Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Композиційні сплави.

Статті в журналах з теми "Композиційні сплави"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-16 статей у журналах для дослідження на тему "Композиційні сплави".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Полонський, Володимир А., та Олена В. Сухова. "РОЗРОБКА КОМПОЗИЦІЙНОГО МАТЕРІАЛУ, ЗМІЦНЕНОГО ДЕКАГОНАЛЬНИМИ КВАЗІКРИСТАЛАМИ, ДЛЯ РОБОТИ В МОРСЬКІЙ АТМОСФЕРІ". Journal of Chemistry and Technologies 29, № 4 (21 січня 2022): 495–503. http://dx.doi.org/10.15421/jchemtech.v29i4.236728.

Повний текст джерела
Анотація:
У роботі досліджено структуру та корозійні властивості квазікристалічних сплавів-наповнювачів Al65Co20Cu15 і Al72Co18Ni10 та композиційних матеріалів на їх основі. Композиційні матеріали отримували методом пічного просочення без застосування тиску. Металевими зв’язками слугували мідні сплави марок Л62 і БрОЦ 10-2 та алюмінієвий сплав марки АМг30. Структурний та фазовий склад наповнювачів та композиційних матеріалів визначали методами металографії, растрової електронної мікроскопії, рентгеноспектрального мікроаналізу та рентгеноструктурного аналізу. Корозійні властивості досліджували потенціодинамічним і гравіметричним методами у водному розчині NaCl (рН=7,0) за кімнатної температури. Встановлено, що в структурі досліджених наповнювачів утворюється квазікристалічна декагональна D-фаза, яка в сплаві Al65Co20Cu15 співіснує з кристалічними фазами Al4(Co,Cu)3 і Al3(Cu,Co)2, а в сплаві Al72Co18Ni10 – з фазою Al9(Co,Ni)2. Порівняння корозійної тривкості наповнювачів у сольовому розчині свідчить про те, що сплав Al72Co18Ni10 має більший опір корозії порівняно зі сплавом Al65Co20Cu15. Найвищою швидкістю корозії характеризується композиційний матеріал зі зв’язкою АМг30 і наповнювачем Al65Co20Cu15, а найнижчою – матеріал зі зв’язкою БрОЦ 10-2, і наповнювачем Al72Co18Ni10, який можна рекомендувати для роботи в умовах морського клімату.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ненастіна, Т., М. Ведь, М. Сахненко, С. Зюбанова та І. Черепньов. "Електродні матеріали для водневої енергетики". Науковий журнал «Інженерія природокористування», № 1(15) (26 жовтня 2020): 6–12. http://dx.doi.org/10.37700/enm.2020.1(15).6-12.

Повний текст джерела
Анотація:
Електроосадження сплавів молібдену, вольфраму і цирконію з кобальтом з білігандних електролітів на імпульсному струмі дозволило отримати композиційні покриття з унікальним поєднанням фізико-хімічних властивостей, недосяжних при використанні інших методів нанесення. Окрім складу отриманих композиційних електролітичних покриттів на каталітичне виділення водню впливають характеристики їх поверхні, зокрема рельєф і морфологія. Дослідження топографії поверхні проводили за допомогою сканівного атомно-силового мікроскопа контактним методом. Порівняно топографію поверхні осаджених покриттів і показано, що найбільш рівномірно розвиненими і мікроглобулярними є композити складу Со-Мо-WOx і Со-Мо-ZrО2. Електролітична реакція виділення водню є багатостадійним процесом, тому для встановлення каталітичної активності композиційних сплавів на основі кобальту необхідно визначити механізм за яким відбувається даний процес. Оцінку електрокаталітичних властивостей композиційних електролітичних покриттів на основі сплавівкобальту різного складу здійснювали на підставі аналізу кінетичних параметрів модельної реакції виділення водню з розчинів електролітів різної кислотності. Визначено постійні Тафеля, коефіцієнти переносу, густину струму обміну для електрохімічного виділення водню на композиційних електролітичних покриттях сплавами кобальту. За величиною струму обміну електрохімічної реакції виділення водню на покриттях Со-Мo-WОх, Со-Мо-ZrО2, Co-W-ZrО2 встановлено їх високу електрокаталітичну активність порівняно із індивідуальними металами і бінарними сплавами. Встановлено, що електровідновлення водню на композиційних сплавах кобальту протікає за механізмом Фольмера-Тафеля з уповільненою стадією рекомбінації. Запропоновано схеми реакцій, за якимипротікає відновлення водню, якщо проміжним продуктом загального процесу є гідриди металів.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Калинин, Евгений. "Дослідження впливу борвмістних дисперсних фаз на трибологічні характеристики наплавленого покриття На основі сплаву ПГ-10Н-01". Науковий жарнал «Технічний сервіс агропромислового лісового та транспортного комплексів», № 21 (7 грудня 2020): 8–15. http://dx.doi.org/10.37700/ts.2020.21.8-15.

Повний текст джерела
Анотація:
В роботі представлені результати дослідження триботехнічних характеристик наплавлених покриттів на основі сплаву ПГ-10Н-01, модифікованих розробленим композиційним матеріалом, що містить диборид титану, борид нікелю, оксиди титану і заліза. Дослідження наплавлених покриттів показали більш високу зносостійкість композиційних покриттів в порівнянні зі сплавом ПГ-10Н-01 в процесі нормального тертя, а також в абразивному середовищі.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Семерак, Віктор, Йосип Лучко, Олександр Пономаренко та Володимир Косарчин. "Визначення температури в круглій пластині з багатошаровими покриттями". Bulletin of Lviv National Agrarian University Agroengineering Research, № 25 (20 грудня 2021): 120–26. http://dx.doi.org/10.31734/agroengineering2021.25.120.

Повний текст джерела
Анотація:
Довгострокова безвідмовна робота газових турбін значною мірою залежить від здатності матеріалів працювати за високих температур і дії агресивного попелу і продуктів згоряння. Значення цієї температури залежно від типу турбіни є в межах 960–1300 °С, а в деяких видів турбін буває навіть вище. З цією метою розробляються нові сплави, композиційні та інші матеріали, а також технології підвищення жаростійкості і жароміцності деталей газових турбін за допомогою формування поверхневих шарів з відповідними фізико-механічними властивостями. Однак найефективнішим і найбільш широковживаним способом забезпечення жароміцності та корозійної стійкості конструкційних елементів гарячого тракту газотурбінних двигунів є нанесення поверхневих покриттів. Побудовано математичну модель для оболонки довільної форми з одностороннім та двостороннім багатошаровими тонкими покриттями, поверхні якої контактують із зовнішніми середовищами різних температур. За допомогою операторного методу розв’язок тримірної задачі теплопровідності оболонки з покриттям зведено до системи двох диференціальних рівнянь для інтегральних характеристик температури. Одержано в замкнутому вигляді точні розв’язки стаціонарних та нестаціонарних задач теплопровідності для круглої пластини та диска з двосторонніми тонкими багатошаровими покриттями. Розрахунки проводилися для суцільної круглої пластини. З представлених результатів розрахунків температури плити видно, що ігнорування покриттів завищує розрахункову температуру приблизно на 100 °С. З розподілу напружень ми спостерігаємо протилежну картину. Врахування покриттів дає зниження значення напружень приблизно на 70 МПа до центру пластини, а також до центру і до краю пластини.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Movchan, Oleksandr, та Kateryna Chornoivanenko. "ЗАКОНОМІРНОСТІ ФОРМУВАННЯ ТРИФАЗНОГО КОМПОЗИТУ ПРИ НАВУГЛЕЦЮВАННІ СПЛАВІВ СИСТЕМИ Fe-W-V-C". Metallurgicheskaya i gornorudnaya promyshlennost, № 5-6 (27 грудня 2019): 76–83. http://dx.doi.org/10.34185/0543-5749.2019-5-6-76-83.

Повний текст джерела
Анотація:
Мета. Встановлення закономірностей формування трифазного композиту при навуглецюванні залізних сплавів, легованих декількома карбідоутворюючими елементами, виявлення зв'язку структури поверхневого навуглецьованого шару з його властивостями, обґрунтування теоретичних і практичних основ виготовлення природних композиційних матеріалів з використанням хіміко-термічної обробки є метою даної роботи.Методика. Дослідження проводилися в лабораторних умовах шляхом хіміко-термічної обробки зразків заданого хімічного складу при різних параметрах. Фазові та структурні перетворення, що виникають при обробці, вивчали з використанням методів оптичної металографії та геометричної термодинаміки.Результати. Проведено дослідження закономірностей структуроутворення при навуглецюванні сплавів системи Fе-W-V-С з метою отримання теплостійких економнолегованих матеріалів. Вивчено механізми і природа фазових перетворень, а також взаємозв'язок структури поверхневого навуглецьованого шару з його властивостями. Обґрунтовано теоретичні та практичні основи отримання природних композиційних матеріалів з використанням методів хіміко-термічної обробки з метою виготовлення інструменту з більш високим рівнем теплостійкості та зносостійкості. Виходячи з аналізу структуроутворення, що відбувається при навуглецюванні сплавів системи Fе-W-V-С, встановили оптимальні температурно-концентраційні параметри навуглецьовання сплавів, при яких утворюється трифазний композиційний матеріал, що представляє собою аустенітну матрицю, армовану двома типами карбідів М6С і МС.Наукова новизна. Вперше в роботі встановили оптимальні температурно-концентраційні параметри навуглецюванні сплавів системи Fе-W-V-С, при яких утворюються структури колоніального типу, що представляють собою природний композит.Практична цінність. Можливість отримання металевих матеріалів з якісно вищим рівнем властивостей, які забезпечуються особливим характером структур зміцнюючих фаз, що формуються при хіміко-термічній обробці. Крім цього, розширення досліджень складнолегованих матеріалів, в яких при навуглецюванні в поверхневому шарі утворюється колоніальна аустенітно-карбідна структура, що представляє собою природний композит на базі одного або двох карбідів, вивчення закономірностей процесу кооперативного розпаду з утворенням трифазних колоній зробить певний внесок в теорію багатофазних перетворень.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Харламов, Ю. О., А. В. Міцик та О. В. Романченко. "Дослідження механічних властивостей детонаційно-газових покриттів методом мікроіндентування". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 4(260) (10 березня 2020): 120–28. http://dx.doi.org/10.33216/1998-7927-2020-260-4-120-128.

Повний текст джерела
Анотація:
Розглянуто перспективи використання методу неруйнівних випробувань безперервним вдавленням індентора для визначення механічних властивостей газотермічних покриттів. Проведено випробування з оцінки мікротвердості й модуля пружності композиційних покриттів на основі карбідів вольфраму і хрому, отриманих методом детонаційно-газового напилення. Розглянуто діаграми проникнення для покриттів з порошків ВК8, ВК15, ВК18С, КХН15С. Показано, що при оптимальних режимах напилювання мікротвердість одержуваних покриттів близька до мікротвердості спечених твердих сплавів того ж складу. Визначено значення коефіцієнтів варіації значень мікротвердості зі збільшенням глибини відбитка для зразків зі спеченого твердого сплаву і напилених покриттів. При оптимальних режимах напилювання досягаються не тільки максимальні значення мікротвердості та модуля пружності покриттів, але і більш однорідні структура і механічні властивості покриттів. Більш чутливими до змін технологічних параметрів є значення модуля пружності напилених покриттів, що більш зручно при відпрацюванні технологічних процесів.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Харламов, Ю. О., А. В. Міцик та О. В. Романченко. "Формування газотермічних покриттів". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 1(265) (16 березня 2021): 152–64. http://dx.doi.org/10.33216/1998-7927-2021-265-1-152-164.

Повний текст джерела
Анотація:
Розглянуто перспективи використання методу неруйнівних випробувань безперервним вдавленням індентора для визначення механічних властивостей газотермічних покриттів. Проведено випробування з оцінки мікротвердості й модуля пружності композиційних покриттів на основі карбідів вольфраму і хрому, отриманих методом детонаційно-газового напилення. Розглянуто діаграми проникнення для покриттів з порошків ВК8, ВК15, ВК18С, КХН15С. Показано, що при оптимальних режимах напилювання мікротвердість одержуваних покриттів близька до мікротвердості спечених твердих сплавів того ж складу. Визначено значення коефіцієнтів варіації значень мікротвердості зі збільшенням глибини відбитка для зразків зі спеченого твердого сплаву і напилених покриттів. При оптимальних режимах напилювання досягаються не тільки максимальні значення мікротвердості та модуля пружності покриттів, але і більш однорідні структура і механічні властивості покриттів. Більш чутливими до змін технологічних параметрів є значення модуля пружності напилених покриттів, що більш зручно при відпрацюванні технологічних процесів.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lavshchenko, R. R., та O. O. Vodka. "Розроблення алгоритмів візуалізації властивостей гетерогенних та композиційних матеріалів". Scientific Bulletin of UNFU 28, № 11 (27 грудня 2018): 125–30. http://dx.doi.org/10.15421/40281122.

Повний текст джерела
Анотація:
Сьогодні у людській діяльності використовують дуже велику кількість різних матеріалів. Ці матеріали відрізняться між собою механічними властивостями, кольором, хімічним складом. Широке розмаїття матеріалів становить завдання про збереження інформації про них та про її візуалізацію. Створено базу даних матеріалів та веб-застосунок, який дає можливість отримати доступ до інформації про різні види металів та їхні сплави, а також підібрати найближчі аналоги за допомогою функції інтелектуального пошуку. Для створення бази даних використано систему керування базами даних MySQL. Наповнення цієї бази даних відбувалось способом розроблення спеціальної програми-парсера. Ця програма переглядала сторінки з мережі Інтернет та виділяла інформацію про властивості матеріалів і зберігала їх до бази даних. Для візуалізації даних використано алгоритми зниження розмірності. Ці алгоритми спрямовані на відшукання такої проекції високовимірних даних на низьковимірний простір. Під час використання цієї проекції зберігаються всі внутрішні взаємозв'язки між даними. Це дало змогу побудувати відображення великовимірних даних на площину та візуалізувати їх. Для цього використано алгоритми Isomap, MDS, t-SNE. В такий спосіб розроблено базу даних матеріалів. Доступ до бази даних відбувається за допомогою веб-застосунку. Для зібраних даних побудовано візуалізації. За результатами візуалізації виявлено кластери матеріалів, які відповідають вже відомим класам матеріалів. Це підтверджує коректність побудови моделей візуалізації та зниження розмірності, а також правильність зібраної інформації.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Reintal, O. O., V. P. Likhoshva, A. M. Tymoshenko, and L. M. Klymenko. "Physico-technological Institute of Metals and Alloys of the NAS of Ukraine (Kyiv, Ukraine)." Metal and Casting of Ukraine 28, no. 3 (October 6, 2020): 69–74. http://dx.doi.org/10.15407/steelcast2020.03.069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mordyuk, B. M., S. M. Voloshko, A. P. Burmak, V. V. Mohylko, and M. M. Voron. "Synthesis of Composite Coatings by Ultrasonic Impact Treatment of VT6 Titanium Alloy." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 41, no. 8 (October 25, 2019): 1067–86. http://dx.doi.org/10.15407/mfint.41.08.1067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Харламов, Ю. О., О. В. Романченко та А. В. Міцик. "Про можливість використання горіння металевих частинок при газотермічному напиленні". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 4(260) (10 березня 2020): 109–19. http://dx.doi.org/10.33216/1998-7927-2020-260-4-109-119.

Повний текст джерела
Анотація:
Розглянуто особливості отримання композиційних покриттів, в тому числі алюмокерамічних, газотермічними методами напилення. Зіставлені технологічні характеристики сучасних методів напилення, показана позитивна роль у формуванні покриттів високої швидкості напилюваних частинок. Особливий інтерес для отримання захисних і функціональних покриттів представляє алюміній, найпоширеніший метал на Землі. Робота присвячена аналізу можливостей отримання металооксидних покриттів методами газотермічного напилення порошками чистих металів в режимі горіння й експериментальна перевірка отримання алюмокерамічних покриттів методом детонаційно-газового напилення порошками алюмінію. Показана можливість використання горіння металів при газотермічному напиленні для отримання металооксидних і оксидних покриттів. Зіставлені значення параметрів, що визначають схильність до утворення покриттів, а саме, температури плавлення, густини, параметра складності плавлення і коефіцієнта акумуляції тепла для деяких металів і їх оксидів. Були проведені експерименти з детонаційно-газового напилювання покриттів порошками алюмінію. Показана можливість отримання композиційних покриттів алюміній-оксид алюмінію. Встановлено, що властивості одержуваних покриттів визначаються відносним вмістом в покриттях оксидів алюмінію, що залежить від ступеня окислення частинок алюмінію, їх вихідного розміру та вмісту кисню в детонаційній суміші газів. Розроблено рекомендації щодо створення спеціалізованого обладнання, а також розглянуті перспективні напрямки дослідження процесів горіння частинок металів і сплавів при детонаційно-газовому і газополуменевих методах напилення.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Vasyliuk, Y., Y. Zinchenko, S. Gnatiuk, I. Sofiienko, and D. Petrova. "Use of Modern Shielding Properties Materials for Technical Protection of Infor-Mation." Èlektronnoe modelirovanie 43, no. 1 (February 1, 2021): 81–96. http://dx.doi.org/10.15407/emodel.43.01.081.

Повний текст джерела
Анотація:
Розглянуто основні матеріали для екранів електромагнітного випромінювання і методи їх виготовлення. Проаналізовано екрануючі властивості та електрофізичні характеристи­ки: будівельних матеріалів на основі шунгітових порід; наноструктурованих вуглеце­во­вмісних екранів електромагнітного випромінювання; екрануючих матеріалів на основі синтезу композиційних металоорганічних волокон, а також застосування трикотажно-в'язальної технології для виготовлення екранів і поглиначів електромагнітного випро­мінювання. Описано властивості матеріалів, отриманих на основі синтетичних та натуральних воло­кон, що містять нанорозмірні включення металів і сплавів. Означено перспективи та можливості технічного захисту інформації із застосуванням нових мате­ріалів і конструк­цій для екранування побічних електромагнітних випромінювань інфор­маційних прист­роїв й виробів електронної техніки та придушення негативного впливу електромаг­ніт­ного поля.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Borisov, Yu S., A. L. Borisova, O. M. Burlachenko, T. V. Tsymbalista, M. A. Vasylkivska, and Ye G. Byba. "Composite powders based on FeMoNiCrB amorphizing alloy with." Avtomatičeskaâ svarka (Kiev) 2021, no. 11 (November 28, 2021): 44–53. http://dx.doi.org/10.37434/as2021.11.08.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Степанчук, А. М., та М. Б. Шевчук. "ЗНОСОСТІЙКІ КОМПОЗИЦІЙНІ МАТЕРІАЛИ ЗА УЧАСТЮ ВІДХОДІВ ТВЕРДИХ СПЛАВІВ І САМОФЛЮСІВНИХ СПЛАВІВ НА ОСНОВІ ЗАЛІЗА". Problems of Friction and Wear, № 58 (13 лютого 2012). http://dx.doi.org/10.18372/0370-2197.58.3623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Федорчук, C. В. "РОЗРОБКА СПЛАВУ-НАПОВНЮВАЧА КОМПОЗИЦІЙНИХ ЕЛЕКТРОЛІТИЧНИХ ПОКРИТТІВ ДЛЯ РОБОТИ ПРИ ПІДВИЩЕНИХ ТЕМПЕРАТУРАХ". Problems of Friction and Wear, № 51 (18 січня 2009). http://dx.doi.org/10.18372/0370-2197.51.3582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Духота, О. І., та О. В. Тісов. "ДОСЛІДЖЕННЯ ЗНОСОСТІЙКОСТІ КОМПОЗИЦІЙНИХ СПЛАВІВ НА ОСНОВІ КОБАЛЬТУ В УМОВАХ ВИСОКОТЕМПЕРАТУРНОГО ФРЕТИНГУ". Problems of Friction and Wear, № 53 (18 січня 2010). http://dx.doi.org/10.18372/0370-2197.53.3656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії