції воєнної науки у національне та міжнародне наукове середовище, проведено аналіз та надано рекомендації щодо вдосконалення процесів забезпечення у системі управління НіНТД Збройних Сил України.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Bondarenko, Olena. "Когнітивне моделювання розвитку загроз приватності особистості та безпеці країни". Міжнародні відносини, суспільні комунікації та регіональні студії, № 2 (6) (31 жовтня 2019): 39–48. http://dx.doi.org/10.29038/2524-2679-2019-02-39-48.

Повний текст джерела
Анотація:
У статті здійснено когнітивне моделювання розвитку загроз приватності особистості та безпеці країни. Для моделювання обрано такі фактори: «Приватність особистості», «Безпека розвитку країни», «Розробка систем захисту», «Онлайн-присутність», «Кібер-атаки», «Втрати від кіберзлочинів», «Витрати на захист», «Сталий розвиток». Результати показали, що всі фактори в системі є дестабілізаційними й чутливими до змін. Найбільш чутливим є фактор «Онлайн-присутність». Такий характер системи свідчить про те, що будь-які зміни можуть дестабілізувати систему, привести до змін усі інші фактори. При цьому система сама сприятиме таким змінам, оскільки є нестійкою. Отже, уся система забезпечення захисту приватності особистості та безпеки країни потребує постійної уваги й моніторингу змін усіх факторів. Фактори «Приватність особистості» та «Безпека розвитку країни» є взаємозалежними, оскільки демонструють майже однаковий вплив на них усіх інших факторів системи. Так, ці фактори підсилюватимуться при зростанні факторів «Розробка систем захисту», «Онлайн-присутність», «Витрати на захист» і «Сталий розвиток». Зростання рівня захисту приватності особистості сприятиме зростанню рівня безпеки країни й навпаки. При цьому «Приватність особистості» сильніше впливає на зміцнення рівня безпеки країни, порівняно з впливом безпеки держави на захист приватності особистості при її присутності в мережі Інтернет. Лише два фактори – «Кібератаки» та «Втрати від кіберзлочинів» зменшуватимуть рівень захисту приватностій безпеки країни при їх зростанні. Рівень захисту приватності є більш чутливим до впливу на неї з боку кібератак, порівняно з чутливістю рівня безпеки країни. На рівень безпеки розвитку держави найбільше впливає рівень захисту приватності особистості, і цей вплив на 14 % більш потужний, порівняно з протилежним впливом факторів. Аналіз засвідчив, що основним пріоритетом під час розвитку мережевих технологій, упровадженні ІКТ у всі сфери суспільного життя та розвитку інформаційної економіки повинно бути забезпечення захисту приватності особистості, її персональних даних. Забезпечення безпеки розвитку країни потребуватиме більшого рівня розвитку систем захисту, порівняно із захистом приватності особистості, при цьому на 4 % менше впливатиме на сталий розвиток.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Семеніст, І. В., та Р. К. Махачашвілі. "ТЕОРЕТИКО-МЕТОДОЛОГІЧНІ ЗАСАДИ ДОСЛІДЖЕННЯ ІННОВАЦІЙНОЇ ОСВІТНЬОЇ КОМУНІКАЦІЇ В ЦИФРОВОМУ СЕРЕДОВИЩІ (НА МАТЕРІАЛІ ГЛОБАЛІЗОВАНИХ ЄВРОПЕЙСЬКИХ ТА СХІДНИХ МОВ)". Nova fìlologìâ, № 83 (10 листопада 2021): 235–43. http://dx.doi.org/10.26661/2414-1135-2021-83-34.

Повний текст джерела
Анотація:
Основна увага в роботі зосереджена на дослідженні теоретико-методологічних принципів вивчення інноваційної освітньої комунікації в цифровому середовищі (інноваційна освітня комунікація в цифровому просторі у розумінні трансформаційних інноваційних шарів та комунікативного застосування, опосередкованого сучасними європейськими та східними мовами глобального спілкування – англійська, іспанська, французька, китайська, японська, відповідно). Проблема теоретичного та методологічного обґрунтування наскрізних принципів, напрямів, механізмів та результатів якісного моделювання макро- та мікроструктур вербальних засобів та засобів процесування у сфері цифрового освітнього спілкування, як консолідованого мовного та технологічного об’єкта, досліджується ґрунтовно. Мозаїчний, імітаційний, багатовимірний та рамковий підходи до розуміння складних динамічних лінгвістичних явищ та сутностей, пріоритетні для цього методологічного контексту, дозволили нам виявити онтологічну природу навчальних комунікаційних одиниць глобалізованих мов у сфері інноваційного освітнього спілкування. Тезаурус ІКТ, електронного навчання, гібридного навчання, цифрових компетенцій, що сприяє інноваційному освітньому спілкуванню, побудований для визначення та категоризації ключових компонентів інноваційної кібертермінології, які своєю чергою сприяють побудові та функціонуванню середовища електронного навчання. Запропоновано моделювання макро-, мікро- та надструктур інноваційної освітньої комунікації та їх цифрову обробку на основі трьох основних принципів: 1) Інтернет-освітня антропосфера (антропне середовище у Всесвітній павутині); 2) зовнішньо-мережева антропосфера освіти (компоненти електронної реальності, функціонують поза сферою Всесвітньої павутини); 3) техногенна освітня антропосфера (переорієнтовані компоненти антропогенного середовища із заміщеним онтологічним параметром на однорідний антропний). Динамічна взаємодія структурних рівнів змістовного рівня ІКТ у шарах інноваційної освітньої комунікації характеризується антропогенними та когнітивними параметрами змістовної площини, опосередкованими суб’єктивним та колективним когнітивним досвідом стейкхолдерів цифрової освіти, втіленого в рамках цифрової трансформації інноваційних комунікативних освітніх сценаріїв.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Романюк, А. О., О. І. Тимочко та Ю. М. Марченко. "Розробка показників для оцінки якості моделей діяльності операторів автоматизованих командних пунктів". Системи озброєння і військова техніка, № 1(61), (14 травня 2020): 60–66. http://dx.doi.org/10.30748/soivt.2020.61.07.

Повний текст джерела
Анотація:
З метою вирішення дослідницьких, інформаційних та тренажних завдань для уніфікації моделей діяльності бойових обслуг, необхідним є врахування вимог наочності і доступності при збереженні можливості проведення аналітичних і експериментальних досліджень. Для визначення ступеня відповідності зазначеним вимогам різних поєднань методів побудови моделей, визначені можливі варіанти групування методів. На основі морфологічного аналізу різних варіантів поєднань методів моделювання діяльності обслуг автоматизованого командного пункту показано, що для комплексного вирішення поставлених завдань раціональним є доповнення існуючої методики методом структурно-алгоритмічного аналізу та методом узагальнених мережевих моделей діяльності. Виходячи з аналізу застосовності відомих характеристик діяльності операторів для моделей діяльності зі змінною структурою в якості основних показників для порівняльної оцінки моделей обрані число операційних і вирішальних елементів алгоритму, сумарна динамічна інтенсивність дій, нормовані коефіцієнти стереотипності, логічної складності, очікувань, часові та імовірнісні показники і ступінь їх відхилення від початкових значень.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Kozak, Ye. "Особливості побудови алгоритмів планування задач у рамках концепції граничних обчислень." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 43 (12 червня 2021): 36–41. http://dx.doi.org/10.36910/6775-2524-0560-2021-43-06.

Повний текст джерела
Анотація:
Розглянуто сучасні підходи, які використовуються при впровадженні автоматизованих системобробки вхідних запитів хмарних сервісів мережі «Інтернету речей» відповідно до концепції граничних обчислень. Узагальнено найбільш актуальні задачі, що виникають при побудові та впровадженні алгоритмів обробки вхідних даних за умов обмежень на обчислювальний ресурс апаратно-програмної платформи та перепускність мережевих каналів системи. Запропоновано математичну модель впровадження та масштабування програмних додатків для обробки потокових даних. що надходять змножини інформаційних вузлів глобальної мережі хмарного сервісу, а також систему оцінки і оптимізації роботи алгоритмів відповідно показника зменшення часу затримки, що виникає при обробці вхідних даних центральним вузлом інформаційної мережі. При цьому математичний апарат базується на формалізації процесу розгортання програмного додатку відповідно до типової задачі планування завдань потокової обробки даних. Результати моделювання вказують на ефективність запропонованих методів, а також наможливість побудови на їх основі цілісної методології оцінки ефективності процесів впровадження та масштабування програмних додатків у середовищі хмарного сервісу глобальної інформаційної мережі «Інтернету речей».
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Fedevych, O. Yu. "Застосування методу Ateb-прогнозування для дослідження зразків високороздільного відеотрафіку". Scientific Bulletin of UNFU 29, № 8 (31 жовтня 2019): 125–29. http://dx.doi.org/10.36930/40290823.

Повний текст джерела
Анотація:
Наведено результати поточного стану зростання відеотрафіку у світі. За допомогою зібраних статистичних даних показано, що цей процес призводить до збільшення завантаження комп'ютерних мереж. Показано, що на сьогодні забезпечення аналізу переваг та недоліків особливостей функціонування сучасних комп'ютерних мереж, а також розвитку методів прогнозування інтенсивності потоків трафіку, методів маршрутизації в комп'ютерних мережах є важливими та невідкладними завданнями. Згідно з прогнозами, обсяг світового трафіку зросте у 4 рази, на приблизно 33 % щороку, а відео з таких платформ, як: YouTube, Netflix, Amazon Prime, Facebook та інших сервісів, становитимуть основну частину майбутнього трафіку. Саме тому необхідно спрогнозувати тренди високороздільного відеотрафіку, що дасть змогу здійснити адаптивне управління мережевим обладнанням, а також зменшити затримки передавання даних. Подано посилання на процес конструювання прогнозу тренду високороздільного відеотрафіку, що був попередньо розроблений. Комп'ютерне імітаційне моделювання показало, що природа цього трафіку є самоподібною, тому метод можна успішно застосувати для прогнозування пульсацій відеотрафіку типів 1080p60, 4k, 1080p, але для 8k метод необхідно доопрацювати. Для оцінювання самоподібності відеотрафку було використано параметр Херста.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Коструба, Наталія. "МЕДІА-РЕЛІГІЙНІСТЬ ЯК НОВА ФОРМА ПРОЯВУ РЕЛІГІЙНОЇ СВІДОМОСТІ: ПСИХОЛОГІЧНИЙ АНАЛІЗ ФЕНОМЕНУ". Psychological Prospects Journal, № 37 (15 червня 2021): 83–95. http://dx.doi.org/10.29038/2227-1376-2021-37-83-95.

Повний текст джерела
Анотація:
Мета. У статті здійснено теоретичний аналіз психологічних особливостей медіа-релігійності як нової форми прояву релігійної свідомості. Методи. Для реалізації мети дослідження були використані методи теоретичного наукового пошуку: аналіз, синтез, узагальнення, психологічне моделювання. Результати. Аналіз українських та закордонних праць щодо психологічних аспектів медіа-релігійності дозволив окреслити особливості цього феномену, визначити його структурні компоненти. Науковці описують загальні риси медіа-релігійної картини світу, серед яких масштабність, гіпер символічність, орієнтація на сьогодення, емоційна насиченість повідомлень. Релігія у медіа виконує просвітницьку, комунікативну, терапевтичну та популяризаційну (рекламну) функції. Медіа-релігійність - це нова форма релігійної діяльності та функціонування релігійної свідомості, яка виникла завдяки розвитку масової культури та засобів масової інформації. Така релігійність особистості має мережеві принципи комунікації, розмиває кордони між сакральним, ритуальним і секулярним, світським, змінює релігійну ідентичність особистості. Медіа-релігійність дає можливість брати участь у онлайн службах із будь якої точки світу і, таким чином, дає можливість обрати релігійний напрямок, не прив'язуючись до певної території чи країни. Медіа-релігійність має трьох компонентну структуру: когнітивний (проявляється як раціональний чи ірраціональний), емоційно-мотиваційний (орієнтація на зовнішні чи внутрішні цінності) та поведінковий (діяльність релігійна активна чи пасивна). Висновки. Загалом, можна підсумувати, що медіа-релігійність є закономірним проявом процесу переходу релігії у інформаціне суспільство. Перспективи подальшого вивчення проблеми вбачаємо із розробкою стандартизованого опитувальника дослідження особливостей медіа-релігійності особистості.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Лотюк, Юрій Георгійович, та Олег Михайлович Богут. "Формування у студентів умінь та навичок проектування та моделювання комп’ютерних мереж". New computer technology 5 (7 листопада 2013): 64–65. http://dx.doi.org/10.55056/nocote.v5i1.82.

Повний текст джерела
Анотація:
У вищих навчальних закладах студенти згідно вимог освітньо-професійної програми підготовки бакалавра [4], повинні вміти розробляти концепцію побудови локальних комп’ютерних мереж на основі стандартних протоколів і інтерфейсів, аналізуючи потреби замовника. Вибирати топологію комп’ютерної мережі, мережні протоколи, планувати мережну інфраструктуру, аналізуючи потреби користувачів, програмне і апаратне забезпечення, що використовується, фізичне розміщення користувачів, ділення мережі на сегменти тощо. Майбутні спеціалісти також повинні вміти розробляти логічну і фізичну структуру локальної комп’ютерної мережі, топологію і засоби прокладки кабелів, розміщення комутаторів та маршрутизаторів, вибирати необхідне програмне забезпечення комп’ютерних мереж за допомогою нормативно-довідкової інформації, використовуючи процедури аналізу типових проектних рішень.Дані вимоги поширюються як на лекційний курс, так і на лабораторний практикум. Однак не кожен вищий навчальний заклад має можливість проводити лабораторний практикум у повній відповідності до вимог освітньо-професійної програми [1].Більшість вищих навчальних закладів не має матеріальної бази для практичного розгляду питання побудови та діагностики мережі. Ці теми розглядаються переважно тільки теоретично, оскільки не завжди можна дати можливість студентам самостійно спроектувати мережу або ділянку мережі, і перевірити її дію.Тому на лабораторних заняттях студенти в основному працюють в уже спроектованій, діючій мережі, і лише досліджують її топологію та характеристики.Такий підхід суттєво знижує рівень практичних навичок майбутніх спеціалістів з інформатики, оскільки при реалізації на практиці конкретного мережного проекту майбутній спеціаліст може стикнутись з рядом задач до яких він підготовлений лише теоретично.Тому нами пропонується при вивченні теми проектування комп’ютерних мереж залучати спеціалізоване моделююче програмне забезпечення для візуального проектування, моделювання та дослідження комп’ютерних мереж.Такий підхід має переваги у вивченні даної тематики, однак зауважимо, що перед вивченням тематики проектування та дослідження мереж на емуляторі існує необхідність продемонструвати студентам реальне мережне обладнання та особливості його використання і тільки потім проводити лабораторний практикум на емуляторі.При такому підході забезпечується повне охоплення тематики проектування та моделювання мереж як на теоретичному так і на практичному рівні [2].Однією з основних переваг використання емуляторів при вивченні проектування та дослідження мереж є можливість розглянути такі задачі, які неможливо розглянути навіть з використанням наявного обладнання. Так, наприклад при використанні емуляторів є можливість розглянути на основі діючої моделі функціонування кампусної мережі, Wi-Fi мереж, використання супутникової технології зв’язку та інших технологій, що залишаються недоступними для студентів при стандартному підході.Однією з найбільш відомих програм-емуляторів є програма NetCracker [3]. Дана програма створена компанією NetCracker Technology Corporation, і є однією з найбільш широко вживаних у світі як при вивченні, так і при професійному використанні.Робота з NetCracker побудована на основі технології Drag and Drop, що значно спрощує навчання користуванню програмою, і дозволяє основну увагу приділити безпосередньо питанню побудови та дослідження характеристик мережі. База даних програми містить характеристики великої кількості реальних апаратних мережних засобів, і дозволяє емулювати мережу у максимальній відповідності до фізичного відповідника.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Vitynskiy, P. B., R. O. Tkachenko та I. V. Izonin. "Ансамбль мереж GRNN для розв'язання задач регресії з підвищеною точністю". Scientific Bulletin of UNFU 29, № 8 (31 жовтня 2019): 120–24. http://dx.doi.org/10.36930/40290822.

Повний текст джерела
Анотація:
Розроблено метод ансамблювання нейронних мереж узагальненої регресії для підвищення точності розв'язання задачі прогнозування. Описано базові положення функціонування нейронної мережі узагальненої регресії. На основі цього подано алгоритмічну реалізацію розробленого ансамблю. Аналітично доведено можливість підвищення точності прогнозу із використанням розробленого ансамблю. Із використанням бібліотек мови Python, розроблено програмне рішення для реалізації описаного методу. Проведено експериментальне моделювання роботи методу на реальних даних задачі регресії. Встановлено високу ефективність розв'язання поставленої задачі із застосуванням розробленого методу на основі як середньої абсолютної похибки у відсотках, так і з використанням середньоквадратичної похибки. Здійснено порівняння роботи методу із наявними: апроксимацією поліномом Вінера на основі Стохастичного Градієнтного спуску, нейронною мережею узагальненої регресії та модифікованим алгоритмом AdaBoost. Експериментальним шляхом доведено найвищу точність розв'язання поставленої задачі розробленим методом на основі обох показників точності серед усіх розглянутих у роботі методів. Зокрема, він забезпечує більш ніж на 3,4, 4,3 та 8,3 % (MAPE) вищу точність порівняно із наявними методами відповідно. Розроблений метод можна використовувати для отримання розв'язків підвищеної точності під час вирішення прикладних завдань електронної комерції, медицини, матеріалознавства, бізнес-аналітики та інших.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Shestakovska, T. L., та S. O. Kushnir. "Інноваційні фактори забезпечення економічної безпеки аграрного сектору". Scientific Papers of the Legislation Institute of the Verkhovna Rada of Ukraine, № 5 (10 жовтня 2019): 93–104. http://dx.doi.org/10.32886/instzak.2019.05.10.

Повний текст джерела
Анотація:
Статтю присвячено визначенню інноваційних факторів забезпечення економічної безпеки аграрного сектору у напрямку формування ефективної державної політки й обґрунтуванню відповідних стратегічних імперативів розвитку галузі. Метою статті є дослідження науково-прикладних засад оцінки факторів формування державної політики інноваційного розвитку аграрного сектору як напрямку забезпечення його економічної безпеки та підтримки конкурентоспроможності. Наукова новизна. Запропонована класифікація інноваційних факторів, що впливають на формування державної політики забезпечення економічної безпеки аграрного сектору: науково-освітній потенціал; впровадження інноваційних розробок; інноваційна зовнішньоекономічна спеціалізація держави; розвиток мережевих технологій; поширення серед населення та доступність сучасних інформаційних технологій. Побудована імітаційна модель забезпечення економічної безпеки аграрного сектору економіки, яка дозволяє дослідити вплив окремих напрямів розвитку інтелектуального та інноваційного потенціалу, визначити заходи активізації інноваційно-інвестиційної діяльності суб’єктів аграрного сектору для забезпечення їх економічної безпеки. Висновки. Встановлено, що на сучасному етапі соціально-економічних трансформацій в країні результати наукової, науково-технічної та інноваційної діяльності є вирішальними факторами, що визначають перехід до інноваційного типу розвитку аграрного сектору, забезпечують її високу ефективність та економічну безпеку у ринковому середовищі. Систематизовано інноваційні фактори забезпечення економічної безпеки аграрного сектору та показники їх оцінки (Науково-освітній потенціал. Впровадження інноваційних розробок. Інноваційна зовнішньоекономічна спеціалізація держави. Розвиток мережевих технологій. Поширення серед населення та доступність сучасних інформаційних технологій). Для ефективної інноваційно-інвестиційної політики держави у сфері розвитку аграрного сектору та забезпечення його економічної безпеки важливим елементом є створення інноваційної та інвестиційної спроможності галузі, яка забезпечує їх конкурентоспроможність. Незважаючи на невідворотність процесів посилення залежності успіхів агровиробників від інноваційності агробізнесу, на практиці у вітчизняному агропромисловому секторі темпи продукування і впровадження інновацій залишаються низькими. Запропоновано визначати забезпечення економічної безпеки аграрного сектору через результативний показник інноваційного розвитку – валову додану вартість. Пропонується використання методу імітаційного моделювання, зокрема на основі концепції системної динаміки, для виявлення сценаріїв інноваційного розвитку аграрного сектору з метою забезпечення його економічної безпеки та підвищення конкурентоспроможності. Імітаційна модель побудована у відповідності до встановлених зав’язків між факторами інноваційної спроможності в аграрному секторі, які забезпечують його економічну безпеку. Усі цикли в моделі є контурами додаткового зворотного зв’язку, що має призводити до поширення позитивних тенденцій у моделі. Динаміка складових імітаційної моделі визначається побудованими економетричними моделями взаємозв’язків між показниками інтелектуального та інноваційного потенціалу й результатами діяльності.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Бєлоха, Г. С. "Перетворювач частоти в системі генерування енергії вітроенергетичних установок". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 7 (263) (10 грудня 2020): 35–39. http://dx.doi.org/10.33216/1998-7927-2020-263-7-35-39.

Повний текст джерела
Анотація:
В останній час системи перетворення енергії вітру збільшують своє проникнення в електричні мережі в майже усі країни світу. Інтеграція енергії вітру в енергетичні системи спричиняє проблему з точки зору якості електроенергії. У статті розглянуто електричну систему у складі вітрогенераторних установок зі змінною швидкістю обертання ротора, щоб отримати максимальну потужність із вітру. Показано основні задачі керування вітрогенераторних установок то зони роботи вітряків. Приведено огляд перетворювачів частоти. Запропоновано перетворювач частоти (AC-DC-AC) з ланкою постійного струму. До його складу входять вхідний AC/DC перетворювач, система управління якого та регулятор швидкості генератора забезпечують оптимальну передачу енергії від вітрогенератора, і вихідний DC/AC перетворювача, виконаного на базі активного випрямляча. Між вхідним інвертором і активним випрямлячем знаходиться ланка постійної напруги (конденсатор). Система керування такого перетворювача релейна. Таке керування забезпечує з релейним керування, дозволяє забезпечити практично миттєву реакцію на відхилення від завдання. Точність відтворення (відстеження) сигналу завдання буде визначатися шириною петлі гістерезису релейних регуляторів. Таким чином забезпечується електромагнітна сумісність з мережею живлення. Представлено математичний опис електромагнітних процесів в активному випрямлячі та інверторі, які входять до складу перетворювача. За допомогою цифрового моделювання в програмі Matlab проведено дослідження режимів роботи (змінення напруги генератора, частоти струму генератора) та виконан аналіз струмів на вміст гармонік. Гармонійний аналіз показав, що запропонований перетворювач забезпечує хорошу якість споживаної енергії THD істотно менше 5% що задовольняє міжнародним стандартам на якість електроенергії.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Nikolenko, Hanna. "Моделі пост-глобального відкритого суспільства в концепціях Дж.Сороса та Дж.Ріфкіна". Multiversum. Philosophical almanac, № 3-4 (30 листопада 2018): 101–17. http://dx.doi.org/10.35423/2078-8142.2018.3-4.09.

Повний текст джерела
Анотація:
Стаття присвячена моделюванню відкритого суспільства за проектами Дж.Ріфкіна (суспільство відкритих мереж та енергетична Пангея) та Дж.Сороса (демократичний альянс). Вчені досліджують вплив новітніх технологій на суспільство, зміну ціннісних орієнтирів, формування нових форм соціальної участі. Вони роблять прогнози стосовно майбутніх суспільних перетворень у пост-глобальних умовах та мають досвід втілення своїх ідей на практиці протягом ХХІ ст. Дж.Сорос називає себе безпосереднім послідовником ідей відкритого суспільства А.Бергсона і К.Попера. Він розбудовує свій проект на засадах гуманізму, демократичності та захисту прав людини. Дж.Ріфкін поєднує ідеї зеленої енергетики, формування нових уявлень про природу (ентропія), цінностей (біофілія, емпатія), які разом лежать в основі суспільства відкритих мереж. Дж.Сорос пропонує проводити зміни через громадянське суспільство, уряди та переосмислення статусу суверенітету країни в міжнародній політиці. Він пропонує низку перетворень, які збільшили б потенціал взаєморозуміння між суб'єктами, механізми заохочення та контролю порушень. У політиці це підтримка або економічні санкції, в житті громадян – просвітницька діяльність у сфері захисту прав людини та громадянина. Дж.Ріфкін проводить паралелі між мережею Інтернет та інтелектуальної енергетичної мережі, що наразі формується. Він вважає, що об'єднання людей, які вільно діляться цінною інформацією в мережі, так само вільно ділитимуться енергією відновлювальних джерел. Обидва вчених зауважують кризу цінностей і втрату орієнтирів, які сформувалися в глобальному суспільстві після бурхливих подій ХХ століття. Вони пропонують свої варіанти розвитку майбутніх подій та напрямки економічних, соціальних та світоглядних трансформацій.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Зубков, С., та М. Козій. "ПРОБЛЕМИ СТВОРЕННЯ ЕЛЕКТРОКАРДІОГРАФІВ З ПІДВИЩЕНОЮ РОЗДІЛЬНОЮ ЗДАТНІСТЮ". Біомедична інженерія і технологія, № 6 (18 грудня 2021): 130–37. http://dx.doi.org/10.20535/2617-8974.2021.6.247776.

Повний текст джерела
Анотація:
Метод електрокардіографії високої роздільної здатності (ВРЗ) дає можливість відокремити і проаналізувати низько- амплітудні (5-20мкВ з частотами від 20Гц) сигнали, які недоступні для аналізу з використанням традиційних методів і містять важливу діагностичну інформацію. Смуга частот, що займає кардіокомплекс, охоплює діапазон від 0,05 до 800Гц. Звуження цього частотного діапазону з боку нижніх частот призводить до спотворення сегмента ST, T і U хвиль, а з боку високих - до згладжування QRS-комплексу і зниження крутизни його схилів і амплітуди R-хвилі. Використання потужних математичних методів для статистичної обробки зашумлених сигналів принципово поступається в точності прямій реєстрації. Метою статті є дослідження впливу частоти квантування, оптимального розподілу підсилення по каскадах, формування АЧХ та фільтрації для покращення реєстрації слабких сигналів. Верхня частота смуги пропускання більшості сучасних вітчизняних електрокардіографів дорівнює 1-2Гц. В іншому діапазоні частот він не відповідає вимогам стандартів з точки зору похибки вимірювання напруги. Зі збільшенням кількості активних розрядів АЦП частота верхньої межі смуги катастрофічно падає. Задача формулюється наступним чином: вибрати частоту дискретизації, яка забезпечує перетворення вхідного сигналу в цифрову форму з потрібною похибкою дискретизації верхньої гармоніки вхідного сигналу. Складність полягає у тому, що з ростом частоти збільшується можлива похибка, тим більше, що амплітуда цих компонентів зменшується з ростом частоти в силу природнього обмеження потужності джерела сигналу. Тому впровадили в програмне забезпечення всіх електрокардіографів підсилений режим, Це дозволяє метрологічно правильно вимірювати цей параметр. Важливим є правильне проектування цифрових фільтрів, частотні характеристики яких є періодичними. Моделювання введення аналогового фільтру перед АЦП показало суттєве зменшення амплітуди періодичних смуг пропускання цифрового фільтру. Ключові слова: частота квантування, похибка вимірювання, смуга пропускання, придушення мережевої перешкоди, фільтрація
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Vitynskyi, P. B., та R. O. Tkachenko. "Нейроподібна структура для задач прогнозування в умовах коротких вибірок даних". Scientific Bulletin of UNFU 29, № 5 (30 травня 2019): 147–50. http://dx.doi.org/10.15421/40290529.

Повний текст джерела
Анотація:
Задача прогнозування є однією із пріоритетних задач бізнесу. З ростом інструментарію прогнозування, а також із бурхливим розвитком потужностей комп'ютерної техніки цій задачі приділяють дедалі більше уваги. На сьогодні більшість менеджерів провідних компаній мають змогу застосовувати інформаційні системи на основі складного математичного апарату для аналізу даних. Проте проблема розуміння алгоритмів, закладених в основі таких інформаційних систем, а також правильний підбір моделі прогнозування є важливою проблемою, оскільки некоректні прогнози можуть призвести до прийняття неправильного рішення. Проблема поглиблюється у разі опрацювання недостатньої кількості даних, що характерно для розв'язання низки задач. Зокрема, для розв'язання задач прогнозування попиту на новий товар чи нову послугу організації, зокрема в системах електронної комерції, необхідна достатня кількість даних для реалізації процедур навчання. Проте їх невелика кількість, під час застосування наявних методів, призводить до неточних, некоректних прогнозів. Саме тому виникає потребу удосконалення наявних та пошуку нових рішень розв'язання задачі прогнозування в умовах коротких вибірок даних. У роботі запропоновано новий, розроблений авторами, інструмент обчислювального інтелекту для ефективного розв'язання цієї задачі. Описано нейроподібну структуру для підвищення точності розв'язання задач прогнозування в умовах коротких вибірок даних. ЇЇ побудовано з використанням штучної нейронної мережі узагальненої регресії та гібридної нейроподібної структури Моделі Послідовних Геометричних Перетворень з RBF ядром. Подано алгоритмічну реалізацію побудови методу подвоєння входів, що знаходиться в основі роботи системи. Проаналізовано процедури підбору оптимальних параметрів для її роботи. Проведено експериментальне моделювання роботи нейроподібної структури для розв'язання задачі прогнозування. Отримані результати показали високу точність її роботи. Ефективність використання розробленої структури підтверджено порівнянням її роботи з наявними – багатошаровим перцептроном, штучною нейронною мережею узагальненої регресії та машиною опорних векторів. Розроблена нейроподібна структура демонструє точність на основі MAPE відповідно у більше ніж 3, 6 та 10 разів вищу порівняно із відомими методами. Розроблену структуру можна використовувати у багатьох сферах, зокрема електронній комерції, бізнес-аналітиці, тощо.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Соловйов, Володимир Миколайович, та Вікторія Володимирівна Соловйова. "Теорія складних систем як основа міждисциплінарних досліджень". Theory and methods of learning fundamental disciplines in high school 1 (2 квітня 2014): 152–60. http://dx.doi.org/10.55056/fund.v1i1.424.

Повний текст джерела
Анотація:
Наукові дослідження стають ефективними тоді, коли природу подій чи явищ можна розглядати з єдиних позицій, виробити універсальний підхід до них, сформувати загальні закономірності. Більшість сучасних фундаментальних наукових проблем і високих технологій тісно пов’язані з явищами, які лежать на границях різних рівнів організації. Природничі та деякі з гуманітарних наук (економіка, соціологія, психологія) розробили концепції і методи для кожного із ієрархічних рівнів, але не володіють універсальними підходами для опису того, що відбувається між цими рівнями ієрархії. Неспівпадання ієрархічних рівнів різних наук – одна із головних перешкод для розвитку дійсної міждисциплінарності (синтезу різних наук) і побудови цілісної картини світу. Виникає проблема формування нового світогляду і нової мови.Теорія складних систем – це одна із вдалих спроб побудови такого синтезу на основі універсальних підходів і нової методології [1]. В російськомовній літературі частіше зустрічається термін “синергетика”, який, на наш погляд, означує більш вузьку теорію самоорганізації в системах різної природи [2].Мета роботи – привернути увагу до нових можливостей, що виникають при розв’язанні деяких задач, виходячи з уявлень нової науки.На жаль, теорія складності не має до сих пір чіткого математичного визначення і може бути охарактеризована рисами тих систем і типів динаміки, котрі являються предметом її вивчення. Серед них головними є:– Нестабільність: складні системи прагнуть мати багато можливих мод поведінки, між якими вони блукають в результаті малих змін параметрів, що управляють динамікою.– Неприводимість: складні системи виступають як єдине ціле і не можуть бути вивчені шляхом розбиття їх на частини, що розглядаються ізольовано. Тобто поведінка системи зумовлюється взаємодією складових, але редукція системи до її складових спотворює більшість аспектів, які притаманні системній індивідуальності.– Адаптивність: складні системи часто включають множину агентів, котрі приймають рішення і діють, виходячи із часткової інформації про систему в цілому і її оточення. Більш того, ці агенти можуть змінювати правила своєї поведінки на основі такої часткової інформації. Іншими словами, складні системи мають здібності черпати скриті закономірності із неповної інформації, навчатися на цих закономірностях і змінювати свою поведінку на основі нової поступаючої інформації.– Емерджентність (від існуючого до виникаючого): складні системи продукують неочікувану поведінку; фактично вони продукують патерни і властивості, котрі неможливо передбачити на основі знань властивостей їх складових, якщо розглядати їх ізольовано.Ці та деякі менш важливі характерні риси дозволяють відділити просте від складного, притаманного найбільш фундаментальним процесам, які мають місце як в природничих, так і в гуманітарних науках і створюють тим самим істинний базис міждисциплінарності. За останні 30–40 років в теорії складності було розроблено нові наукові методи, які дозволяють універсально описати складну динаміку, будь то в явищах турбулентності, або в поведінці електорату напередодні виборів.Оскільки більшість складних явищ і процесів в таких галузях як екологія, соціологія, економіка, політологія та ін. не існують в реальному світі, то лише поява сучасних ЕОМ і створення комп’ютерних моделей цих явищ дозволило вперше в історії науки проводити експерименти в цих галузях так, як це завжди робилось в природничих науках. Але комп’ютерне моделювання спричинило розвиток і нових теоретичних підходів: фрактальної геометрії і р-адичної математики, теорії хаосу і самоорганізованої критичності, нейроінформатики і квантових алгоритмів тощо. Теорія складності дозволяє переносити в нові галузі дослідження ідеї і підходи, які стали успішними в інших наукових дисциплінах, і більш рельєфно виявляти ті проблеми, з якими інші науки не стикалися. Узагальнюючому погляду з позицій теорії складності властиві більша евристична цінність при аналізі таких нетрадиційних явищ, як глобалізація, “економіка, що заснована на знаннях” (knowledge-based economy), національні і світові фінансові кризи, економічні катастрофи і ряд інших.Однією з інтригуючих проблем теорії є дослідження властивостей комплексних мережеподібних високотехнологічних і інтелектуально важливих систем [3]. Окрім суто наукових і технологічних причин підвищеної уваги до них є і суто прагматична. Справа в тому, що такі системи мають системоутворюючу компоненту, тобто їх структура і динаміка активно впливають на ті процеси, які ними контролюються. В [4] наводиться приклад, коли відмова двох силових ліній системи електромережі в штаті Орегон (США) 10 серпня 1996 року через каскад стимульованих відмов призвели до виходу із ладу електромережі в 11 американських штатах і 2 канадських провінціях і залишили без струму 7 млн. споживачів протягом 16 годин. Вірус Love Bug worm, яких атакував Інтернет 4 травня 2000 року і до сих пір блукає по мережі, приніс збитків на мільярди доларів.До таких систем відносяться Інтернет, як складна мережа роутерів і комп’ютерів, об’єднаних фізичними та радіозв’язками, WWW, як віртуальна мережа Web-сторінок, об’єднаних гіперпосиланнями (рис. 1). Розповсюдження епідемій, чуток та ідей в соціальних мережах, вірусів – в комп’ютерних, живі клітини, мережі супермаркетів, актори Голівуду – ось далеко не повний перелік мережеподібних структур. Більш того, останнє десятиліття розвитку економіки знань привело до зміни парадигми структурного, функціонального і стратегічного позиціонування сучасних підприємств. Вертикально інтегровані корпорації повсюдно витісняються розподіленими мережними структурами (так званими бізнес-мережами) [5]. Багато хто з них замість прямого виробництва сьогодні займаються системною інтеграцією. Тому дослідження структури та динаміки мережеподібних систем дозволить оптимізувати бізнес-процеси та створити умови для їх ефективного розвитку і захисту.Для побудови і дослідження моделей складних мережеподібних систем введені нові поняття і означення. Коротко опишемо тільки головні з них. Хай вузол i має ki кінців (зв’язків) і може приєднати (бути зв’язаним) з іншими вузлами ki. Відношення між числом Ei зв’язків, які реально існують, та їх повним числом ki(ki–1)/2 для найближчих сусідів називається коефіцієнтом кластеризації для вузла i:. Рис. 1. Структури мереж World-Wide Web (WWW) і Інтернету. На верхній панелі WWW представлена у вигляді направлених гіперпосилань (URL). На нижній зображено Інтернет, як систему фізично з’єднаних вузлів (роутерів та комп’ютерів). Загальний коефіцієнт кластеризації знаходиться шляхом осереднення його локальних значень для всієї мережі. Дослідження показують, що він суттєво відрізняється від одержаних для випадкових графів Ердаша-Рені [4]. Ймовірність П того, що новий вузол буде приєднано до вузла i, залежить від ki вузла i. Величина називається переважним приєднанням (preferential attachment). Оскільки не всі вузли мають однакову кількість зв’язків, останні характеризуються функцією розподілу P(k), яка дає ймовірність того, що випадково вибраний вузол має k зв’язків. Для складних мереж функція P(k) відрізняється від розподілу Пуассона, який мав би місце для випадкових графів. Для переважної більшості складних мереж спостерігається степенева залежність , де γ=1–3 і зумовлено природою мережі. Такі мережі виявляють властивості направленого графа (рис. 2). Рис. 2. Розподіл Web-сторінок в Інтернеті [4]. Pout – ймовірність того, що документ має k вихідних гіперпосилань, а Pin – відповідно вхідних, і γout=2,45, γin=2,1. Крім цього, складні системи виявляють процеси самоорганізації, змінюються з часом, виявляють неабияку стійкість відносно помилок та зовнішніх втручань.В складних системах мають місце колективні емерджентні процеси, наприклад синхронізації, які схожі на подібні в квантовій оптиці. На мові системи зв’язаних осциляторів це означає, що при деякій критичній силі взаємодії осциляторів невелика їх купка (кластер) мають однакові фази і амплітуди.В економіці, фінансовій діяльності, підприємництві здійснювати вибір, приймати рішення доводиться в умовах невизначеності, конфлікту та зумовленого ними ризику. З огляду на це управління ризиками є однією з найважливіших технологій сьогодення [2, 6].До недавніх часів вважалось, що в основі розрахунків, які так чи інакше мають відношення до оцінки ризиків лежить нормальний розподіл. Йому підпорядкована сума незалежних, однаково розподілених випадкових величин. З огляду на це ймовірність помітних відхилень від середнього значення мала. Статистика ж багатьох складних систем – аварій і катастроф, розломів земної кори, фондових ринків, трафіка Інтернету тощо – зумовлена довгим ланцюгом причинно-наслідкових зв’язків. Вона описується, як показано вище, степеневим розподілом, “хвіст” якого спадає значно повільніше від нормального (так званий “розподіл з тяжкими хвостами”). У випадку степеневої статистики великими відхиленнями знехтувати вже не можна. З рисунку 3 видно, наскільки добре описуються степеневою статистикою торнадо (1), повені (2), шквали (3) і землетруси (4) за кількістю жертв в них в США в ХХ столітті [2]. Рис. 3. Системи, які демонструють самоорганізовану критичність (а саме такі ми і розглядаємо), самі по собі прагнуть до критичного стану, в якому можливі зміни будь-якого масштабу.З точки зору передбачення цікавим є той факт, що різні катастрофічні явища можуть розвиватися за однаковими законами. Незадовго до катастрофи вони демонструють швидкий катастрофічний ріст, на який накладені коливання з прискоренням. Асимптотикою таких процесів перед катастрофою є так званий режим з загостренням, коли одна або декілька величин, що характеризують систему, за скінчений час зростають до нескінченності. Згладжена крива добре описується формулою,тобто для таких різних катастрофічних явищ ми маємо один і той же розв’язок рівнянь, котрих, на жаль, поки що не знаємо. Теорія складності дозволяє переглянути деякі з основних положень ризикології та вказати алгоритми прогнозування катастрофічних явищ [7].Ключові концепції традиційних моделей та аналітичних методів аналізу і управління капіталом все частіше натикаються на проблеми, які не мають ефективних розв’язків в рамках загальноприйнятих парадигм. Причина криється в тому, що класичні підходи розроблені для опису відносно стабільних систем, які знаходяться в положенні відносно стійкої рівноваги. За своєю суттю ці методи і підходи непридатні для опису і моделювання швидких змін, не передбачуваних стрибків і складних взаємодій окремих складових сучасного світового ринкового процесу. Стало ясно, що зміни у фінансовому світі протікають настільки інтенсивно, а їх якісні прояви бувають настільки неочікуваними, що для аналізу і прогнозування фінансових ринків вкрай необхідним став синтез нових аналітичних підходів [8].Теорія складних систем вводить нові для фінансових аналітиків поняття, такі як фазовий простір, атрактор, експонента Ляпунова, горизонт передбачення, фрактальний розмір тощо. Крім того, все частіше для передбачення складних динамічних рядів використовуються алгоритми нейрокомп’ютинга [9]. Нейронні мережі – це системи штучного інтелекту, які здатні до самонавчання в процесі розв’язку задач. Навчання зводиться до обробки мережею множини прикладів, які подаються на вхід. Для максимізації виходів нейронна мережа модифікує інтенсивність зв’язків між нейронами, з яких вона побудована, і таким чином самонавчається. Сучасні багатошарові нейронні мережі формують своє внутрішнє зображення задачі в так званих внутрішніх шарах. При цьому останні відіграють роль “детекторів вивчених властивостей”, оскільки активність патернів в них є кодування того, що мережа “думає” про властивості, які містяться на вході. Використання нейромереж і генетичних алгоритмів стає конкурентноздібним підходом при розв’язанні задач передбачення, класифікації, моделювання фінансових часових рядів, задач оптимізації в галузі фінансового аналізу та управляння ризиком. Детермінований хаос пропонує пояснення нерегулярної поведінки і аномалій в системах, котрі не є стохастичними за природою. Ця теорія має широкий вибір потужних методів, включаючи відтворення атрактора в лаговому фазовому просторі, обчислення показників Ляпунова, узагальнених розмірностей і ентропій, статистичні тести на нелінійність.Головна ідея застосування методів хаотичної динаміки до аналізу часових рядів полягає в тому, що основна структура хаотичної системи (атрактор динамічної системи) може бути відтворена через вимірювання тільки однієї змінної системи, фіксованої як динамічний ряд. В цьому випадку процедура реконструкції фазового простору і відтворення хаотичного атрактора системи при динамічному аналізі часового ряду зводиться до побудови так званого лагового простору. Реальний атрактор динамічної системи і атрактор, відтворений в лаговому просторі по часовому ряду при деяких умовах мають еквівалентні характеристики [8].На завершення звернемо увагу на дидактичні можливості теорії складності. Розвиток сучасного суспільства і поява нових проблем вказує на те, що треба мати не тільки (і навіть не стільки) експертів по деяким аспектам окремих стадій складних процесів (професіоналів в старому розумінні цього терміну), знадобляться спеціалісти “по розв’язуванню проблем”. А це означає, що істинна міждисциплінарність, яка заснована на теорії складності, набуває особливого значення. З огляду на сказане треба вчити не “предметам”, а “стилям мислення”. Тобто, міждисциплінарність можна розглядати як основу освіти 21-го століття.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Шишкіна, Марія Павлівна. "Вимоги до реалізації засобів та систем електронного навчання в контексті інформаційного суспільства". Theory and methods of e-learning 3 (13 лютого 2014): 333–39. http://dx.doi.org/10.55056/e-learn.v3i1.358.

Повний текст джерела
Анотація:
В умовах реформування сучасної освіти, модернізації освітніх стандартів постає проблема підготовки кваліфікованих наукових та виробничих кадрів, що є основною рушійною силою розвитку економіки та соціальних відносин, каталізатором суспільних процесів у науковій, освітній та виробничій сферах. Особливо складним та важливим завданням є виховання здатної до продуктивної діяльності особистості, формування фахових та освітніх компетентностей, що забезпечували б їй можливість вирішувати особисті та професійні задачі в умовах інформаційного суспільства, що характеризується інтенсивним розвитком високих технологій.Сучасні електронні засоби освітнього призначення, мультимедійні та дистанційні технології постають невід’ємною складовою навчання більшості предметів шкільного циклу, багатьох сфер вищої освіти. Використання засобів ІКТ збагачує та розширює можливості навчання, що призводить до поняття електронного навчання [4; 5]. Трактування цього поняття має різні тлумачення, крім того, із розвитком технологій суттєво трансформується його об’єм і зміст. Наприклад, згідно електронної енциклопедії освіти (Education encyclopedia), це поняття «охоплює всі форми навчання та викладання, що відбуваються за електронної підтримки, є процедурними по своїй суті і спрямовані на формування знань із врахуванням індивідуального досвіду, практики і знань того, хто вчиться. Інформаційні і комунікаційні системи, мережеві чи ні, постають як специфічні засоби для забезпечення процесу навчання» [5].Сучасна тенденція полягає у значному розмаїтті і складності систем електронного навчання. Це дає більше можливостей для інтеграції, концентрації і вибору ресурсів та систем. Використання новітніх засобів та сервісів сприяє досягненню якісно нового рівня якості освітніх послуг, створюючи потенціал для індивідуалізації процесу навчання, формування індивідуальної траєкторії розвитку тим, хто вчиться, добору і використання підходящих технологічних засобів. Необхідною умовою в цьому відношенні є відповідність засобів ІКТ низці вимог до підтримки та управління ресурсами, проектування інтерфейсу, ергономіки та інших.Як визначити, які засоби та технології найбільш продуктивні для підтримки навчальної діяльності, для досягнення необхідного рівня якості освіти та формування компетентностей учнів? Відповідь на це питання залежить від змісту електронного навчання, від того, які застосовуються методи і способи оцінки систем електронного навчання, а також від вибору та використання технологій їх реалізації.Метою статті є визначення тенденцій розвитку систем е-навчання в сучасній освіті та виявлення вимог до перспективних шляхів використання інформаційно-технологічних платформ їх реалізації.Загалом, визначальною рисою електронного навчання є використання інформаційно-комунікаційних ресурсів та технологій як засобів навчання [4; 5]. Сучасний стан розвитку інформаційно освітнього середовища характеризується підвищенням якості інформаційних ресурсів наукового та навчального призначення, впровадженням інтегральних платформ доступу до цих ресурсів як для освітніх установ, так і для індивідуальних користувачів. Це потребує забезпечення умов для створення та поширення якісного програмного забезпечення – електронних книг, бібліотек, освітніх порталів, ресурсів інформаційно-комунікаційних мереж, дистанційних освітніх сервісів.Засоби інформаційно-комунікаційних технологій постають інструментами реалізації систем відкритого та дистанційного навчання. В цьому контексті виникають нові потреби і виклики, нові професійні та навчальні цілі, пов’язані з сучасним станом розвитку інформаційного суспільства. Інноваційні освітні технології мають задовольняти певним системним педагогічним та інформаційно-технологічним вимогам, що продиктовані рівнем науково-технічного прогресу та максимально відповідати принципам відкритої освіти серед основних з яких мобільність учнів і вчителів, рівний доступ до освітніх систем, формування структури та реалізації освітніх послуг [1].Серед основних цілей, що постають перед освітою із розвитком інформаційного суспільства, зазначають формування в учнів системи компетентностей ХХІ сторіччя. На думку Т. Бітмана, який узагальнив деякі дослідження, більшість авторів виокремлюють серед них такі компоненти, як технологічні навички, серед яких: інформаційна грамотність; знайомство з інформаційно-комунікаційними носіями; знайомство з засобами інфомаційно-комунікаційних технологій; соціальні навички, такі як: загальнокультурна грамотність; гнучкість та адаптивність; навички мислення та набування знання високого рівня; комунікативність та здатність до співпраці [2]. Цей автор відмічає такі тенденції у розвитку сучасного суспільства, як все більш високий рівень взаємозв’язку та швидкості перебігу суспільних процесів та різке зростання обсягів доступної інформації, до якої можуть залучатися широкі верстви суспільстваРозвиток нових технологій характеризується низкою показників, що стосуються різних аспектів реалізації систем електронного навчання. Ці показники тісно пов’язані із потребою формування в учнів освітніх компетентностей в контексті сучасних вимог відкритості, мобільності, гнучкості навчання та розвитку пізнавальних та особистісних якостей учня.Однією з проблем у сфері реалізації електронного навчання є забезпечення його доступності. Цей показник стосується наявності та організації доступу до необхідних систем навчання, розширення участі, що на наш час розглядаються в двох аспектах. Поняття «доступу до е-навчання» трактується, по-перше, як зміст і обсяг послуг, наявних у певний час. По-друге, як комплекс майнових, соціальних, класових, статевих, вікових, етнічних чинників, фізичних чи розумових здібностей та інших чинників, що впливають на реалізацію е-навчання і мають бути враховані при його проектуванні [4].Поряд з цим, серед суттєвих причин, які перешкоджають ширшому впровадженню і використанню систем електронного навчання, є такі, як наявність достатньої кількості комп’ютерів, програмного забезпечення і необхідних сервісів, доступу до Інтернет, включаючи широкосмуговий доступ, швидкість з’єднання тощо. Розгляд цих питань суттєво залежить від вибору платформи реалізації електронного навчання, на базі якої організується добір і використання різноманітних типів ресурсів, їх систематизація та оптимізація використання.Варто також звернути увагу на доступність важливої інформації, чи є зручні можливості пошуку і вибору необхідного навчального матеріалу. Цей чинник також є критичним при залученні у процес навчання необхідних ресурсів на електронних носіях.Існує ще один вимір доступу до е-навчання, що стосується обмежень у часі і просторі. Це протиріччя вирішується певною мірою за рахунок використання мобільних технологій і розподіленого навчання, які є перспективним напрямом розвитку систем відкритої освіти.Наступний показник стосується якості освітніх послуг, що надаються за допомогою систем е-навчання. Якість електронного навчання і її оцінювання мають багато рівнів таких, як: зміст освіти, рівень підготовки методичних та навчальних матеріалів; персонал і кваліфікація викладачів; стан матеріально-технічного забезпечення; управління навчальним процесом; рівень знань та компетентностей учнів та інших.Предметом численних досліджень є питання оцінки результатів навчання за допомогою комп’ютера. Технологія оцінювання стосується багатьох аспектів середовища навчання. Серед труднощів, які виникають при реалізації електронного оцінювання є такі, як ризик відмови обладнання, висока вартість потужних серверів з великою кількістю клієнтів, необхідність опанування технології оцінювання студентами та викладачами та інші [4].Якість навчальних матеріалів потребує врахування також вимог до обслуговування, управління, проектування інтерфейсу, ергономіки, гігієни та інших. Ці питання не втрачають актуальності у зв’язку з швидким оновленням комп’ютерної техніки. Розробка та впровадження навчальних матеріалів та ресурсів на електронних носіях суттєво взаємообумовлена використанням ефективних методів оцінки їх якості.Окремий комплекс проблем пов’язаний з розробкою вимог і стандартів для освітнього програмного забезпечення. Зокрема, це стосується визначення психолого-педагогічних, дидактичних параметрів оцінки якості освітніх ресурсів. Багато авторів (С. Санс-Сантамарія, Дж. А. Ва­діле, Дж. Гутьєррес Серрано, Н. Фрізен та інші [6]) погоджуються на думці, що хоча стандарти у галузі електронного навчання були розроблені з метою визначення шляхів і способів використання у педагогічній діяльності навчальних об’єктів, реалізованих засобами ІКТ, це скоріше сприяло подальшому пошуку в цьому напрямку, ніж було остаточним рішенням. Існуючі педагогічні характеристики об’єктів орієнтовані здебільшого на можливість спільного використання різних одиниць контенту окремими системи управління е-навчанням. Це не відображає в достатній мірі педагогічні підходи, що стоять за навчальними об’єктами.Загалом із розвитком електронного навчання зростають вимоги до якості освітніх послуг, яка, як свідчать дослідження, суттєво залежить від технологій оцінювання електронних ресурсів та матеріалів та від технологій їх створення та надання користувачеві. В той же час, застосування інтегральних підходів до організації використання та постачання ресурсів та сервісів сприяє удосконаленню і уніфікації підсистем їх розробки та апробації, пошуку та відбору кращих зразків програмного забезпечення, що також може бути передумовою підвищення якості освітніх послуг.Ще один показник, пов’язаний з реалізацією систем е-навчання, характеризує ступінь адаптивності. Цей чинник передбачає застосування досить спеціалізованих та диференційованих систем навчального призначення, що ґрунтуються на моделюванні індивідуальних траєкторій учня чи студента, його рівня знань [3]. У зв’язку з цим, поширення набувають адаптивні технології е-навчання, що враховують особливості індивідуального прогресу учня. Адаптивність передбачає налаштування, координацію процесу навчання відповідно до рівня підготовки, підбір темпу навчання, діагностику досягнутого рівня засвоєння матеріалу, розширення спектру можливостей навчання, придатність для більшого контингенту користувачів.Побудова адаптивної моделі студента, що враховувала б особистісні характеристики, такі як рівень знань, індивідуальні дані, поточні результати навчання, і розробка технологій відстеження його навчальної траєкторії є досить складною математичною і методичною проблемою [3; 4]. Побудова комп’ютерної програми в даному випадку передбачає деякі форми формалізованого подання сукупності знань в предметній області, що вивчається. Розвиток даного типу систем, здебільшого з елементами штучного інтелекту, є досить трудомістким. Зростання ступеню адаптивності є однією з тенденцій розвитку систем електронного навчання, що відбувається за рахунок удосконалення технологій подання, зберігання і добору необхідних засобів. Різноманітні навчальні матеріали, ресурси і сервіси можуть бути надані за потребою користувача, та дають можливість динамічної адаптації до досягнутого рівня знань, компетентності та освітніх уподобань того, хто вчиться.Наступний показник стосується інтеграції та цілісності систем електронного навчання, і тісно пов’язаний із стандартизацією технологій і ресурсів в управлінні системами е-навчання. Ці проблеми виникають у зв’язку з формуванням відкритого середовища навчання, що забезпечує гнучкий доступ до освітніх ресурсів, вибір та зміну темпу навчання, його змісту, часових та просторових меж в залежності від потреб користувачів [1]. Існує тенденція до координації та уніфікації стандартів навчальних матеріалів, розроблених різними організаціями зі стандартизації, такими як IEEE, IMS, ISO / IEC JTC1 SC36 й інші, а також гармонізації національних стандартів з міжнародними. У зв’язку з цим, наукові основи оцінювання інформаційних технологій та способів їх добору і застосування потребують подальшого розвитку.Наступний показник пов’язаний з повномасштабною інтерактивністю засобів ІКТ навчального призначення. Справді, сучасні технології спрямовані на підтримування різних типів діяльності вчителя у віртуальному комп’ютерному класі. Це стосується таких форм навчання, як формування груп, спільнот, що навчаються і взаємодіють віртуально в режимі он-лайн. Щоб організовувати навчальну діяльність в таких спільнотах, використовуються функції, що забезпечують колективний доступ до навчального контенту для групи користувачів, можливість для вчителя проглядати всі комп’ютери у групі, концентрувати увагу учнів за рахунок пауз і повідомлень, підключати або відключати учасників навчального процесу, поширювати файли або посилання серед цільової групи учнів, надсилати повідомлення конкретним учням. Учні також можуть звертатися до учителя за рахунок надання запитань, коментарів, виступів тощо [7]. Організація навчання у віртуальному класі потребує застосування апаратно-програмних засобів доставки навчального контенту, що також суттєво залежить від добору відповідних технологій.Наступний показник стосується безпеки освітнього середовища і передбачає аналіз ризиків та переваг використання комп’ютерних технологій у навчанні. При створенні систем електронного навчання мають враховуватись чинники збереження здоров’я, розвитку інтелектуального потенціалу учня.З огляду на визначені тенденції розвитку та використання систем е-навчання у сучасному освітньому процесі виникає потреба у певній інформаційно-технологічній платформі, яка могла б підтримувати нові форми навчання у відповідності сучасним вимогам доступності, гнучкості, мобільності, індивідуалізації та відкритості освіти [1].Продуктивним видається підхід, за якого проблеми розвитку е-навчання вирішувалися б через призму нових технологій, що надали б підходящу основу для дослідження цих систем, їх розробки і використання. Зокрема, перспективним є використання технології хмарних обчислень, за якої електронні ресурси і об’єкти стають доступні користувачеві в якості веб-сервісу [7].За визначенням Національного Інституту Стандартів і Технологій США (NIST), під хмарними обчисленнями (Cloud Computing) розуміють модель зручного мережного доступу до загального фонду обчислювальних ресурсів (наприклад, мереж, серверів, файлів даних, програмного забезпечення та послуг), які можуть бути швидко надані при умові мінімальних управлінських зусиль та взаємодії з постачальником.Переваги хмарних обчислень у сфері освіти можна охарактеризувати наступними чинниками:- спрощення процесів встановлення, підтримки та ліцензійного обслуговування програмного забезпечення, яке може бути замовлено як Інтернет-сервіс;- гнучкість у використанні різних типів програмного забезпечення, що може порівнюватись, обиратись, досліджуватись, завдяки тому, що його не потрібно кожний раз купляти і встановлювати;- можливість багатоканального поповнення колекцій навчальних ресурсів та організація множинного доступу;- універсалізація процесів розподіленого навчання, завдяки віртуалізації засобів розробки проектів, наприклад, командою програмістів, які всі мають доступ до певного середовища і програмного коду, приладів або лабораторій, інших засобів;- здешевлення обладнання завдяки можливості динамічного нарощування ресурсів апаратного забезпечення, таких як обсяг пам’яті, швидкодія, пропускна здатність тощо;- спрощення організації процесів громіздких обрахунків та підтримування великих масивів даних завдяки тому, що для цього можуть бути використані спеціальні хмарні додатки;- мобільність навчання завдяки використанню хмарних сервісів комунікації, таких як електронна пошта, IP-телефонія, чат, а також надання дискового простору для обміну та зберігання файлів, що уможливлює спілкування та організацію спільної діяльності.Таким чином, впровадження технології хмарних обчислень є перспективним напрямом розвитку систем електронного навчання, що сприятиме реалізації таких засобів і систем, які задовольнятимуть сучасним вимогам до рівня доступності, якості, адаптивності, інтеграції та повномасштабної інтерактивності.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Гуржій, Андрій Миколайович, Валерій Яковлевич Жуйков, Анатолій Тимофійович Орлов, Віктор Михайлович Співак, Олександр Володимирович Богдан, Микола Іванович Шут, Людмила Юріївна Благодаренко та ін. "Викладання фізики з використанням вітчизняної електронної цифрової лабораторії, створеної на основі ІКТ". Theory and methods of e-learning 4 (17 лютого 2014): 69–78. http://dx.doi.org/10.55056/e-learn.v4i1.372.

Повний текст джерела
Анотація:
У зв’язку із загальною інформатизацією освіти і швидким розвитком цифрових засобів обробки інформації назріла необхідність впровадження в лабораторні практикуми вищих та середніх навчальних закладів цифрових засобів збору, обробки та оформлення експериментальних результатів, в тому числі під час виконання лабораторних робот з основ електротехнічних пристроїв та систем. При цьому надмірне захоплення віртуальними лабораторними роботами на основі комп’ютерного моделювання в порівнянні з реальним (натурним) експериментом може призводити до втрати особової орієнтації в технології освіти і відсутності надалі у випускників навчальних закладів ряду практичних навичок.У той же час світові компанії, що спеціалізуються в учбово-технічних засобах, переходять на випуск учбового устаткування, що узгоджується з комп’ютерною технікою: аналого-цифрових перетворювачів і датчиків фізико-хімічних величин, учбових приладів керованих цифро-аналоговими пристроями, автоматизованих учбово-експеримен­тальних комплексів, учбових експериментальних установок дистанційного доступу.У зв’язку із цим в області реального експерименту відбувається поступовий розвиток інформаційних джерел складної структури, до яких, у тому числі, відносяться комп’ютерні лабораторії, що останнім часом оформлюються у новий засіб реалізації учбового натурного експерименту – цифрові електронні лабораторії (ЦЕЛ).Відомі цифрові лабораторії для шкільних курсів фізики, хімії та біології (найбільш розповсюджені компаній Vernier Software & Technology, USA та Fourier Systems Inc., Israel) можуть бути використані у ВНЗ України, але вони мають обмежений набір датчиків, необхідність періодичного ручного калібрування, використовують застарілий та чутливий до електромагнітних завад аналоговий інтерфейс та спрощене програмне забезпечення, що не дозволяє проводити статистичну обробку результатів експерименту та з урахуванням низької розрядності аналого-цифрових перетворювачів не може використовуватись для проведення науково-дослідних робіт у вищих навчальних закладах, що є однією із складових підготовки висококваліфікованих спеціалістів, особливо в університетах, які мають статус дослідницьких.Із вітчизняних аналогів відомі окремі компоненти цифрових лабораторій, що випускаються ТОВ «фірма «ІТМ» м. Харків. Вони поступаються продукції компаній Vernier Software & Technology, USA та Fourier Systems Inc. та мають близькі цінові характеристики на окремі компоненти. Тому необхідність розробки вітчизняної цифрової навчальної лабораторії є нагальною, проблематика досліджень та предмет розробки актуальні.Метою проекту є створення сучасної вітчизняної цифрової електронної лабораторії та відпрацювання рекомендацій по використанню у викладанні на її основі базового переліку науково-природничих та біомедичних дисциплін у ВНЗ I-IV рівнів акредитації при значному зменшенні витрат на закупку приладів, комп’ютерної техніки та навчального-методичного забезпечення. В роботі використані попередні дослідження НДІ Прикладної електроніки НТУУ «КПІ» в галузі МЕМС-технологій (micro-electro-mechanical) при створенні датчиків фізичних величин, виконано огляд технічних та методичних рішень, на яких базуються існуючі навчальні цифрові лабораторії та датчики, розроблені схемотехнічні рішення датчиків фізичних величин, проведено конструювання МЕМС – первинних перетворювачів, та пристроїв реєстрації інформації. Розроблені прикладні програми інтерфейсу пристроїв збору інформації та вбудованих мікроконтролерів датчиків. Сформульовані вихідні дані для розробки бездротового інтерфейсу датчиків та програмного забезпечення цифрової лабораторії.Таким чином, у даній роботі пропонується нова вітчизняна цифрова електронна лабораторія, що складається з конструкторської документації та дослідних зразків обладнання, програмного забезпечення та розробленого єдиного підходу до складання навчальних методик для цифрових лабораторій, проведення лабораторних практикумів з метою економії коштів під час створення нових лабораторних робіт із реєстрацією даних, обробки результатів вимірювань та оформленням результатів експерименту за допомогою комп’ютерної техніки.Цифрова електронна лабораторія складається із таких складових частин: набірного поля (НП); комплектів модулів (М) із стандартизованим вихідним інтерфейсом, з яких складається лабораторний макет для досліджування об’єкту (це – набір електронних елементів: резисторів, ємностей, котушок індуктивності, цифро-аналогових та аналого-цифрових перетворювачів (ЦАП та АЦП відповідно)) та різноманітних датчиків фізичних величин; комп’ютерів студента (планшетного комп’ютера або спеціалізованого комп’ютера) з інтерфейсами для датчиків; багатовходових пристроїв збору даних та їх перетворення у вигляд, узгоджений з інтерфейсом комп’ютера (реєстратор інформації або Data Logger); комп’ютер викладача (або серверний комп’ютер із спеціалізованим програмним забезпеченням); пристрої зворотного зв’язку (актюатори), що керуються комп’ютером; трансивери для бездротового прийому та передачі інформації з НП.Таким чином, з’являється новий клас бездротових мереж малої дальності. Ці мережі мають ряд особливостей. Пристрої, що входять в ці мережі, мають невеликі розміри і живляться в основному від батарей. Ці мережі є Ad-Hoc мережами – високоспеціалізованими мережами з динамічною зміною кількісного складу мережі. У зв’язку з цим виникають завдання створення та функціонування даних мереж – організація додавання і видалення пристроїв, аутентифікація пристроїв, ефективна маршрутизація, безпека даних, що передаються, «живучість» мережі, продовження часу автономної роботи кінцевих пристроїв.Протокол ZigBee визначає характер роботи мережі датчиків. Пристрої утворюють ієрархічну мережу, яка може містити координатор, маршрутизатори і кінцеві пристрої. Коренем мережі являється координатор ZigBee. Маршрутизатори можуть враховувати ієрархію, можлива також оптимізація інформаційних потоків. Координатор ZigBee визначає мережу і встановлює для неї оптимальні параметри. Маршрутизатори ZigBee підключаються до мережі або через координатор ZigBee, або через інші маршрутизатори, які вже входять у мережу. Кінцеві пристрої можуть з’єднуватися з довільним маршрутизатором ZigBee або координатором ZigBee. По замовчуванню трафік повідомлень розповсюджується по вітках ієрархії. Якщо маршрутизатори мають відповідні можливості, вони можуть визначати оптимізовані маршрути до визначеної точки і зберігати їх для подальшого використання в таблицях маршрутизації.В основі будь-якого елементу для мережі ZigBee лежить трансивер. Активно розробляються різного роду трансивери та мікроконтролери, в які потім завантажується ряд керуючих програм (стек протоколів ZigBee). Так як розробки ведуться багатьма компаніями, то розглянемо та порівняємо новинки трансиверів тільки кількох виробників: СС2530 (Texas Instruments), AT86RF212 (Atmel), MRF24J40 (Microchip).Texas Instruments випускає широкий асортимент трансиверів. Основні з них: CC2480, СС2420, CC2430, CC2431, CC2520, CC2591. Всі вони відрізняються за характеристиками та якісними показниками. Новинка від TI – мікросхема СС2530, що підтримує стандарт IEEE 802.15.4, призначена для організації мереж стандарту ZigBee Pro, а також засобів дистанційного керування на базі ZigBee RF4CE і обладнання стандарту Smart Energy. ІС СС2530 об’єднує в одному кристалі РЧ-трансивер і мікроконтролер, ядро якого сумісне зі стандартним ядром 8051 і відрізняється від нього поліпшеною швидкодією. ІС випускається в чотирьох виконаннях CC2530F32/64/128/256, що розрізняються обсягом флеш-пам’яті – 32/64/128/256 Кбайт, відповідно. В усьому іншому всі ІС ідентичні: вони поставляються в мініатюрному RoHS-сумісному корпусі QFN40 розмірами 6×6 мм і мають однакові робочі характеристики. СС2530 являє собою істотно покращений варіант мікросхеми СС2430. З точки зору технічних параметрів і функціональних можливостей мікросхема СС2530 перевершує або не поступається CC2430. Однак через підвищену вихідну потужність (4,5 дБм) незначно виріс струм споживання (з 27 до 34 мА) при передачі. Крім того, ці мікросхеми мають різні корпуси і кількість виводів (рис. 1). Рис. 1. Трансивери СС2530, СС2430 та СС2520 фірми Texas Instruments AT86RF212 – малопотужний і низьковольтний РЧ-трансивер діапазону 800/900 МГц, який спеціально розроблений для недорогих IEEE 802.15.4 ZigBee-сумісних пристроїв, а також для ISM-пристроїв з підвищеними швидкостями передачі даних. Працюючи в діапазонах частот менше 1 ГГц, він підтримує передачу даних на малих швидкостях (20 і 40 Кбіт/с) за стандартом IEEE 802.15.4-2003, а також має опціональну можливість передачі на підвищених швидкостях (100 і 250 Кбіт/с) при використанні модуляції O-QPSK у відповідності зі стандартом IEEE 802.15.4-2006. Більше того, при використанні спеціальних високошвидкісних режимів, можлива передача на швидкості до 1000 Кбіт/с. AT86RF212 можна вважати функціональним блоком, який з’єднує антену з інтерфейсом SPI. Всі критичні для РЧ тракту компоненти, за винятком антени, кварцового резонатора і блокувальних конденсаторів, інтегровані в ІС. Для поліпшення загальносистемної енергоефективності та розвантаження керуючого мікроконтролера в ІС інтегровані прискорювачі мережевих протоколів (MAC) і AES- шифрування.Компанія Microchip Technology виробляє 8-, 16- і 32- розрядні мікроконтролери та цифрові сигнальні контролери, а також аналогові мікросхеми і мікросхеми Flash-пам’яті. На даний момент фірма випускає передавачі, приймачі та трансивери для реалізації рішень для IEEE 802.15.4/ZigBee, IEEE 802.11/Wi-Fi, а також субгігагерцового ISM-діапазону. Наявність у «портфелі» компанії PIC-мікроконтролерів, аналогових мікросхем і мікросхем пам’яті дозволяє їй запропонувати клієнтам комплексні рішення для бездротових рішень. MRF24J40 – однокристальний приймач, що відповідає стандарту IEEE 802.15.4 для бездротових рішень ISM-діапазону 2,405–2,48 ГГц. Цей трансивер містить фізичний (PHY) і MAC-функціонал. Разом з мікроспоживаючими PIC-мікроконтролерами і готовими стеками MiWi і ZigBee трансивер дозволяє реалізувати як прості (на базі стека MiWi), так і складніші (сертифіковані для роботи в мережах ZigBee) персональні бездротові мережі (Wireless Personal Area Network, WPAN) для портативних пристроїв з батарейним живленням. Наявність MAC-рівня допомагає зменшити навантаження на керуючий мікроконтролер і дозволяє використовувати недорогі 8-розрядні мікроконтролери для побудови радіомереж.Ряд компаній випускає завершені модулі ZigBee (рис. 2). Це невеликі плати (2÷5 кв.см.), на яких встановлено чіп трансивера, керуючий мікроконтролер і необхідні дискретні елементи. У керуючий мікроконтролер, у залежності від бажання і можливості виробника закладається або повний стек протоколів ZigBee, або інша програма, що реалізує можливість простого зв’язку між однотипними модулями. В останньому випадку модулі іменуються ZigBee-готовими (ZigBee-ready) або ZigBee-сумісними (ZigBee compliant).Всі модулі дуже прості в застосуванні – вони містять широко поширені інтерфейси (UART, SPI) і управляються за допомогою невеликого набору нескладних команд. Застосовуючи такі модулі, розробник позбавлений від роботи з високочастотними компонентами, так як на платі присутній ВЧ трансивер, вся необхідна «обв’язка» і антена. Модулі містять цифрові й аналогові входи, інтерфейс RS-232 і, в деяких випадках, вільну пам’ять для прикладного програмного забезпечення. Рис. 2. Модуль ZigBee із трансивером MRF24J40 компанії Microchip Для прикладу, компанія Jennic випускає лінійку ZigBee-сумісних радіомодулів, побудованих на низькоспоживаючому бездротовому мікроконтролері JN5121. Застосування радіомодуля значно полегшує процес розробки ZigBee-мережі, звільняючи розробника від необхідності конструювання високочастотної частини виробу. Використовуючи готовий радіомодуль, розробник отримує доступ до всіх аналогових і цифрових портів вводу-виводу чіпу JN5121, таймерам, послідовного порту і інших послідовних інтерфейсів. У серію входять модулі з керамічної антеною або SMA-коннектором з дальністю зв’язку до 200 метрів. Розмір модуля 18×30 мм. Версія модуля з підсилювачем потужності і підсилювачем вхідного сигналу має розмір 18×40 мм і забезпечує дальність зв’язку більше 1 км. Кожен модуль поставляється з вбудованим стеком протоколу рівня 802.15.4 MAC або ZigBee-стеком.За висновками експертів з аналізу ринку сьогодні одним з найперспективніших є ринок мікросистемних технологій, що сягнув 40 млрд. доларів станом на 2006 рік зі значними показниками росту. Самі мікросистемні технології (МСТ) почали розвиватися ще з середини ХХ ст. і, отримуючи щоразу нові поштовхи з боку нових винаходів, чергових удосконалень технологій, нових галузей науки та техніки, динамічно розвиваються і дедалі ширше застосовуються у широкому спектрі промислової продукції у всьому світі.Прилад МЕМС є об’єднанням електричних та механічних елементів в одну систему дуже мініатюрних розмірів (значення розмірів механічних елементів найчастіше лежать у мікронному діапазоні), і достатньо часто такий прилад містить мікрокомп’ютерну схему керування для здійснення запрограмованих дій у системі та обміну інформацією з іншими приладами та системами.Навіть з побіжного аналізу структури МЕМС зрозуміло, що сумарний технологічний процес є дуже складним і тривалим. Так, залежно від складності пристрою технологічний процес його виготовлення, навіть із застосуванням сучасних технологій, може тривати від кількох днів до кількох десятків днів. Попри саме виготовлення, доволі тривалими є перевірка та відбраковування. Часто виготовляється відразу партія однотипних пристроїв, причому вихід якісної продукції часто не перевищує 2 %.Для виготовлення сучасних МЕМС використовується широка гама матеріалів: різноманітні метали у чистому вигляді та у сплавах, неметали, мінеральні сполуки та органічні матеріали. Звичайно, намагаються використовувати якомога меншу кількість різнорідних матеріалів, щоби покращити технологічність МЕМС та знизити собівартість продукції. Тому розширення спектра матеріалів прийнятне лише за наявності специфічних вимог до елементів пристрою.Спектр наявних типів сенсорів в арсеналі конструктора значно ширший та різноманітніший, що зумовлено багатоплановим застосуванням МЕМС. Переважно використовуються ємнісні, п’єзоелектричні, тензорезистивні, терморезистивні, фотоелектричні сенсори, сенсори на ефекті Холла тощо. Розроблені авторами в НДІ Прикладної електроніки МЕМС-датчики, їх характеристики, маса та розміри наведені у табл. 1.Таблиця 1 №з/пМЕМС-датчикиТипи датчиківДіапазони вимірюваньГабарити, маса1.Відносного тиску, тензорезистивніДВТ-060ДВТ-1160,01–300 МПа∅3,5–36 мм,5–130 г2.Абсолютного тиску,тензорезистивніДАТ-0220,01–60 МПа∅16 мм,20–50 г3.Абсолютного тиску, ємнісніДАТЄ-0090,05–1 МПа5×5 мм4.Лінійного прискорення,тензорезистивніДЛП-077±(500–100 000) м/с224×24×8 мм,100 г5.Лінійного прискорення,ємнісніАЛЄ-049АЛЄ-050±(5,6–1200) м/с235×35×22 мм, 75 г6.Кутової швидкості,ємнісніДКШ-011100–1000 °/с
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Mintser, O. P., та V. M. Zalisky. "КАРДІОЛОГІЧНІ АСПЕКТИ МЕРЕЖЕВОЇ МЕДИЦИНИ". Medical Informatics and Engineering, № 3 (22 жовтня 2018). http://dx.doi.org/10.11603/mie.1996-1960.2018.3.9462.

Повний текст джерела
Анотація:
У статті подано короткий огляд основних публікацій із мережевої медицині та застосування комплексного мережевого аналізу білкових взаємодій у вивченні захворювань людини. З огляду на функціональні взаємозалежності між молекулярними компонентами в клітині людини, захворювання рідко є наслідком аномалії в одному гені, але відображає комплексні аномалії внутрішньоклітинної мережі. Нові інструменти мережевої медицини пропонують платформу для системного вивчення не лише молекулярної складності конкретного захворювання (що веде до ідентифікації модулів і шляхів захворювання), але також і молекулярних відносин між явно вираженими (патогенними) фенотипами. Постулюється, що, виявляючи нові гени захворювань, необхідно визначати біологічну значимість пов'язаних із захворюванням мутацій, виявлених у результаті досліджень геному в цілому, та повного секвенування геному, а також виявлення мішеней і біомаркерів складних захворювань. Робиться також висновок, що мережева медицина й онтологія знань мають багато спільного як у стратегії створення, так і в технологіях використання. Проте завдання багатовимірного моделювання сьогодні переважно виконуються в стратегії «онтологія знань». Те ж можна сказати й про освіту, де онтологічні рішення більш популярні. Увагу приділено питанням мережевого взаємозв'язку різних кардіологічних захворювань на молекулярному та фенотипічному рівнях. Багато захворювань серця розглядаються за допомогою комплексних клінічних фенотипів, що формуються в результаті інтегративного впливу на молекулярному (інтерактомному), генетичному (геномному) та екологічному (метаболомному) рівнях.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії