Статті в журналах з теми "Лабораторне обладнання"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Лабораторне обладнання.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Лабораторне обладнання".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Сушкова, О. Є. "ЩОДО ОКРЕМИХ НАПРЯМІВ РОЗВИТКУ СИСТЕМИ ПОДАТКОВИХ ТА МИТНИХ ЕКСПЕРТИЗ В УКРАЇНІ". Митна безпека, № 3 (25 січня 2021): 115–27. http://dx.doi.org/10.33244/2617-5959.3.2019.115-127.

Повний текст джерела
Анотація:
В статті визначено концептуальні напрями розвитку системи податкових та митних експертиз в Україні за міжнародними стандартами та з урахуванням перспективного та корисного досвіду митних лабораторій ЄС. Актуальність теми дослідження обумовлена тим, що діяльність митних лабораторій спрямована на забезпечення здійснення контролю за дотриманням митного законодавства та захист економічних інтересів України і тому є важливим інструментом в реалізації митної та податкової політик. Але з метою більш ефективного виконання покладених на Спеціалізовану лабораторію з питань експертиз та досліджень завдань постає необхідність розбудови системи митних експертиз в Україні за міжнародними стандартами. Сформовані в статті пропозиції щодо вдосконалення системи податкових і митних експертиз в Україні засновані на результатах дослідження досвіду роботи митних лабораторій світу, зокрема митних лабораторій ЄС, а також на результатах узагальнення національної практики експертної діяльності. В результаті проведення дослідження визначено, що з метою розширення спектру досліджень, що проводиться СЛЕД, та підвищення якості висновків, виданих СЛЕД та його структурними (територіальними) підрозділами за запитами про проведення експертизи, необхідним є закупити нове лабораторне обладнання та відремонтувати існуючі технічні засоби, запровадити в Україні багатоетапний аналіз зразків товарів та створити на митницях спеціальні технічні умови для зберігання додаткових проб (зразків). Також, враховуючи світовий досвід, стратегічним завданням є розробка та запровадження мобільних лабораторій, які будуть оснащені портативними пристроями для проведення експертиз, що є результатом останніх досягнень в галузі технологій та у роботі самих митних лабораторій. Також встановлено, що з метою забезпечення здійснення комунікації між структурними підрозділами ДМС під час проведення експертиз засобами електронного зв’язку, враховуючи досвід європейських митних лабораторій, запропоновано розробити програмний модуль, який би охоплював весь «життєвий цикл» документального супроводження проведення митних експертиз.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

ЯКОВЛЄВА, Вікторія, Іван АНТОНЕНКО та Олег ЦИСЬ. "НАУКОВО-ТЕХНІЧНА ДІЯЛЬНІСТЬ СТУДЕНТІВ ПЕДАГОГІЧНОГО ЗАКЛАДУ ВИЩОЇ ОСВІТИ: СУЧАСНИЙ АСПЕКТ". Scientific papers of Berdiansk State Pedagogical University Series Pedagogical sciences 1 (29 квітня 2021): 385–91. http://dx.doi.org/10.31494/2412-9208-2021-1-1-385-391.

Повний текст джерела
Анотація:
У статті розкрито специфіку організації науково-технічної діяльності студентів спеціальності «Технологічна освіта». Розглянуто чинники покращення якості знань майбутніх фахівців у процесі роботи наукових гуртків, проблеми впровадження і використання навчально-контрольних комп’ютерних програм у процесі організаціїї науково-технічної діяльності студентів. Здійснено аналіз існуючих контрольних тестових програм з метою вибору такої, яка б при мінімальній вартості й розмірі дискового простору в постійній пам'яті комп'ютера забезпечувала б максимальну функціональність, широту налаштувань режимів роботи, простоту користування і створення тестів. Обґрунтовано зміст науково-технічної роботи студентів спеціальності «Технологічна освіта», а саме: розробка комп’ютерних навчально-контрольних програм, електронних навчальних посібників, лабораторного обладнання. Наведені результати науково-технічної діяльності студентів у наукових гуртках: успішно розроблені електронні навчальні посібники з курсів «Деталі машин», «Основи взаємозамінності і стандартизації», «Технічна механіка», велика кількість лабораторного обладнання: установка для тестування термопар, прилад демонстрації гідростатичного парадоксу, зарядний пристрій акумулятора автомобіля, установка для визначення руху і в'язкості рідини, стенди приладів вимірювання витрат рідини і газів, тельферний установки, черв’ячного редуктора, гідравлічного домкрата, підшипників кочення, пристрій для миття шкільної дошки. Ключові слова: науково-технічна діяльність, науковий гурток, комп’ютерні навчальні посібники, комп’ютерне тестування, лабораторне обладнання, навчально контролюючі програми, організація навчальної діяльності.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Horbachova, Yana. "Лабораторні дослідження впливу засобів ураження на броньову перешкоду". Journal of Scientific Papers "Social development and Security" 12, № 1 (27 лютого 2022): 70–80. http://dx.doi.org/10.33445/sds.2022.12.1.8.

Повний текст джерела
Анотація:
Мета роботи: Провести лабораторні дослідження впливу засобів ураження на додаткову та основну броньову перешкоду та отримати статистичні дані, які дозволять побудувати поліноміальну залежність впливу кінетичної енергії засобу ураження на корпус бойових броньованих машин. Дизайн/Метод/Підхід дослідження: Для оцінювання стійкості додаткового бронювання обрана методика дослідження параметрів пробою з реєстрацією ударного імпульсу, що дозволяє проводити експрес-оцінку опору матеріалів деформуванню й руйнуванню при наскрізному пробитті. Лабораторне дослідження було проведено за допомогою балістичного маятника, балістичного ствола, вимірювача швидкості та іншого необхідного лабораторного устаткування. Результати дослідження: За допомогою лабораторного обладнання отримані статистичні дані, які дозволять, в подальшому, побудувати поліноміальну залежність впливу кінетичної енергії засобу ураження на броньову перешкоду та корпус бойової броньованої машини. Теоретична цінність дослідження: Під час випробувань буде перевірено і підтверджено теоретичні підходи або їх спростовано щодо ефективності використання додаткового захисту, а саме додаткової броньової перешкоди, а побудовані поліноміальні моделі дадуть можливість вибирати оптимальні параметри додаткового бронювання. Практична цінність дослідження: Результати дослідження можуть бути використані при створенні додаткового захисту бойових броньованих машин від засобів ураження кінетичної дії до 14,5мм. Оригінальність/Цінність дослідження: Побудована в результаті багатофакторного експерименту закономірність впливу засобів ураження на броньову перешкоду вперше враховує: відстань від броньової перешкоди до броні, кут зустрічі засобу ураження із броньовою перешкодою та товщину додаткової броньової перешкоди. Обмеження дослідження/Майбутні дослідження: Це дослідження відкриває шляхи для майбутніх досліджень стійкості броньової перешкоди до засобів ураження. Отримані результати можуть бути використані для визначення впливу засобів ураження, а саме кулі 7,62 мм, 12,7 мм, 14,5 мм на додаткову броньову перешкоду, що дасть можливість визначати мінімально-необхідний рівень додаткового бронювання. Тип статті: / Paper type: практичний.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Тулашвілі Ю.Й., Лук’янчук Ю.А., Марчук І.В., Марчук Ів.В. та Марчук В.І. "ЗАБЕЗПЕЧЕННЯ ТЕХНОЛОГІЧНОЇ ЯКОСТІ ВИГОТОВЛЕННЯ ДЕТАЛЕЙ ПІСЛЯ ПІДГОТОВКИ ФАХІВЦІВ НА СИМУЛЯТОРАХ-ТРЕНАЖЕРАХ". Перспективні технології та прилади, № 17 (29 грудня 2020): 127–34. http://dx.doi.org/10.36910/6775-2313-5352-2020-17-19.

Повний текст джерела
Анотація:
В даній статті описано використання програмного забезпечення, яке використовують під час підготовки фахівців інженерних спеціальностей. На виробництві користуються симуляторами для підготовки висококваліфікованих фахівців, що, у свою чергу, зменшує витрати часу на впровадження нового або переналагодження вже існуючого обладнання. Віртуальний тренажер являє собою програмний комплекс, що дозволяє проводити фізичні досліди на комп'ютері без безпосереднього контакту з реальною лабораторною установкою або стендом. У віртуальних тренажерах динаміка процесів реалізується за допомогою комп'ютерної анімації - комплексу методів відображення будь-яких об'єктів в часі. Мультимедійна навчально-наукова лабораторія поєднує в собі імітаційну динамічну модель обладнання і програмну оболонку, що включає методичний супровід лабораторної установки. Динамічна модель формується з сукупності елементів управління, що дозволяють регулювати конкретні вхідні параметри і зчитувати вихідні параметри досвіду, тим самим імітуючи протікання фізичних процесів.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zamkovyj, R. V. "Цілі сталого розвитку в міжнародній системі стандартизації". Scientific Papers of the Legislation Institute of the Verkhovna Rada of Ukraine, № 2 (25 квітня 2019): 162–72. http://dx.doi.org/10.32886/instzak.2019.02.17.

Повний текст джерела
Анотація:
Мета статті полягає у визначенні міжнародних стандартів, які відповідають цілям сталого розвитку у процесах глобалізації. Наукова новизна полягає у виділенні та наповненні змістом матриці цілей сталого розвитку і відповідних їм секторів, які визначають напрямок у системі міжнародної стандартизації. Висновки. Загальновизнані принципи та основи міжнародного співробітництва представлені в опублікованих (більше 22 000) міжнародних стандартах і пов’язаних з ними документах Міжнародної організації зі стандартизації (ISO). Побудовані на основі консенсусу, вони забезпечують міцну базу, на якій інновації можуть процвітати і є важливими інструментами, які допомагають урядам, промисловості та споживачам сприяти досягненню кожної з цілей сталого розвитку. Стандарти ISO охоплюють практично всі можливі об’єкти, від технічних рішень до систем, що організовують процеси та процедури, підтримують цілі сталого розвиту завдяки узгодженим на міжнародному рівні специфікаціям, які відповідають вимогам якості, безпеки та сталості й містяться у таких секторах, як: безпека, безпека і ризик, будівництво, горизонтальні предмети, енергія, здоров’я, медицина і лабораторне обладнання, інформаційні технології, графіка і фотографія, механічна інженерія, неметалеві матеріали, продовольство і сільське господарство, руди і метали, сервіс, спеціальні технології, стійкість і навколишнє середовище, транспорт, управління бізнесом та інновації, фрахт, упаковка і дистрибуція. За результатами проведеного аналізу і виходячи з означених цілей сталого розвитку та відповідних їм секторів, які визначають напрямок у системі міжнародної стандартизації ISO, побудовано матрицю відповідності позначення елементів.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Нечипуренко, Павло Павлович. "Деякі аспекти імітації реальних хімічних процесів та систем у віртуальних хімічних лабораторіях". Theory and methods of e-learning 3 (11 лютого 2014): 238–44. http://dx.doi.org/10.55056/e-learn.v3i1.344.

Повний текст джерела
Анотація:
Перехід сучасного суспільства до інформаційної епохи свого розвитку висуває як одне з основних завдань, що стоять перед системою освіти, завдання формування основ інформаційної культури майбутнього фахівця. Процеси модернізації та профілізації вітчизняної шкільної освіти так само, як і модернізації вищої освіти (участь у створенні єдиного європейського простору, впровадження дистанційної освіти тощо) ведуться на базі інформаційно-комунікаційних технологій навчання. Метою даної статті є обговорення ролі сучасних комп’ютерних моделей у навчанні хімії, та проблеми якості відображення реальних хімічних процесів у комп’ютерних моделях, якими є віртуальні хімічні лабораторії.Дидактична роль нових інформаційних технологій полягає, перш за все, в активізації пізнавальної діяльності і творчого потенціалу учнів [5]. Необхідно створювати умови, аби учень став активним учасником навчального процесу, а вчитель був організатором пізнавальної діяльності учня. Адже вивчення будь-якої навчальної дисципліни – не мета, а засіб розвитку особистості. Ефективність застосування комп’ютерів у навчальному процесі залежить від багатьох чинників, у тому числі й від рівня самої техніки, від якості навчальних програм і від методики навчання, що застосовується вчителем. Більшість педагогів переконані в тому, що комп’ютер є потужним засобом для творчого розвитку дітей, дозволяє звільнитися від багатьох рутинних видів роботи і розробити нові ідеї в методиці навчання, дає можливість вирішувати більш цікаві і складні проблеми [5].Будь-який ілюстративний матеріал (мультимедійні й інтерактивні моделі в тому числі) значно розширюють можливості навчання, роблять зміст навчального матеріалу більш наочним, зрозумілим, цікавим. Не можна скидати з рахунків і психологічний чинник: сучасному учневі чи студенту набагато цікавіше сприймати інформацію саме в інтерактивній формі, ніж за допомогою застарілих схем і таблиць. Використання комп’ютерних моделей, комп’ютерних засобів візуалізації значно підвищує ефективність засвоєння матеріалу[5].Сучасні школярі, які здебільшого є представниками «покоління відеоігор», орієнтовані на сприйняття високоінтерактивного, мультимедіа насиченого навчального середовища. Згаданим вище вимогам якнайкраще відповідають освітні програми, що моделюють об’єкти і процеси реального світу і системи віртуальної реальності. Прикладом таких навчальних систем є віртуальні лабораторії, які можуть моделювати поведінку об’єктів реального світу в комп’ютерному освітньому середовищі і допомагають учням опановувати нові знання й уміння в науково-природничих дисциплінах, таких як хімія, фізика і біологія [3].Хімія – наука експериментальна, її завжди викладають, супроводжуючи демонстраційним експериментом. Ні для кого не є секретом, що матеріальний стан більшості шкіл в Україні є, м’яко кажучи, неідеальним. Дуже часто для демонстрації хімічного досліду не вистачає необхідних реактивів чи обладнання, тому доводиться обходитись теоретичним розглядом лабораторної роботи або проводити один дослід на весь клас. У такому випадку на допомогу вчителеві приходять саме спеціалізовані комп’ютерні програми, на кшталт віртуальних хімічних лабораторій, що дозволяють провести (саме провести, а не спостерігати) дослід у наближених до реальності умовах. Також, наприклад, при вивченні токсичних речовин, зокрема галогенів, віртуальне середовище надає можливість проводити хімічний експеримент без ризику для здоров’я учнів [4].На даний момент розроблена велика кількість навчальних програм для шкільного курсу хімії. Жодна з цих програм не є досконалою, проте сам факт їх створення свідчить про те, що в них існує потреба і вони мають безперечну цінність. Для того, щоб у дитини виник інтерес до співпраці з комп’ютером і в процесі цієї спільної творчості стійка пізнавальна мотивація до вирішення освітніх, дослідницьких завдань, необхідне створення таких умов, при яких учень стає безпосереднім учасником подій, що розвиваються на екрані монітора, тобто умов для повноцінного діяльнісного підходу до навчання.Умова успішного застосування комп’ютерних моделей в освітньому процесі сучасної школи закладена в добре відомих принципах педагогіки співпраці, які можна перефразовувати так: «не до комп’ютера за готовими знаннями, а разом з комп’ютером за новими знаннями» [3].Головна перевага віртуальних хімічних лабораторій полягає в тому, що віртуальні хімічні експерименти безпечні навіть для непідготовлених користувачів. Учні можуть також проводити такі досліди, виконання яких в реальній лабораторії може бути небезпечне або коштує надто дорого. Звичайно, за допомогою віртуальних дослідів не можна опанувати навички реального хімічного експерименту, але віртуальні досліди можуть застосовуватися, наприклад, для ознайомлення учнів з технікою виконання експериментів, хімічним посудом і устаткуванням перед безпосередньою роботою в лабораторії. Це дозволяє учням краще підготуватися до проведення цих або подібних дослідів в реальній хімічній лабораторії. Також проведення віртуальних експериментів допомагає учням та студентам засвоїти навички запису спостережень, складання звітів та інтерпретації даних в лабораторному журналі. Іще слід наголосити на тому, що комп’ютерні моделі хімічної лабораторії за певних умов можуть спонукати учнів експериментувати і отримувати задоволення від власних відкриттів [3].За способом візуалізації розрізняються лабораторії, в яких використовується двовимірна, тривимірна графіка і анімація. Крім того, віртуальні лабораторії можна поділити на дві категорії залежно від способу представлення знань у предметній області. Віртуальні лабораторії, в яких представлення знань у предметній області засновано на окремих фактах, обмежені набором заздалегідь запрограмованих експериментів. Цей підхід використовується при розробці більшості сучасних віртуальних лабораторій. В таких програмах змінити умови проведення експерименту і одержати якісь інші результати неможливо. Інший підхід дозволяє учням проводити будь-які експерименти, не обмежуючись заздалегідь підготовленим набором результатів. Це досягається за допомогою використання математичних моделей, що дозволяють визначити результат будь-якого експерименту і відповідний візуальний супровід. На жаль, подібні моделі поки що можливі тільки для обмеженого набору дослідів [3]. Переваги і недоліки вищезгаданих програмних продуктів достатньо повно були висвітлені Т. М. Деркач, яка, до речі, пропонує використовувати термін «імітаційні хімічні лабораторії» [1; 2].Суттєвою перевагою таких віртуальних лабораторій як ChemLab (виробник: Model Science Software), Croсоdile Chemistry (Crocodile Clips Ltd), Virtual Lab (The ChemCollective) є можливість активного втручання учня у хід роботи, а не пасивне спостерігання за відеофрагментом чи анімацією, що запрограмовані заздалегідь. При виконанні лабораторної роботи за допомогою вищезгаданих програм учень може повторити її безліч разів, при цьому щоразу змінюючи один чи декілька параметрів на власний вибір. В більшості випадків (якщо дії учня не суперечать логіці і можливі для виконання і у реальній лабораторії) учень отримає правильні результати, що лише підкреслить ті закономірності, виявлення яких і було метою роботи. Скажімо у лабораторній роботі «Гравіметричне визначення хлорид-йонів» («Gravimetric Analysis of Chloride») у віртуальній лабораторії ChemLab учень чи студент може замість запропонованих в інструкції 5 г речовини, що містить хлорид-йони, взяти 3, чи 6, чи 10 г її. Але в кожному випадку він отримає і відповідну масу осаду арґентум хлориду, за якою, при виконанні обчислень, прийде до одних і тих самих результатів і висновків.Подібний підхід, коли учень може проявити власну ініціативу при виконанні роботи, дуже позитивно відбивається і на навчальних досягненнях і на зацікавленості учнів. Але разом з ініціативою учні можуть також підключити і власну фантазію – спробувати виконати такі дії, які не були передбачені сценарієм проведення даної роботи (наприклад, нагріти розчин до кипіння, або навпаки охолодити його до температури замерзання) просто із цікавості, тим більше, що у ChemLab можна використовувати обладнання, застосування якого не передбачалось сценарієм виконання роботи. Результати таких незапланованих дій можуть переноситись учнями і на відповідні об’єкти та процеси реального світу, а тому до віртуальних лабораторій завжди висувалась жорстка вимога суворої відповідності віртуальних об’єктів та процесів реальним об’єктам і процесам.Тут доводиться констатувати протиріччя, яке існує в середовищі користувачів віртуальних хімічних лабораторій: методистів, розробників, вчителів, учнів тощо. Справа в тому, що немає і, мабуть, не може бути єдиної думки з приводу того, наскільки повно віртуальні процеси повинні відтворювати об’єктивну реальність. З одного боку, чим більше віртуальний світ схожий на реальний, тим нібито краще – в такому випадку навчання хімії за допомогою віртуальних комп’ютерних лабораторій виходить на якісно новий, більш високий рівень, з’являється набагато більше можливостей і форм застосування навчальних лабораторій у навчанні хімії, зникають передумови для одержання хибних висновків при їх використанні. Але, з іншого боку, врахування найменших дрібниць і максимальної кількості можливих варіантів розвитку подій неминуче призведе до значного ускладнення комп’ютерних програм, суттєвого збільшення баз даних і, як наслідок, подорожчання та подовження часу на розробку відповідних програмних продуктів, та, скоріш за все, суттєво ускладнить використання таких програм людьми без спеціальної підготовки. Не кажучи вже про те, що передбачити всі можливі варіанти дій користувача у віртуальній лабораторії просто неможливо.Інша точка зору полягає в тому, що віртуальні хімічні лабораторії в першу чергу є моделями, тобто системами, що відтворюють, імітують, відображають принципи внутрішньої організації або функціонування, певні властивості, ознаки чи характеристики об’єкта дослідження (оригіналу). Модель завжди є спрощеною версією модельованого об’єкта або явища (прототипу), що в достатній мірі повторює властивості, суттєві для цілей конкретного моделювання (опускаючи несуттєві властивості, в яких вона може відрізнятися від прототипу).Подібне визначення поняття «модель» фактично означає, що такі програми як віртуальні хімічні лабораторії, не повинні перевантажуватись «зайвими дрібницями» – несуттєвими для виконання певної роботи чи досліду зовнішніми ознаками, фактами і процесами. Окрім того, так само як викладач не залишить без догляду учнів у реальній лабораторії, так і викладач, що застосовує віртуальну лабораторію на занятті, повинен бути постійно поруч з учнями, надаючи їм відповідних порад або роз’яснюючи результати спостережень, що викликали питання або сумніви. Таким чином, можна попередити формування в учнів хибних уявлень, неправильних висновків тощо.У представників обох точок зору є свої аргументи. Наприклад, при виконанні стандартної лабораторної роботи в середовищі програми ChemLab «Фракційне розділення солей» («Fractional Crystallization»), сутність якої полягає в тому, що учневі пропонується розділити суміш солей (натрій хлориду та калій дихромату), використовуючи їх різну розчинність у воді за різних температур. Подібні процеси досить поширені як в промисловості (виробництво калійних добрив), так і в лабораторії (перекристалізація солей з метою їх очищення), хоча і в більш складному вигляді. Хід роботи включає в себе такі стадії: відбір наважок солей певної маси; їх розчинення у воді кімнатної температури; нагрівання розчину до повного розчинення калій дихромату; охолодження розчину до 0оС; відділення осаду калій дихромату; зважування калій дихромату, що випав в осад, та відповідні розрахунки.Якщо прискіпливо проаналізувати дану роботу, в ній можна знайти ряд неточностей або спрощень:1) при розчиненні калій дихромату у воді розчин залишається безбарвним;2) відсутній тепловий ефект при розчиненні обох солей;3) не враховано взаємний вплив солей на їх розчинність;4) розчин солей при охолодженні до температури замерзання не кристалізується;5) температура кипіння розчину солей дорівнює температурі кипіння ізомолярного з ним розчину будь-якого неелектроліту;6) зважування одержаного калій дихромату можна провести з високою точністю без попереднього промивання і висушування;7) відсутність допоміжного лабораторного обладнання (штативів, тримачів, шпателів, вакуум-насосу тощо) та можливість відбору наважок речовин без використання терезів.Подібні неточності можна знайти і у всіх інших лабораторних роботах програми ChemLab, але в більшості випадків ці неточності неочевидні, і, найголовніше, не відбиваються ані на одержанні результатів експерименту, ані на їх інтерпретації.Крім того, застосовуючи інструментарій майстра LabWіzard, що дозволяє користувачу створювати власні лабораторні роботи у ChemLab, певну кількість подібних невідповідностей можна заздалегідь передбачити й усунути у створених власноруч лабораторних проектах.[2; 4]Викладач, що використовує віртуальні хімічні лабораторії, обов’язково повинен наголосити на тому, що у віртуальній хімічній лабораторії присутні певні спрощення та невідповідності з об’єктивною реальністю. У групі учнів, що мають високий рівень знань і хімічного мислення, можна навіть побудувати роботу на тому, щоб знайти і обговорити подібні неточності. Наприклад, в рамках курсу «Комп’ютерне моделювання хімічних процесів», що викладається на ІІІ курсі спеціальності «Хімія» у Криворізькому педагогічному інституті, при розгляді особливостей віртуальної лабораторії ChemLab перед студентами була поставлена задача обґрунтовано довести наближений характер розрахунку температури початку кипіння розчину натрій хлориду у даній програмі (в межах лабораторної роботи «Fractional Crystallization»). Студенти на основі другого закону РауляΔtкип=kеб*b – для розчинів речовин-неелектролітів (1)Δtкип=i*kеб*b – для розчинів речовин-електролітів; (2)де kеб – ебуліоскопічна константа розчинника, b – моляльна концентрація розчиненої речовини (моль/кг), і – ізотонічний коефіцієнт, обчислювали температуру початку кипіння для розчину натрій хлориду тієї концентрації, яку вони самі створили у віртуальній хімічній лабораторії. Далі утворений віртуальний розчин нагрівали до кипіння і зазначали температуру початку кипіння. Вона збігалась із розрахованою за формулою (1), тобто без урахування ізотонічного коефіцієнту, який для розчину натрій хлориду повинен наближатись до 2. Значить реальна Δtкип розчину майже вдвічі повинна була б перевищувати Δtкип розчину у віртуальній лабораторії. Висновок зроблений студентами: в даній лабораторній роботі з метою спрощення не враховувався процес іонізації солі, оскільки для моделювання процесів розчинення солей за різних температур він особливого значення не має.Подібний недолік комп’ютерної програми може створити незручності з одного боку, але може бути перевагою з іншого: на основі розгляду подібних фактів можна в цікавій і нестандартній формі залучити групу студентів до повторення навчального матеріалу з різних розділів хімії та розв’язку розрахункових задач.Таким чином, можна зробити висновок про те, що віртуальні хімічні лабораторії є безумовно ефективним інструментом в руках вчителя або викладача хімії. Кожна з віртуальних хімічних лабораторій є моделлю, що описує реальні явища і процеси, а тому неминуче містить ряд спрощень і неточностей, як в плані графічного відображення об’єктів, так і в плані причинно-наслідкових зв’язків між діями користувача та їх результатами у віртуальному середовищі. Головною метою проведення дослідів у віртуальних комп’ютерних лабораторіях є усвідомлення самої сутності явища, що вивчається, його головних закономірностей, а недосконалість візуальних чи інших ефектів має другорядне значення. Подальший розвиток і вдосконалення віртуальних хімічних лабораторій, скоріш за все, буде відбуватись у напрямку збалансування простоти представлення моделі та максимальної її реалістичності.Враховуючи все, сказане вище, можна з упевненістю сказати, що розробка і впровадження віртуальних хімічних лабораторій залишається одним з пріоритетних напрямків у процесі вдосконалення навчання хімії у середній та вищій школі.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

ВЕРХІВКЕР, Я. Г., та О. М. МИРОШНІЧЕНКО. "СУЧАСНІ ВИДИ ПОЛІМЕРНОЇ ТАРИ ДЛЯ КОНСЕРВОВАНИХ ХАРЧОВИХ ПРОДУКТІВ". Товарознавчий вісник 1, № 14 (10 березня 2021): 6–17. http://dx.doi.org/10.36910/6775-2310-5283-2021-14-1.

Повний текст джерела
Анотація:
Мета. Розробка умов консервування, технологічних параметрів та режимів стерилізації харчових продуктів в асортименті, для нових видів полімерної споживчої тари для конкретного теплового обладнання. Методика. Для вимірювання міцності закупорювання або тиску розгерметизації тари, який виникає при стерилізації за рахунок теплового розширення продукту застосовували стандартний мембрано-компенсаційний метод. Розробка режимів стерилізації консервів виконувалася відповідно до вимог діючої інструкції, яка включає аналітичний розрахунок режиму, що забезпечує вироблення промислово-стерильних консервів, лабораторне випробування підібраного режиму і його виробничу перевірку. Для аналітичного розрахунку режимів стерилізації, враховують зміну температури продукту під час стерилізації. Для практичного застосування використовують спосіб розрахунку, заснований на аналітичному порівнянні еквівалентності нормативної летальності з фактичною даного режиму стерилізації, у точці продукту, яка найменш прогрівається під час теплової обробки консервів. Будь-який з методів розрахунку режиму спирається на дані по термостійкості певного штаму мікроорганізмів тест-культури, які повинні гарантувати промислову стерильність консервів. Результати. Проведено дослідження, в результаті яких отримані значення важливого технологічного параметра тари - міцності закупорювання, для чотирьох нових видів полімерної упаковки; визначені оптимальні значення цього показника, без яких неможливо провести якісний процес герметизації упаковки, тобто забезпечити цілісність тари. Показник міцність закупорювання, також дозволив визначити фізичний параметр процесу тепловій стерилізації - протитиск у обладнанні, якій дає змогу забезпечити відсутність фізичного браку консервів. Розроблено науково-обґрунтовані параметри, режими високотемпературної стерилізації для м'ясних, рибних, овочевих продуктів, перших та других обідніх консервованих страв в сучасних полімерних видах споживчої упаковки, що дасть підприємствам можливість випускати консервовані якісні продукти, безпечні у використанні, з високою харчовою цінністю. Наукова новизна. В роботі використовували такі нові види полімерної споживчої упаковки для фасування харчових продуктів, як комбінована металева банка з полімерної кришкою, полімерна напівжорстка тара з кришкою з фольги з нанесенням термопласту, СPET тара, реторт-пакети. Матеріал, з якого виготовлена тара містить необхідний бар'єрний термостійкий шар, що забезпечить її стійкість до високих температур стерилізації і гарантує тривалий термін зберігання консервів. Практична значимість. Одержані результати дослідження технологічних показників міцності закупорювання полімерної тари, режимів стерилізації певного асортименту консервованих продуктів можуть використовуватися більшістю підприємств харчової промисловості, так як цей вид тари сьогодні актуальний на ринку як у виробників продукції, так і у споживачів.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Арендаренко, В. М., Т. В. Самойленко та О. М. Іванов. "ДОСЛІДЖЕННЯ РУХУ ЗЕРНОВОГО МАТЕРІАЛУ ПО ЛОТКАМ ГРАВІТАЦІЙНОЇ УСТАНОВКИ". Вісник Полтавської державної аграрної академії, № 1 (26 березня 2021): 302–9. http://dx.doi.org/10.31210/visnyk2021.01.38.

Повний текст джерела
Анотація:
На елеваторних підприємствах широко використовують різні технологічні операції. До них від-носяться такі операції, як сортування, сепарація, сушіння, транспортування і завантаження силосів зерном. Для раціонального використання цих та інших процесів необхідно враховувати можливості взаємодії зернин між собою і робочими органами машин. Така взаємодія залежить від характеру руху зернового матеріалу як по поверхням робочих органів відповідного обладнання, так і у пристро-ях для виконання допоміжних операцій, пов’язаних із транспортуванням зерна до завантажувальних отворів силосів, та саме завантаження. Недостатнє врахування особливостей руху зернових пото-ків може призвести до порушення технологічних режимів функціювання елеватора і, як наслідок, погіршується якість зернової продукції, яка зберігається в силосах. Технологічний процес заванта-ження силосів зерновим матеріалом з використанням відкритих спіральних завантажувачів відбува-ється в режимі швидкого гравітаційного руху. Принциповою особливістю такого роду руху є наяв-ність умов швидкого зсуву зернин у зерновому шарі. В результаті такого руху зернини суттєво при-швидшуються і хаотично переміщуються. Метою роботи було виявити структурно-кінематичні характеристики гравітаційних потоків в установці з дискретно змінними кутами нахилу розгінного і гальмівного лотків. Основними завданнями роботи є лабораторне дослідження руху насіння пшени-ці, кукурудзи та соняшнику в U-подібних лотках для того, щоб установити фактичний час руху зер-нового матеріалу як у розгінному, так і в гальмівному лотках. Лотки виготовлені зі сталевого про-кату, мають однакову довжину та шорсткість. Такі дослідження з використанням гравітаційної установки необхідні для виявлення темпу розгону і гальмування сипкого зернового матеріалу стан-дартної вологості. Встановлено, що для ефективної роботи гравітаційної установки необхідно, щоб кут нахилу розгінного лотка був набагато більшим від кута природного відкосу зернового матеріалу. Тоді як кут нахилу гальмівного лотка повинен бути в 1,22 раза більшим від кута природного відкосу зерна. Таке співвідношення кутів дає можливість отримати рух зернового матеріалу в гальмівному лотку практично з постійною лінійною швидкістю без різкого збільшення маси і об’єму зернового вантажу на цій ділянці.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Чайковський, С. Ю. "АЛГОРИТМИ ПРОВЕДЕННЯ ВИПРОБУВАНЬ ТЕХНІЧНИХ ЗАСОБІВ В АКРЕДИТОВАНИХ ЛАБОРАТОРІЯХ У РАЗІ ЗАСТОСУВАННЯ МЕХАНІЧНОГО ТА КЛІМАТИЧНОГО ВИДІВ ВПЛИВУ: ПРАКТИКА ТА ІННОВАЦІЇ". Таврійський науковий вісник. Серія: Технічні науки, № 1 (8 квітня 2022): 63–68. http://dx.doi.org/10.32851/tnv-tech.2022.1.7.

Повний текст джерела
Анотація:
У статті виконано короткий аналіз впровадження алгоритмів випробувань технічних засобів у акредитованих лабораторіях механічних та кліматичних видів впливів. Для сертифікації технічних засобів відповідно до вимог технологічних регламентів використовуються алгоритми та випробувальне обладнання, що дозволяють відтворити у лабораторних умовах механічні та кліматичні впливи. Дослідження процесів виконання робіт випробувальних лабораторій показали, що головна роль у забезпеченні контролю якості та безпеки продукції, що випускається на ринок, належить співробітникам. Саме співробітники лабораторій припускаються помилок у технологічних регламентах проведення механічних та кліматичних видів впливу на продукцію, що тестується. Для мінімізації впливу людського фактора розглянуто впровадження алгоритму релевантної інформаційно-комунікаційної технології блокчейна. Застосування алгоритму на основі технології блокчейн забезпечує не лише достовірність та загальнодоступність результатів випробувань, а також їхню захищеність від несанкційованого втручання співробітників у випробувальні процеси. Показано, що алгоритм на основі блокчейна дозволить виключити фальсифікацію результатів випробувань за рахунок того, що згенеровані мітки за перевіреними параметрами технічного засобу з перешкодостійкості і перешкодоемісії будуть автоматично зчитуватися з вимірювального обладнання і записуватись у відповідні блоки обробки запитів, систему управління серверами, що виготовила технічний засіб, який перевіряється. Алгоритм сертифікаційних випробувань на основі блокчейна може використовуватися регуляторами для спрощення процедури контролю та акредитації випробувальних лабораторій, виробниками продукції для скорочення витрат та відстеження процесів сертифікації технічного засобу та покупцями продукції для забезпечення їхньої довіри до сертифікованої продукції.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bybel, V., Valerii Hlukhov та O. Prystopjuk. "Вибір бездротової технології передавання даних для обладнання навчальних лабораторій". Computer systems and network 1, № 1 (23 лютого 2016): 10–16. http://dx.doi.org/10.23939/csn2016.857.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Pasov, Hennadii, та Volodymyr Venzhega. "АНІМАЦІЙНЕ МОДЕЛЮВАННЯ ГІДРОЦИЛІНДРІВ ТА ПНЕВМОКАМЕР ДЛЯ СТВОРЕННЯ ПРЯМОЛІНІЙНОГО ПОСТУПАЛЬНОГО РУХУ". TECHNICAL SCIENCES AND TECHNOLOG IES, № 4 (14) (2018): 34–40. http://dx.doi.org/10.25140/2411-5363-2018-4(14)-34-40.

Повний текст джерела
Анотація:
Актуальність теми дослідження. Сучасна освіта має бути яскравою, чіткою, швидкою й дешевою. Використання анімаційного моделювання і дає змогу досягти цього. Постановка проблеми. Освіта є основою будь-якого суспільства. Нині в процесі вивчення ізноманітних навчальних дисциплін використовується багато джерел різноманітної інформації: підручники, посібники, журнали, нтернет. У сучасних умовах широкі можливості відкриває використання в навчальному процесі персональних комп’ютерів (ПК) і високоінтелектуальних програмних продуктів. Аналіз останніх досліджень і публікацій. Традиційно при засвоєнні будь-якої навчальної дисципліни студент повинен вивчити її на лекціях, лабораторних та практичних заняттях. Але при цьому як методичний наочний матеріал використовуються, здебільшого, ілюстрації зовнішнього вигляду, будови та конструкції різноманітних механізмів у вигляді двовимірних статичних схем елементів. Саме використання ПК та відповідних програмних продуктів і дає змогу вдосконалити навчальний процес (та освіту загалом), надаючи йому інтенсивності та інтерактивного змісту. Виділення недосліджених частин загальної проблеми. Для вдосконалення навчального процесу необхідно запропонувати анімаційні моделі для створення прямолінійного поступального руху за допомогою гідроциліндрів та пневмокамер. Постановка завдання. Метою цієї роботи є демонстрація можливостей анімаційного моделювання прямолінійного поступального руху механізмів за допомогою гідроциліндрів та пневмокамер. Виклад основного матеріалу. У Чернігівському національному технологічному університеті (ЧНТУ) на кафедрі «Автомобільний транспорт та галузеве машинобудування» для вивчення навчальних дисциплін «Підйомно-транспортне обладнання і роботи», «Спеціалізований рухомий склад автотранспортних і вантажно-розвантажувальних машин», «Обладнання та транспорт механоскладальних цехів», «Промислові роботи», «Металообробне обладнання» розроблено навчальні продукти: «Анімація роботи гідроциліндрів для створення прямолінійного поступального руху» та «Анімація роботи пневмокамер для створення прямолінійного поступального руху». Анімація розроблена для лабораторій «Промислові роботи» з реальними роботами: МП-11, М10П, М20П, РМ-01 та «Металообробне обладнання». Висновки відповідно до статті. Запропоновані програмні продукти дозволяють зробити процес навчання більш яскравим, наочним та дешевим. Запропоновані програмні продукти мають деяке обмеження, зокрема відсутня можливість інтерактивного керування цими механізмами. Тому перспективним напрямком подальших досліджень є створення візуалізації впливу конструктивних та експлуатаційних параметрів на роботу механізмів.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Хома, Мирослав Степанович. "Стан і перспективи розвитку досліджень у галузі корозії та протикорозійного захисту конструкційних матеріалів в Україні". Visnik Nacional noi academii nauk Ukrai ni, № 12 (15 грудня 2021): 99–106. http://dx.doi.org/10.15407/visn2021.12.099.

Повний текст джерела
Анотація:
У доповіді акцентовано увагу на актуальності для України питання корозії та протикорозійного захисту металоконструкцій і промислового обладнання. Наведено результати досліджень, які в цій галузі проводять установи НАН України, заклади вищої освіти та акредитовані лабораторії. На прикладі ПАТ «Укрнафта» та ТОВ «Укрінсталькон» продемонстровано відповідальний підхід підприємств до протикорозійного захисту обладнання та металоконструкцій. Розглянуто стан робіт з корозійного моніторингу, розроблення нових інгібіторів корозії з екологічно чистої сировини, дослідження сірководневої та вуглекислотної корозії у нафтогазовидобуванні тощо. Показано роль Міжвідомчої науково-технічної ради з питань корозії та протикорозійного захисту металів у визначенні пріоритетних напрямів робіт з цієї проблематики.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Лотюк, Юрій Георгійович, та Олег Михайлович Богут. "Формування у студентів умінь та навичок проектування та моделювання комп’ютерних мереж". New computer technology 5 (7 листопада 2013): 64–65. http://dx.doi.org/10.55056/nocote.v5i1.82.

Повний текст джерела
Анотація:
У вищих навчальних закладах студенти згідно вимог освітньо-професійної програми підготовки бакалавра [4], повинні вміти розробляти концепцію побудови локальних комп’ютерних мереж на основі стандартних протоколів і інтерфейсів, аналізуючи потреби замовника. Вибирати топологію комп’ютерної мережі, мережні протоколи, планувати мережну інфраструктуру, аналізуючи потреби користувачів, програмне і апаратне забезпечення, що використовується, фізичне розміщення користувачів, ділення мережі на сегменти тощо. Майбутні спеціалісти також повинні вміти розробляти логічну і фізичну структуру локальної комп’ютерної мережі, топологію і засоби прокладки кабелів, розміщення комутаторів та маршрутизаторів, вибирати необхідне програмне забезпечення комп’ютерних мереж за допомогою нормативно-довідкової інформації, використовуючи процедури аналізу типових проектних рішень.Дані вимоги поширюються як на лекційний курс, так і на лабораторний практикум. Однак не кожен вищий навчальний заклад має можливість проводити лабораторний практикум у повній відповідності до вимог освітньо-професійної програми [1].Більшість вищих навчальних закладів не має матеріальної бази для практичного розгляду питання побудови та діагностики мережі. Ці теми розглядаються переважно тільки теоретично, оскільки не завжди можна дати можливість студентам самостійно спроектувати мережу або ділянку мережі, і перевірити її дію.Тому на лабораторних заняттях студенти в основному працюють в уже спроектованій, діючій мережі, і лише досліджують її топологію та характеристики.Такий підхід суттєво знижує рівень практичних навичок майбутніх спеціалістів з інформатики, оскільки при реалізації на практиці конкретного мережного проекту майбутній спеціаліст може стикнутись з рядом задач до яких він підготовлений лише теоретично.Тому нами пропонується при вивченні теми проектування комп’ютерних мереж залучати спеціалізоване моделююче програмне забезпечення для візуального проектування, моделювання та дослідження комп’ютерних мереж.Такий підхід має переваги у вивченні даної тематики, однак зауважимо, що перед вивченням тематики проектування та дослідження мереж на емуляторі існує необхідність продемонструвати студентам реальне мережне обладнання та особливості його використання і тільки потім проводити лабораторний практикум на емуляторі.При такому підході забезпечується повне охоплення тематики проектування та моделювання мереж як на теоретичному так і на практичному рівні [2].Однією з основних переваг використання емуляторів при вивченні проектування та дослідження мереж є можливість розглянути такі задачі, які неможливо розглянути навіть з використанням наявного обладнання. Так, наприклад при використанні емуляторів є можливість розглянути на основі діючої моделі функціонування кампусної мережі, Wi-Fi мереж, використання супутникової технології зв’язку та інших технологій, що залишаються недоступними для студентів при стандартному підході.Однією з найбільш відомих програм-емуляторів є програма NetCracker [3]. Дана програма створена компанією NetCracker Technology Corporation, і є однією з найбільш широко вживаних у світі як при вивченні, так і при професійному використанні.Робота з NetCracker побудована на основі технології Drag and Drop, що значно спрощує навчання користуванню програмою, і дозволяє основну увагу приділити безпосередньо питанню побудови та дослідження характеристик мережі. База даних програми містить характеристики великої кількості реальних апаратних мережних засобів, і дозволяє емулювати мережу у максимальній відповідності до фізичного відповідника.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Гуржій, Андрій Миколайович, Валерій Яковлевич Жуйков, Анатолій Тимофійович Орлов, Віктор Михайлович Співак, Олександр Володимирович Богдан, Микола Іванович Шут, Людмила Юріївна Благодаренко та ін. "Викладання фізики з використанням вітчизняної електронної цифрової лабораторії, створеної на основі ІКТ". Theory and methods of e-learning 4 (17 лютого 2014): 69–78. http://dx.doi.org/10.55056/e-learn.v4i1.372.

Повний текст джерела
Анотація:
У зв’язку із загальною інформатизацією освіти і швидким розвитком цифрових засобів обробки інформації назріла необхідність впровадження в лабораторні практикуми вищих та середніх навчальних закладів цифрових засобів збору, обробки та оформлення експериментальних результатів, в тому числі під час виконання лабораторних робот з основ електротехнічних пристроїв та систем. При цьому надмірне захоплення віртуальними лабораторними роботами на основі комп’ютерного моделювання в порівнянні з реальним (натурним) експериментом може призводити до втрати особової орієнтації в технології освіти і відсутності надалі у випускників навчальних закладів ряду практичних навичок.У той же час світові компанії, що спеціалізуються в учбово-технічних засобах, переходять на випуск учбового устаткування, що узгоджується з комп’ютерною технікою: аналого-цифрових перетворювачів і датчиків фізико-хімічних величин, учбових приладів керованих цифро-аналоговими пристроями, автоматизованих учбово-експеримен­тальних комплексів, учбових експериментальних установок дистанційного доступу.У зв’язку із цим в області реального експерименту відбувається поступовий розвиток інформаційних джерел складної структури, до яких, у тому числі, відносяться комп’ютерні лабораторії, що останнім часом оформлюються у новий засіб реалізації учбового натурного експерименту – цифрові електронні лабораторії (ЦЕЛ).Відомі цифрові лабораторії для шкільних курсів фізики, хімії та біології (найбільш розповсюджені компаній Vernier Software & Technology, USA та Fourier Systems Inc., Israel) можуть бути використані у ВНЗ України, але вони мають обмежений набір датчиків, необхідність періодичного ручного калібрування, використовують застарілий та чутливий до електромагнітних завад аналоговий інтерфейс та спрощене програмне забезпечення, що не дозволяє проводити статистичну обробку результатів експерименту та з урахуванням низької розрядності аналого-цифрових перетворювачів не може використовуватись для проведення науково-дослідних робіт у вищих навчальних закладах, що є однією із складових підготовки висококваліфікованих спеціалістів, особливо в університетах, які мають статус дослідницьких.Із вітчизняних аналогів відомі окремі компоненти цифрових лабораторій, що випускаються ТОВ «фірма «ІТМ» м. Харків. Вони поступаються продукції компаній Vernier Software & Technology, USA та Fourier Systems Inc. та мають близькі цінові характеристики на окремі компоненти. Тому необхідність розробки вітчизняної цифрової навчальної лабораторії є нагальною, проблематика досліджень та предмет розробки актуальні.Метою проекту є створення сучасної вітчизняної цифрової електронної лабораторії та відпрацювання рекомендацій по використанню у викладанні на її основі базового переліку науково-природничих та біомедичних дисциплін у ВНЗ I-IV рівнів акредитації при значному зменшенні витрат на закупку приладів, комп’ютерної техніки та навчального-методичного забезпечення. В роботі використані попередні дослідження НДІ Прикладної електроніки НТУУ «КПІ» в галузі МЕМС-технологій (micro-electro-mechanical) при створенні датчиків фізичних величин, виконано огляд технічних та методичних рішень, на яких базуються існуючі навчальні цифрові лабораторії та датчики, розроблені схемотехнічні рішення датчиків фізичних величин, проведено конструювання МЕМС – первинних перетворювачів, та пристроїв реєстрації інформації. Розроблені прикладні програми інтерфейсу пристроїв збору інформації та вбудованих мікроконтролерів датчиків. Сформульовані вихідні дані для розробки бездротового інтерфейсу датчиків та програмного забезпечення цифрової лабораторії.Таким чином, у даній роботі пропонується нова вітчизняна цифрова електронна лабораторія, що складається з конструкторської документації та дослідних зразків обладнання, програмного забезпечення та розробленого єдиного підходу до складання навчальних методик для цифрових лабораторій, проведення лабораторних практикумів з метою економії коштів під час створення нових лабораторних робіт із реєстрацією даних, обробки результатів вимірювань та оформленням результатів експерименту за допомогою комп’ютерної техніки.Цифрова електронна лабораторія складається із таких складових частин: набірного поля (НП); комплектів модулів (М) із стандартизованим вихідним інтерфейсом, з яких складається лабораторний макет для досліджування об’єкту (це – набір електронних елементів: резисторів, ємностей, котушок індуктивності, цифро-аналогових та аналого-цифрових перетворювачів (ЦАП та АЦП відповідно)) та різноманітних датчиків фізичних величин; комп’ютерів студента (планшетного комп’ютера або спеціалізованого комп’ютера) з інтерфейсами для датчиків; багатовходових пристроїв збору даних та їх перетворення у вигляд, узгоджений з інтерфейсом комп’ютера (реєстратор інформації або Data Logger); комп’ютер викладача (або серверний комп’ютер із спеціалізованим програмним забезпеченням); пристрої зворотного зв’язку (актюатори), що керуються комп’ютером; трансивери для бездротового прийому та передачі інформації з НП.Таким чином, з’являється новий клас бездротових мереж малої дальності. Ці мережі мають ряд особливостей. Пристрої, що входять в ці мережі, мають невеликі розміри і живляться в основному від батарей. Ці мережі є Ad-Hoc мережами – високоспеціалізованими мережами з динамічною зміною кількісного складу мережі. У зв’язку з цим виникають завдання створення та функціонування даних мереж – організація додавання і видалення пристроїв, аутентифікація пристроїв, ефективна маршрутизація, безпека даних, що передаються, «живучість» мережі, продовження часу автономної роботи кінцевих пристроїв.Протокол ZigBee визначає характер роботи мережі датчиків. Пристрої утворюють ієрархічну мережу, яка може містити координатор, маршрутизатори і кінцеві пристрої. Коренем мережі являється координатор ZigBee. Маршрутизатори можуть враховувати ієрархію, можлива також оптимізація інформаційних потоків. Координатор ZigBee визначає мережу і встановлює для неї оптимальні параметри. Маршрутизатори ZigBee підключаються до мережі або через координатор ZigBee, або через інші маршрутизатори, які вже входять у мережу. Кінцеві пристрої можуть з’єднуватися з довільним маршрутизатором ZigBee або координатором ZigBee. По замовчуванню трафік повідомлень розповсюджується по вітках ієрархії. Якщо маршрутизатори мають відповідні можливості, вони можуть визначати оптимізовані маршрути до визначеної точки і зберігати їх для подальшого використання в таблицях маршрутизації.В основі будь-якого елементу для мережі ZigBee лежить трансивер. Активно розробляються різного роду трансивери та мікроконтролери, в які потім завантажується ряд керуючих програм (стек протоколів ZigBee). Так як розробки ведуться багатьма компаніями, то розглянемо та порівняємо новинки трансиверів тільки кількох виробників: СС2530 (Texas Instruments), AT86RF212 (Atmel), MRF24J40 (Microchip).Texas Instruments випускає широкий асортимент трансиверів. Основні з них: CC2480, СС2420, CC2430, CC2431, CC2520, CC2591. Всі вони відрізняються за характеристиками та якісними показниками. Новинка від TI – мікросхема СС2530, що підтримує стандарт IEEE 802.15.4, призначена для організації мереж стандарту ZigBee Pro, а також засобів дистанційного керування на базі ZigBee RF4CE і обладнання стандарту Smart Energy. ІС СС2530 об’єднує в одному кристалі РЧ-трансивер і мікроконтролер, ядро якого сумісне зі стандартним ядром 8051 і відрізняється від нього поліпшеною швидкодією. ІС випускається в чотирьох виконаннях CC2530F32/64/128/256, що розрізняються обсягом флеш-пам’яті – 32/64/128/256 Кбайт, відповідно. В усьому іншому всі ІС ідентичні: вони поставляються в мініатюрному RoHS-сумісному корпусі QFN40 розмірами 6×6 мм і мають однакові робочі характеристики. СС2530 являє собою істотно покращений варіант мікросхеми СС2430. З точки зору технічних параметрів і функціональних можливостей мікросхема СС2530 перевершує або не поступається CC2430. Однак через підвищену вихідну потужність (4,5 дБм) незначно виріс струм споживання (з 27 до 34 мА) при передачі. Крім того, ці мікросхеми мають різні корпуси і кількість виводів (рис. 1). Рис. 1. Трансивери СС2530, СС2430 та СС2520 фірми Texas Instruments AT86RF212 – малопотужний і низьковольтний РЧ-трансивер діапазону 800/900 МГц, який спеціально розроблений для недорогих IEEE 802.15.4 ZigBee-сумісних пристроїв, а також для ISM-пристроїв з підвищеними швидкостями передачі даних. Працюючи в діапазонах частот менше 1 ГГц, він підтримує передачу даних на малих швидкостях (20 і 40 Кбіт/с) за стандартом IEEE 802.15.4-2003, а також має опціональну можливість передачі на підвищених швидкостях (100 і 250 Кбіт/с) при використанні модуляції O-QPSK у відповідності зі стандартом IEEE 802.15.4-2006. Більше того, при використанні спеціальних високошвидкісних режимів, можлива передача на швидкості до 1000 Кбіт/с. AT86RF212 можна вважати функціональним блоком, який з’єднує антену з інтерфейсом SPI. Всі критичні для РЧ тракту компоненти, за винятком антени, кварцового резонатора і блокувальних конденсаторів, інтегровані в ІС. Для поліпшення загальносистемної енергоефективності та розвантаження керуючого мікроконтролера в ІС інтегровані прискорювачі мережевих протоколів (MAC) і AES- шифрування.Компанія Microchip Technology виробляє 8-, 16- і 32- розрядні мікроконтролери та цифрові сигнальні контролери, а також аналогові мікросхеми і мікросхеми Flash-пам’яті. На даний момент фірма випускає передавачі, приймачі та трансивери для реалізації рішень для IEEE 802.15.4/ZigBee, IEEE 802.11/Wi-Fi, а також субгігагерцового ISM-діапазону. Наявність у «портфелі» компанії PIC-мікроконтролерів, аналогових мікросхем і мікросхем пам’яті дозволяє їй запропонувати клієнтам комплексні рішення для бездротових рішень. MRF24J40 – однокристальний приймач, що відповідає стандарту IEEE 802.15.4 для бездротових рішень ISM-діапазону 2,405–2,48 ГГц. Цей трансивер містить фізичний (PHY) і MAC-функціонал. Разом з мікроспоживаючими PIC-мікроконтролерами і готовими стеками MiWi і ZigBee трансивер дозволяє реалізувати як прості (на базі стека MiWi), так і складніші (сертифіковані для роботи в мережах ZigBee) персональні бездротові мережі (Wireless Personal Area Network, WPAN) для портативних пристроїв з батарейним живленням. Наявність MAC-рівня допомагає зменшити навантаження на керуючий мікроконтролер і дозволяє використовувати недорогі 8-розрядні мікроконтролери для побудови радіомереж.Ряд компаній випускає завершені модулі ZigBee (рис. 2). Це невеликі плати (2÷5 кв.см.), на яких встановлено чіп трансивера, керуючий мікроконтролер і необхідні дискретні елементи. У керуючий мікроконтролер, у залежності від бажання і можливості виробника закладається або повний стек протоколів ZigBee, або інша програма, що реалізує можливість простого зв’язку між однотипними модулями. В останньому випадку модулі іменуються ZigBee-готовими (ZigBee-ready) або ZigBee-сумісними (ZigBee compliant).Всі модулі дуже прості в застосуванні – вони містять широко поширені інтерфейси (UART, SPI) і управляються за допомогою невеликого набору нескладних команд. Застосовуючи такі модулі, розробник позбавлений від роботи з високочастотними компонентами, так як на платі присутній ВЧ трансивер, вся необхідна «обв’язка» і антена. Модулі містять цифрові й аналогові входи, інтерфейс RS-232 і, в деяких випадках, вільну пам’ять для прикладного програмного забезпечення. Рис. 2. Модуль ZigBee із трансивером MRF24J40 компанії Microchip Для прикладу, компанія Jennic випускає лінійку ZigBee-сумісних радіомодулів, побудованих на низькоспоживаючому бездротовому мікроконтролері JN5121. Застосування радіомодуля значно полегшує процес розробки ZigBee-мережі, звільняючи розробника від необхідності конструювання високочастотної частини виробу. Використовуючи готовий радіомодуль, розробник отримує доступ до всіх аналогових і цифрових портів вводу-виводу чіпу JN5121, таймерам, послідовного порту і інших послідовних інтерфейсів. У серію входять модулі з керамічної антеною або SMA-коннектором з дальністю зв’язку до 200 метрів. Розмір модуля 18×30 мм. Версія модуля з підсилювачем потужності і підсилювачем вхідного сигналу має розмір 18×40 мм і забезпечує дальність зв’язку більше 1 км. Кожен модуль поставляється з вбудованим стеком протоколу рівня 802.15.4 MAC або ZigBee-стеком.За висновками експертів з аналізу ринку сьогодні одним з найперспективніших є ринок мікросистемних технологій, що сягнув 40 млрд. доларів станом на 2006 рік зі значними показниками росту. Самі мікросистемні технології (МСТ) почали розвиватися ще з середини ХХ ст. і, отримуючи щоразу нові поштовхи з боку нових винаходів, чергових удосконалень технологій, нових галузей науки та техніки, динамічно розвиваються і дедалі ширше застосовуються у широкому спектрі промислової продукції у всьому світі.Прилад МЕМС є об’єднанням електричних та механічних елементів в одну систему дуже мініатюрних розмірів (значення розмірів механічних елементів найчастіше лежать у мікронному діапазоні), і достатньо часто такий прилад містить мікрокомп’ютерну схему керування для здійснення запрограмованих дій у системі та обміну інформацією з іншими приладами та системами.Навіть з побіжного аналізу структури МЕМС зрозуміло, що сумарний технологічний процес є дуже складним і тривалим. Так, залежно від складності пристрою технологічний процес його виготовлення, навіть із застосуванням сучасних технологій, може тривати від кількох днів до кількох десятків днів. Попри саме виготовлення, доволі тривалими є перевірка та відбраковування. Часто виготовляється відразу партія однотипних пристроїв, причому вихід якісної продукції часто не перевищує 2 %.Для виготовлення сучасних МЕМС використовується широка гама матеріалів: різноманітні метали у чистому вигляді та у сплавах, неметали, мінеральні сполуки та органічні матеріали. Звичайно, намагаються використовувати якомога меншу кількість різнорідних матеріалів, щоби покращити технологічність МЕМС та знизити собівартість продукції. Тому розширення спектра матеріалів прийнятне лише за наявності специфічних вимог до елементів пристрою.Спектр наявних типів сенсорів в арсеналі конструктора значно ширший та різноманітніший, що зумовлено багатоплановим застосуванням МЕМС. Переважно використовуються ємнісні, п’єзоелектричні, тензорезистивні, терморезистивні, фотоелектричні сенсори, сенсори на ефекті Холла тощо. Розроблені авторами в НДІ Прикладної електроніки МЕМС-датчики, їх характеристики, маса та розміри наведені у табл. 1.Таблиця 1 №з/пМЕМС-датчикиТипи датчиківДіапазони вимірюваньГабарити, маса1.Відносного тиску, тензорезистивніДВТ-060ДВТ-1160,01–300 МПа∅3,5–36 мм,5–130 г2.Абсолютного тиску,тензорезистивніДАТ-0220,01–60 МПа∅16 мм,20–50 г3.Абсолютного тиску, ємнісніДАТЄ-0090,05–1 МПа5×5 мм4.Лінійного прискорення,тензорезистивніДЛП-077±(500–100 000) м/с224×24×8 мм,100 г5.Лінійного прискорення,ємнісніАЛЄ-049АЛЄ-050±(5,6–1200) м/с235×35×22 мм, 75 г6.Кутової швидкості,ємнісніДКШ-011100–1000 °/с
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Arkushenko, P., A. Verweiko, M. Yakovlev та A. Florin. "ВИЗНАЧЕННЯ ОСОБЛИВОСТЕЙ СТАНДАРТІВ США ЩОДО МЕТРОЛОГІЧНОГО ЗАБЕЗПЕЧЕННЯ ВИПРОБУВАНЬ ОЗБРОЄННЯ ТА ВІЙСЬКОВОЇ ТЕХНІКИ". Системи управління, навігації та зв’язку. Збірник наукових праць 5, № 57 (30 жовтня 2019): 7–10. http://dx.doi.org/10.26906/sunz.2019.5.007.

Повний текст джерела
Анотація:
Метою статті є визначення особливостей стандартів США, які визначають вимоги щодо метрологічного забезпечення випробувань озброєння та військової техніки на основі їх аналізу. Для міністерства оборони США розробка і впровадження документів по стандартизації здійснюється за програмою оборонної стандартизації Defense Standardization Program в рамках діяльності з управління стандартизацією Standardization Management Activities. Документи зі стандартизації включають 5 видів. У США метрологічне забезпечення озброєння та військової техніки для всіх видів військ регламентовано десятками стандартів, серед яких виділено 4 основних: MIL-STD-1839D, MIL-HDBK-1839A, DI-QCIC-80278C, MIL-STD-810D. Метрологічне забезпечення випробувань за стандартом MIL-STD-810G, представлене в узагальненому вигляді, регламентує вимоги до випробувального і вимірювального обладнання, інтервалів калібрування та сумарної похибки (або невизначеності вимірювань) випробувального та вимірювального обладнання. Згідно стандартів США все обладнання, що має метрологічні характеристики, розділене на 4 види, які об'єднані в дві групи, а саме: 1) випробувальне, вимірювальне та діагностичне обладнання (Test, Measurement, and Diagnostic Equipment (TMDE); 2) вбудоване обладнання для випробувань (Built-in-Test Equipment (BITE)). Зведені вимоги до калібрування та вимірювання (Calibration and measurements requirements summary (CMRS)) MIL-HDBK-1839A деталізують вимоги: щодо вимірювальної системи, підсистеми або обладнання; TMDE; до стандартів та обладнання калібрування, які необхідні для забезпечення метрологічної простежуваності всіх вимірювань через окремі військові відомчі метрологічні та калібрувальні програми до затверджених національних стандартів. Військовий стандарт MIL-STD-810G регламентує ряд стандартних параметрів для великої кількості лабораторних випробувань військової продукції, що дозволяє визначити стійкість широкого переліку обладнання до різних впливів. Визначені за результатами аналізу стандартів США особливості потрібно враховувати при розробці нормативних документів з метрологічного забезпечення випробувань в Збройних Силах України.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Maletska, O. R., та S. O. Vasyuk. "СПЕКТРОФОТОМЕТРИЧНЕ ВИЗНАЧЕННЯ АТЕНОЛОЛУ В ТАБЛЕТКАХ". Фармацевтичний часопис, № 1 (8 травня 2021): 50–58. http://dx.doi.org/10.11603/2312-0967.2021.1.11935.

Повний текст джерела
Анотація:
Мета роботи. Розробка та валідація методики спектрофотометичного визначення атенололу в лікарських препаратах. Матеріали і методи. У роботі використовували такі реагенти і розчинники: діазоль червоний ЖЖ (НВФ «Синбіас»), таблетки «Атенолол-Астрофарм» 50 мг (ТОВ «Астрофарм», Україна, серія 050417), таблетки «Атенолол-Астрофарм» 100 мг (ТОВ «Астрофарм», Україна, серія 010218), метанол (LAB-SCAN, Ірландія, партія № 5120/13), натрій карбонат (НВФ «Синбіас»), вода дистильована. Аналітичне обладнання: спектрофотометр «SPECORD-200» (Analytic Jena AG, Німеччина), ваги лабораторні електронні RADWAG XA 210.4Y, баня ультразвукова Sonorex Digitec DT100H, лабораторний посуд класу А. Дослідження проводили у відділі експериментальних фармацевтичних досліджень наукового медико-лабораторного центру (НМЛЦ) Запорізького державного медичного університету. Результати й обговорення. Розроблено методику спектрофотометричного визначення кількісного вмісту атенололу за реакцією з діазолем червоним ЖЖ у середовищі вода-метанол. Методами насичення та неперервних змін встановлено стехіометричне співвідношення «атенолол – діазоль червоний ЖЖ» – 1:1. Проведена валідація розробленої методики за такими критеріями, як лінійність, прецизійність, правильність та робасність. З огляду на отримані дані розроблена методика є коректною та може бути використана у відділах контролю якості хіміко-фармацевтичних підприємств. Висновки. Розроблено чутливу, економічну, просту у виконанні спектрофотометричну методику кількісного визначення атенололу в складі таблетованих лікарських форм «Атенолол-Астрафарм» 50 мг та «Атенолол-Астрафарм» 100 мг на основі реакції з діазолем червоним ЖЖ, яку було валідовано згідно зі стандартизованою процедурою валідації методом стандарту. Доведено, що за такими валідаційними характеристиками, як лінійність, прецизійність, правильність та робасність розроблена методика валідна та відповідає вимогам ДФУ.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Chaikovs’kyi, B. P., A. B. Shalko, I. G. Yaroshovych, V. I. Kyryliv, O. V. Maksymiv та I. M. Kurnat. "Перспективність використання нанотехнологій для підвищення працездатності сільськогосподарської техніки". Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 20, № 85 (2 березня 2018): 134–40. http://dx.doi.org/10.15421/nvlvet8525.

Повний текст джерела
Анотація:
Показано визначальне значення наноідустрії в соціально-економічних пріоритетах індустріальних держав на сучасному етапі економічного розвитку для переважаючого випуску наукомісної високотехнологічної продукції. В рамках сучасних уявлень – це інтегрований комплекс, який включає обладнання, матеріали, програмні засоби, систему знань, а також технологічну, метрологічну, інформаційну, організаційно-економічну культуру і кваліфікований кадровий потенціал, який забезпечує виробництво наукомісткої продукції , яка базується на використанні нових, особливих властивостей матеріалів і систем у нанометровому діапазоні. Інтелектуальна база наносистем – це, безумовно, система знань і умінь, носієм якої є кваліфікований персонал. Основною формою інвестицій в кваліфікований персонал є якісна та сучасна освіта. Поряд з постановкою чисто економічної задачі – підвищення ефективності виробництва на основі випереджуючого розвитку високотехнологічних галузей, необхідно вирішувати і ще одну соціальну задачу – забезпечення необхідного інтелектуального рівня персоналу через розвиток наукових досліджень і надання освітніх послуг. Підкреслено важливу роль агропромислового комплексу в формуванні бюджету та економічної стабільності України. Гранична ступінь зношування вузлів технологічного обладнання (основних фондів) обумовлює додаткові витрати на ремонт обладнання та втрати сільськогосподарської продукції. Вказано на важливість поряд з агротехнічними заходами підвищення надійності технологічного обладнання. Виділено особливу роль зносотривкості основних деталей та вузлів. Обґрунтовано та показано доцільність підвищення надійності та довговічності технологічного обладнання та його окремих важко навантажених деталей та вузлів використанням зміцнюючих технологій, зокрема таких, які формують на поверхнях деталей машин і механізмів нанокристалічні структури. Проведено лабораторні дослідження зносотривкості зразків із сталі 65Г з поверхневою наноструктурою в умовах сухого тертя на машині тертя МІ-1М за схемою кільце-вкладка стосовно експлуатаційних умов роботи дисків сошників сівалок. Показано доцільність використання поверхневого наноструктурного зміцнення шляхом використання технології механоімпульсної обробки для підвищення зносотривкості. На прикладі дисків сошників сівалок показано ефективність використання поверхневого зміцнення шляхом формування нанокристалічної структури для підвищення їх працездатності. Вказану технологію можна використовувати для зміцнення інших деталей сільськогосподарських машин, харчової, переробної промисловості та в інших галузях промисловості.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Meleshko, Mykola A., Іryna A. Slіpukhіna, Іhor S. Chernetskyi та Yulyia V. Kubai. "ОСОБЛИВОСТІ ТЕХНОЛОГІЇ СТВОРЕННЯ ІНТЕРАКТИВНОГО ЕЛЕКТРОННОГО ДОКУМЕНТА ДЛЯ СУПРОВОДУ ЛАБОРАТОРНОГО ПРАКТИКУМУ З ФІЗИКИ". Information Technologies and Learning Tools 39, № 1 (24 лютого 2014): 264–74. http://dx.doi.org/10.33407/itlt.v39i1.1006.

Повний текст джерела
Анотація:
Статтю присвячено розгляду змісту конструкту «флеш-зошит», визначенню його властивостей і можливих компонентів. Наведено приклади деяких етапів програмування компонентів авторського флеш-зошита. Розглянуто можливість застосування такого електронного документа для оптимізації навчального процесу в технічному університеті під час виконання лабораторного практикуму з курсу загальної фізики. Запропоновано методику його використання для забезпечення індивідуального підходу у навчанні і застосування різноманітної експериментальної бази: від класичного обладнання до цифрових лабораторій. Проведено аналіз напрямів його вдосконалення з метою розвитку інформаційно-технологічної компетентності студентів технічного університету.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Асманкіна, A. A., М. Г. Лорія, О. Б. Целіщев та Гома Ахмед Гезеві Абдалхалех. "Автоматизація об'єднаних систем автономного енергозабезпечення лабораторної установки". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 8(264) (12 січня 2021): 73–77. http://dx.doi.org/10.33216/1998-7927-2020-264-8-73-77.

Повний текст джерела
Анотація:
Тепер всі світові тенденції енергії прямують на використанні і комбінуванні поновлюваних джерел енергії. Поєднання декількох поновлюваних джерел енергії і залучання не поновлюваних джерел приводить до часткової незалежності. У цій роботі була протестований лабораторний пристрій для нагріву і охолодження рідини. Протягом експерименту були використані правила Карно, гідродинаміка, динамічна компресія газів і багато інших принципів. Запропоноване поєднання декількох систем замінимої енергії, зазначене у графіках, відобразило кількість джерел, необхідних для роботи експериментального врегулювання. Були зняті показники в різних термінах роботи експериментального врегулювання, для цієї мети воно було обладнане великою кількістю чутливих елементів. Досліджуваний час, температура, тиск на різних проміжках врегулювання управляється он-лайн з мобільного пристрою. Для конструкції і оцінки адекватності математичного зразкового збирання показників від сенсорів залежно від температурних індексів умови експлуатації, яка вимагає детальніших спостережень, для цього дослідження знадобилося більше ріку, залежно від часу щорічної і бажаної температури в приміщенні. Зняті показники з експериментальної частини, дозволили отримати апроксимовану інформацію для конструкції діаграм залежностей нагнітання тиску від температур. Дослідним результатом стали побудовані графічні залежності тиску від температур на трьох основних ділянках врегулювання. Отримані дані надають можливості побудувати математичну модель для послідовної модернізації врегулювання.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Селівьорстова, Тетяна, Вадим Селівьорстов та Олександр Чернов. "ОСОБЛИВОСТІ РЕАЛІЗАЦІЇ ГРАФІЧНОГО ІНТЕРАКТИВНОГО ІГРОВОГО ДОДАТКУ ДЛЯ ОЗНАЙОМЛЕННЯ З ТЕХНОЛОГІЄЮ ГАЗОДИНАМІЧНОГО ВПЛИВУ НА РОЗПЛАВ В ЛИВАРНІЙ ФОРМІ". System technologies 1, № 132 (1 березня 2021): 3–22. http://dx.doi.org/10.34185/1562-9945-1-132-2021-01.

Повний текст джерела
Анотація:
Стаття присвячена розробці інтерактивного графічного ігрового додатку для ознайомлення з особливостями нових ливарних технології, що базується на регу-льованому газодинамічного впливу на розплав в ливарній формі під час твердіння. Осо-бливості навчального процесу при підготовці спеціалістів в галузі металургії, в тому числі ливарників, передбачає наявність ґрунтовної не тільки теоретичної і практичної підготовки, яка здійснюється в рамках ливарної лабораторії. Оснащення сучасної ли-варної лабораторії вимагає суттєвих вкладень в обладнання, матеріали, крім того де-які ливарні технології не можуть бути адаптовані до навчального простору, це сто-сується і технології газодинамічного впливу на розплав в ливарній формі. Крім того, застосування графічного інтерактивного ігрового імітатора ливарної технології га-зодинамічного впливу на розплав в ливарній формі має незаперечні перспективи в рам-ках навчального процесу, особливу в умовах пандемії COVID-19. Тому розробка графіч-ного інтерактивного ігрового додатку для ознайомлення з особливостями нової ливар-ної технології є актуальноюзадачею.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Demydenko, M. "МОБІЛЬНИЙ НАВЧАЛЬНИЙ КОМПЛЕКС". Системи управління, навігації та зв’язку. Збірник наукових праць 1, № 53 (5 лютого 2019): 112–15. http://dx.doi.org/10.26906/sunz.2019.1.112.

Повний текст джерела
Анотація:
Забезпечення якісного проведення всіх видів навчальних занять для студентів інженерних спеціальностей (особливо ІТ) вимагає серйозних капіталовкладень (проектор, мережа, комп'ютерна техніка, і т.п.). Крім того частина студентів може використовувати гаджети під час занять не за призначенням. Отже, актуальним є завдання залучення обчислювальних потужностей мобільних пристроїв у навчальному процесі. Мета: реалізувати мобільний навчальний комплекс з використання пристроїв слухачів, розробити методику його використання. Задачі: підібрати ефективне комунікаційне обладнання, серверне та клієнтське програмне забезпечення. Сформулювати вимоги та розробити відсутнє програмне забезпечення. Розробити методику використання технології для різних типів навчальних занять. Провести апробацію, з метою визначення оптимальної конфігурації обладнання та максимальної кількості слухачів, задіяних в мобільному навчальному комплексі. Для реалізації концепції мобільного навчального комплексу необхідно: 1.Створити автономну локальну мережу. 2. Знайти або реалізувати програмні засоби візуалізації навчального контенту.3. Знайти або реалізувати засоби для проведення практичних і лабораторних занять. 4.Знайти або реалізувати засоби для контролю знань. 5. Усі зазначені засоби повинні бути незалежними від електричної мережі. Висновки: в роботі запропонована технологія та методика використання мобільних пристроїв в навчальному процесі. Обґрунтований вибір обладнання, протоколів, програмного забезпечення. Визначені оптимальні технічні характеристики серверних та клієнтських пристроїв для різних типів навчальних занять. Спроектовано та розроблено програмне забезпечення для тестового контролю знань для ОС Android. Проведено апробацію на прикладі дисциплін спеціальності «Комп’ютерні науки» пов’язаних з програмуванням. За результатами апробації визначена оптимальна кількість слухачів мобільного навчального комплексу.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Шейн, І. В., П. Л. Аркушенко, Є. М. Тертишнік та В. О. Кузнецов. "Загальні вимоги до системи бортових вимірювань для проведення випробувань озброєння та військової техніки різного функціонального призначення системи навігації". Системи озброєння і військова техніка, № 2(66) (21 травня 2021): 129–36. http://dx.doi.org/10.30748/soivt.2021.66.17.

Повний текст джерела
Анотація:
В роботі проведено аналіз сучасного стану існуючої лабораторної бази бортових інформаційно-вимірювальних комплексів та реєструючих систем, які застосовуються для збору, обробки, відображення параметрів і характеристик дослідних зразків озброєння та військової техніки різного функціонального призначення, їх складових частин з метою контролю функціонування, контролю змін параметрів та визначення помилкових дій екіпажів на об’єкти випробувань. Метою статті є аналіз сучасного стану лабораторної бази бортових інформаційно-вимірювальних комплексів і реєструючих систем та визначення загальних вимог до систем бортових вимірювань для проведення випробувань озброєння та військової техніки різного функціонального призначення. Методом проведення дослідження є системний аналіз. Розглянуто характеристики означеного обладнання та варіанти розміщення і комутації у складі дослідного зразка. Визначено основні параметри для автомобільної та бронетанкової техніки, які підлягають реєстрації (вимірюванню) за допомогою бортових інформаційно-вимірювальних комплексів. Запропоновано варіант конфігурації бортової реєструючої системи на основі модулів та інтерфейсів фірми Racelogic Adas. За результатами проведеного аналізу зроблено висновки щодо використання засобів реєстрації і систем бортових вимірювань, для проведення випробувань озброєння та військової техніки різного функціонального призначення науково-дослідними лабораторіями Збройних Сил та підприємств промисловості України. Отримані результати дослідження доцільно застосовувати при обґрунтуванні загальних вимог до сучасної універсальної системи бортових вимірювань для проведення випробувань озброєння та військової техніки різного функціонального призначення.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Петров, Р. В., Т. І. Фотіна, О. І. Шкромада та А. В. Березовський. "ВИКОРИСТАННЯ ЕЛЕМЕНТІВ ДИСТАНЦІЙНОЇ ОСВІТИ В ПРОЦЕСІ ПІДГОТОВКИ ФАХІВЦІВ ВЕТЕРИНАРНОЇ МЕДИЦИНИ". Bulletin of Sumy National Agrarian University. The series: Veterinary Medicine, № 4 (55) (10 травня 2022): 12–16. http://dx.doi.org/10.32845/bsnau.vet.2021.4.2.

Повний текст джерела
Анотація:
Глобальна проблема спалаху коронавірусної інфекції (SARS-CoV-2) призвела до нагальної необхідності запровадити дистанційне навчання у здобувачів вищої освіти. У зв’язку з цим виникло питання роботи як студентів так і викладачів з електронними платформами, що забезпечують викладання матеріалу в дистанційній формі. Розвиток комп’ютерних технологій дозволяє на сьогоднішній день організувати дистанційне навчання за умови наявності відповідної матеріально-технічної бази (ноутбук та високошвидкісний Інтернет), як у викладача, так і у студентів. Незважаючи на труднощі, ця раптова та неочікувана зміна навчального середовища дає академічним закладам можливості переосмислити інноваційні способи навчання, які використовують переваги сучасних технологій .Дистанційна освіта, крім основної переваги (запобігання розповсюдження інфекцій), має і інші переваги, а саме гнучкість навчання, що забезпечує доступ до ресурсів курсу для студента в будь-який час доби, з будь-якого зручного місця, що обладнане доступом до Інтернету, та можливістю витрачати на вивчення дисципліни необхідну кількість часу; модульність програми, що надає змогу сформувати індивідуальні навчальну програму; студент може навчатися за декілька ми програмами одночасно. У роботі викладені результати проведеного аналізу застосування елементів дистанційної освіти для студентів факультету ветеринарної медицини в Сумському національному аграрному університеті. Проаналізовані особливості використання комп’ютерної платформи «Moodle» для складання матеріалів лекцій, лабораторних та семінарських занять, а також використання різних форм тестових завдань. При її використанні викладач має можливість завантажити в неї лекційний матеріал, матеріал лабораторно-практичних занять, регулярно оновлювати його, слідкувати за успішністю студентів використовуючи електронний журнал. Також в даній програмі є можливість широкого вибору методів тестування за темами, що включає можливість обрати декілька видів тестів. Наведені результати використання іншого програмного забезпечення, а саме «Viber», «Zoom», «Kahoot» для організації навчального процесу, проведення лекцій та здійснення експрес-опитування для контролю засвоєння матеріалу здобувачами вищої освіти. Дані програми є безкоштовними, що дозволяє їх використовувати широкому загалу користувачів.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Karabyn, V. V. "Заходи мінімізації ризиків виникнення надзвичайних ситуацій екологічної генези на ділянках будівництва нафтогазових свердловин". Scientific Bulletin of UNFU 28, № 11 (27 грудня 2018): 68–70. http://dx.doi.org/10.15421/40281113.

Повний текст джерела
Анотація:
Охарактеризовано заходи мінімізації ризиків виникнення надзвичайних ситуацій екологічного походження на ділянках впливу нафтогазових свердловин, здійснено їхню класифікацію. Виокремлено організаційні та технічні, геологічні і біологічні групи заходів. Серед організаційних заходів виділено підгрупи кризового моніторингу, аудиту, експертизи та інспектування. До групи технічних, геологічних та біологічних заходів віднесено превентивні, оперативні та рекультиваційні. До програми кризового моніторингу потрібно віднести обґрунтування мережі пунктів спостережень, періодичності відбору проб, основну і додаткову програму лабораторних досліджень, систему оброблення інформації та систему прогнозування ризиків та реагування на них. До превентивних та оперативних технічних заходів віднесено гідроізоляцію поверхні бурового майданчика, встановлення противикидного обладнання, технічні рішення для недопущення забруднення ґрунтових вод глибинними флюїдами, мінімізацію використання особливо небезпечних компонентів бурового розчину. Серед рекультиваційних заходів виокремлено технічну та біологічну складові. Успішність виконання робіт запропоновано оцінювати аудитом та інспектуванням рекультиваційних робіт. Обґрунтовано, що всі групи заходів є взаємопов'язаними й ефективне управління ризиками залежить від їх синергетичної дії.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Виноградов, Анатолій Григорович, та Геннадій Олегович Малигін. "Рейтингова система оцінки рівня знань з навчальної дисципліни". Theory and methods of learning fundamental disciplines in high school 1 (16 листопада 2013): 81–83. http://dx.doi.org/10.55056/fund.v1i1.153.

Повний текст джерела
Анотація:
Ця система дозволяє протягом навчального року визначати рівень, досягнутий кожним курсантом або студентом на даний момент при вивченні певної дисципліни. При цьому враховуються всі види занять і самостійних робіт, участь у науково-дослідній роботі і виготовленні навчального обладнання. Представлені матеріали враховують досвід впровадження рейтингової системи при вивченні фізики.Кожна оцінка і кожен результат заносяться у комп’ютер, який за певною програмою обчислює суму рейтингових балів (рейтинг) курсанта на даний час. Із часом ця інформація накопичується і на момент проміжного контролю дозволяє визначати атестаційну оцінку. На початок екзаменаційної сесії рейтинг служить підставою для того, щоб ті курсанти, які набрали достатню кількість балів, були звільнені від іспиту з даної дисципліни і автоматично отримали оцінку “4” або “5” (в залежності від рейтингу).Рейтинг обчислюється за такою методикою (на прикладі дисципліни “фізика”).За період від початку семестру (або від початку вивчення даного модуля навчальної дисципліни) визначаються середні оцінки за всі види занять і помножуються на відповідні рейтингові коефіцієнти:середня оцінка за всі практичні заняття Р1 (рейтинговий коефіцієнт А);середня оцінка за всі семінарські заняття Р2 (рейтинговий коефіцієнт B);середня оцінка за всі лабораторні заняття Р3 (рейтинговий коефіцієнт C);середня оцінка за всі контрольні роботи Р4 (рейтинговий коефіцієнт D).Для досягнення необхідної регулярності навчального процесу вводиться часовий критерій, тобто оцінка за певні види робіт (лабораторні, розрахункові, курсові тощо) залежить від того, чи вчасно вони виконані.Обчислюється сума цих оцінок, яка називається основним рейтингом:Росн = A Р1 + B Р2 + C Р3 + D Р4 .Цілком можливо взяти всі рейтингові коефіцієнти рівними 1. Підвищення ж певного рейтингового коефіцієнту дозволяє збільшити значимість відповідного виду занять, його вплив на розрахунок основного рейтингу.Обчислюється максимальна величина Росн max (за умови всіх оцінок “5”):Росн max = A  5 + B  5 + C  5 + D  5 .Загальний рейтинг може бути підвищений за рахунок додаткового рейтингуРдод, який враховує види діяльності курсантів поза навчальною програмою. До нього може бути нарахована, наприклад, така кількість балів:активна участь у роботі предметного гуртка – 1 бал;вдосконалення лабораторної роботи – до 2 балів за 1 прилад;виготовлення плакатів, стендів – від 0,5 до 2 балів за 1 шт.;участь в олімпіаді з даної дисципліни – 1 бал;і додатково за призові місця в олімпіаді:І місце – 3 бали, ІІ – 2 бали, ІІІ – 1 бал;доповідь на конференції – 2 бали;підготовка наукової роботи на міжвузівський конкурс – 3 бали.Загальний рейтингР визначається як сума основного і додаткового рейтингів:Р = Росн + Рдод .Розраховується процент від умовно максимальної кількості балів:П = (Р/Росн.max)100% .Ця величина за умови активної діяльності курсантів поза навчальною програмою може перевищувати 100%.Якщо П 90% – курсант отримує під час атестації оцінку “5” або під час екзаменаційної сесії – оцінку “5” без складання іспиту.Якщо 75% П < 90 % – курсант на іспиті автоматично отримує оцінку “4” або, якщо він не згоден, складає іспит на загальних підставах. Атестаційна оцінка “4” виставляється за умови 70% П < 90 %.При 50% П < 70 % курсант отримує під час атестації оцінку “3”, а під час сесії складає іспит на загальних підставах.При П < 50 % курсант отримує під час атестації оцінку “2”, а під час сесії складає іспит на загальних підставах.Для поточного розрахунку рейтингу кожного курсанта була створена розрахункова комп’ютерна програма в середовищі Microsoft Excel, формат якої дозволяє вносити в неї списки навчальних взводів і поточні оцінки окремо за кожний тип занять. Результат розрахунку представлений у вигляді таблиць зі списками особового складу навчальних взводів і рейтинговими балами за кожен вид занять, а також загальний рейтинг і процент від максимально можливого. Ці таблиці у надрукованому вигляді вивішуються на спеціальному стенді для інформування курсантів про стан їх успішності та про слабкі місця, на які необхідно звернути увагу. Вони періодично оновлюються, з метою відтворення стану успішності курсантів на даний момент.Рейтингова система оцінки рівня знань є досить гнучкою і легко може бути адаптована до будь-якої дисципліни з іншими типами занять та іншими критеріями оцінки знань.Ця система дозволяє підняти контроль за станом навчання для кожного курсанта на якісно новий рівень, зробити його більш наочним і прозорим як для самого курсанта, так і для всіх зацікавлених осіб: викладачів, навчально-методичного відділу, курсових офіцерів, ректорату.Результати впровадження цієї системи свідчать про її позитивний вплив на значну частину курсантів інституту, який проявляється у зростанні мотивації до підвищення якісних показників навчання та покращання регулярності навчального процесу (вчасне виконання розрахункових робіт і звітів лабораторних робіт).
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Волкова, Тетяна Василівна. "Використання засобів і методів інформаційних технологій у підготовці кваліфікованих робітників поліграфічного профілю". Theory and methods of e-learning 2 (3 лютого 2014): 221–26. http://dx.doi.org/10.55056/e-learn.v2i1.277.

Повний текст джерела
Анотація:
Одним із основних напрямів підвищення ефективності підготовки кваліфікованих робітників для поліграфічної галузі на теперішній час розглядається навчання, в основі якого лежить концепція дидактично усвідомленої інтеграції технології „класичного навчання” і технології навчання, що ґрунтується на нових інформаційних технологіях.Відомий теоретик виробничої педагогіки академік С. Батишев, аналізуючи вимоги до підготовки робітників, зауважував то тому, що процес їх формування має дві сторони: кількісну, яка характеризується різноманіттям робіт, та якісну, що визначає складність виконаних робіт. Виконання робітником виробничих функцій залежить від рівня розвитку техніки, від того, чи працює робітник за допомогою машинної чи автоматизованої техніки [1, с. 46].Основоположник вітчизняної кібернетики та інформатики академік В. Глушков вважав, що автоматизація інформаційних технологій у редакційно-видавничій діяльності викликана необхідністю виключення помилок виготовлення верстки та її коригування на всіх етапах технологічного процесу виготовлення поліграфічної продукції, починаючи від операцій безпосереднього введення даних до комп’ютера, комп’ютерного редагування, монтажу сторінок або газетної смуги до перенесення підготовлених на комп’ютері копій до автоматичних набірних машин. Крім того, в сучасних автоматизованих редакціях, на думку вченого, мають бути створені редакційні автоматизовані архіви – інформаційно-пошукові документальні дворівневі системи дескрипторного типу, завдяки чому забезпечується можливість вести статистику опублікованих матеріалів і відповідним чином планувати новий матеріал [3, с. 386].Широке впровадження комп’ютерних технологій у поліграфічному виробництві, інтеграція додрукарських, друкарських і післядрукарських видавничо-поліграфічних процесів, об’єднання всіх стадій технологічного процесу виготовлення друкованої продукції єдиним інформаційним потоком, необхідним для спільної роботи обладнання поліграфічного підприємства спричинили потребу у фахівцях інтегрованих професій. Виробничі завдання організації технологічного процесу, зокрема накопичення, збереження, передача і оброблення інформації, зняття її за допомогою реєструючих пристроїв, підключення до джерел інформації, вивчення інформаційних потоків, підтримування баз даних, відбір і реалізація алгоритмів оброблення інформації, виведення графічної й текстової інформації, перевірка якості готової друкарської продукції складають основу функціональної діяльності оператора з уведення і обробки інформації в комп’ютерній видавничій системі, верстальника, препрес-оператора і оператора друкарського цеху. Водночас, варто зазначити, що роботодавці з кожним роком оновлюють поліграфічне обладнання, впроваджують автоматизовані інформаційні системи управління поліграфічним підприємством, що, в свою чергу, потребує від працівників систематичного самостійного підвищення власного професійного рівня відповідно до виробничих інновацій. Отже, зрослі вимоги до готовності майбутніх поліграфістів до оволодіння ними виробничими технологіями з високим рівнем комп’ютеризації виробничих процесів потребують обґрунтування нового змісту, засобів і методів професійної поліграфічної освіти.Досліджуючи техніко-технологічні аспекти розвитку професійно-технічної освіти, академік НАПН України Н. Ничкало приходить до висновку, що зміст освіти повинен мати випереджувальний характер і постійно оновлюватися з урахуванням динамічних змін у різних галузях економіки, техніки, технологіях, узгодження та взаємозв’язок з метою забезпечення наступності навчання і виховання на всіх рівнях неперервної професійної освіти. Винятково важливим, на думку вченого, є регламентування змісту освіти державними стандартами та їх формування з урахуванням галузевої та регіональної специфіки на кожному ступені навчання [6, с. 91].Реалізація інноваційних компонентів освітньої парадигми, як зазначає Е. Зеєр, вимагає оновлення змісту професійної освіти і державних стандартів, що мають бути зорієнтовані не на вихідні програмні матеріали, а на результат процесу освіти, включаючи компетентність і компетенції [5, с. 27]. У цьому зв’язку здається правомірною точка зору, висловлена С. Батишевим про те, що для майбутніх робітників важливо навчитися ще в стінах училища використовувати знання у виробничій діяльності [1, с. 165]. Тому слід підвищувати ефективність методів вивчення теоретичного матеріалу, інтегрувати його з практикою, забезпечувати наступність теорії з практикою. У кожному профтехучилищі, як зазначав учений, мають бути кабінети і лабораторії з кожної професії – майстерня з новітнім обладнанням, механізмами, устаткуваннями, передбачено обладнання автоваматиувазованих класів, кабінетів інформатики і обчислювальної техніки [1, с. 174]. Очевидно, що практична реалізація моделей навчання як інструмента модернізації сучасної професійно-технічної освіти полягає в проектуванні нових педагогічних методик навчання, основаних на інтеграції традиційних підходів до організації навчально-виробничого процесу, в ході якого здійснюється безпосереднє передавання знань, та інформаційно-освітніх технологій навчання.Академік НАПН України В. Биков розглядає методику навчання як модель навчального процесу, яка інтегрує зміст навчання і навчальну технологію. Методика спрямована на цілі навчання; ґрунтується на змісті навчання, який сформований для досягнення цілей; відбиває психолого-педагогічні методи навчання, які обрані для викладання; визначає діяльність учасників навчального процесу, організацію їх взаємодії, характер і структуру використання ними ресурсів навчального середовища, які застосовуються для забезпечення навчання [2, с. 75].До методів навчання майбутніх кваліфікованих робітників поліграфічного профілю ми будемо відносити методи, що активно використовують потенціал педагогічних, інформаційних і комунікаційних технологій для формування і розвитку в учнів знань, умінь, навичок, способів виконання різних видів інформаційної діяльності, зокрема інтеграцію активних проблемних методів навчання, навчання у співробітництві; створення ситуацій актуальності, успіху в навчанні; формування розуміння власної значущості виконання різних видів професійної діяльності.Засоби інформаційно-комунікаційних технологій є домінуючими складовими засобів інформаційно-освітніх технологій. Ці засоби визначаються І. Роберт як програмно-апаратні і технічні засоби і пристрої, що функціонують на базі мікропроцесорної, обчислювальної техніки, а також сучасних засобів і систем трансляції інформації, інформаційного обміну [7, с. 96].Розширення сфери впливу інформаційно-комунікаційних технологій до будь-якого предметного середовища ілюструє достатньо універсальну схему додатків інформатики і стає за теперішніх умов домінуючою ідеєю в будь-якій предметній освіті. Під впливом цього процесу знаходяться всі предметні сфери діяльності завдяки тому, що широке впровадження і звичне застосування інформаційно-комунікаційних технологій стає методологічною основою домінування прикладного компонента освіти в галузі конкретної предметної діяльності. Як зазначає професор Ю. Дорошенко, функціональна спрямованість навчання практичного розв’язання завдань засобами інформаційно-комунікаційних технологій має ґрунтуватися на раціональному поєднанні якомога ширшого кола споріднених видів професійної діяльності людини, забезпечувати формування узагальнених уявлень про сферу прикладання та особливості майбутньої професійної діяльності [4, c. 73]. На нашу думку, конструктивна інтеграції засобів і методів навчання у процесі підготовки майбутніх кваліфікованих робітників поліграфічного профілю дозволить вибудовувати навчання відповідно до вимог роботодавців і забезпечить розвиток професійно значущих компетентностей.Розглядаючи весь технологічний ланцюжок перетворення інформації від етапу введення до комп’ютерної видавничої системи до отримання готового відтиску можна виділити єдиний набір завдань, що містить комплекси функціональних завдань автоматизованих робочих місць операторів поліграфічного виробництва (табл. 1).Таблиця 1Функціональні завдання операторів поліграфічного виробництва № з/пСпеціалізація кваліфікованого робітникаФункціональні завдання1Оператор з уведення данихНалагодження параметрів уведення з урахуванням технологічного процесу;автоматизація введення і оброблення інформації;створення профілів пристроїв;налагодження системи.2Оператор-верстальникПідготовка оригінал-макету видання;проведення екранної кольоропроби;урахування параметрів технологічного процесу;підготовка до виведення.3Препрес-операторПеревірка оригінал-макету видання;проведення цифрової кольоропроби;монтаж спуску смуг;контроль спуску смуг;виведення друкованих форм.4ТехнологСтворення технологічної карти замовлення;редагування технологічної карти замовлення.5Оператор друкарського цехуКонтроль виконання операції друку;формування звітних даних про завантаження обладнання;контроль якості на відтиску. Реалізація оновленої методичної системи має здійснюватися на заняттях зі спецтехнології, в процесі виробничого навчання в майстерні, виробничої практики на поліграфічному підприємстві. Підвищення ефективності проведення теоретичних занять має досягатися завдяки застосуванню засобів мультимедійного обладнання, демонстраційних презентацій, електронних підручників і навчальних ресурсів, розроблених викладачами спецдисциплін; використання інтерактивної дошки. У процесі підготовки і проведення теоретичних занять доцільним є використання активних, проблемних методів навчання, навчання у співробітництві.Застосування засобів і методів інформаційного навчання в процесі проведення лабораторно-практичних робіт сприятиме проведенню цікавих і насичених занять. Використання на заняттях виробничого навчання методів „мозкового штурму”, групової дискусії надасть навчально-виробничій діяльності майбутніх кваліфікованих робітників поліграфічного профілю продуктивного, творчого характеру. З-за обмеженої кількості офсетних машин вивчення технології друкарської справи переважно здійснюється за бригадною формою навчання. Майстер виробничого навчання має вибудувати послідовність оволодіння трудовими операціями і прийомами таким чином, щоб частина учнів відпрацьовувала їх безпосередньо на обладнанні, а частина – самостійно, використовуючи електронні освітні ресурси.Розвиток систем автоматизації в поліграфії, представлений на теперішній час на українському ринку множиною автоматизованих інформаційних систем управління поліграфічним підприємством як вітчизняного, так і зарубіжного виробництва – PrintEffect, Prinect, Annex, АСУ „Типографія”, зумовлює необхідність обов’язкового стажування майстрів виробничого навчання на сучасних поліграфічних підприємствах. Сучасні технологічні процеси друку ґрунтуються на комп’ютерних технологіях computer-to- …: CtF – computer-to-film (з комп’ютера на фотоплівку), CtP – computer-to-plane (з комп’ютера на друкарську форму), – computer-to-press (з комп’ютера в друкарську машину), – computer-to-print (з комп’ютера в друк). Навчання майбутніх кваліфікованих робітників поліграфічного профілю на заняттях виробничого навчання має здійснюватися за допомогою методичних рекомендацій, педагогічних програмних засобів щодо впровадження інноваційних виробничих технологій, розроблених викладачами спецдисциплін та майстрами виробничого навчання ПТНЗ.Висновок. Отже, використання засобів і методів інформаційних технологій у підготовці майбутніх кваліфікованих робітників поліграфічного профілю, завдяки значним дидактичним можливостям, здійсненню впливу на форми організації теоретичного і професійно спрямованого навчання, на активізацію, інтенсифікацію і ефективність навчально-виробничого процесу, дозволить підвищити рівень мотивації до оволодіння інтегрованими знаннями і вміннями, забезпечить реалізацію методичної системи розвитку професійних компетентностей.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Яцюк, Світлана, Марія Хомяк, Валентина Юнчик та Тетяна Чепрасова. "МЕТОДИКА ВИКОРИСТАННЯ ЦИФРОВИХ ОСВІТНІХ РЕСУРСІВ У ПРОЦЕСІ ПІДГОТОВКИ МАЙБУТНІХ УЧИТЕЛІВ ІНФОРМАТИКИ". Професіоналізм педагога: теоретичні й методичні аспекти, № 16 (9 грудня 2021): 15–25. http://dx.doi.org/10.31865/2414-9292.16.2021.246263.

Повний текст джерела
Анотація:
У дослідженні проаналізовано значення цифрових освітніх ресурсів, завдяки яким можна підвищувати якість навчально-виховного процесу та розв’язувати професійні задачі. Досліджено нормативні документи щодо використання цифрових освітніх ресурсів, а також питання державних стандартів повної загальної середньої освіти, які надають перевагу саме інформаційно-комунікаційній компетентності, в якій цифрова компетентність визнана ключовою. Зроблено аналіз літературних вітчизняних та закордонних джерел щодо тематики дослідження. Окреслено методику використання цифрових освітніх ресурсів майбутніми вчителями інформатики, розглянуто різні підходи щодо питань використання та створення цифрових освітніх ресурсів під час вивчення інформативних дисциплін. Висвітлено задачі, які необхідно виконувати вчителю для розвитку навчально-пізнавальної діяльності учнів. Розглянуто методику викладання курсу «Цифрові технології наукових досліджень в галузі освіти/педагогіки», проведено характеристику основних компетентностей майбутніх учителів в результаті вивчення даного курсу. Висвітлено методичну ціль читання лекцій, однією з яких є пізнавальна активність студентів, зацікавленість до навчального предмету та науки. Зроблено акцент на використанні спеціального обладнання при читанні лекцій та виконанні лабораторних робіт. Зроблено висновки та перспективи подальших досліджень.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Безручко, К. В., Л. І. Книш та С. В. Сінченко. "ЗАБЕЗПЕЧЕННЯ ТОЧНОСТІ ОПИСУ ХАРАКТЕРИСТИК ГРУП ФОТОПЕРЕТВОРЮВАЧІВ І ФОТОЕЛЕКТРИЧНИХ БАТАРЕЙ НА ОСНОВІ ЦІЛЬОВИХ ЕКСПЕРИМЕНТІВ НА КОМПЛЕКСНОМУ ОБЛАДНАННІ". Vidnovluvana energetika, № 3(62) (28 вересня 2020): 35–41. http://dx.doi.org/10.36296/1819-8058.2020.3(62).35-41.

Повний текст джерела
Анотація:
Підвищення ефективності перетворення енергії сонячного випромінювання в електроенергію сонячними елементами є основним завданням сонячної енергетики. А сучасний інтерес до проектування і експлуатації фотоелектричних батарей на основі сонячних елементів призводить до оцінювання їх основних експлуатаційних характеристик. Для контролю якості та ефективності сонячного елемента на виробництві або в лабораторних умовах необхідно точно виміряти його вольт-амперну характеристику, яка є основним джерелом інформації про параметри та характеристики сонячного елемента, таких як коефіцієнт корисної дії, максимальну потужність, струм короткого замикання, напругу холостого ходу, струм і напругу при максимальній потужності, коефіцієнт форми тощо. При проектуванні фотоелектричних батарей великих площ, наземного або космічного застосування, виникають труднощі у визначенні різних втрат, таких як комутація фотоелементів, їх не ідентичність, нерівномірності температури і освітленості фотоелектричних батарей. Зазвичай ці втрати враховують введенням у математичну модель різних коефіцієнтів. Експериментальні дослідження в напрямку більш точного визначення всіляких втрат в фотоелектричних батареях призводять до не окупності та ускладнення проведення таких експериментальних досліджень. Для проектування і випробування фотоелектричних батарей великих площин авторами пропонується підхід, який оснований на побудові вольт-амперних характеристик фотоелектричних батарей. Запропонований підхід дозволяє з визначенням воль-амперної характеристики окремого сонячного елемента або груп фотоелектричних перетворювачів, получити моделі при різних рівнях освітленості і температури з характерними параметрами фотоелектричних батарей будь-якої площі. Авторами проведено експериментальне підтвердження запропонованої методики, а також порівняння з іншими експериментальними дослідженнями. В методиці визначені перехідні коефіцієнти математичної моделі, а також розписані особливості застосування запропонованого підходу. Бібл.6, рис. 2.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Радкевич, Валентина Олександрівна. "Енергоефективність у професійній підготовці майбутніх фахівців будівельного профілю". New computer technology 8 (22 листопада 2013): 58–60. http://dx.doi.org/10.55056/nocote.v8i1.167.

Повний текст джерела
Анотація:
Стратегічним завданням Уряду нашої держави є стабілізація економіки, підвищення конкурентоспроможності вітчизняного виробництва на основі його глибокої модернізації. Однак заплановане створення в різних регіонах України нових технологічних укладів, модернових виробництв, перспективних секторів економіки неможливе без наявності компетентних кваліфікованих робітників, яких покликана готувати система професійно-технічної освіти. Саме тому ця система потребує державної підтримки й інвестицій в напрямі модернізації усіх її підсистем, приведення у відповідність до вимог сучасного енергоефективного виробництва.У зв’язку з цим, актуальним є оновлення змісту і засобів професійної підготовки майбутніх кваліфікованих робітників, спрямованих на оволодіння сучасними виробничими технологіями, що уможливлять їх здатність працювати на високотехнологічному обладнанні, використовувати в професійній діяльності енергоефективні матеріали.Зазначимо, що проблема заощадження енергетичних ресурсів України обговорюється політиками, науковцями, роботодавцями протягом 16 років. Однак у професійно-технічній освіті і до сих пір відсутні навчальні дисципліни, які б забезпечували формування у молодих робітників культури енергоефективної діяльності.З огляду на це в Інституті професійно-технічної освіти НАПН України було започатковано новий напрям досліджень, що стосується впровадження питань енергоефективності у первинну професійну освіту і професійне навчання кваліфікованих робітників на виробництві. Створений з цією метою Центр енергоефективності спрямовував свої зусилля на розробку інноваційного навчального курсу «Основи енергоефективності».Підґрунтям створення цього навчального курсу стали результати аналізу практики діяльності підприємств галузей народного господарства, в тому числі й будівельної, а також змісту навчальних планів і програм за якими здійснюється підготовка кваліфікованих робітників.Виявилося, що на підприємствах гальмується забезпечення заходів щодо: впровадження енергозберігаючих технологій, енергоефективного обладнання; зменшення енергоємності продукції; скорочення витрат ресурсів; контролю й управління витратами паливно-енергетичних ресурсів; участі робітничих кадрів у планових заходах підприємств з енергозбереження.Аналіз змісту професійно-технічної освіти показав, що недостатньою є популяризація і пропагування економічних, екологічних і соціальних переваг енергозбереження серед учнівської молоді ПТНЗ і виробничого персоналу підприємств. Було запропоновано до змісту професійного навчання кваліфікованих робітників вводити навчальний матеріал з енергоефективних технологій. Наприклад, для фахівців будівельного профілю доцільно вводити навчальний матеріал, що стосується комплексних енергосистем, вітроенергетики, сонячної енергетики, гідроенергетики, біоенергетики, геотермальної енергетики тощо. Цінною навчальною інформацією для учнів ПТНЗ є сучасні технології будівництва будинків із низькою енергетичною потребою, будинків типу «нуль енергії», будинків «плюс», пасивних будинків тощо.Енергозберігаюче будівництво потребує від кваліфікованих робітників широких компетенцій і знань інтегрованого характеру стосовно: будівельної фізики, систем опалення, вентиляції та акліматизації, технологій сонячної енергії, енергозберігаючої техніки тощо.Розуміючи, що енергозбереження є важливою народногосподарською проблемою, а отже має ґрунтуватися на науковій основі з використанням системного підходу, методів моделювання економічної доцільності використання енергоефективних технологій, матеріалів і обладнання у виробництві, а також альтернативних джерел енергії відбір змісту навчального курсу «Основи енергоефективності» здійснювався з урахуванням досягнень фундаментальної та галузевих наук. У даному випадку підґрунтям відбору змісту навчального матеріалу, що розкриває потенціал енергоефективності й енергозбереження слугували об’єкти, поля й види професійної діяльності кваліфікованого робітника будівельного профілю.У структуруванні навчального матеріалу використовувався модульний підхід, що дозволило утворити п’ять модулів:Загальний, у якому розглядаються питання щодо необхідності енергоресурсів для забезпечення якісного життя як окремої людини, так і суспільства в цілому; обґрунтовується актуальність розв’язання проблеми підвищення енергоефективності на основі економного використання енергоресурсів.Галузевий, у якому розглядаються характерні особливості енергоспоживання в галузі й, відповідно, розв’язання проблем заощадження енергоресурсів.Виробничий, у якому питання підвищення енергоефективності вирішується на рівні підприємства.Професійний, у якому питання підвищення енергоефективності вирішуються в межах професійного поля діяльності, на робочому місці.Побутовий, у якому розглядаються питання енергозбереження в побуті (в умовах ПТНЗ, дома).На вивчення цього курсу розробники відвели 20 годин, з них 6 годин на лабораторно-практичні роботи.Вивчення кваліфікованими робітниками будівельного профілю навчального курсу «Основи енергоефективності» сприятиме формуванню у них енергозберігаючої свідомості, активної громадянської позиції щодо прийняття екологічно й енергетично грамотних рішень у професійній діяльності.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Карпова, Л. Г. "ІНФОРМАЦІЙНО-ОСВІТНЄ СЕРЕДОВИЩЕ ЯК ЗАСІБ РОЗВИТКУ ОБДАРОВАНОЇ ДИТИНИ". Засоби навчальної та науково-дослідної роботи, № 51 (2018): 88–102. http://dx.doi.org/10.34142/2312-1548.2018.51.07.

Повний текст джерела
Анотація:
У роботі розкрито вплив інформаційно-освітнього середовища на розвиток обдарованої дитини (дослідження проведено на базі Лабораторії інформаційних технологій навчання). Інформаційно-освітнє середовище є важливим засобом розвитку обдарованих дітей, оскільки воно виступає основою діяльності закладу освіти, розширює його навчальні можливості і відповідає тенденціям розвитку сучасного суспільства (інформатизація, технізація тощо). Розкрито напрями діяльності Лабораторії інформаційних технологій навчання, спрямовані на розвиток обдарованих дітей (упровадження та інтеграція дистанційного навчання у навчально-виховний процес як невід’ємної складової сучасної освіти, організація дистанційного навчання, у тому числі в рамках взаємодії із закладами вищої освіти – дуальне навчання; створення та поповнення методично-інформаційних ресурсів школи-інтернату, їх технічна підтримка; забезпечення стійкого функціонування та розвитку комп’ютерної мережі у школі, використання нових засобів інформаційних технологій; програмно-технічний, методичний та організаційний супровід навчальних комп’ютерних класів та комп’ютерного обладнання предметних кабінетів; забезпечення представництва школи у світовому інформаційному просторі (сайт школи, учительські блоги); підтримка проектів, які передбачають використання нових інформаційних технологій та мережі Інтернет; фінансування програмних засобів навчального призначення; дослідження ефективності використання програмних засобів тощо). Визначено вимоги до інформаційно-освітнього середовища та організації роботи обдарованих учнів, а саме: сформованість інформаційної культури і компетентність суб’єктів середовища, його орієнтація на моніторинг розвитку обдарованості дитини, гармонізація зв’язків між суб’єктами освітнього процесу (батьками, учителями, учнями), посилення зв’язків школи із зовнішнім середовищем (насамперед, із закладами вищої освіти). Отже, інформаційно-освітнє середовище охоплює інформаційний та освітньо-розвивальний простір, інтегрує інформацію, отриману з різних джерел, сприяє розвитку творчості, самостійності й активності обдарованих учнів, їхніх пізнавальних процесів, формуванню мотивації до саморозвитку, умінь спілкуватися і взаємодіяти з людьми та вдумливо працювати з новітніми технічними пристроями.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Zhuk, Y. M., D. G. Ivanchenko та S. O. Vasyuk. "СПЕКТРОФОТОМЕТРИЧНЕ ВИЗНАЧЕННЯ (7-Н-БУТИЛ-3-МЕТИЛКСАНТИН-8-ІЛ)ДІЕТИЛАМІНОЕТИЛАМОНІЙ ОКСАЛАТУ". Фармацевтичний часопис, № 4 (17 лютого 2022): 24–29. http://dx.doi.org/10.11603/2312-0967.2021.4.12705.

Повний текст джерела
Анотація:
Мета роботи. Розробка та валідація УФ-спектрофотометричної методики кількісного визначення (7-н-бутил-3-метилксантин-8-іл)діетиламіноетиламоній оксалату. Матеріали і методи. Об’єкт дослідження – субстанція (7-н-бутил-3-метилксантин-8-іл)діетиламіноетиламонію оксалату. Розчинник – вода очищена. Аналітичне обладнання: спектрофотометр Specord 200 (Analytic Jena AG, Німеччина), ваги лабораторні електронні RADWAG XA 210.4Y, баня ультразвукова Sonorex Digitec DT100H, мірний посуд класу А. Результати й обговорення. Для розробки методики кількісного визначення зазначеної речовини обрано смугу, яка спостерігається при 265 – 325 нм з максимумом світлопоглинання при 296 нм. Згідно вимог ДФУ було розраховано прогноз повної невизначеності методики, а також проведено валідацію методики за такими валідаційними характеристиками як діапазон застосування, лінійність, прецизійність, правильність та робасність. Діапазон застосування методики лежить у межах 75-125%. Розраховані числові показники лінійності свідчать про те, що методика є лінійною в усьому діапазоні застосування методики (r = 0,9999). Розрахований довірчий інтервал ∆х не перевищує максимально припустиму невизначеність аналізу ΔAs, що свідчить про те, що методика є точною на рівні збіжності. Доведено, що систематична похибка δ, яка вноситься нестабільністю аналізованого розчину, не перевищує критичного значення maxδ, тобто розчин залишається стабільним протягом щонайменше 1 год. Висновок. Розроблено та валідовано УФ-спектрофотометричну методику кількісного визначення (7-н-бутил-3-метилксантин-8-іл)діетиламіноетиламоній оксалату.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

A.M., Andrieiev, and Tykhonska N.I. "METHODS OF DEVELOPMENT OF EXPERIMENTAL SKILLS IN STUDENTS IN THE CONDITIONS OF DISTANCE FORM OF LEARNING." Collection of Research Papers Pedagogical sciences, no. 90 (November 4, 2020): 22–27. http://dx.doi.org/10.32999/ksu2413-1865/2020-90-4.

Повний текст джерела
Анотація:
2091У статті розглянуто проблему організації експериментальної діяльності учнів з метою розвитку екс-периментаторських умінь за умов дистанційної форми навчання. Експериментаторськими автори вва-жають уміння, якими має володіти учень для проведення самостійних досліджень фізичних об’єктів. Важливою складовою частиною розвитку цих умінь є практична діяльність учнів із використанням від-повідного фізичного обладнання. Складність виконання цієї умови підсилюється за дистанційної форми навчання (наприклад, під час карантину в закладах освіти). Як варіант розв’язання зазначеної проблеми дистанційного навчання запропоновано використовувати дидактичні методи, що виявляють найбільші компенсаторні можливості для розвитку в учнів експериментаторських умінь з фізики. Як обґрунту-вання цієї ідеї вказано на дослідження психологів та дидактів щодо можливої заміни одного сполучен-ня дидактичних методів іншим для досягнення певної мети навчання. Описано авторські методи, що мають такі компенсаторні можливості. Цими методами є: використання наочних фізичних задач; вико-ристання «домашніх» експериментальних, винахідницьких та конструкторських задач; використання віртуальних лабораторій та електронних симуляторів фізичних дослідів. Зазначені методи виявляють значні компенсаторні можливості для розвитку в учнів експериментаторських умінь з фізики та не потребують виконання експерименту у фізичній лабораторії. Наголошується, що набуття досвіду вико-ристання цих методів має бути обов’язковим компонентом професійної підготовки майбутніх учителів фізики. У статті наведено авторські приклади наочних фізичних задач, що можна використовувати для перевірки рівня сформованості в учнів знань та вмінь, необхідних для успішної експериментальної діяльності; експериментальні, винахідницькі та конструкторські задачі, що не потребують складно-го обладнання; вказано роль електронних симуляцій у розвитку експериментаторських умінь учнів. Подальші дослідження будуть пов’язані з розробленням циклу експериментальних задач, структурова-них за розділами фізики, що можна пропонувати учням також в умовах дистанційної форми навчання. The article considers the problem of organizing experimental activities of students in order to develop experimental skills in terms of distance learning. Experimental authors consider the skills that a student should have to conduct independent research of physical objects. An important component of the development of these skills is the practical activities of students using appropriate physical equipment. The complexity of fulfilling this condition is exacerbated by distance learning (for example, during quarantine in educational institutions). As a variant of solving this problem of distance learning, it is proposed to use didactic methods that reveal the greatest compensatory opportunities for the development of students’ experimental skills in physics. As a substantiation of this idea the research of psychologists and didactics concerning possible replacement of one combination of didactic methods by another for achievement of the certain purpose of training is specified. The author’s methods having such compensatory possibilities are described. These methods are: the use of visual physical tasks; use of “home” experimental, inventive and design tasks; use of virtual laboratories and electronic simulators of physical experiments. These methods reveal significant compensatory opportunities for the development of students’ experimental skills in physics and do not require an experiment in a physical laboratory. It is emphasized that gaining experience in using these methods should be a mandatory component of the training of future physics teachers. The article presents the author’s examples of visual physical problems that can be used to test the level of formation of students’ knowledge and skills necessary for successful experimental activities; experimental, inventive and design tasks that do not require complex equipment; the role of electronic simulations in the development of students’ experimental skills is indicated. Further research will be related to the development of a series of experimental problems structured by sections of physics, which can be offered to students also in terms of distance learning.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Ladyka, Volodymyr, Yuriy Sklyarenko, Yuliya Pavlenko та Alyona Malikova. "ПОРІВНЯЛЬНА ОЦІНКА МОЛОЧНОЇ ПРОДУКТИВНОСТІ КОРІВ УКРАЇНСЬКОЇ БУРОЇ МОЛОЧНОЇ ПОРОДИ РІЗНИХ ГЕНОТИПІВ ЗА β-КАЗЕЇНОМ". Bulletin of Sumy National Agrarian University. The series: Livestock, № 3 (42) (30 листопада 2020): 3–7. http://dx.doi.org/10.32845/bsnau.lvst.2020.3.1.

Повний текст джерела
Анотація:
В останні роки суттєво зросли вимоги до якості молочної продукції, що у свою чергу вимагає використання в селекції генетичних маркерів і пошуку їхнього зв'язку з молочною продуктивністю тварин. Дослідження впливу генотипу корів української бурої молочної породи за бета-казеїном на показники їхньої молочної продуктивності проводили в племінному заводі Державного підприємства «Дослідне господарство Інституту сільського господарства Північного Сходу НААН» Сумського району, Сумської області на поголів’ї української бурої молочної породи. Визначення поліморфізму гена бета-казеїну проводили в генетичній лабораторії Інституту фізіології ім. Богомольця НАН. Молочну продуктивність визначали за щомісячними контрольними доїннями. Вміст жиру та білку в молоці визначали у лабораторії Інституту тваринництва НААН на обладнанні фірми Bently. Тварини з генотипом А1А2 та А2А2 становили майже 90% досліджуваного поголів’я. За результатами досліджень нами встановлено, що тварини з бажаним генотипом А2А2 не поступаються за величиною надою тваринам з гетерозиготним генотипом А1А2 та гомозиготним – А1А1 як за першою, третьою, так і кращою лактаціями. За першою та кращою лактацією за вмістом жиру в молоці тварини з генотипом А2А2 поступалися тваринам інших досліджуваних генотипів, а за вмістом білка в молоці переважали їх. За кількістю молочного жиру корови з бажаним генотипом А2А2 поступалися тваринам з іншими генотипами за першою лактацією, але переважали їх за кількістю молочного білка. За кращою лактацією тварини з генотипом А2А2 переважали інших як за кількістю молочного жиру так і білка. Отримані результати підтверджують раніше отримані нами результати, що використання бугаїв-плідників з генотипом бета-казеїну А2А2 має покращувати господарсько-корисні ознаки нащадків, порівняно з бугаями інших генотипів (А1А2 та А1А1). Це буде сприяти підтриманню бажаного рівня молочної продуктивності та якості молока.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Vazhynskyi, Serhii, Igor Fedyuk та Andrii Chernukha. "Вдосконалення протипожежного захисту місць зберігання боєприпасів та вибухових речовин". Problems of Emergency Situations, № 33 (2021): 278–89. http://dx.doi.org/10.52363/2524-0226-2021-33-22.

Повний текст джерела
Анотація:
Визначені основні параметри системи пожежогасіння арсеналів, складів зберігання боєприпасів та вибухових речовин та шляхи її удосконалення. Останнє дало змогу провести розрахунки кількості та перелік елементів модернізації системи пожежогасіння. Запропоновано функціональну модель модернізованої автоматичної системи пожежогасіння на складах та арсеналах, яка повинна включати комплекс заходів щодо створення додаткових водоймищ, інженерного обладнання території місць зберігання вибухопожеженебезпечних речовин та технічних пристроїв автоматичного пожежогасіння з підвищеними витратами вогнегасної речовина, що провинні працювати в автономному режимі. Особливостями роботи є опис створеної експериментальної установки на випробу-ванні якої у на лабораторних умовах було підтверджено ефективність запропонованої функціональної моделі модернізованої автоматичної системи пожежогасіння. Аналіз попередніх результатів розрахунків та випробувань підтверджують, що протипожежний захист вибухонебезпечних речовин у місцях їх постійного або тимчасового зберігання, обслуговування та підготовки до транспортування необхідно удосконалити шляхом модернізації системи вцілому. А саме створенням додаткових земельних укріплень, пожежних водоймищ на території зберігання, застосуванням модернізованих автоматизованих систем пожежогасіння в яких використовувати порохові акумулятори тиску. На етапі виникнення пожежі система автоматичного пожежогасіння повинна забезпечити збільшенні витрати води на 30%. Надані пропозиції щодо створення умов для ліквідації пожежі на складах і арсеналах при роботах пов’язаних зі зберіганням або утилізацією вибухопожеженебезпечних виробів та речовин термін зберігання та застосу-вання яких закінчився шляхом створення ї застосування резервних пожежних водоймищ на небезпечній території. Визначені напрямки удосконалення системи сигналізації про виникнення пожежі та запропоновано використання автоматичної системи пожежогасіння, яка є енергонезалежною, завадостійкою, простою в експлуатації
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Фоміна, Л. В., та Н. А. Наливайко. "РОЗВИТОК ПЕДАГОГІЧНОГО ПОТЕНЦІАЛУ МЕДИЧНИХ ЗАКЛАДІВ ВИЩОЇ ОСВІТИ". Педагогіка та психологія, № 62 (серпень 2019): 180–92. http://dx.doi.org/10.34142/2312-2471.2019.62.20.

Повний текст джерела
Анотація:
У статті визначено основні поняття дослідження на основі аналізу різних джерел та праць науковців. Проаналізовано визначення педагогічного потенціалу медичного закладу вищої освіти (МЗВО) та визначено різні аспекти підвищення педагогічного потенціалу, зокрема поліпшення педагогічного потенціалу МЗВО є впровадження сучасних методів викладання та навчання, які представлені в різних галузях медицини або в поєднанні з іншими клінічними предметами, такими, як: моделювання або перевернуті моделі навчання в аудиторії. У роботі надано авторське розуміння визначення педагогічного потенціалу МЗВО як багатофакторного утворення, яке включає: традиції відповідного навчального закладу з чіткими правилами педагогічної, наукової та навчальної діяльності; матеріально-технічне забезпечення освітнього процесу, який ґрунтується на використанні цифрових засобів навчання та комунікації; професійний педагогічний потенціал педагога як рушійної сили у процесі передачі знань та умінь у медичній справі; готовність адміністрації МЗВО до модернізації освітнього процесу в контексті постійних змін та нововведень у медичну справу; гуманістична спрямованість у процесі підготовки майбутніх фахівців медичної справи. У дослідженні визначено важливу роль педагогічного потенціалу медичного закладу вищої освіти у процесі саморозвитку здобувачів освіти через: сукупність сформованих традицій, реальних можливостей і тенденцій розвитку медичної освіти; варіативність і можливість безперервного інтенсивного професійноособистісного зростання майбутнього лікаря протягом всієї професійної діяльності в сфері охорони здоров’я; інтеграція теорії і практики, персоніфікована в педагогічних ресурсах викладачів, які успішно поєднують наукову, викладацьку діяльність і медичну практику, реалізовану на клінічних базах; розвиток інноваційного і технологічного середовища науково-дослідних центрів, лабораторій, наукоємного обладнання та інструментарію сучасного ЗВО; активне впровадження інформаційних освітніх технологій як джерела нових знань у галузі медицини для професійно мобільного затребуваного кваліфікованого фахівця.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Bahrii, M. "РОЗРОБЛЕННЯ ТА ДОСЛІДЖЕННЯ ЕКРАНУЮЧИХ ВЛАСТИВОСТЕЙ СПЕЦОДЯГУ ДЛЯ ЗАХИСТУ ВІД ЕЛЕКТРОМАГНІТНИХ ВПЛИВІВ". Системи управління, навігації та зв’язку. Збірник наукових праць 4, № 56 (11 вересня 2019): 118–21. http://dx.doi.org/10.26906/sunz.2019.4.118.

Повний текст джерела
Анотація:
Проведено аналіз спеціального одягу, що використовується в Україні для захисту від електромагнітних впливів для працівників енергетичної галузі та експлуатаційників виcокочастотного електронного обладнання. В результаті аналізу існуючого спеціального захисного одягу, нормативної бази та експериментальних досліджень обґрунтовано доцільність проектування та розробки текстильних матеріалів для виготовлення спеціального захисного одягу з заданими екрануючими властивостями. Визначено критерії, яким повинен відповідати захисний одяг, а саме: достатні коефіцієнти екранування, прийнятні ергономічні характеристики, підвищена зносостійкість, збереження екрануючих властивостей в процесі експлуатації. В роботі у якості екрануючої субстанції використано збагачену залізну руду, отриману у результаті флотації на Полтавському гірничозбагачувальному комбінаті. В лабораторних умовах розроблено технологію нанесення екрануючої субстанції на текстильний матеріал та проведено випробовування захисних властивостей текстильного матеріалу з заданими екрануючими властивостями. Дослідження виконувалися на частоті мобільного зв’язку (1,8 ГГц) за допомогою каліброваного вимірювача щільності потоку енергії П3-31 та на частоті 50 Гц за допомогою каліброваного вимірювача напруженості електричного та магнітного поля П3-50. Для промислової частоти визначався коефіцієнт екранування магнітної складової електромагнітного поля. Визначено коефіцієнти екранування. Розроблено технологію виготовлення костюму з екрануючими властивостями. В технологічному процесі передбачено конструктивно з’ємні захисні елементи, що дає можливість в процесі експлуатації зберегти захисні властивості після прання. Перевагою розробленої конструкції є можливість змінювати ступені захисту в залежності від конкретних виробничих умов. Захисні елементи легко знімаються, що забезпечує можливість прання та хімічного чищення без втрати захисних властивостей спецодягу, а також за рахунок збільшення кількості шарів захисних елементів змінювати ступені захисту одягу для конкретних виробничих умов.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Зелений, П. О., та О. С. Зав'ялов. "ІДЕНТИФІКАЦІЯ ПІПЕКУРОНІЮ ЗА СХЕМОЮ ЗАСТОСУВАННЯ АНАЛІТИЧНИХ МЕТОДІВ ДОСЛІДЖЕННЯ ЗАЛЕЖНО ВІД ЇХНЬОЇ СЕЛЕКТИВНОСТІ (SWGDRUG)". Криміналістичний вісник 35, № 1 (18 червня 2021): 112–25. http://dx.doi.org/10.37025/1992-4437/2021-35-1-112.

Повний текст джерела
Анотація:
Мета статті полягає в комплексному аналізі теоретичних і практичних аспектів ідентифікації піпекуронію відповідно до схеми застосування аналітичних методів дослідження, зумовленої їхньою селективністю, та розробленні методики дослідження стандартного зразка піпекуронію фізико-хімічними методами для підтвердження аргументованості, достовірності, відтворюваності результатів його ідентифікації та достатності для підготовки науково обґрунтованого висновку судового експерта. Методологія. Достовірність отриманих результатів і висновків забезпечено використанням комплексу загальнонаукових і спеціальних методів дослідження. Методи аналізу, синтезу, порівняння, узагальнення дозволили проаналізувати інформаційні джерела за напрямом дослідження, а також аналітичну схему комплексу фізико-хімічних методів дослідження, рекомендовану SWGDRUG. Апробаційне аналітичне дослідження стандартного зразка піпекуронію із застосуванням методів експерименту, аналізу, порівняння, а також спеціальних фізичних, хімічних, статистичних методів дослідження дозволило апробувати комплекс фізико-хімічних методів дослідження цієї речовини й дійти висновків щодо достатності для цілей дослідження певних їх видів та окреслити напрями подальших науково-дослідних розвідок. Наукова новизна. В умовах лабораторії Державного науково-дослідного експертно-криміналістичного центру МВС України апробовано аналітичну схему фізико-хімічних методів дослідження для ідентифікації сильнодійних та отруйних лікарських засобів, рекомендовану SWGDRUG, і запропоновано методику дослідження стандартного зразка піпекуронію фізико-хімічними методами відповідно до схеми застосування аналітичних методів дослідження, зумовленої їхньою селективністю. Висновки. Проаналізовано рекомендації SWGDRUG стосовно комбінації аналітичних методів і cхарактеризувано мінімальні вимоги для їх застосування. При цьому наголошено, що в контексті достатності для ідентифікації сильнодійних і отруйних лікарських засобів, зокрема важколетких речовин, експертні лабораторії, зважаючи на фізико-хімічні властивості таких речовин і наявне в експертних установах країни аналітичне обладнання, мають самостійно визначати комбінацію методів, щоб забезпечити достовірність результатів аналітичних досліджень. Засвідчено комплексним аналітичним дослідженням стандартного зразка піпекуронію можливість його ідентифікації за допомогою методів: якісних хімічних реакцій (із найбільш доступними реактивами, такими як: Маркі, родонід кобальту, Драгендорфа, Вагнера, йодоплатинат калію, Несслера), ІЧ-спектрометрії, мас-спектрометрії, високоефективної рідинної хроматографії з мас-спектрометричним та коронорозрядним детектуванням. Аргументовано доцільність комбінування методів, що дозволяє реалізовувати застосування аналітичної схеми методів дослідження, рекомендованої SWGDRUG. Констатовано необхідність, з огляду на те, що використання методів категорії B не є загальнодоступним, розроблення процесу дериватизації для дослідження похідних піпекуронію загальнодоступними методами: газовою хроматографією з мас-селективним детектуванням і тонкошаровою хроматографією з використанням різних видів сорбентів. Узагальнено результати, отримані під час апробації комплексного аналітичного дослідження піпекуронію за рекомендованою міжнародною схемою, і започатковано певні пропозиції, які можуть стати підґрунтям методики дослідження стандартного зразка піпекуронію фізико-хімічними методами для підтвердження аргументованості, достовірності, відтворюваності результатів його ідентифікації та достатності для підготовки науково обґрунтованого висновку судового експерта.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Іванова, Я. О., І. В. Федорін та О. В. Вдовиченко. "ОГЛЯД СУЧАСНИХ ТЕХНОЛОГІЙ ДЛЯ ДІАГНОСТИКИ ЯКОСТІ СНУ". Біомедична інженерія і технологія, № 6 (17 листопада 2021): 1–10. http://dx.doi.org/10.20535/2617-8974.2021.6.230253.

Повний текст джерела
Анотація:
Реферат – Сон - це складний психофізіологічний стан, який безпосередньо визначає психічну і біологічну активність людини. Важливість сну обумовлена в першу чергу його необхідністю для організму. Сон – унікальний механізм відновлення та адаптації до умов життя. Одна безсонна ніч знижує стійкість імунітету до інфекційних захворювань і швидкість реакції на зовнішні імпульси. У віддаленій перспективі постійний дефіцит і зниження якості сну підвищують ризик розвитку серцево-судинних і ендокринних захворювань. Золотий стандарт об'єктивної оцінки сну, полісомнографія, зазвичай виконується в лабораторії сну, і дані вручну оцінюються фахівцем зі сну, що робить цей процес незручним, дорогим і менш придатним для довготривалих досліджень. Тому існує потреба в перевіреному недорогому обладнанні для оцінки сну, яке було б зручним і точним. З клінічної та дослідницької точки зору можливість отримання даних про безсоння, може персоналізувати рішення про лікування та оптимізацію здоров'я, а також поліпшити фенотипування захворювання. Мета даної статті – дослідження сучасних методів аналізу якості сну, визначення їх переваг та недоліків, та пошук альтернативних засобів для моніторингу сну. В роботі наведені результати порівняльного аналізу технологій для відстеження сну, а також запропоновано альтернативу полісомнографії, яка може використовуватися для надійного та довгострокового моніторингу. Зокрема, проаналізовані роботи, що вивчали застосування біорадара як засобу аналізу фізіологічного стану людини. Біорадар - це новий вид радіолокатора, що поєднує технології біомедичної інженерії та радіолокації. Його ціль – безконтактне виявлення життєво важливих ознак через неметалеві перешкоди, такі як одяг та стіни, передаючи спеціальну електромагнітну хвилю. Дана технологія може стати кроком вперед в індустрії відстеження сну.Ключові слова: полісомнографія, моніторинг сну, актиграфія, дистанційний моніторинг, біорадари.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Moroz, A. "3D МОДЕЛЮВАННЯ ГІДРОМЕХАНІЧНИХ ХАРАКТЕРИСТИК МАЛИХ ГІДРОЕЛЕКТРОСТАНЦІЙ". Vidnovluvana energetika, № 2(61) (28 червня 2020): 70–79. http://dx.doi.org/10.36296/1819-8058.2020.2(61).70-79.

Повний текст джерела
Анотація:
Енергетичне обладнання малих гідроелектростанцій, а саме гідротурбіни, повинно надійно працювати в умовах тривалої експлуатації, мати високий ККД та мати змогу упродовж більшого періоду життєвого циклу підтримувати високу сталу потужність. В результаті тривалого вдосконалення конструкцій створено ряд типів гідротурбін, які найкращим чином відповідають зазначеним вимогам. Проте залишаються недостатньо дослідженими робочі процеси гідротурбін з урахуванням можливих природних та технічних впливів. Також достатньо складно врахувати раптову зміну швидкості річкового потоку, наявність вихорів на виході з турбіни та ін. У цій роботі досліджено можливості застосування сучасного програмного забезпечення для моделювання робочих режимів і енергетичних характеристик малих гідроелектростанцій з використанням експериментальних і довідникових даних. Існують різні види характеристик гідромашин, які отримані при проведені досліджень у лабораторних умовах та відображають у графічному вигляді залежність одних робочих параметрів від інших. Найбільше розповсюдження у гідроенергетиці отримали приведені універсальні характеристики, які будуються для одиничних значень визначених величин: D=1м та H=1м. Моделювання нестаціонарних електромеханічних процесів гідроенергетичного агрегату ґрунтується на рішенні диференційного рівняння руху складових частин з використанням механічних характеристик турбіни, генератора і електричного навантаження. Використання сукупності нелінійних характеристик у процесі вирішення диференційного рівняння руху вимагає їх уявлення безперервною поверхнею, яка може бути ефективно реалізовано за допомогою тривимірних 3D графіків та апроксимуючих сплайн-функцій що входять до пакету прикладних програм для числового аналізу Matlab. У статті наведено приклад коду та опис головних команд, які дають змогу будувати та аналізувати різні гідромеханічні та енергетичні характеристики агрегатів для проведення досліджень робочих режимів малих гідроелектростанцій. Знаходження кількісних значень кривих, які утворюються на перетині двох поверхонь, дає змогу дослідити та обґрунтувати закони управління гідроенергетичними турбінами з урахуванням природних особливостей річкового потоку, що було неможливо здійснити досі. Бібл. 14, рис. 9.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Гайдукевич, С. В., Н. П. Семенова та Я. А. Леськів. "ОСОБЛИВОСТІ SMART-ТЕХНОЛОГІЙ НА ПРИКЛАДІ АВТОМАТИЗАЦІЇ ЖИТЛОВОГО БУДИНКУ". Таврійський науковий вісник. Серія: Технічні науки, № 1 (8 квітня 2022): 12–21. http://dx.doi.org/10.32851/tnv-tech.2022.1.2.

Повний текст джерела
Анотація:
У статті розглядаються особливості smart-технологій у процесі автоматизації житлового будинку з метою підвищення рівня життя людей. На прикладі лабораторної роботи з дисципліни «Віртуальні управляючі пристрої» розроблено та виготовлено систему керування електропристроями житлового будинку. На базі цієї системи здобувачі вищої освіти виконують автоматизацію змодельованого житлового чи виробничого приміщення, що сприяє підвищенню інтелектуального розвитку майбутніх спеціалістів і реалізації проєктів щодо їх підготовки в галузі проєктування систем електрифікації, автоматизації та енергопостачання на базі сучасних smart-технологій, здатності розробляти й реалізовувати програми для точного функціонування різних пристроїв. Розроблена система охоплює інформаційно-управляючі та комунікаційні технології і системи, сучасну елементну базу, програмне забезпечення для створення централізованої мережі, що дає можливість виконувати дистанційне керування електричними пристроями будівлі, контролювати параметри в будь-якій точці приміщення та їх моніторинг для забезпечення точного й надійного підтримання контрольованих параметрів з урахуванням їхніх зовнішніх і внутрішніх змін. Ця система, яка розроблена й виготовлена на базі «розумних» пристроїв, повністю в автоматичному режимі керує всіма типами виконавчих механізмів спроєктованої здобувачами вищої освіти будівлі із суворим лімітованим дотриманням усіх показників, що покращує функціональні можливості електрообладнання, підвищує надійність роботи, забезпечує необхідну точність контрольованих параметрів. За результатами досліджень встановлено, що використання smart-технологій і запропонованого алгоритму роботи електричного обладнання дає змогу знизити використання теплової та електричної енергії, налагодити роботу всіх пристроїв так, щоб вони працювали злагоджено та взаємопов’язано, що приводить до розширення меж самодіагностування, мінімізації втрат і до надійності. Таку розроблену й виготовлену автоматичну систему можна використовувати не лише для вироблення навичок майбутніми фахівцями у сфері проєктування, а й для впровадження у практику, тобто автоматизації як у житлових будинках (для створення комфортних умов проживання людей), так і у виробничих приміщеннях.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Чернявська, Т. О., та Н. О. Ізмайлова. "ЯКІСНИЙ СКЛАД МОЛОКА КОРІВ УКРАЇНСЬКОЇ ЧЕРВОНО-РЯБОЇ МОЛОЧНОЇ ПОРОДИ". Вісник Полтавської державної аграрної академії, № 3 (27 вересня 2019): 111–16. http://dx.doi.org/10.31210/visnyk2019.03.14.

Повний текст джерела
Анотація:
У статті проаналізовано результати досліджень вітчизняних та зарубіжних науковців щодо по-родних особливостей якісного складу молока корів. Встановлено, що кожній породі характерні певні особливості вмісту в молоці жиру, білка та інших складових. Велику увагу науковці приділяють дос-лідженню вмісту в молоці соматичних клітин, які є показником захворювання корів на мастит. Тва-рини різних порід мають різні показники їхнього вмісту, а відповідно і стійкість до цього захворю-вання. Тому постійний моніторинг цих ознак – важливий захід, спрямований на підвищення конку-рентоспроможності молочного скотарства. Саме цим і обумовлені наші дослідження на поголів’ї української червоно-рябої молочної породи, яке утримується в ДП «ДГ АФ «Надія» ІСГПС НААН». Якісні показники визначали в лабораторії Інституту тваринництва Національної академії аграрних наук України на обладнанні фірми Bentley. В результаті проведених досліджень встановлено, що тварини української червоно-рябої молочної породи мають низький вміст жиру та білка в молоці, що залежить від віку корів. Корови-первістки поступалися за вмістом білка, казеїну, сухої речовини та сухого знежиреного молочного залишку повновіковим тваринам. Середній вміст соматичних клітин у молоці відповідав фізіологічній нормі. З віком у тварин збільшується вміст соматичних клітин. Між окремими якісними показниками молока встановлений зв'язок різного напряму та рівня достовірності. Позитивний зв'язок встановлений між вмістом у молоці жиру та білка, жиру та сухої речовини, білка та казеїну, білка та сухого знежиреного молочного залишку. З віком сила зв’язку збільшується. Між кількістю соматичних клітин у молоці та вмістом окремих його компо-нентів встановлений достовірний негативний кореляційний зв'язок. Подальше вдосконалення україн-ської червоно-рябої молочної породи повинно бути спрямоване на покращення якісного складу молока.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Zarivna, N. O. "ВИВЧЕННЯ РЕЖИМІВ ЗГУЩЕННЯ ПРИ ОДЕРЖАННІ ГУСТОГО ЕКСТРАКТУ ЧЕБРЕЦЮ ПОВЗУЧОГО". Medical and Clinical Chemistry, № 4 (5 лютого 2020): 140–46. http://dx.doi.org/10.11603/mcch.2410-681x.2019.v.i4.10852.

Повний текст джерела
Анотація:
Вступ. Одним із пріоритетних напрямків сучасної фармації є створення нових лікарських засобів рослинного походження. Лікарська рослинна сировина і рослинні препарати при правильному дозуванні практично не токсичні, не шкідливі, відносно доступні та ефективні. Актуальною лікарською рослинною сировиною, що характеризується високим складом і вмістом біологічно активних речовин, є трава чеб­рецю повзучого. Чебрець повзучий (Thymus serpyllum) родини ясноткові (Lamiaceae) розповсюджений на території України в дикому вигляді та широко культивується. Як відомо, препарати на основі досліджуваної сировини призначають при захворюваннях дихальних шляхів – бронхітах, запаленні легень, кашлюку тощо. Фармацевтична розробка передбачає отримання густого екстракту чебрецю повзучого. Мета дослідження – підібрати режими згущення та визначити оптимальні умови при розробці технології отримання густого екстракту чебрецю повзучого. Методи дослідження. Під час дослідження було використано таке обладнання: насос глибокого вакууму VT6 з максимальним розрідженням до 0,85 кгс/см2 із вакуумметром ОБВ 1-100 з діапазоном вимірювання від 0 до -1 кгс/см2; .лабораторний роторний випарювач LABOROTA 4001, валкову дробарку, сита, вагу КП4, екстрактор, нержавіючу стальну чашу, термометр. Результати й обговорення. У результаті проведеного експерименту вибрано оптимальну температуру упарювання – 65–70 °С, визначено час упарювання – 4–4,5 год і одержано густий екстракт чебрецю повзучого, який являє собою густу в’язку масу, що не виливається з тари, а розтягується в нитки і знову зливається в суцільну масу зі специфічним запахом та задовільними фармакотехнологічними показниками. Враховуючи те, що густий екстракт – це складна фізико-хімічна система, яка складається з фенольних сполук, що є термолабільними, підвищення температури понад 70 °С призводило до зниження вмісту флавоноїдів, які обрано маркерами якості досліджуваного екстракту. Висновок. Вивчено режими згущення при отриманні густого екстракту чебрецю повзучого, вибрано оптимальні умови одержання досліджуваного екстракту, які полягають у випаровуванні під вакуумом при температурі 60–70 °С і залишковому вакуумі 0,8 кгс/см2. Як результат отримано густий екстракт чеб­рецю повзучого із задовільними показниками якості, що дозволить у майбутньому розробити лікарський засіб належної якості.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Гриб’юк, Олена Олександрівна. "Перспективи впровадження хмарних технологій в освіті". Theory and methods of e-learning 4 (17 лютого 2014): 45–58. http://dx.doi.org/10.55056/e-learn.v4i1.368.

Повний текст джерела
Анотація:
Будь-яка, навіть найефективніша, логічно обґрунтована і корисна інновація (чи то теорія геліоцентризму Коперника або «походження видів» Дарвіна), якщо вона суперечить існуючій на даний момент догмі, приречена на ірраціональний скепсис, тривале і навмисне замовчування, обумовлене специфікою суспільних процесів і включеність людської психіки в ці процеси.Томас Семюел Кун Існуюча система освіти перестала влаштовувати практично всі держави світу і піддається активному реформуванню в наші дні. Перспективним напрямом використання в навчальному процесі є нова інформаційна технологія, яка дістала назву хмарні обчислення (Cloud computing). Концепція хмарних обчислень стала результатом еволюційного розвитку інформаційних технологій за останні десятиліття.Без сумніву, результати досліджень російських вчених: А. П. Єршова, В. П. Зінченка, М. М. Моісєєва, В. М. Монахова, В. С. Лєдньова, М. П. Лапчика та ін.; українських вчених В. Ю. Бикова, В. М. Глушкова, М. І. Жалдака, В. С. Михалевича, Ю. І. Машбиця та ін.; учених Білорусії Ю. О. Бикадорова, А. Т. Кузнєцова, І. О. Новик, А. І. Павловського та ін.; учених інших країн суттєво вплинули на становлення та розвиток сучасних інформаційних технологій навчання [1], [2], але в організації освітнього процесу виникають нові парадигми, наприклад, хмарні обчислення. За оцінками аналітиків Гартнер груп (Gartner Group) хмарні обчислення вважаються найбільш перспективною стратегічною технологією майбутнього, прогнозується міграція більшої частини інформаційних технологій в хмари на протязі найближчих 5–7 років [17].Згідно з офіційним визначенням Національного інституту стандартів і технологій США (NIST), хмарні обчислення – це система надання користувачеві повсюдного і зручного мережевого доступу до загального пулу інформаційних ресурсів (мереж, серверів, систем зберігання даних, додатків і сервісів), які можуть бути швидко надані та гнучко налаштовані на його потреби з мінімальними управлінськими зусиллями і необхідністю взаємодії з провайдером послуг (сервіс-провайдером) [18].У США в університетах функціонують віртуальні обчислювальні лабораторії (VCL, virtual computing lab), які створюються в хмарах для обслуговування навчального та дослідницьких процесів. В Південній Кореї запущена програма заміни паперових підручників для середньої школи на електронні, які зберігаються в хмарі і доступні з будь-якого пристрою, який може бути під’єднаний до Інтернету. В Росії з 2008 року при Російській академії наук функціонує програма «Університетський кластер», в якій задіяно 70 університетів та дослідних інститутів [3], в якій передбачається використання хмарних технологій та створення web-орієнтованих лабораторій (хабів) в конкретних предметних галузях для надання принципово нових можливостей передавання різноманітних інформаційних матеріалів: лекцій, семінарів, лабораторних робіт і т. п. Є досвід певних російських вузів з використання цих технологій, зокрема в Московському економіко-статистичному інституті вся інфраструктура переводиться на хмарні технології, а в навчальних програмах включені дисципліни з навчання технологій.На сьогодні в Україні теж почалося створення національної освітньої інформаційної мережі на основі концепції хмарних обчислень в рамках національного проекту «Відкритий світ», який планується здійснити протягом 2010-2014 рр. Відповідно до наказу Міністерства освіти та науки України від 23.02.2010 р. №139 «Про дистанційне моніторингове дослідження рівня сформованості у випускників загальноосвітніх навчальних закладів навичок використання інформаційно-комунікаційних технологій у практичній діяльності» у 2010 році було вперше проведено дистанційне моніторингове дослідження з метою отримання об’єктивних відомостей про стан інформатичної освіти та розроблення стратегії її подальшого розвитку. Для цих цілей було обрано портал (приклад гібридної хмари), створений на основі платформи Microsoft Azure [4].Як показує зарубіжний досвід [8], [11], [12], [14], [15], вирішити названі проблеми можна шляхом впровадження в навчальний процес хмарних обчислень. У вищих навчальних закладах України розроблена «Програма інформатизації і комп’ютеризації навчального процесу» [1, 166]. Але, проаналізувавши стан впровадження у ВНЗ хмарних технологій, можна зробити однозначний висновок про недостатню висвітленість цього питання в літературних та Інтернет-джерелах [1], [7].Переважна більшість навчальних закладів лише починає впроваджувати хмарні технології в навчальний процес та включати відповідні дисципліни для їх вивчення. Аналіз педагогічних праць виявив недостатнє дослідження питання використання хмарних обчислень у навчальному процесі. Цілком очевидно, що інтеграція хмарних сервісів в освіту сьогодні є актуальним предметом для досліджень.Для навчальних закладів все більшого значення набуває інформаційне наповнення та функціональність систем управління віртуальним навчальним середовищем (VLE, virtual learning environment). Не існує чіткого визначення VLE-систем, та й в самих системах в міру їх заглиблення в Інтернет постійно удосконалюються наявні і з’являються нові інструменти (блоги, wiki-ресурси). VLE-системи критикують в основному за слабкі можливості генерації та зберігання створюваного користувачами контенту і низький рівень інтеграції з соціальними мережами.Існує кілька полярних підходів до способів надання освіти за допомогою сучасних інформаційно-комунікаційних технологій та інформаційних ресурсів. З одного боку – навчальні заклади з віртуальним навчальним середовищем VLE, а з іншого – персональне навчальне середовище, створене з Web 2.0 сайтів та кероване учнями. Але варто звернути увагу на нову модель, що може зруйнувати обидва наявні підходи. Сервіси «Google Apps для навчальних закладів» та «Microsoft Live@edu» включають в себе широкий набір інструментів, які можна налаштувати згідно потреб користувача. Описувані системи розміщуються в так званій «обчислювальній хмарі» або просто «хмарі».Хмара – це не просто новий модний термін, що застосовується для опису Інтернет-технологій віддаленого зберігання даних. Обчислювальна хмара – це мережа, що складається з численної кількості серверів, розподілених в дата-центрах усього світу, де зберігаються безліч копій. За допомогою такої масштабної розподіленої системи здійснюється швидке опрацювання пошукових запитів, а система є надзвичайно відмовостійка. Система побудована так, що після закінчення тривалого періоду при потребі можна провести заміну окремих серверів без зниження загальної продуктивності системи. Google, Microsoft, Amazon, IBM, HP і NEC та інші, мають високошвидкісні розподілені комп’ютерні мережі та забезпечують загальнодоступність інформаційних ресурсів.Хмара може означати як програмне забезпечення, так і інфраструктуру. Незалежно від того, є сервіс програмним чи апаратним, необхідно мати критерій, для допомоги визначення, чи є даний сервіс хмарним. Його можна сформулювати так: «Якщо для доступу до інформаційних матеріалів за допомогою даного сервісу можна зайти в будь-яку бібліотеку чи Інтернет-клуб, скористатися будь-яким комп’ютером, при цьому не ставлячи ніяких особливих вимог до операційної системи та браузера, тоді даний сервіс є хмарним».Виділимо три умови, за якими визначатимемо, чи є сервіс хмарним.Сервіс доступний через Web-браузер або за допомогою спеціального інтерфейсу прикладної програми для доступу до Web-сервісів;Для користування сервісом не потрібно жодних матеріальних затрат;В разі використання додаткового програмного забезпечення оплачується тільки той час, протягом якого використовувалось програмне забезпечення.Отже, хмара – це великий пул легко використовуваних і доступних віртуалізованих інформаційних ресурсів (обладнання, платформи розробки та/або сервіси). Ці ресурси можуть бути динамічно реконфігуровані для обслуговування мінливого навантаження (масштабованості), що дозволяє також оптимізувати використання ресурсів. Такий пул експлуатується на основі принципу «плати лише за те, чим користуєшся». При цьому гарантії надаються постачальником послуг і визначаються в кожному конкретному випадку угодами про рівень обслуговування.Існує три основних категорії сервісів хмарних обчислень [10]:1. Комп’ютерні ресурси на зразок Amazon Elastic Compute Cloud, використання яких надає організаціям можливість запускати власні Linux-сервери на віртуальних комп’ютерах і масштабувати навантаження гранично швидко.2. Створені розробниками програми для пропрієтарних архітектур. Прикладом таких засобів розробки є мова програмування Python для Google Apps Engine. Він безкоштовний для використання, однак існують обмеження за обсягом даних, що зберігаються.3. Сервіси хмарних обчислень – це різноманітні прикладні програмні засоби, розміщені в хмарі і доступні через Web-браузер. Зберігання в хмарі не тільки даних, але і програм, змінює обчислювальну парадигму в бік традиційної клієнт-серверної моделі, адже на стороні користувача зберігається мінімальна функціональність. Таким чином, оновлення програмного забезпечення, перевірка на віруси та інше обслуговування покладається на провайдера хмарного сервісу. А загальний доступ, управління версіями, спільне редагування стають набагато простішими, ніж у разі розміщення програм і даних на комп’ютерах користувачів. Це дозволяє розробникам постачати програмні засоби на зручних для них платформах, хоча необхідно переконатися, що програмні засоби придатні до використання при роботі з різними браузерами.З точки зору досконалості технології, програмне забезпечення в хмарах розвинуте значно краще, ніж апаратна складова.Особливу увагу звернемо на програмне забезпечення як послугу (SaaS, Software as a Servise), що позначає програмну складову у хмарі. Більшість систем SaaS є хмарними системами. Для користувачів системи SaaS не важливо, де встановлене програмне забезпечення, яка операційна система при цьому використовується та якою мовою воно описане. Головне – відсутня необхідність встановлювати додаткове програмне забезпечення.Наприклад, Gmail представляє собою програму електронної пошти, яка доступна через браузер. Її використання забезпечує ті ж функціональні можливості, що Outlook, Apple Mail, але для користування нею необхідно «thick client» («товстий клієнт»), або «rich client» («багатий клієнт»). В архітектурі «клієнт – сервер» це програми з розширеними функціональними характеристиками, незалежно від центрального сервера. При такому підході сервер використовується як сховище даних, а вся робота з опрацювання і подання даних переноситься на клієнтський комп’ютер.Системи SaaS наділені деякими визначальними характеристиками:– Доступність через Web-браузер. Програмне забезпечення типу SaaS не потребує встановлення жодних додаткових програм на комп’ютер користувача. Доступ до систем SaaS здійснюється через Web-браузер з використанням відкритих стандартів або універсальний плагін браузера. Хмарні обчислення та програмне забезпечення, яке є власністю певної компанії, не поєднуються між собою.– Доступність за вимогою. За наявності облікового запису можна отримувати доступ до програмного забезпечення в будь-який момент та з будь-якої географічної точки земної кулі.– Мінімальні вимоги до інфраструктури ІТ. Для конфігурування систем SaaS потрібен мінімальний рівень технічних знань (наприклад, для управління DNS в Google Apps), що не виходить за рамки, характерні для звичайного користувача. Висококваліфікований IT-адміністратор для цього не потрібний.Переваги хмарної інфраструктури. Наявність апаратних засобів у власності потребує їх обслуговування. Планування необхідної потужності та забезпечення ресурсами завжди актуальні. Хмарні обчислення спрощують вирішення двох проблем: необхідність оцінювання характеристик обладнання та відсутність коштів для придбання нового потужного обладнання. При використанні хмарної інфраструктури необхідні потужності додаються за лічені хвилини.Зазвичай на кожному сервері передбачено резерв, що забезпечує вирішення типових апаратних проблем. Наприклад, резервний жорсткий диск, призначений для заміни диска, що вийшов з ладу, в складі масиву RAID. Необхідно скористатися послугами для встановлення нового диску на сервер. Для цього потрібен час та висока кваліфікація спеціаліста, щоб роботу виконати швидко з метою уникнення повного виходу сервера з ладу. Якщо сервер остаточно вийшов з ладу, використовується якісна, актуальна резервна копія та досконалий план аварійного відновлення. Тільки тоді є можливість провести відновлення системи в короткий термін, причому завжди в ручному режимі.При використанні хмар немає потреби перейматись проблемами стосовно апаратних засобів, що використовуються. Користувач може і не дізнатися про те, що фізичний сервер вийшов з ладу. Якщо правильно дібрано інструментарій, можливе автоматично відновлення даних після надскладної аварійної ситуації. При використанні хмарної інфраструктури у такому випадку можна відмовитись від віртуального сервера і отримати інший. Немає потреби думати про утилізацію та перейматися про нанесену шкоду навколишньому середовищу.Хмарне сховище. Абстрагування від апаратних засобів в хмарі здійснюється не тільки завдяки заміні фізичних серверів віртуальними. Віртуалізації підлягають і системи фізичного зберігання даних.При використанні хмарного сховища можна переносити дані в хмару, не переймаючись, яким чином вони зберігаються та не турбуючись про їх резервне копіювання. Як тільки дані, переміщені в хмару, будуть потрібні, достатньо буде просто звернутись в хмару і отримати їх. Існує кілька підходів до хмарного сховища. Йдеться про поділ даних на невеликі порції та зберігання їх на багатьох серверах. Порції даних наділяються індивідуально обчисленими контрольними сумами, щоб дані можна було швидко відновити в критичних ситуаціях.Часто користувачі працюють з хмарним сховищем так, ніби мають справу з мережевим накопичувачем. Щодо принципу функціонування хмарне сховище принципово відрізняється від традиційних накопичувачів, оскільки у нього принципово інше призначення. Обмін даними при використанні хмарного сховища повільніший, воно більш структуроване, внаслідок чого його використання як оперативного сховища даних непрактичне. Зазначимо, що використання хмарного сховища недоцільне для транзакцій в хмарних прикладних програмах. Хмарне сховище сприймається, як аналог резервної копії на стрічковому носієві, хоча на відміну від системи резервного копіювання зі стрічковим приводом в хмарі не потрібні ні привід, ні стрічки.Grid Computing (англ. grid – решітка, грати) – узгоджене, відкрите та стандартизоване комп’ютерне середовище, що забезпечує гнучкий, безпечний, скоординований розподіл обчислювальних ресурсів і ресурсів збереження інформації, які є частиною даного середовища, в рамках однієї віртуальної організації [http://gridclub.ru/news/news_item.2010-08-31.0036731305]. Концепція Grid Computing представляє собою архітектуру множини прикладних програмних засобів – найпростіший метод переходу до хмарної архітектури. Програмні засоби, де використовуються grid-технології, є програмним забезпеченням, при функціонуванні якого інтенсивно використовуються ресурси процесора. В grid-програмах розподіляються операції опрацювання даних на невеликі набори елементарних операцій, що виконуються ізольовано.Використання хмарної інфраструктури суттєво спрощує та здешевлює створення grid-програм. Якщо потрібно опрацювати якісь дані, використовують сервер для опрацювання даних. Після завершення опрацювання даних сервер можна призупинити, або задати для опрацювання новий набір даних.На рисунку 1 подано схему функціонування grid-програми. На сервер, або кластер серверів, поступає набір даних, які потрібно опрацювати. На першому етапі дані передаються в чергу повідомлень (1). На інших вузлах аналізується чергою повідомлень (2) про нові набори даних. Коли набір даних з’являється в черзі повідомлень, він аналізується на першому комп’ютері, де його виявлено, а результати надсилаються назад в чергу повідомлень (3), звідки вони зчитуються сервером або кластером серверів (4). Обидва компоненти можуть функціонувати незалежно один від одного, а кожен з них може функціонувати навіть в тому випадку, якщо другий компонент не задіяний на жодному комп’ютері. Рис. 1. Архітектура grid-програм У такій ситуації використовуються хмарні обчислення, оскільки при цьому не потрібні власні сервери, а за відсутності даних для опрацювання не потрібні сервери взагалі. Таким чином можна масштабувати потужності, що використовуються. Інакше кажучи, щоб комп’ютер не використовувався «вхолосту», важливо опрацьовувати дані за мірою їх надходження. Сервери включаються, коли потік даних інтенсивний, а виключаються в міру ослаблення інтенсивності потоку. Grid-програми мають дещо обмежену область застосування (опрацювання великих об’ємів наукових і фінансових даних). В переважній частині таких програм використовуються транзакційні обчислення.Транзакційна система – це система, де один і більше вхідних наборів даних опрацьовуються одночасно в рамках однієї транзакції та в
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Задорожній, Микола Іванович. "Створення та використання електронного освітнього середовища навчального закладу". Theory and methods of e-learning 4 (17 лютого 2014): 95–100. http://dx.doi.org/10.55056/e-learn.v4i1.376.

Повний текст джерела
Анотація:
Постановка проблеми.Виховання творчої особистості неможливо здійснювати командно-адміністративними методами. Для цього потрібно створювати сприятливі умови для творчої діяльності вчителів та учнів та позитивні стимули для такої діяльності. Однією з таких умов є систематичне та ефективне використання інформаційно-комунікаційних технологій у навчально-виховному процесі.Аналіз останніх досліджень.За останні два роки в Дніпропетровській області реалізовано цілий ряд проектів з впровадження інформаційно-комунікаційних технологій, в багатьох з них наша школа приймає активну участь:– Єдиний освітній центр (http://dp.isuo.org) – за допомогою програмного комплексу КУРС:школа тут розміщується відкрита та закрита інформація про навчальний заклад, учнів та вчителів школи;– інформаційно-освітня мережа «Мої знання» (http://mz.com.ua) –тут розміщується розклад уроків школи, електронні класні журнали вчителів та класних керівників, щоденники учнів, засоби для спілкування вчителів, учнів та їх батьків;–освітній портал «Класна оцінка» (http://klasnaocinka.com.ua) – на цьому порталі розміщені сайти навчальних закладів, бібліотека, електронні класні журнали та щоденники, електронна школа.Крім цього, за допомогою мережі Інтернет наша сільська школа одержала доступ до великої кількості конкурсів та олімпіад, в яких учні приймають активну участь.Виділення невирішених раніше частин загальної проблеми.Творча діяльність вчителів та учнів передбачає не тільки використання інформаційних джерел з мережі Інтернет та інших цифрових джерел інформації, а в першу чергу створення власних електронних засобів навчання та електронних документів. Вчителі, які систематично використовують ІКТ у навчально-виховному процесі, працюють з десятками чи навіть сотнями гігабайт ланих. Розмістити та систематизувати все це в мережі Інтернет достатньо складно, тому створення електронного освітнього середовища в локальній мережі навчального закладу – це реальні можливості для систематизації та ефективного використання ІКТ.Мета статті – показати можливості створення та ефективного використання електронного освітнього середовища школи для творчої діяльності вчителів та учнів.Комп’ютерна мережа школи. Про застосування ІКТ у школі говориться багато років, вчителі проходять курси, одержують сертифікати, але цього явно недостатньо для систематичного та ефективного використання ІКТ у навчальному процесі. Потрібен вільний доступ вчителів та учнів до комп’ютерів та електронних засобів навчання, одного кабінету інформатики для цього замало. Протягом 2011 року ми виконали великий об’єм роботи по модернізації комп’ютерної мережі школи.У кабінеті інформатики встановлено сервер з жорсткими дисками великої ємності – це дає можливість розмістити на ньому всі програмні засоби та електронні навчальні посібники, які є в школі. Комп’ютер-сервер автоматично включається вранці і виключається ввечері – це робить його незалежним від графіка роботи вчителя інформатики.Всі комп’ютери школи підключені до локальної мережі, крім цього, кабель локальної мережі підведений ще до кількох навчальних кабінетів, де вчителі можуть підключити до локальної мережі школи свої домашні ноутбуки і працювати у шкільному електронному середовищі.Через локальну мережу до всіх ПК школи підключено доступ до мережі Інтернет.Забезпечення учнів та вчителів школи ПК та Інтернет. Комп’ютери та Інтернет поступово стають звичними в сільських сім’ях. Восени 2011 року серед учнів 7-11 класів домашні ПК були в більш ніж половини учнів, а Інтернет – більш ніж у третини учнів. Тому перед школою та педагогічним колективом стоїть завдання використати цей потужний потенціал для навчання та розвитку учнів.Потреба сучасної школи в ІТ-спеціалістах. Вирішення цієї проблеми слід починати з розуміння того, що ІКТ прийшли в школу назавжди, це не чергова рекламна кампанія. Вчитель, який не володіє на професійному рівні ІКТ, у сучасній школі не має майбутнього. Вчителю для ефективного використання ІКТ необхідно створити умови: вільний доступ до комп’ютерів та Інтернету, надійну роботу обладнання та програмного забезпечення – це можуть забезпечити лише професійно підготовлені спеціалісти в оплачений робочий час. Висока ефективність ІКТ можлива лише при колективній роботі вчителів, що знову ж таки вимагає від вчителів високого рівня підготовки в галузі ІКТ.До недавнього часу комп’ютерний клас школи використовувався в більшості своїй для проведення уроків інформатики. Вчитель інформатики виконував роботи по обслуговуванню ПК для самого себе і це нікого не турбувало. Об’єм такої роботи був невеликий, її приходилось виконувати епізодично. Досвід роботи в 2011 році та зараз показує, що кілька годин роботи по обслуговуванню ПК щодня явно недостатньо для забезпечення умов роботи всього колективу школи – вчителів та учнів. Тим більше, цю роботу неможливо виконувати за рахунок уроків чи інших обов’язків. Потреба сучасної школи в ІТ-спеціалістах систематизована нижче.Секретар – завантаження та друк електронної пошти, підготовка та відправлення електронної пошти, набір та друк шкільних документів – цю технічну роботу, як правило, виконує адміністрація школи, за рахунок виконання своїх прямих службових обов’язків по управлінню навчальним процесом та діяльністю школиІнженер по ремонту та обслуговування ПК – ремонт та обслуговування комп’ютерів, обслуговування принтерів, обслуговування та монтаж обладнання локальної мережі школи, обслуговування мультимедійних пристроїв, обслуговування обладнання для підключення Інтернет.Системний адміністратор – установка та налагодження програмного забезпечення ПК, обслуговування антивірусних програм, обслуговування дискової та операційної систем ПК, управління роботою локальної мережі школи.Веб-майстер – створення та управління сайтами школи у локальній мережі та Інтернеті, створення та управління електронним освітнім середовищем школи, створення веб-сторінок для сайтів школи. Цю роботу, як правило, виконують вчителі інформатики, за рахунок свого вільного часу та уроків. Заступник директора з ІКТ навчання – навчання вчителів з ІКТ, управління процесом впровадження ІКТ у навчально-виховну роботу школи та вчителів. Цю роботу, як правило, ніхто не виконує системно, тому ефективність застосування ІКТ часто буває мінімальна.З 2012-13 навчального року в школах вводяться посади інженера-електроніка, це в значній мірі задовольняє потреби школи в обслуговуванні комп’ютерної техніки та програмного забезпечення.Електронне освітнє середовище школи – це програмні засоби, електронні навчальні комплекси з різних предметів, електронні документи різного призначення, які використовуються для навчання учнів та роботи вчителів і розміщені на сервері локальної мережі школи та мережі Інтернет. До цих документів є вільний доступ з усіх комп’ютерів локальної мережі школи. Головна сторінка електронного освітнього середовища містить посилання на локальні веб-сайти, тематичні сторінки або папки з файлами, які систематизовані в десять розділів.Важливо зараз – в цьому розділі розміщені документи для поточної роботи, наприклад, завдання ДПА з математики або карта з навчальним закладом, де проходить ЗНО.Управління школою – тут адміністрація школи розміщує документи та матеріали з різних напрямів роботи школи.Сторінки класів – тут зібрані посилання на електронні засоби з різних предметів для даного класу.Портфоліо учнів – у спеціальних папках протягом навчання в школі учні разом з вчителями збирають матеріали про досягнення учнів в навчанні та різних конкурсах.Вчителі – кожен вчитель має власну папку, де розміщені електронні матеріали з різних предметів, нормативні документи, портфоліо вчителя і т.д.Microsoft Learning – курс цифрових технологій від Майкрософт.Локальний сервер – на локальному сервері розміщені навчальні посібники та власні сайти, наприклад сайт «Випускники школи».Позакласна робота – тут розміщені посилання на додаткові навчально-інформаційні посібники для додаткової роботи.Інформаційна система – систематизовані навчально-інформаційні матеріали, підготовлені в попередні роки.Відеоенциклопедія – це п’ятихвилинні фільми про видатних вчених, митців, державних діячів в історії людства, наприклад, з астрономії.В мережі Інтернет шкільний веб-портал має адресу http://www.itfis.net.ua На головній сторінці шкільного веб-порталу розміщені кнопки сайтів, з якими постійно працюють вчителі та учні школи. Це сайти «Мої знання», «Класна оцінка», «КУРС: школа», «Острів знань», сайти органів управління освітою та інші.Крім цього на порталі розміщено 8 шкільних сайтів.Інформаційні технології в шкільному фізичному експерименті – це перший сайт створений у 2009 році, тут систематизовані матеріали, з якими ми працювали в школі під час підготовки до обласного семінару з фізики.Обласний семінар з фізики 2010 – матеріали семінару, підготовлені в нашій школі.Районний семінар заступників 2012 – матеріали семінару на тему: «Електронне освітнє середовище вчителя і школи та його роль у розвитку інтелектуально та творчо обдарованих учнів». Ці матеріали були представлені на Четвертій національній виставці-презентації «Інноватика в сучасній освіті» 2012 року.Відкритий план вивчення предметів – тут розміщено планування з фізики 7 класу та додаткові матеріали.Вікно в шкільний Інтернет – тут зібрані посилання на найбільш використовувані освітні та інформаційні сайти.Шкільний сайт – сайт школи, де публікуються новини та матеріали про школу.Фотолабораторія з фізики – on-line тести на вимірювання фізичних величин.Електронний зошит з фізики – матеріали для проведення лабораторних робіт з фізики 9 класу з теми «Постійний електричний струм».Висновки.1. Створення та використання електронного освітнього середовища навчального закладу є ефективним засобом для виконання творчих робіт як вчителями так і учнями.2. Важливим фактором у цій роботі є спільна робота вчителів та учнів над творчими проектами.3. Ефективність у використанні інформаційно-комунікаційних технологій досягається колективною роботою над різними проектами та відкритістю у використанні цих матеріалів.4. У 7-11 класах нашої школи навчається 40 учнів. В районних олімпіадах 2012 року вони одержали 10 призових місць, двоє учнів були учасниками обласних олімпіад. Створення сприятливих умов для творчої діяльності вчителів та учнів та позитивна мотивація для такої діяльності відіграли значну роль у цих досягненнях учнів та вчителів нашої школи.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Шишкіна, Марія Павлівна. "Вимоги до реалізації засобів та систем електронного навчання в контексті інформаційного суспільства". Theory and methods of e-learning 3 (13 лютого 2014): 333–39. http://dx.doi.org/10.55056/e-learn.v3i1.358.

Повний текст джерела
Анотація:
В умовах реформування сучасної освіти, модернізації освітніх стандартів постає проблема підготовки кваліфікованих наукових та виробничих кадрів, що є основною рушійною силою розвитку економіки та соціальних відносин, каталізатором суспільних процесів у науковій, освітній та виробничій сферах. Особливо складним та важливим завданням є виховання здатної до продуктивної діяльності особистості, формування фахових та освітніх компетентностей, що забезпечували б їй можливість вирішувати особисті та професійні задачі в умовах інформаційного суспільства, що характеризується інтенсивним розвитком високих технологій.Сучасні електронні засоби освітнього призначення, мультимедійні та дистанційні технології постають невід’ємною складовою навчання більшості предметів шкільного циклу, багатьох сфер вищої освіти. Використання засобів ІКТ збагачує та розширює можливості навчання, що призводить до поняття електронного навчання [4; 5]. Трактування цього поняття має різні тлумачення, крім того, із розвитком технологій суттєво трансформується його об’єм і зміст. Наприклад, згідно електронної енциклопедії освіти (Education encyclopedia), це поняття «охоплює всі форми навчання та викладання, що відбуваються за електронної підтримки, є процедурними по своїй суті і спрямовані на формування знань із врахуванням індивідуального досвіду, практики і знань того, хто вчиться. Інформаційні і комунікаційні системи, мережеві чи ні, постають як специфічні засоби для забезпечення процесу навчання» [5].Сучасна тенденція полягає у значному розмаїтті і складності систем електронного навчання. Це дає більше можливостей для інтеграції, концентрації і вибору ресурсів та систем. Використання новітніх засобів та сервісів сприяє досягненню якісно нового рівня якості освітніх послуг, створюючи потенціал для індивідуалізації процесу навчання, формування індивідуальної траєкторії розвитку тим, хто вчиться, добору і використання підходящих технологічних засобів. Необхідною умовою в цьому відношенні є відповідність засобів ІКТ низці вимог до підтримки та управління ресурсами, проектування інтерфейсу, ергономіки та інших.Як визначити, які засоби та технології найбільш продуктивні для підтримки навчальної діяльності, для досягнення необхідного рівня якості освіти та формування компетентностей учнів? Відповідь на це питання залежить від змісту електронного навчання, від того, які застосовуються методи і способи оцінки систем електронного навчання, а також від вибору та використання технологій їх реалізації.Метою статті є визначення тенденцій розвитку систем е-навчання в сучасній освіті та виявлення вимог до перспективних шляхів використання інформаційно-технологічних платформ їх реалізації.Загалом, визначальною рисою електронного навчання є використання інформаційно-комунікаційних ресурсів та технологій як засобів навчання [4; 5]. Сучасний стан розвитку інформаційно освітнього середовища характеризується підвищенням якості інформаційних ресурсів наукового та навчального призначення, впровадженням інтегральних платформ доступу до цих ресурсів як для освітніх установ, так і для індивідуальних користувачів. Це потребує забезпечення умов для створення та поширення якісного програмного забезпечення – електронних книг, бібліотек, освітніх порталів, ресурсів інформаційно-комунікаційних мереж, дистанційних освітніх сервісів.Засоби інформаційно-комунікаційних технологій постають інструментами реалізації систем відкритого та дистанційного навчання. В цьому контексті виникають нові потреби і виклики, нові професійні та навчальні цілі, пов’язані з сучасним станом розвитку інформаційного суспільства. Інноваційні освітні технології мають задовольняти певним системним педагогічним та інформаційно-технологічним вимогам, що продиктовані рівнем науково-технічного прогресу та максимально відповідати принципам відкритої освіти серед основних з яких мобільність учнів і вчителів, рівний доступ до освітніх систем, формування структури та реалізації освітніх послуг [1].Серед основних цілей, що постають перед освітою із розвитком інформаційного суспільства, зазначають формування в учнів системи компетентностей ХХІ сторіччя. На думку Т. Бітмана, який узагальнив деякі дослідження, більшість авторів виокремлюють серед них такі компоненти, як технологічні навички, серед яких: інформаційна грамотність; знайомство з інформаційно-комунікаційними носіями; знайомство з засобами інфомаційно-комунікаційних технологій; соціальні навички, такі як: загальнокультурна грамотність; гнучкість та адаптивність; навички мислення та набування знання високого рівня; комунікативність та здатність до співпраці [2]. Цей автор відмічає такі тенденції у розвитку сучасного суспільства, як все більш високий рівень взаємозв’язку та швидкості перебігу суспільних процесів та різке зростання обсягів доступної інформації, до якої можуть залучатися широкі верстви суспільстваРозвиток нових технологій характеризується низкою показників, що стосуються різних аспектів реалізації систем електронного навчання. Ці показники тісно пов’язані із потребою формування в учнів освітніх компетентностей в контексті сучасних вимог відкритості, мобільності, гнучкості навчання та розвитку пізнавальних та особистісних якостей учня.Однією з проблем у сфері реалізації електронного навчання є забезпечення його доступності. Цей показник стосується наявності та організації доступу до необхідних систем навчання, розширення участі, що на наш час розглядаються в двох аспектах. Поняття «доступу до е-навчання» трактується, по-перше, як зміст і обсяг послуг, наявних у певний час. По-друге, як комплекс майнових, соціальних, класових, статевих, вікових, етнічних чинників, фізичних чи розумових здібностей та інших чинників, що впливають на реалізацію е-навчання і мають бути враховані при його проектуванні [4].Поряд з цим, серед суттєвих причин, які перешкоджають ширшому впровадженню і використанню систем електронного навчання, є такі, як наявність достатньої кількості комп’ютерів, програмного забезпечення і необхідних сервісів, доступу до Інтернет, включаючи широкосмуговий доступ, швидкість з’єднання тощо. Розгляд цих питань суттєво залежить від вибору платформи реалізації електронного навчання, на базі якої організується добір і використання різноманітних типів ресурсів, їх систематизація та оптимізація використання.Варто також звернути увагу на доступність важливої інформації, чи є зручні можливості пошуку і вибору необхідного навчального матеріалу. Цей чинник також є критичним при залученні у процес навчання необхідних ресурсів на електронних носіях.Існує ще один вимір доступу до е-навчання, що стосується обмежень у часі і просторі. Це протиріччя вирішується певною мірою за рахунок використання мобільних технологій і розподіленого навчання, які є перспективним напрямом розвитку систем відкритої освіти.Наступний показник стосується якості освітніх послуг, що надаються за допомогою систем е-навчання. Якість електронного навчання і її оцінювання мають багато рівнів таких, як: зміст освіти, рівень підготовки методичних та навчальних матеріалів; персонал і кваліфікація викладачів; стан матеріально-технічного забезпечення; управління навчальним процесом; рівень знань та компетентностей учнів та інших.Предметом численних досліджень є питання оцінки результатів навчання за допомогою комп’ютера. Технологія оцінювання стосується багатьох аспектів середовища навчання. Серед труднощів, які виникають при реалізації електронного оцінювання є такі, як ризик відмови обладнання, висока вартість потужних серверів з великою кількістю клієнтів, необхідність опанування технології оцінювання студентами та викладачами та інші [4].Якість навчальних матеріалів потребує врахування також вимог до обслуговування, управління, проектування інтерфейсу, ергономіки, гігієни та інших. Ці питання не втрачають актуальності у зв’язку з швидким оновленням комп’ютерної техніки. Розробка та впровадження навчальних матеріалів та ресурсів на електронних носіях суттєво взаємообумовлена використанням ефективних методів оцінки їх якості.Окремий комплекс проблем пов’язаний з розробкою вимог і стандартів для освітнього програмного забезпечення. Зокрема, це стосується визначення психолого-педагогічних, дидактичних параметрів оцінки якості освітніх ресурсів. Багато авторів (С. Санс-Сантамарія, Дж. А. Ва­діле, Дж. Гутьєррес Серрано, Н. Фрізен та інші [6]) погоджуються на думці, що хоча стандарти у галузі електронного навчання були розроблені з метою визначення шляхів і способів використання у педагогічній діяльності навчальних об’єктів, реалізованих засобами ІКТ, це скоріше сприяло подальшому пошуку в цьому напрямку, ніж було остаточним рішенням. Існуючі педагогічні характеристики об’єктів орієнтовані здебільшого на можливість спільного використання різних одиниць контенту окремими системи управління е-навчанням. Це не відображає в достатній мірі педагогічні підходи, що стоять за навчальними об’єктами.Загалом із розвитком електронного навчання зростають вимоги до якості освітніх послуг, яка, як свідчать дослідження, суттєво залежить від технологій оцінювання електронних ресурсів та матеріалів та від технологій їх створення та надання користувачеві. В той же час, застосування інтегральних підходів до організації використання та постачання ресурсів та сервісів сприяє удосконаленню і уніфікації підсистем їх розробки та апробації, пошуку та відбору кращих зразків програмного забезпечення, що також може бути передумовою підвищення якості освітніх послуг.Ще один показник, пов’язаний з реалізацією систем е-навчання, характеризує ступінь адаптивності. Цей чинник передбачає застосування досить спеціалізованих та диференційованих систем навчального призначення, що ґрунтуються на моделюванні індивідуальних траєкторій учня чи студента, його рівня знань [3]. У зв’язку з цим, поширення набувають адаптивні технології е-навчання, що враховують особливості індивідуального прогресу учня. Адаптивність передбачає налаштування, координацію процесу навчання відповідно до рівня підготовки, підбір темпу навчання, діагностику досягнутого рівня засвоєння матеріалу, розширення спектру можливостей навчання, придатність для більшого контингенту користувачів.Побудова адаптивної моделі студента, що враховувала б особистісні характеристики, такі як рівень знань, індивідуальні дані, поточні результати навчання, і розробка технологій відстеження його навчальної траєкторії є досить складною математичною і методичною проблемою [3; 4]. Побудова комп’ютерної програми в даному випадку передбачає деякі форми формалізованого подання сукупності знань в предметній області, що вивчається. Розвиток даного типу систем, здебільшого з елементами штучного інтелекту, є досить трудомістким. Зростання ступеню адаптивності є однією з тенденцій розвитку систем електронного навчання, що відбувається за рахунок удосконалення технологій подання, зберігання і добору необхідних засобів. Різноманітні навчальні матеріали, ресурси і сервіси можуть бути надані за потребою користувача, та дають можливість динамічної адаптації до досягнутого рівня знань, компетентності та освітніх уподобань того, хто вчиться.Наступний показник стосується інтеграції та цілісності систем електронного навчання, і тісно пов’язаний із стандартизацією технологій і ресурсів в управлінні системами е-навчання. Ці проблеми виникають у зв’язку з формуванням відкритого середовища навчання, що забезпечує гнучкий доступ до освітніх ресурсів, вибір та зміну темпу навчання, його змісту, часових та просторових меж в залежності від потреб користувачів [1]. Існує тенденція до координації та уніфікації стандартів навчальних матеріалів, розроблених різними організаціями зі стандартизації, такими як IEEE, IMS, ISO / IEC JTC1 SC36 й інші, а також гармонізації національних стандартів з міжнародними. У зв’язку з цим, наукові основи оцінювання інформаційних технологій та способів їх добору і застосування потребують подальшого розвитку.Наступний показник пов’язаний з повномасштабною інтерактивністю засобів ІКТ навчального призначення. Справді, сучасні технології спрямовані на підтримування різних типів діяльності вчителя у віртуальному комп’ютерному класі. Це стосується таких форм навчання, як формування груп, спільнот, що навчаються і взаємодіють віртуально в режимі он-лайн. Щоб організовувати навчальну діяльність в таких спільнотах, використовуються функції, що забезпечують колективний доступ до навчального контенту для групи користувачів, можливість для вчителя проглядати всі комп’ютери у групі, концентрувати увагу учнів за рахунок пауз і повідомлень, підключати або відключати учасників навчального процесу, поширювати файли або посилання серед цільової групи учнів, надсилати повідомлення конкретним учням. Учні також можуть звертатися до учителя за рахунок надання запитань, коментарів, виступів тощо [7]. Організація навчання у віртуальному класі потребує застосування апаратно-програмних засобів доставки навчального контенту, що також суттєво залежить від добору відповідних технологій.Наступний показник стосується безпеки освітнього середовища і передбачає аналіз ризиків та переваг використання комп’ютерних технологій у навчанні. При створенні систем електронного навчання мають враховуватись чинники збереження здоров’я, розвитку інтелектуального потенціалу учня.З огляду на визначені тенденції розвитку та використання систем е-навчання у сучасному освітньому процесі виникає потреба у певній інформаційно-технологічній платформі, яка могла б підтримувати нові форми навчання у відповідності сучасним вимогам доступності, гнучкості, мобільності, індивідуалізації та відкритості освіти [1].Продуктивним видається підхід, за якого проблеми розвитку е-навчання вирішувалися б через призму нових технологій, що надали б підходящу основу для дослідження цих систем, їх розробки і використання. Зокрема, перспективним є використання технології хмарних обчислень, за якої електронні ресурси і об’єкти стають доступні користувачеві в якості веб-сервісу [7].За визначенням Національного Інституту Стандартів і Технологій США (NIST), під хмарними обчисленнями (Cloud Computing) розуміють модель зручного мережного доступу до загального фонду обчислювальних ресурсів (наприклад, мереж, серверів, файлів даних, програмного забезпечення та послуг), які можуть бути швидко надані при умові мінімальних управлінських зусиль та взаємодії з постачальником.Переваги хмарних обчислень у сфері освіти можна охарактеризувати наступними чинниками:- спрощення процесів встановлення, підтримки та ліцензійного обслуговування програмного забезпечення, яке може бути замовлено як Інтернет-сервіс;- гнучкість у використанні різних типів програмного забезпечення, що може порівнюватись, обиратись, досліджуватись, завдяки тому, що його не потрібно кожний раз купляти і встановлювати;- можливість багатоканального поповнення колекцій навчальних ресурсів та організація множинного доступу;- універсалізація процесів розподіленого навчання, завдяки віртуалізації засобів розробки проектів, наприклад, командою програмістів, які всі мають доступ до певного середовища і програмного коду, приладів або лабораторій, інших засобів;- здешевлення обладнання завдяки можливості динамічного нарощування ресурсів апаратного забезпечення, таких як обсяг пам’яті, швидкодія, пропускна здатність тощо;- спрощення організації процесів громіздких обрахунків та підтримування великих масивів даних завдяки тому, що для цього можуть бути використані спеціальні хмарні додатки;- мобільність навчання завдяки використанню хмарних сервісів комунікації, таких як електронна пошта, IP-телефонія, чат, а також надання дискового простору для обміну та зберігання файлів, що уможливлює спілкування та організацію спільної діяльності.Таким чином, впровадження технології хмарних обчислень є перспективним напрямом розвитку систем електронного навчання, що сприятиме реалізації таких засобів і систем, які задовольнятимуть сучасним вимогам до рівня доступності, якості, адаптивності, інтеграції та повномасштабної інтерактивності.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Юденкова, Олена Петрівна. "Формування інформаційної компетенції майбутнього робітника видавничо-поліграфічної галузі". Theory and methods of e-learning 2 (4 лютого 2014): 398–404. http://dx.doi.org/10.55056/e-learn.v2i1.305.

Повний текст джерела
Анотація:
Притаманна нашому часу інформатизація всіх галузей народного господарства зумовлює необхідність формування у майбутніх кваліфікованих робітників інформаційної компетенції, як складової професійної компетентності, що забезпечує ефективну діяльність випускника ПТНЗ в умовах інтенсивного використання інформаційно-комунікацій­них технологій. Формування інформаційних компетенцій безпосередньо пов’язано з інформатизацією освіти.Інформатизація освіти – упорядкована сукупність взаємопов’яза­них організаційно-правових, соціально-економічних, навчально-мето­дичних, науково-технічних, виробничих і управлінських процесів, спрямованих на задоволення інформаційних обчислювальних і телекомунікаційних потреб, що пов’язані з можливостями методів і засобів інформаційних та комунікаційних технологій (ІКТ) учасників навчально-виховного процесу, а також тих, хто цим процесом управляє та його забезпечує [3, 360]. Процес інформатизації освіти охоплено відповідною нормативно-правовою та законодавчою базою: Концепція інформатизації освіти (1984), Постанова Уряду України щодо забезпечення комп’ютерної грамотності учнів загальноосвітніх і професійно-технічних навчальних закладів (1985), Закон України «Про концепцію Національної програми інформатизації»(1998) та ін.Проблемам інформатизації освіти присвячені праці Л. Білоусової, В. Бикова, І. Булах, Т. Волкової, Р. Гуревич, Ю. Дорошенка, М. Жалдака, С. Жданова, М. Кадемії, В. Кухаренка, С. Сисоєвої, М. Шкіля та ін. Інформаційно-комунікаційні технології, стрімко вдосконалюючись, нарощують свій освітній потенціал, проте практика навчання свідчить про відставання темпів впровадження новітніх досягнень зазначених технологій у реальний навчальний процес професійно-технічних навчальних закладів України. Однією з вагомих причин такого відставання є недостатність спрямованості навчального процесу у ПТНЗ на забезпечення всебічної підготовки майбутнього кваліфікованого робітника до свідомого й ефективного застосування інформаційно-комунікаційних технологій у професійній діяльності.Вивчення проблеми впровадження інноваційних виробничих технологій у процес підготовки кваліфікованих робітників поліграфічного профілю забезпечило можливість виявити суперечності між зростанням обсягів роботодавців до знань, умінь та професійних компетенцій в цілому, які необхідні конкурентоздатному фахівцю поліграфічної галузі та недостатньою модернізацією, відсутністю системи в оновленні змісту освіти в ПТНЗ. Педагогічна практика свідчить, що сьогодні ще далеко не всі навчальні заклади використовують у повному обсязі інформаційні технології з метою формування у випускників інформаційних компетенцій. Причини різні: відсутність відповідної матеріально-технічної бази (більшість ПК, які надані ПТНЗ за Державною програмою комп’ютеризації на сьогодні відносяться до застарілих моделей ); наявна кількість не відповідає потребам навчального процесу (при наявності 1 – 2 кабінетів не можливо повноцінно забезпечити загальноосвітню підготовку з предметів «Інформатика», «Інформаційні технології» та професійно-практичну підготовку з професій, які пов’язані з використанням комп’ютерної техніки у професійній діяльності); відсутність необхідних професійно-прикладних програмних продуктів (інноваційного дидактичного інструментарію); відсутність підручників, навчальних посібників, методичних рекомендацій, лабораторних робіт щодо оволодіння комп’ютерними технологіями професійно-орієнтованого змісту для учнів ПТНЗ; відсутність затверджених на державному рівні комплексних завдань та контрольних робіт з перевірки знань і умінь, навичок учнів з використанням тестових технологій (кожен навчальний заклад розробляє свої форми діагностики, що не сприяє уніфікації та стандартизації в освіті); відсутність внутрішньої мотивації як в учнів так і в педагогічних працівників до ефективного застосування інформаційних технологій у процесі підготовки до професійної діяльності); не розуміння педагогічними працівниками та адміністрацією ПТНЗ цілей використання інформаційних технологій.Сьогодення вимагає від педагога професійної майстерності не просто надання учням певних знань, а навчання їх мисленню, структуруванню інформації та цілеспрямованому відбору необхідного. Викладач спецтехнології і майстер виробничого навчання мають разом нести учням не просто нові знання, а новий тип оволодіння інформацією. У зв’язку з цим, особливого значення набуває переорієнтація мислення сучасного педагогічного працівника на усвідомлення принципово нових вимог до його педагогічної діяльності, до його готовності щодо використання засобів ІКТ у професійній діяльності як провідної педагогічної умови у процесі вивчення учнями ПТНЗ інноваційних виробничих технологій.Вивчаючи зарубіжний досвід, ми виокремили основні педагогічні цілі використання інформаційних технологій [1], [6], [8]:1. Розвиток особистості учня, підготовка його до продуктивної самостійної діяльності в умовах інформаційного суспільства, що включає: розвиток конструктивного, алгоритмічного мислення на основі спілкування з комп’ютером; розвиток творчого мислення за рахунок зменшення частки репродуктивної діяльності; розвиток комунікативних компетенцій на основі виконання сумісних проектів; формування уміння самостійно приймати рішення у складних виробничих ситуаціях; розвиток навичок дослідної діяльності (при роботі з моделюючими програмами та інтелектуальними навчальними системами); формування інформаційної культури, умінь обробляти інформацію.2. Реалізація соціального замовлення, яке обґрунтоване інформатизацією сучасного суспільства: професійна підготовка фахівців в галузі інформаційних технологій на різних рівнях (кваліфікований робітник, бакалавр, спеціаліст, магістр); підготовка учнів засобами педагогічних та інформаційних технологій до самостійної пізнавальної діяльності.Соціальне замовлення для освіти – вимоги зі сторони суспільства і держави до змісту освіти і якостей особистості, яка формується в освітній системі [8, 270].3. Інтенсифікація усіх рівнів навчально-виховного процесу: підвищення ефективності і якості навчання за рахунок використання інформаційних технологій; виявлення та використання стимулів пізнавальної діяльності; поглиблення міжпредметних зв’язків у результаті використання сучасних засобів обробки інформації при вирішенні завдань з різних предметів.Виходячи із цілей інформатизації освіти, розширенням масштабів упровадження засобів інформаційно-комунікаційних технологій у професійно-технічні навчальні заклади формуються нові завдання, які передбачають: створення автоматизованих систем з розроблення комп’ютерно-орієнтованих програмно-методичних комплексів, підтримки наукових досліджень, моніторингу результатів впровадження педагогічних інновацій, оцінювання і моніторингу результатів навчальної діяльності, підтримки процесу навчання, інформатизації бібліотечних систем, інформаційно-аналітичних систем управління освітою і навчальними закладами [3, 362]. Отже, діяльність педагога професійної майстерності має бути спрямованою на системне вивчення, оволодіння і використання комп’ютерних технологій, як педагогічної умови, що дозволяє активізувати діяльність учнів у будь-якій предметній області та формувати інформаційну компетенцію майбутніх випускників.Сьогодні відбувається перегляд Державних стандартів професійної освіти, розробляються нові стандарти на основі професійних компетенцій, які включають в освітній простір не тільки кваліфікаційні характеристики випускників по професії (що повинен знати чи вміти випускник ПТНЗ), а й ті компетенції, які формують учня як конкурентоздатного фахівця на ринку праці. До числа таких компетенцій ми відносимо інформаційну компетенцію.Інформаційна компетенція формується при допомозі реальних об’єктів (комп’ютер, телевізор, телефон тощо) та самих інформаційних технологій (ЗМІ, електронна пошта, Інтернет, мультимедіа). В її структуру входять уміння та навички учнів по відношенню до інформації, яка міститься в навчальних предметах і оточуючому світі: самостійно шукати, аналізувати і відбирати інформацію, організовувати, перетворювати, зберігати та передавати її [5, с. 57].Сьогодні багато українських економістів і політологів вважають, що зростання закордонних інвестицій на внутрішньому ринку – це нові високі технології, сучасна організація виробництва, випуск якісної, конкурентоздатної продукції [7, 153]. Динамічні зміни у видавничо-полігра­фічній галузі в останнє десятиріччя підтвердили цю істину. На зламі століть техніка і технологія галузі зазнала значних якісних змін. Усі підприємства впроваджують сьогодні найсучаснішу комп’ютерну техніку, принципово нове обладнання і матеріали. Широке впровадження цифрових технологій сприяло інтеграції видавничих і поліграфічних процесів, створенню настільних видавничо-поліграфічних систем. Відбувся безповоротний технологічний стрибок, який докорінно змінив характер роботи працівників галузі, а отже і вимагає оновлення і зміст професійної освіти поліграфічного профілю.Маркетингове дослідження поліграфічних підприємств показало, що роботодавці відмовляються від робітників, які мають вузьку спеціалізацію, а володіння інформаційними технологіями вони відносять до складу ключових соціально-професійних компетенцій. Сучасний кваліфікований робітник має уміти самостійно вносити в систему своєї діяльності наростаючий потік інформації. Інформаційна насиченість видавничо-поліграфічної галузі потребує перебудови усього навчального процесу у ПТНЗ. Отже, у процесі підготовки кваліфікованих робітників поліграфічного профілю маємо враховувати, що інформаційні технології є джерелом отримання інформації про інноваційні виробничі технології; сформовані в учнів інформаційні компетенції надають вагомої переваги при працевлаштуванні у галузі та подальшому кар’єрному зростанні. Отже, інформаційна компетенція майбутнього робітника видавничо-поліграфічної профілю – це задана соціальним замовленням норма (вимога) до професійної підготовки учня ПТНЗ, необхідна для його якісної продуктивної діяльності у галузі в умовах інформатизації суспільства, розвитку науки, комп’ютерної техніки, різноманітних програмно-технічних засобів, ресурсів, виробництва, технологій.В якості прикладу розглянемо кваліфікаційні вимоги до інформаційних компетенцій випускника ПТНЗ за професією «Оператор комп’ютерного набору; Оператор комп’ютерної верстки»: технічна підготовка: технічна робота з комп’ютером, управління файлами (архівування, створення копій), робота із замовником, планування і нормування; технічне обслуговування: проектування технічної системи, адміністрування технічних систем, технічна підтримка; верстання: коректура тексту, попередній дизайн видання, верстання сторінки, корекції технологічного процесу; отримання зображення: робота із сканером, цифрове перетворення, редагування зображення; виведення даних: спуск полос і шпальт, пробні відбитки, монтаж, виготовлення форм.Отже, процес формування інформаційних компетенцій майбутніх поліграфістів ґрунтується на знаннях та навичках з п’яти основних галузей: системотехніки, отримання зображення, верстання, електронного чи графічного виводу, технічного обслуговування. Інформаційні компетенції поліграфістів передбачають наявність таких професійно-важливих якостей: гнучкість і динамічність мислення, здатність аналізувати ситуацію, відповідальність, високий рівень розвитку концентрації та стабільності уваги, швидкість сприйняття, кольоровідчуття, просторова уява, координація рухів, естетичний і художній смак, оперативне мислення та пам’ять, стійкість до зовнішніх перешкод, уміння розподіляти та переключати увагу [4, 284].Педагогічний колектив Міжрегіонального вищого професійного училища з поліграфії та інформаційних технологій має значний досвід у системному оновленні змісту поліграфічної професійної освіти з врахуванням: потреб суспільства; нової техніки; технологій; результатів праці; взаємовідносин між замовником, роботодавцем, працівником тощо. Розробка нового змісту навчання з використанням інформаційних технологій вимагає дотримання системного професійного аналізу, формування в учнів інформаційних компетенцій як професійно важливих якостей. Вагомим внеском в оновлення змісту освіти стала розробка галузевого електронного «Термінологічного довідника (для учнів ПТНЗ поліграфічного профілю, майстрів виробничого навчання, викладачів)» [9]. Електронний довідник складається з двох розділів. Перший розділ «Терміни та визначення понять» містить українські видавничі та поліграфічні терміни пов’язані з професійною видавничою діяльністю і технологією виробництва паперу, фарб тощо. Терміни упорядковано в алфавітному порядку. Тлумачне визначення термінів здійснено українською мовою, крім того, дається англійська та російська назва кожного терміна. У другому розділі авторами презентовано огляд напрямів та технологічних процесів видавничо-поліграфічної галузі українською і англійською мовами, розділ унаочнено рисунками і фотографіями (загалом 35 рисунків двома мовами). Електронний довідник «загорнуто» в систему електронного пошуку, – пошук в якій організований таким чином, що система сканує весь зміст намагаючись знайти в ньому хоча б щось схоже на запит. Використання такого сучасного засобу навчання як електронний довідник дозволяє впроваджувати нову форму організації навчання – E-learning. Поняття «E-learning» походить від термінологічного словосполучення (Electronic Learning) і означає електронне навчання (або Інтернет-навчання). E-learning – це надання доступу до комп’ютер­них навчальних програм (coursware) через мережу Інтернет чи корпоративні Інтернет-мережі. Синонімом E-learning є термін WBT (Web-based Training) – навчання через веб [8, 185]. Використання інноваційних засобів навчання, нових форм організації навчання на основі комп’ю­терних технологій вирішує завдання: збагачення знаннями та вміннями у галузі інформаційних технологій; розвитку стійкої пізнавальної мотивації, інтелектуальних та комунікативних здатностей учнів ПТНЗ.Окремо слід зазначити, що в умовах інформатизації освіти, в професійно-педагогічній діяльності вчителя, поряд із традиційними функціями, з’являється необхідність виконання нових, які пов’язані з його особистою ІКТ-компетентністю. ІКТ-компетентність вчителя – комплекс якостей особистості, що забезпечують її гнучкість і готовність швидко прилаштовуватися до будь-яких змін у професійній діяльності в умовах інформатизації освіти, використовувати продуктивні ідеї, напрацьовані в одній галузі, до іншої, а також стимулюючий потяг до самовираження [2, 10].Таким чином, формування інформаційної компетенції майбутнього робітника видавничо-поліграфічної галузі, як складової соціально-професійної компетентності залежить від багатьох чинників – починаючи з комп’ютерно-орієнтованих засобів навчання, зокрема програмних засобів навчального призначення і закінчуючи ІКТ-компетентністю самих педагогічних працівників. На нашу думку, дослідження проблеми формування інформаційної компетенції майбутнього кваліфікованого робітника видавничо-поліграфічної галузі, як педагогічної умови впровадження інноваційних виробничих технологій у зміст освіти дасть змогу професійним навчальним закладам спрямувати психолого-педагогічне, методичне забезпечення навчального процесу в необхідному напрямі.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Кorda, M. M., H. H. Shershun, M. I. Кulitska, S. R. Pidruchna, O. I. Ostrivka та O. Z. Yaremchuk. "НАВЧАЛЬНО-МЕТОДИЧНЕ ТА МАТЕРІАЛЬНО-ТЕХНІЧНЕ ЗАБЕЗПЕЧЕННЯ ОСВІТНЬОГО ПРОЦЕСУ НА КАФЕДРІ МЕДИЧНОЇ БІОХІМІЇ". Медична освіта, № 2 (24 жовтня 2017). http://dx.doi.org/10.11603/me.2414-5998.2017.2.7713.

Повний текст джерела
Анотація:
Мета роботи – обґрунтувати способи забезпечення оптимального засвоєння студентами матеріалу з біохімії як основи клініко-лабораторної діагностики.Основна частина. У статті відображена концепція навчально-методичного та матеріально-технічного забезпечення навчання студентів на кафедрі медичної біохімії в світлі сучасних вимог інтеграції в європейські та світові освітні структури. Насамперед це практично-орієнтоване навчання, що дозволяє досягти розвитку клінічного мислення на основі констеляції біохімічних показників. Біохімічні підходи посідають чільне місце в діагностичному процесі, бо лише вони відображають молекулярні механізми розвитку патологічного процесу.Не менш важливою умовою навчання є напрямок, який визначає професійну компетентність майбутніх фахівців – базовий рівень, прагнення до подальшої самоосвіти, аналітичне мислення, узагальнення наявної інформації, уміння прогнозувати і вирішувати нештатні ситуації тощо. Нарешті, сучасне навчання студентів неможливе без впровадження інноваційних технологій – комп’ютерні віртуальні програми-тренінги з біохімії, що моделюють різні метаболічні шляхи, процеси чи алгоритми лабораторних досліджень, відеофільми, мультимедійні лекції, технічне обладнання робочих місць студентів в навчальних лабораторіях.Особливих вимог потребують уміння студентів виконувати і інтерпретувати матрикульні біохімічні дослідження, які використовуються в діагностиці найпоширеніших хвороб. Клініко-лабораторна ерудиція особливо важлива в практиці кожного сучасного лікаря, і глибокі знання біохімічних процесів повинні займати чільне місце в його активі для вирішення професійних обов’язків.Висновки. Викладання біохімії студентам-медикам повинно бути практично-орієнтованим, компетентнісним, мати мотиваційне спрямування, що забезпечується належною методичною базою, широким впровадженням інноваційних технологій, вдосконаленням бази клініко-біохімічних тестових завдань, високим рівнем міжкафедральної інтеграції суміжних дисциплін.Ключові слова: практично-орієнтоване навчання, компетентність, інноваційні технології, біохімічна діагностика.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ковальчук, Д. А., О. В. Мазур та С. С. Гудзь. "ДОСЛІДЖЕННЯ ПРОЦЕСІВ УТИЛІЗАЦІЇ ТЕПЛА ПАРОПОВІТРЯНИХ СУМІШЕЙ: ЛАБОРАТОРНА УСТАНОВКА, ВИМІРЮВАНІ ЗМІННІ, АВТОМАТИЗАЦІЯ ЕКСПЕРИМЕНТІВ". Automation of technological and business processes 10, № 2 (17 липня 2018). http://dx.doi.org/10.15673/atbp.v10i2.981.

Повний текст джерела
Анотація:
У статті розглянуті деякі шляхи підвищення енергоефективності виробництва. Обґрунтовано актуальність і необхідність застосування систем, що дозволяють утилізувати тепло пароповітряних сумішей як енергетичних відходів. Розглянуто різні варіанти утилізації і виділені їх недоліки. Запропоновано можливість застосування теплового насоса для більш глибокої утилізації тепла пароповітряних сумішей. Описана конструкція автоматизованого робочого місця дослідника процесів утилізації тепла пароповітряних сумішей, яке дозволить проводити попередні дослідження перед побудовою систем утилізації для конкретного технологічного процесу. Автоматизоване робоче місце включає в себе технологічну систему, що дозволяє імітувати пароповітряну суміш із заданими параметрами, проводити утилізацію її теплової енергії. Глибока утилізація досягається за рахунок застосування в системі теплового насоса «вода-вода». Система обладнана датчиками, що дозволяють вимірювати значення всіх параметрів, що цікавлять і виконавчими пристроями. Також автоматизоване робоче місце включає програмне забезпечення, яке працює на персональному комп'ютері, і дозволяє управляти ходом експерименту, як в ручному, так і в автоматичному режимі, реєструвати всі дані. При проведенні автоматизованого експерименту усі змінні стабілізуються, окрім однієї, яка змінюється по заданому закону. Наведені результати експериментів, по дослідженню режимів роботи випарника, виконаних в автоматичному режимі. Результати представляють собою сімейства квазістатичних залежностей змінних процесу. Проведено аналіз результатів експериментів. Зроблено висновки за результатами експериментів й розглянуті шляхи вдосконалення системи керування випарником.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Івченко, В. К., В. В. Сімрок, С. М. Смірнов, Р. В. Разумний та С. П. Краснова. "ІНФОРМАЦІЙНО-КОМУНІКАЦІЙНІ ТЕХНОЛОГІЇ У НАВЧАЛЬНОМУ ПРОЦЕСІ В ДЕРЖАВНОМУ ЗАКЛАДІ “ЛУГАНСЬКИЙ ДЕРЖАВНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ”". Медична освіта, № 2 (26 серпня 2013). http://dx.doi.org/10.11603/me.v0i2.1284.

Повний текст джерела
Анотація:
У роботі наведено дані про застосування сучасних інформаційно-комунікаційних технологій, що використовують ком-<br />п’ютерно-орієнтовані й телекомунікаційні засоби у навчальному процесі на кафедрах державного закладу “Луганський<br />державний медичний університет”. Обладнання аудиторій, навчальних кімнат, лабораторій, клінік, а також бібліотеки<br />сучасними потужними мультимедійними комплексами відкриває принципово нові широкі можливості професійної ме-<br />дичної освіти, всебічної реалізації творчих, пошукових, особистісно орієнтованих, комунікативних форм навчання, підви-<br />щення його ефективності, мобільності й відповідності запитам сучасного соціально-економічного середовища. Впровад-<br />ження сучасних комп’ютеризованих манекенів та симуляторів дозволить істотно підвищити якість надання медичної<br />допомоги при виникненні невідкладних станів, а також вагітним і новонародженим.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Yurchyshyn, O. І. "EXPERIENCE OF INFORMATION TECHNOLOGIES AND DIFFERENT TEACHING METHODS APPLICATION FOR MICROBIOLOGY, VIRUSOLOGY AND IMMUNOLOGY TEACHING." Art of Medicine, April 5, 2021, 137–41. http://dx.doi.org/10.21802/artm.2021.1.17.137.

Повний текст джерела
Анотація:
Резюме. В статті обґрунтовується використання інформаційних технологій та різних педагогічних прийомів при викладанні медичної мікробіології. Для опанування студентами предмету на кафедрі мікробіології, вірусології та імунології викладачі використовують різні методики навчання, а саме: інтерактивне навчання, рольові та імітаційні ігри, моделювання, аналіз діагностично складних випадків інфекційних захворювань у практиці мікробіологічних досліджень, навчання шляхом виконання практичної та самостійної роботи з використанням сучасних тест-систем та обладнання для ідентифікації збудників інфекційних хвороб, інтерпретацію результатів реальних мікробіологічних досліджень, здійснення порівняльного аналізу достовірності різних методів мікробіологічної діагностики з урахуванням світових новітніх технологічних розробок у галузях імунології та генної інженерії, а також залучення студентів до науково-дослідної роботи кафедри на базі акредитованої лабораторії бактеріологічних досліджень. Необхідність організації ефективного навчального процесу в умовах карантину зумовила широке впровадження у педагогічну практику лекцій, практичних занять та підсумкових контролів у режимі відеоконференцій, які проводяться на платформі Microsoft Teams з використанням мультимедійних презентацій та відеофільмів. Додатковими джерелами комунікації викладачів кафедри та студентів служить соціальна мережа Facebook, де створена окрема група Microbiology_IFNMU, програми Viber, Telegram, а також впровадження в роботу кафедри електронного журналу успішності. Використання різних навчальних методик та новітніх інформаційних технологій в організації та управлінні навчальним процесом дозволяє підвищити якість навчання в вищих навчальних закладах, оптимізувати та удосконалити роботу педагогічних працівників.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії