Статті в журналах з теми "Класифікація нейронних мереж"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Класифікація нейронних мереж.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-38 статей у журналах для дослідження на тему "Класифікація нейронних мереж".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Тимошин, Ю., та Ю. Южда. "Аналіз особливостей застосування нейронних мереж для інтелектуальної обробки відеопотоків систем технічного зору". Адаптивні системи автоматичного управління 2, № 39 (15 грудня 2021): 12–19. http://dx.doi.org/10.20535/1560-8956.39.2021.247372.

Повний текст джерела
Анотація:
У статті розглядаються актуальні питання застосування сучасних технологій і методів виявлення та розпізнавання об’єктів. Стаття присвячена аналізу особливостей застосування різних типів нейронних мереж в процесі поетапної обробки відеоданих, які отримуються з систем технічного зору роботів, систем відеомоніторингу, інтелектуальних систем безпеки. Проведено огляд сучасної літератури, яка описує методику формування простору ознак опису об'єктів і методів їх розпізнавання. Під час огляду показано, що процес інтелектуальної обробки відеоданих складається з багатьох етапів обробки зображень, одним із яких є обробка з застосуванням нейронних мереж в якостіінтелектуальних компонентів. Баторівневість етапів обробки в реальному часі вимагає обгрунтування застосування різних типів нейронних мереж при різних процесах обробки з метою підвищення якості та оптимізації часу обробки таких даних. Наводиться структура моделі обробки відеозображень. Також у статті проводиться визначення типів нейронної мережі на різних етапах обробки даних (таких як ідентифікація параметрів і характеристик групи, знаходження групових об’єктів, посекторна обробка зображень, класифікація об’єкту, розпізнавання об’єкту, створення контурної моделі об’єкту, виявлення об’єкту в секторі, оцінка параметрів сектору, визначення інформаційних секторів, розбиття кадру на сектори, обробка інформаційних кадрів) відповідно ієрархічної моделі, що пропонується, з подальшим використанням отриманих результатів для мультиагентної системи розподіленої інтелектуальної обробки відеоданих об’єктів моніторингу та приклади подальшого застосування отриманих результатів. Бібл. 13, табл. 1.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hlavcheva, D., та V. Yaloveha. "КАПСУЛЬНІ НЕЙРОННІ МЕРЕЖІ". Системи управління, навігації та зв’язку. Збірник наукових праць 5, № 51 (30 жовтня 2018): 132–35. http://dx.doi.org/10.26906/sunz.2018.5.132.

Повний текст джерела
Анотація:
Предметом вивчення є історія становлення та розвиток теорії нейронних мереж, сучасні підходи до проблем розпізнавання та класифікації зображень. Особлива увага приділяється якісному огляду капсульних та згорткових нейронних мереж, принципів їх роботи та визначення основних відмінностей. Метою роботи є аналіз сучасного стану досліджень нейронних мереж та можливих перспектив розвитку цієї галузі. Завдання: проаналізувати історичний розвиток теорії нейронних мереж. Провести порівняння між типами нейронних мереж, що базуються на концепції глибокого навчання: згортковими та капсульними. Методом проведення дослідження є аналіз сучасної літератури та основних тенденцій розвитку глибокого навчання. Результатами проведеного дослідження є виявлення значущих відкриттів, що вплинули на розвиток нейронних мереж. Функціонування нейронних мереж базується на роботі нервової системи біологічних організмів. Зокрема, це принцип активності біологічного нейрону, ансамблі нейронів, виявлення «простих клітин» у зоровій корі мозку. На даний момент найбільший розвиток мають нейронні мережі, що засновані на концепції глибокого навчання, яка дозволяє багатошаровим обчислювальним моделям вивчати дані з кількома рівнями абстракції. Згорткові мережі, що використовують цю концепцію досягли значних успіхів у розпізнаванні зображень, відео та аудіо. Рекурентні мережі виявилися кращі у аналізі тексту та мови. Згорткові нейронні мережі маються низку недоліків, на яких наголошено у роботі. Капсульні нейронні мережі є вдосконаленням концепції згорткових нейронних мереж. В їх основі покладено «капсули», які призначені для виявлення характеристик об’єкта. Капсули як група нейронів характеризуються вектором активації. Запропонований відомими ученими векторний підхід дозволяє врахувати поворот та трансляцію об’єктів. Капсульні нейронні мережі потребують значно меншу навчальну вибірку, ніж згорткові. У висновках роботи визначаються основні перспективи розвитку теорії нейронних мереж, а також можливий стрімкий розвиток неконтрольованого навчання нейронних мереж. Наголошується на важливості критичного аналізу проблем нейронних мереж як вирішального фактору їх майбутнього розвитку.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nazirova, T. O., та O. B. Kostenko. "Нейрономережева інформаційна технологія опрацювання медичних даних". Scientific Bulletin of UNFU 28, № 8 (25 жовтня 2018): 141–45. http://dx.doi.org/10.15421/40280828.

Повний текст джерела
Анотація:
Швидкий розвиток комп'ютерної техніки формує передумови для розробок нейрокомп'ютерів (тобто комп'ютерів 6-го покоління), які, за прогнозами в галузі штучного інтелекту, активно будуть використані для перероблення будь-якої інформації, за тими ж принципами, що й біологічні нейронні мережі – такі як людський мозок. Тому попит на використання нейромережеві технології поступово охоплює дедалі ширший коло користувачів зокрема й у галузі охорони здоров'я. Досліджено можливості застосування штучних нейронних мереж для оброблення даних регіональної охорони здоров'я. Нейронні мережі – потужний метод моделювання, що дає змогу відтворювати складні нелінійні залежності, що актуально для систем прийняття рішень управління пацієнтопотоком у медичних закладах. Запропоновано інформаційну технологію оброблення медичних даних за допомогою штучних нейронних мереж, що дасть змогу підвищити ефективність надання медичної допомоги під час профілактичних медоглядів, ніж відомі інформаційні технології класифікації. Розглянуті такі положення: принципи дії штучних нейронних мереж, переваги і недоліки їх використання та основні функції. Також наведено перспективи використання штучних нейронних мереж щодо класифікації пацієнтів для проходження профілактичного медичного огляду.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Загородній, О. "Принципи медичної діагностики злоякісного раку шкіри людини за допомогою штучних нейронних мереж." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 40 (19 вересня 2020): 31–36. http://dx.doi.org/10.36910/6775-2524-0560-2020-40-05.

Повний текст джерела
Анотація:
Наведено принципи медичної діагностики онкологічних захворювань шкіри людини за допомогою штучних нейронних мереж. Розкрито аспекти розвитку штучного інтелекту, які дозволяють створювати на базі біологічних підходів інтелектуальні системи в різних областях застосування. Охарактеризовано етапи онкологічної діагностики, які є обов’язковими та мають фундаментальний вплив на подальше лікування пацієнта у разі діагностування злоякісного раку шкіри, результатом кожного з етапів є клінічний діагноз, морфологічний діагноз та патоморфологічний діагноз. Окреслено поняття меланоми та особливості її розвитку. Досліджено алгоритми автоматизованого комп'ютерного аналізу дерматологічних зображень, які забезпечують допомогу лікарям у постановці діагнозу та сприяють підвищенню точності діагностики. Розроблено структурну схему діагностування онкологічних захворювань шкіри людини за допомогою штучних нейронних мереж. В основі завдання диференціації патологій шкірних покривів людини лежить умовний поділ на 4 частини для вирішення завдань бінарної класифікації. Підкреслено, що навчання штучної нейронної мережі відбувається за допомогою наборів даних. Наголошується, що враховуючи завдання бінарної класифікації, у кожному напрямку застосування, наборам даних присвоюються мітки класу нуль та один, представлені у вигляді масиву. У статті розроблено детальний алгоритм, наведений у вигляді блок-схеми, здатний здійснювати постановку остаточного медичного діагнозу щодо захворювання шкіри на онкологічні патології за допомогою штучної нейронної мережі. Описаний алгоритм розроблений на основі штучних нейронних мереж, навчених вирішувати завдання бінарної класифікації. Результатом роботи штучної нейронної мережі є висновок приналежності вхідного значення до класів, на яких описана нейромережа проходила етап навчання.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Karpa, D. М., I. H. Tsmots та Yu V. Opotiak. "Нейромережеві засоби прогнозування споживання енергоресурсів". Scientific Bulletin of UNFU 28, № 5 (31 травня 2018): 140–46. http://dx.doi.org/10.15421/40280529.

Повний текст джерела
Анотація:
Досліджено та обґрунтовано вибір нейромережевих структур для оброблення статистичних даних з метою прогнозування та виявлення аномальних показників споживання енергоресурсів. Показано, що системам на основі нейронних мереж завжди протиставлялись експертні системи, які, на відміну від перших, очевидно програмувались. Середовище, в якому працює система, не завжди є статичним і потрібні методи опрацювання даних, які могли б адекватно реагувати на зміну середовища та вміти відповідно адаптувати отримувані результати. Нейронні мережі володіють такою особливістю, як вміння навчатись. Ця особливість і є основним аргументом для застосування таких структур у системах управління енергоефективністю. Розроблена архітектура мережі та застосований процес навчання дав змогу прогнозувати показники спожитої електроенергії з урахуванням багатьох параметрів. Особливістю розробленої архітектури є можливість здійснювати перенавчання у процесі функціонування, не перериваючи його. Використання адаптивного та безперервного навчання нейромережі дасть змогу виявляти аномальні показники даних. Точність такого виявлення було перевірено на реальній вибірці даних. Аналіз отриманих результатів показує, що використання нейронних мереж хоч і потребує швидкодії і часу на навчання, проте, під час класифікації вхідного вектора, швидкодія нейронної мережі перевищує будь-який алгоритм кластеризації.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Molodets, Bohdan, та Тatyana Bulanaya. "Аналіз існуючих варіантів класифікації хворих на серцево-судинними захворюваннями за допомогою нейронними мережами". System technologies 5, № 130 (4 травня 2020): 71–78. http://dx.doi.org/10.34185/1562-9945-5-130-2020-09.

Повний текст джерела
Анотація:
Робота присвячена аналізу інформаційних технологій хронобіологічного моніторингу кардіосистем, розробці систему підтримки прийняття рішень для лікаря-дослідника на базі методів класифікації з використанням нейронних мереж таких як імовірностна неронна мережа PNN (Probabilistic Neural Networks), багатошаровий персептрон MLP NN (Multi-Layer Perceptron), каскадно-кореляційна мережа CasCor (Cascade Correlation). У результаті отримано наступне: найкращим класифікатором є нейромережа каскадної кореляції з 85-88% точністю класифікації. Найгіршим класифікатором стала ймовірнісна нейронна мережа, оскільки точність цього алгоритму залежить від розміру набору даних.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Давидько, О. Б., А. О. Ладік, В. Б. Максименко, М. І. Линник, О. В. Павлов та Є. А. Настенко. "КЛАСИФІКАЦІЯ УРАЖЕНЬ ЛЕГЕНЬ ПРИ COVID-19 НА ОСНОВІ ТЕКСТУРНИХ ОЗНАК ТА ЗГОРТКОВОЇ НЕЙРОННОЇ МЕРЕЖІ". Біомедична інженерія і технологія, № 6 (17 листопада 2021): 19–28. http://dx.doi.org/10.20535/2617-8974.2021.6.231887.

Повний текст джерела
Анотація:
Реферат – Проблематика. Визначення структури ураження легеневої тканини хворих на COVID-19 по типовим ознакам «матове скло», «бруківка», «консолідація» є важливою складовою обґрунтування діагнозу та лікувальних заходів на поточний момент терапії пацієнта. Найбільш поширеним засобом визначення стадії та типу ураження дихальних шляхів є аналіз рентген зображень та комп’ютерної томографії (КТ). Оскільки особливістю вірусної пневмонії SARS-CoV-2 є швидкий перехід від легких стадій до важких з розвитком цитокинового шторму і розповсюдження вірусу в артеріальний кровотік, то надійний та швидкий аналіз КТ зображень легень пацієнта є запорукою прийняття своєчасних лікувальних заходів. В даній роботі розглядаються можливості застосування засобів штучного інтелекту для вирішення задачі класифікації уражень легень при захворюванні COVID-19. Мета. Метою роботи є створення класифікаційної системи типу уражень легень при COVID-19 по типовим ознакам «матове скло», «бруківка», «консолідація» на основі згорткової нейронної мережі CNN та текстурних ознак, джерелом яких є матриці суміжності GLCM при різних значеннях кутів напрямку аналізу. Методика реалізації. Оскільки основою відмінностей різних типів ураження легеневої тканини на КТ зображеннях є відмінності у їх текстурних характеристиках, то в основу простору ознак класифікаційної системи закладемо елементи гістограм на основі матриць суміжності областей інтересу КТ зображень легень. У зв’язку з високими якостями перетворення простору ознак до потреб задач класифікації згортковими шарами мережі, засобом побудови класифікатора пропонується застосувати згорткову нейронну мережу. Для навчання системи ДУ “«Національний інститут фтизіатрії і пульмонології ім. Ф.Г. Яновського НАМН України» було надано 794 КТ зрізів від 20 пацієнтів із масками зображень, на яких виділені 4714 зони інтересу з означеними типами уражень легень. Була побудована модель семишарової згорткової нейронної мережі: із чотирма згортковими шарами, після перших трьох з яких йдуть агрегувальні шари. На вхід згорткової нейронної мережі одночасно подаються текстурні ознаки двох GLCM, які були отримані із сегментованих КТ зображень під різними кутами. В якості функції втрат була використана NLLLOSS. Шар активації Softmax визначає результат задачі класифікації. Результати дослідження. Побудована згорткова нейронна мережа на тестовій вибірці з 472 зображень має загальну точність класифікації у 83%, на класі «матове скло» - 90,1%, «бруківки» - 70,5%, «консолідація» – 54,2% та на робочій вибірці з 4714 ROI зображень має загальну точність у 98%, на класі «матове скло» - 98,6%, «бруківка» - 96,8%, «консолідація» – 95,4% Висновки. В роботі одержано модель з високою ефективністю класифікації типу уражень легень при COVID-19. Класифікатор побудовано на основі згорткової нейронної мережі та ознак текстури, джерелом яких є матриці суміжності областей інтересу КТ зображень легень. Ключові слова – GLCM, матриця суміжності, область інтересу, комп’ютерна томографія, COVID-19, згорткова нейронна мережа, ураження легень, матове скло, бруківка, консолідація.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Акимов, В. "Алгоритми багаторівневого навчання для вирішення задачі класифікації захворювань шкіри." КОМП’ЮТЕРНО-ІНТЕГРОВАНІ ТЕХНОЛОГІЇ: ОСВІТА, НАУКА, ВИРОБНИЦТВО, № 36 (20 листопада 2019): 97–102. http://dx.doi.org/10.36910/6775-2524-0560-2019-36-16.

Повний текст джерела
Анотація:
Захворювання шкіри сьогодні належать до розповсюджених медичних проблем. Кількість таких захворювань постійно зростає, незважаючи на розвиток медичної галузі. Рак шкіри є поширеним злоякісним новоутворенням і займає друге рангове місце у структурі онкологічної захворюваності населення України. Первинна діагностика таких хвороб здійснюється візуально, починаючи з клінічних обстежень, що можуть супроводжуватись дерматоскопічним аналізом, біопсією та гістопатологічною експертизою. У роботі виконано аналіз існуючих наукових публікацій щодо класифікації захворювань шкіри при використанні згорткових нейронних мереж, який показав, що на сьогодні існує незначна кількість публікацій з використанням глибокого навчання. Результати існуючих досліджень не містять достатнього рівня точності і результативності щодо класифікації захворювань шкіри, що підтверджує необхідність розробки нових згорткових нейронних мереж і їх подальших досліджень. Тому у роботі запропоновано технічне рішення щодо побудови згорткової нейронної мережі для класифікації захворювань шкіри.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nazirova, T. A., та A. B. Kostenko. "Застосування технології Neural Network для управління пацієнтопотоком у медичній установі". Scientific Bulletin of UNFU 28, № 6 (27 червня 2018): 136–39. http://dx.doi.org/10.15421/40280627.

Повний текст джерела
Анотація:
На сьогодні на основі технології Neural Network розроблено безліч програмних комплексів для прогнозування різних явищ, статистичного оброблення даних, методів класифікації даних, розпізнавання образів, оптимізації деяких процесів тощо. Здатність до самонавчання та вилучення знань з даних є одним з найкорисніших та вражаючих властивостей штучних нейронних мереж, успадкованих ними від мозку, як від свого прототипу. Світова практика використання штучного інтелекту свідчить про можливості отримувати нові, невідомі раніше закономірності, які не відразу знаходять пояснення, а іноді і не вкладаються в рамки офіційної науки. У багатьох параметрах технології нейронних мереж перевершують наявні традиційні алгоритми, тому по праву вважаються актуальними для активного застосування на цей час. Нейронні мережі – потужний метод моделювання, що дає змогу відтворювати складні нелінійні залежності, що актуально для систем прийняття рішень в управлінні пацієнтопотоком у медичних установах. У цьому дослідженні розглянуто сутність нейронних мереж, їх особливості здатності до навчання (налаштування архітектури і синаптичних зв'язків). Також виявлено і перспективи розвитку застосування і використання штучних нейронних мереж для застосування розподілу пацієнтів для здійснення профілактичного медичного огляду.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhukovskyy, V. V., S. V. Shatnyi та N. A. Zhukovska. "Нейронна мережа для розпізнавання та класифікації картографічних зображень ґрунтових масивів". Scientific Bulletin of UNFU 30, № 5 (3 листопада 2020): 100–104. http://dx.doi.org/10.36930/40300517.

Повний текст джерела
Анотація:
Запропоновано нейронну мережу для розпізнавання картографічних зображень ґрунтових масивів та класифікації ландшафтних ділянок за типами ґрунтових масивів із використанням нейронної мережі. Описано підходи до проектування архітектури, методів навчання, підготовки даних для проведення навчання, тренування та тестування нейронної мережі. Розроблено структурно-функціональну схему нейронної мережі, яка складається із вхідного, прихованих та вихідного шарів, кожен окремий нейрон описано відповідною активаційною функцією із підібраними ваговими коефіцієнтами. Показано доцільність застосування кількості нейронів, їх тип та архітектуру для проведення задачі розпізнавання та класифікації ділянок на кадастрових картах. Як вихідні дані використано відкриті державні інформаційні ресурси, в яких виділено окремі ділянки за типами ґрунтів, їх поширення та сформовано базу даних для навчання та тренування нейронної мережі. Проаналізовано ефективність, швидкодію та точність роботи нейронної мережі, зокрема, проведено комп'ютерну симуляцію із використанням сучасного програмного забезпечення та математичне моделювання обчислювальних процесів у середині структури нейронної мережі. Розроблено програмні засоби для попередньої підготовки та оброблення вхідних даних, подальшого тренування та навчання нейронної мережі та безпосередньо процесу розпізнавання та класифікації. Відповідно до отриманих результатів, розроблена модель та структура нейромережі, її програмні засоби реалізації показують високу ефективність як на етапі попереднього оброблення даних, так і загалом на етапі класифікації та виділення цільових ділянок ґрунтових масивів. Надалі наступним етапом досліджень є розроблення та інтеграція програмно-апаратної системи на основі розпаралелених та частково розпаралелених засобів обчислювальної техніки, що дасть змогу значно пришвидшити обчислювальні операції, досягти виконання процесів навчання та тренування нейронної мережі в режимі реального часу та без втрати точності. Подані наукові та практичні результати мають високий потенціал для інтеграції в сучасні інформаційно-аналітичні системи, системи аналізу та моніторингу за станом навколишнього середовища, технологічними об'єктами та об'єктами промисловості.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Поляченко, A. "Згорткова нейронна мережа для класифікації томографічних і рентгенівських знімків в системі розпізнавання." КОМП’ЮТЕРНО-ІНТЕГРОВАНІ ТЕХНОЛОГІЇ: ОСВІТА, НАУКА, ВИРОБНИЦТВО, № 36 (27 листопада 2019): 128–33. http://dx.doi.org/10.36910/6775-2524-0560-2019-36-15.

Повний текст джерела
Анотація:
У роботі запропоновано та побудовано систему розпізнавання томографічних і рентгенівських знімків для пошуку і локалізації патологій. Дана система включає блоки: введення інформації про пацієнта, обробки медичних зображень, для встановлення висновку, для класифікації виявлених патологій, базу даних, підготовки звіту. У статті приділено увагу особливостям розробки згорткової нейронної мережі для класифікації томографічних і рентгенівських знімків в системі розпізнавання, призначеної для пошуку і локалізації патологій. В результаті, було запропоновано згорткову нейронну мережу для класифікації томографічних і рентгенівських знімків в запропонованій системі розпізнавання, призначеної для пошуку і локалізації патологій.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Гавриленко, Олена, та Неля Новіченко. "ДОСЛІДЖЕННЯ ОПТИМІЗАТОРІВ НЕЙРОННОЇ МЕРЕЖІ ДЛЯ КЛАСИФІКАЦІЇ ЗОБРАЖЕНЬ БУДІВЕЛЬ ЗА АРХІТЕКТУРНИМ СТИЛЕМ". System technologies 5, № 136 (29 травня 2021): 169–79. http://dx.doi.org/10.34185/1562-9945-5-136-2021-16.

Повний текст джерела
Анотація:
У статті розглянуто задачу класифікації зображень з тісними міжкласових взаємозв’язками – класифікація архітектурних стилів будівель, де велика кількість основних рис та ознак є спільною для декількох класів. Об’єктом дослідження є алго-ритм навчання нейронної мережі для розпізнавання архітектурних стилів будівель. Запропоновано метод навчання нейронної мережі для класифікації архітектурних стилів будівель за зображеннями будівель, що за меншу кількість часу навчання досягає більшої. Запропонований алгоритм оптимізатору реалізовано програмно і проведено експерименти для порівняння ефективності алгоритму.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Gryshmanov, Е. "ВИБІР МАТЕМАТИЧНОГО АПАРАТУ ДЛЯ ПОБУДОВИ МОДЕЛІ ПРОГНОЗУВАННЯ НЕСПРИЯТЛИВИХ АВІАЦІЙНИХ ПОДІЙ ПІД ЧАС ПОЛЬОТУ". Системи управління, навігації та зв’язку. Збірник наукових праць 5, № 51 (30 жовтня 2018): 20–23. http://dx.doi.org/10.26906/sunz.2018.5.020.

Повний текст джерела
Анотація:
Мета статті. Проведення дослідження та вибір найбільш ефективного математичного апарату для побудови моделі прогнозування несприятливих авіаційних подій під час польоту. Результати. В статті проведений аналіз відомих методів, що використовуються для вирішення задач класифікації даних с точки зору доцільності їх застосування для побудови моделі прогнозування несприятливих авіаційних подій під час польоту на основі аналізу текстових повідомлень. Розглянуто наступні методи: логістична регресія, метод опорних веторів, наївний байєсівський класифікатор, випадковий ліс (random forest). Крім того для вирішення подібного класу задач розглянуто згорткові та рекурентні нейронні мережі в яких застосовуються алгоритми глибокого навчання. Висновки. В результаті аналізу вказаних методів для побудови моделі прогнозування несприятливих авіаційних подій під час польоту на основі аналізу текстових повідомлень обрано математичний апарат глибоких нейронних мереж. Завдяки застосуванню в них алгоритмів глибокого навчання вони володіють найбільш високою точністю у порівнянні з традиційними підходами.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Поліщук, М., С. Костючко та М. Христинець. "Порівняння методів оптимізації нейронних мереж на прикладі задачі класифікації зображень." КОМП’ЮТЕРНО-ІНТЕГРОВАНІ ТЕХНОЛОГІЇ: ОСВІТА, НАУКА, ВИРОБНИЦТВО, № 37 (28 грудня 2019): 43–52. http://dx.doi.org/10.36910/6775-2524-0560-2019-37-7.

Повний текст джерела
Анотація:
У статті проаналізовано існуючі методи оптимізації та типи розподілених обчислень для тренування нейронних мереж. На основі проведених експериментів досліджено доцільність використання даних методів для різних типів даних та архітектури нейронних мереж
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Добровська, Л., та А. Руденко. "ІДЕНТИФІКАЦІЯ КОРИСТУВАЧІВ ПІДСИСТЕМИ РОЗПІЗНАВАННЯ НА ОСНОВІ СІТКІВКИ ОКА". Біомедична інженерія і технологія, № 6 (11 грудня 2021): 121–29. http://dx.doi.org/10.20535/2617-8974.2021.6.246909.

Повний текст джерела
Анотація:
Забезпечення біометричної безпеки має важливе значення в більшості сценаріїв перевірки справжності користувача та його ідентифікації. Розпізнавання, засноване на зразках райдужної оболонки, є важливою областю досліджень, покликаної забезпечити надійну, просту і швидку підсистему ідентифікації користувачів системи, яка використовує камеру (її можна використовувати у будь-якій системі, яка має механізм авторизації, де необхідна гарантія підвищеної безпеки). Мета роботи полягає у встановленні основних етапів алгоритму ідентифікації (класифікації) користувачів системи на основі обробки зображення сітківки ока із зіницею. Алгоритм розпізнавання райдужної оболонки ока для реєстрації користувачів системи включає такі етапи - попередня обробка зображення: зображення проходить різні фільтри (серед них фільтр Гауса та низько-частотні фільтри, гістограмні перетворення); - препроцессінг: 1) локалізація внутрішніх і зовнішніх меж області райдужної оболонки ока з використанням генетичного алгоритму; 2) нормалізація зображення, 3) виокремлення значущої інформації; - класифікація (або зіставлення із елементами БД) - виконана на основі двошарового персептрону (ДП). Для оцінки алгоритмів розпізнавання райдужної оболонки використано базу даних оцифрованих 100 зображень очей у відтінках сірого від 50 різних людей (класів). Експерименти проводилися у два етапи: 1) сегментація і 2) розпізнавання райдужної оболонки. На першому етапі для локалізації райдужних оболонок застосовується алгоритм прямокутної області. На другому етапі виконується класифікація малюнка райдужної оболонки за допомогою мережі. Сформовані множини навчання й тестування (відповідно 60 зображень очей від 30 різних людей; 40 зображень очей від 20 різних людей). Виявлені райдужки для класифікації після нормалізації та посилення масштабуються за допомогою усереднення. Це допомагає зменшити розмір мережі. Потім зображення подаються матрицями, які є вхідним сигналом для мережі. Виходами ДП є класи візерунків райдужки. Для класифікації райдужної оболонки використовується алгоритм нейронного навчання. Точність розпізнавання на множині навчання становила 95,25%; на множині тестування - 89%. Ключові слова - біометрія, розпізнавання райдужної оболонки ока, нейронна мережа
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Хома, Ю. В., В. В. Хома, Су Юн та О. В. Кочан. "Аналіз ефективності методів коригування промахів у системах біометричної ідентифікації на підставі електрокардіограми". Scientific Bulletin of UNFU 30, № 3 (4 червня 2020): 99–105. http://dx.doi.org/10.36930/40300317.

Повний текст джерела
Анотація:
Здійснено порівняння ефективності різних методів коригування промахів у біометричних системах ідентифікації. Основна ідея – виявити сегменти ЕКГ-сигналу із промахами, і замість їх вилучення з процесу ідентифікації, застосувати процедуру їх коригування. Це дасть змогу отримати більший обсяг даних і кращу статистичну базу для навчання та калібрування системи. У роботі порівнювали три різні методи усунення промахів. Перший метод базується на оцінюванні статистичного відхилення вибірок від певного номінального значення на деякий поріг. При цьому аналізується не весь сигнал одразу, а тільки його частина в межах ковзного вікна. В основі двох інших методів знаходиться ідея застосування штучних нейронних мереж, зокрема одного із їх різновидів – автоенкодерів. Відмінність між методами із використанням автоенкодерів полягає у такому: в одному випадку теж використовується ковзне вікно, що дає змогу безпосередньо задавати критерії, за якими відбувається коригування, водночас як за іншим методом виконується коригування за критеріями, які система підбирає автоматично на етапі навчання. Окрім цього, в роботі описано структуру системи біометричної ідентифікації на підставі сигналу електрокардіограми. До ключових структурних компонентів системи належать: аналоговий вимірювальний блок, АЦП та низка цифрових функціональних блоків для перетворення та аналізу сигналів. Ці блоки можуть бути імплементовані на різних обчислювальних платформах, таких як мікроконтролери, ПК, хмарні сервіси). Ці цифрові блоки виконують такі перетворення, як: низькочастотна та високочастотна фільтрація, виявлення R–піків у сигналі електрокардіограми, сегментація серцевих циклів, нормалізація за амплітудою, усунення аномалій, зменшення розмірності та класифікація. Експерименти проводили на самостійно зібраному наборі даних LBDS (Lviv Biometric Dataset). Ця база даних на момент написання статті містила понад 1400 записів для 95 різних осіб. Базова похибка ідентифікації без коригування промахів становить близько 14 %. Після застосування процедури коригування промахів похибка ідентифікації зменшилась до 2,0 % для алгоритмів на підставі автоенкодерів та до 2,9 % для алгоритмів на підставі статистичних методів. При цьому найкращі результати було досягнуто за використання LDA класифікатора у поєднанні з PCA–компресією (1,7 %), а також для KNN класифікатора без PCA–компресії (2,3 %). Проте додавання процедури коригування промахів у процес біометричної ідентифікації призводить до певного збільшення часу на опрацювання сигналу (до 20 %), що однак не критично для більшості прикладних застосувань.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Феній, Н. С., та Ю. І. Грицюк. "Автоматизація процесу класифікації текстових новин з інтернет-сайтів методами нейронної мережі". Scientific Bulletin of UNFU 30, № 4 (17 вересня 2020): 123–33. http://dx.doi.org/10.36930/40300421.

Повний текст джерела
Анотація:
Спроектовано веб-додаток, який дасть змогу здійснювати класифікацію політематичних текстових новин з інтернет-сайтів у режимі онлайн, їх зберігати і редагувати, а отримані результати ставити в чергу для подальшого оброблення та використання. Проаналізовано наявні методи класифікації політематичної текстової інформації з можливістю вибору потрібного з них чи їх комбінації, які найбільш ефективно можуть задовольняти встановлені вимоги замовників до неї за різними критеріями. Визначено метод для класифікації політематичних текстових новин, робота якого розрахована на онлайн режим їх надходження з послідовним аналізом на вході множини текстових даних. Спроектовано архітектуру веб-додатку для послідовної класифікації текстових даних у режимі онлайн та обґрунтовано його перелік необхідних функцій, які забезпечуватимуть зберігання, оброблення та перегляд текстової інформації, отриманої внаслідок аналізу інтернет-сайтів, або даних, необхідних для його роботи. Розроблено структуру організації баз даних для реалізації веб-додатку, які забезпечать надійне зберігання класифікованої інформації за різними критеріями, а також даних для авторизації та автоматизації дій користувача. Реалізовано веб-додаток з використанням середовища розробника, обраної мови програмування, засобів реалізації та спроектованої клієнт-серверної його архітектури, функціонал якого обробляє відповідну інформацію, використовує базу даних для її зберігання та виконання подальших дій. Для ефективної роботи веб-додатку під час класифікації текстових новин передбачено різних користувачів, потреби яких доступні за оплату, яку можна здійснити відразу на ресурсі. Користувачам доступний такий функціонал веб-додатку: оброблення, зберігання, редагування текстових новин та результатів їх класифікації, авторизації та оплати додаткових функцій.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Рудий, Р. "Застосування штучних нейронних мереж для класифікації ділянок поверхні з певним рельєфом". Геодезія, картографія і аерофотознімання, Вип. 83 (2016): 124–32.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Рудий, Р. "Застосування штучних нейронних мереж для класифікації ділянок поверхні з певним рельєфом". Геодезія, картографія і аерофотознімання, Вип. 83 (2016): 124–32.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Рудий, Р. "Застосування штучних нейронних мереж для класифікації ділянок поверхні з певним рельєфом". Геодезія, картографія і аерофотознімання, Вип. 83 (2016): 124–32.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Яременко, В., та С. Материнська. "Використання штучних нейронних мереж для визначення наявності сердцево-судинних хвороб та захворювань печінки при малих наборах даних." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 40 (24 вересня 2020): 164–69. http://dx.doi.org/10.36910/6775-2524-0560-2020-40-25.

Повний текст джерела
Анотація:
В даній роботі проведено аналіз ефективності застосування штучних нейронних мереж для вирішення задачі класифікації для невеликих наборів медичних даних із сфери діагностування. Для дослідження було обрано два набори даних: дані про серцево-судинні захворювання та про хвороби печінки. Отримані результати було порівняно з результатами точності для стандартних методів машинного навчання, що використовуються в задачах класифікації Для проведення дослідження було обрано модель багатошарового перцептрона. Програмним засобом для реалізації став Python, що надає можливість використовувати допоміжні бібліотеки при роботі з методами машинного навчання.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Захарченко, Раїса, Леонід Захарченко, Тетяна Кірюшатова та Олена Штуца. "ДОСЛІДЖЕННЯ АЛГОРИТМІВ НАВЧАННЯ НЕЙРОННОЇ МЕРЕЖІ ДЛЯ КЛАСИФІКАЦІЇ ЗОБРАЖЕНЬ". Problems of information technologies, № 27 (2020): 44–53. http://dx.doi.org/10.35546/2313-0687.2020.27.44-53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Кіріченко, Людмила, Євгенія Степаненко та Дмитро Яндуков. "КЛАСИФІКАЦІЯ ЧАСОВИХ РЯДІВ ІЗ ВИКОРИСТАННЯМ РЕКУРЕНТНИХ ДІАГРАМ". System technologies 5, № 136 (8 серпня 2021): 81–87. http://dx.doi.org/10.34185/1562-9945-5-136-2021-08.

Повний текст джерела
Анотація:
У статті описано новий підхід до класифікації часових рядів на основі їх візуалізації. Часовий ряд подається у вигляді чорно-білого зображення своєї рекурентної діаграми. В якості класифікатора зображень використовується згорткова нейронна мережа. Даними для класифікації є реалізації електрокардіограм, які містять записи здорових людей та пацієнтів з діагнозом ішемія. Результати досліджень вказують на добру точність класифікації порівняно з іншими методами та потенційні можливості цього підходу.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Прочухан, Д. В. "Нейромережеве моделювання в реалізації системи визначення правильності носіння медичної маски". Системи обробки інформації, № 1(164) (17 березня 2021): 65–72. http://dx.doi.org/10.30748/soi.2021.164.07.

Повний текст джерела
Анотація:
Розглянуто актуальну проблему визначення правильності одягнення медичної маски у людини. Для її вирішення запропоновано побудування моделі з використанням штучного інтелекту. Розглянуто механізм класифікації та обробки вхідних даних. Розроблено структуру згорткової нейронної мережі у вигляді моделі послідовної реалізації шарів згортки, агрегування, повного зв’язку. Обґрунтовано доцільність використання функції ReLU для активації вузлів. Застосовано метод Dropout для запобігання перенавчанню нейронної мережі. Вихідний шар реалізовано у вигляді одного нейрону з використанням функції активації сигмоїда. Оптимізація згорткової нейронної мережі здійснена методом стохастичного градієнтного спуску. Використано метод зворотного поширення помилки для навчання нейронної мережі. Розроблено програмний додаток на мові програмування Python. Використано бібліотеку Keras для забезпечення точності, правильності, повноти побудованої моделі. Проведено компіляцію з використанням бінарної перехресної ентропії в якості цільової функції. За допомогою розробленого додатку проведено ефективне навчання згорткової нейронної мережі на тестових вхідних зображеннях. Зважаючи на значні вимоги до апаратного забезпечення і програмних ресурсів, цей процес було здійснено під керуванням операційної системи Linux. Обмежена кількість періодів навчання забезпечила зменшення підсумкового часу навчання. Здійснено перевірку побудованої системи на контрольній множині. Отримано високі показники розпізнавання зображень. Працездатність програмного додатку перевірена з використанням різної апаратної і програмної конфігурації. Розроблена система може бути використані у галузях, які потребують контролю виконання правил безпеки під час пандемії.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

KRASNOSHLYK, Nataliya, and Maryna SERDIUK. "APPLICATION OF NEURAL NETWORK ENSEMBLES TO SOLVE THE PROBLEM OF CLASSIFICATION OF IMAGES." CHERKASY UNIVERSITY BULLETIN: APPLIED MATHEMATICS. INFORMATICS, no. 1 (2020): 53–60. http://dx.doi.org/10.31651/2076-5886-2019-1-53-60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

А.І. Поляченко. "РУЧНА ОБРОБКА МЕДИЧНИХ ЗОБРАЖЕНЬ ЛІКАРЕМ-ДІАГНОСТОМ У СИСТЕМІ РОЗПІЗНАВАННЯ ТОМОГРАФІЧНИХ І РЕНТГЕНІВСЬКИХ ЗНІМКІВ ДЛЯ ПОШУКУ І ЛОКАЛІЗАЦІЇ ПАТОЛОГІЙ". Наукові нотатки, № 67 (31 січня 2020): 117–20. http://dx.doi.org/10.36910/6775.24153966.2019.67.18.

Повний текст джерела
Анотація:
У статті запропоновано та побудовано систему розпізнавання томографічних і рентгенівських знімків для пошуку і локалізації патологій. У даній статті необхідно розробити систему розпізнавання томографічних і рентгенівських знімків для пошуку і локалізації патологій та розглянути принципи ручної обробки медичних зображень лікарем-діагностом. Для пошуку і локалізації аномалій на томографічних і рентгенівських знімках пропонується система, яка буде складатися з наступних блоків : блок введення інформації про пацієнта; блок обробки медичних зображень, що включає: згорткову нейронну мережу (ЗНМ) для класифікації томографічних і рентгенівських знімків; ЗНМ для визначення залежностей значень просторового фактора від стандартизованих -значень і з наступним розрахунком коефіцієнту загальної просторової автокореляції; ЗНМ для сегментації томографічних і рентгенівських знімків; підсистему ручної обробки медичних зображень, що представлена лікарем-діагностом;блок для встановлення висновку, що включає нейронну мережу (НМ), призначену для порівняння отриманих результатів; блок для класифікації виявлених патологій, що включає НМ; базу даних, як вже існуючих знімків, так і нових, у т.ч. з результатом оброблення; блок підготовки звіту.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Поляченко, А. І. "РУЧНА ОБРОБКА МЕДИЧНИХ ЗОБРАЖЕНЬ ЛІКАРЕМ-ДІАГНОСТОМ У СИСТЕМІ РОЗПІЗНАВАННЯ ТОМОГРАФІЧНИХ І РЕНТГЕНІВСЬКИХ ЗНІМКІВ ДЛЯ ПОШУКУ І ЛОКАЛІЗАЦІЇ ПАТОЛОГІЙ". Automation of technological and business processes 11, № 3 (11 листопада 2019): 42–45. http://dx.doi.org/10.15673/atbp.v11i3.1502.

Повний текст джерела
Анотація:
У статті запропоновано та побудовано систему розпізнавання томографічних і рентгенівських знімків для пошуку і локалізації патологій. Дана система включає блоки: введення інформації про пацієнта, обробки медичних зображень, для встановлення висновку, для класифікації виявлених патологій, базу даних, підготовки звіту. У запропонованій системі початковим етапом є отримання томографічних чи рентгенівських знімків, які, далі, поступають до блоків введення інформації про пацієнта і обробки медичних зображень. Інформація про пацієнта в результаті введення потрапляє до бази даних разом із томографічними чи рентгенівськими знімками. У пропонуємій системі розпізнавання томографічних і рентгенівських знімків для пошуку і локалізації патологій існує можливість для лікаря-діагноста самому виділяти підозрілу з його точки зору область і надалі обробити тільки цю область або за допомогою існуючих загорткових нейронних мереж виділити області патологій-новоутворень, або вибрати конкретні алгоритми обробки медичних зображень.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Яровой, Тихон. "МОДЕЛЮВАННЯ СИСТЕМ ЗАБЕЗПЕЧЕННЯ ДЕРЖАВНОЇ БЕЗПЕКИ". Public management 20, № 5 (29 грудня 2020): 229–40. http://dx.doi.org/10.32689/2617-2224-2019-5(20)-229-240.

Повний текст джерела
Анотація:
Запропоновано модель системи забезпечення державної безпеки як дієвого інструменту реалізації інтересів громадян і суспіль- ства з урахуванням внутрішніх та зовнішніх факторів впливу. Досліджено можливості застосування математичних методів для опти- мального вибору засобів захисту від загроз та небезпек в державному управлінні. Вивчено способи застосування штучного інтелекту для встановлення критеріїв безпеки держави. Зокрема, розглянуто оптимізаційно-імітаційні методи, які дають можливість завдяки певній кількості ітерацій, отрима- ти приближене до оптимального значення показників, що досліджуються. Визначено їх практичне значення, з метою подальшого застосування у сферах: аналізу загроз національної безпеки; аналізу ринку засобів захи- сту від таких загроз; оброблення інформації про характеристики загроз (можливості прояву та шкоди); оброблення інформації про можливості запобігання загроз; розроблення алгоритмів оптимального вибору варіантів захисту. Досліджено функціональні залежності рівня безпеки держави від низки факторів впливу, що можуть бути застосовані при моделюванні безпеки дер- жави, що дає можливість визначити рівні безпеки. Досліджено теоретичні аспекти застосування штучних нейронних ме- реж, які можуть використовуватись e процесі моделювання безпеки держа- ви. Особливістю їх використання можна вважати те, що велика кількість вхідних показників, якими характеризується рівень держаної безпеки, може бути проаналізована машинним способом, з використанням алгоритмів машинного навчання. Це дає можливість проводити класифікації різних станів, наприклад, загроз, ризиків та небезпек. І хоча не вирішеним аспектом залишається вибір певної ваги впливу вхідних параметрів нейронної мережі, їх самонавчання у поєднанні з імітаційними методами математичного моде- лювання, в подальшому можуть вирішити питання оптимізації оцінювання рівня безпеки держави.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Настенко, Є., В. Максименко, С. Поташев, В. Павлов, В. Бабенко, С. Рисін, О. Матвійчук та В. Лазоришинець. "ЗАСТОСУВАННЯ МЕТОДУ ГРУПОВОГО УРАХУВАННЯ АРГУМЕНТІВ ДЛЯ ПОБУДОВИ АЛГОРИТМІВ ДІАГНОСТИКИ ІШЕМІЧНОЇ ХВОРОБИ СЕРЦЯ". Біомедична інженерія і технологія, № 5 (12 травня 2021): 1–9. http://dx.doi.org/10.20535/2617-8974.2021.5.227141.

Повний текст джерела
Анотація:
Проблематика. Метод групового урахування аргументів є доволі недооціненим інструментом для отримання високоточних прогностичних моделей. Перший варіант штучної нейронної мережі (які користуються величезною популярністю в світі машинного навчання) був отриманий в 1965 році українським вченим Олексієм Івахненко, який як раз використовував метод групового урахування аргументів для навчання мережі. Відомо, що даний підхід має місце фактично в будь-якій проблематиці, і не виключенням є задача розпізнавання ішемічної хвороби серця по відеоданим спекл-трекінг ехокардіографії. Вирішення подібної задачі є актуальним, оскільки це надасть можливість аналізувати ехокардіограми навіть якщо вони не оснащені технологією спекл-трекінг. Мета. Методом групового урахування аргументів за даними спекл-трекінг ехокардіографії побудувати класифікаційні алгоритми діагностики порушень кінематики скорочень лівого шлуночка серця у хворих на ішемічну хворобу серця в умовах стану спокою, та при застосуванні ехострестесту із добутаміновою пробою. Методика реалізації. Національним інститутом серцево-судинної хірургії імені М.М. Амосова були надані відеодані, отримані за допомогою методу спекл-трекінг ехокардіографії, яким було обстежено 56 пацієнтів з підозрою на ішемічну хворобу серця. Серед них лише у 16 пацієнтів патологію виявлено не було. Ехокардіографія реєструвалась у B-режимі за трьома позиціями: довгої вісі, 4-камерної та 2-камерної позиціях. Усього для дослідження було використано 6245 кадрів відео потоку: 1871 – без порушень серцевої діяльності, та 4374 – при наявності патології під час обстеження. Результати дослідження. Методом групового урахування аргументів було одержано 12 моделей класифікації з урахуванням доз добутаміну (0, 10, 20 і 40 мкг), точність яких на екзаменаційній вибірці варіювалась від 81.7% до 97.4%. Також були отримані 3 моделі класифікації без урахування доз добутаміну, які на екзаменаційній вибірці показали точність в межах 75.2-82.2%. Висновки. Отримані високоточні моделі класифікації методом групового урахування аргументів. Дані моделі можна буде застосувати для аналізу ехокардіограм, отриманих у B-режимі на обладнанні, яке не оснащене технологією спекл-трекінг. Ключові слова: метод групового урахування аргументів; спекл трекінг ехокардіографія; ехострестест з добутаміном; ішемічна хвороба серця.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Bazylevych, R. P., та A. V. Franko. "Ієрархічна модель систем автоматизованого генерування модульних тестів". Scientific Bulletin of UNFU 31, № 5 (25 листопада 2021): 96–101. http://dx.doi.org/10.36930/40310515.

Повний текст джерела
Анотація:
Описано особливості проблеми тестування програмного забезпечення (ПЗ) за допомогою автоматизованих систем генерування модульних тестів. Проаналізовано методи автоматизованого модульного тестування, що використовуються для тестування ПЗ. Виконано класифікацію методів генерування модульних тестів на підставі вхідних даних і засобів для генерування тестів. Показано, що компільований байт-код та граф контролю потоку є основними видами вхідних даних, а символьне виконання є основним методом для генерування модульних тестів. Систематизовано новітні методи автоматизованого модульного тестування: символьне виконання з використанням штучних нейронних мереж, додаткової логіки та оптимізаційних алгоритмів. Проаналізовано можливості застосування мета- та гіперевристик системами автоматизованого генерування модульних тестів. Побудовано їх ієрархічну модель: до четвертого рівня віднесено пошукові алгоритми для аналізу умов у коді; до третього – SMT-бібліотеки, які містять множину алгоритмів першого рівня та стратегії їх використання; до другого – поєднання результатів роботи SMT-бібліотеки з результатами роботи додаткової логіки; до першого – алгоритм управління, що керують процесом генерування тестів. Описано можливості виконання паралельних обчислень на всіх рівнях ієрархії. Продемонстровано наявність вузьких місць у реалізаціях систем генерування модульних тестів. Запропоновано розподіл завдання генерування модульних тестів на підставі рівнів ієрархії моделі, що дає змогу обійти вузькі місця поточних систем та покращити масштабованість. Розроблено UML-діаграму класів на запропонованій моделі. Запропоновано одночасне використання метаевристик на всіх ієрархічних рівнях моделі для підвищення якості згенерованих тестів, що покращить універсальність і модульність системи. Обґрунтовано потребу подальшого розроблення нових методів для підвищення ефективності алгоритмів генерування тестів та якості тестування.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Тимошин, Ю., та M. Шевченко. "Система інтелектуального управління для групи роботів". Адаптивні системи автоматичного управління 2, № 39 (15 грудня 2021): 106–14. http://dx.doi.org/10.20535/1560-8956.39.2021.247420.

Повний текст джерела
Анотація:
Об’єктом дослідження є система інтелектуального управління мобільного робота. Проблема інтелектуального управління для групи мобільних роботів в умовах невизначеного середовища полягає в складності побудови еффективної системи управління з якісною системою ідентифікації ситуацій та використанням нейронних мереж, моделі яких дають достатньо точні дані для еффективної узгодженої взаємодії роботів у групі. В статті розглянуто систему управління поведінкою мобільного робота з використанням побудови сенсорної карти руху мобільного робота, а також його функціональну модель. Також побудовано структуру системи ідентифікації ситуацій координатора групи роботів згідно якої робот-координатор може обробляти інформацію що надходить з навколишнього середовища, будувати карту карту місцевості, ідентифікувати перешкоди, планувати траєкторії обходу перешкод базуючись на обробленій інформації, а також має можливість комунікації з координаторами інших груп та датацентром для злагодженої роботи груп мобільних роботів для ефетивного виконання завдання. Крім того в статті представлена концепція багаторівневої інтелектуальної системи управління мобільним роботів, в рамках якої запропоновано будувати інтелектуальниймодуль управління з трьох рівнів, виходячи з моделі мислення і класифікації завдань за рівнем інформації. Інтелектуальна система може бути використана разом з системою ідентифікації ситуацій для підвищення точності взаємодії як самого мобільного робота, так і групи мобільних роботів шляхом включення компонентів інтелектуальності в систему управління робота-координатора групи, або шляхом отримання оброблених даних з Центру моніторингу та управління через координатора групи. Розглянуто основні методи групового інтелектуального управління мобільними роботами. Бібл. 10, іл. 4.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Соловйов, Володимир Миколайович, та Вікторія Володимирівна Соловйова. "Теорія складних систем як основа міждисциплінарних досліджень". Theory and methods of learning fundamental disciplines in high school 1 (2 квітня 2014): 152–60. http://dx.doi.org/10.55056/fund.v1i1.424.

Повний текст джерела
Анотація:
Наукові дослідження стають ефективними тоді, коли природу подій чи явищ можна розглядати з єдиних позицій, виробити універсальний підхід до них, сформувати загальні закономірності. Більшість сучасних фундаментальних наукових проблем і високих технологій тісно пов’язані з явищами, які лежать на границях різних рівнів організації. Природничі та деякі з гуманітарних наук (економіка, соціологія, психологія) розробили концепції і методи для кожного із ієрархічних рівнів, але не володіють універсальними підходами для опису того, що відбувається між цими рівнями ієрархії. Неспівпадання ієрархічних рівнів різних наук – одна із головних перешкод для розвитку дійсної міждисциплінарності (синтезу різних наук) і побудови цілісної картини світу. Виникає проблема формування нового світогляду і нової мови.Теорія складних систем – це одна із вдалих спроб побудови такого синтезу на основі універсальних підходів і нової методології [1]. В російськомовній літературі частіше зустрічається термін “синергетика”, який, на наш погляд, означує більш вузьку теорію самоорганізації в системах різної природи [2].Мета роботи – привернути увагу до нових можливостей, що виникають при розв’язанні деяких задач, виходячи з уявлень нової науки.На жаль, теорія складності не має до сих пір чіткого математичного визначення і може бути охарактеризована рисами тих систем і типів динаміки, котрі являються предметом її вивчення. Серед них головними є:– Нестабільність: складні системи прагнуть мати багато можливих мод поведінки, між якими вони блукають в результаті малих змін параметрів, що управляють динамікою.– Неприводимість: складні системи виступають як єдине ціле і не можуть бути вивчені шляхом розбиття їх на частини, що розглядаються ізольовано. Тобто поведінка системи зумовлюється взаємодією складових, але редукція системи до її складових спотворює більшість аспектів, які притаманні системній індивідуальності.– Адаптивність: складні системи часто включають множину агентів, котрі приймають рішення і діють, виходячи із часткової інформації про систему в цілому і її оточення. Більш того, ці агенти можуть змінювати правила своєї поведінки на основі такої часткової інформації. Іншими словами, складні системи мають здібності черпати скриті закономірності із неповної інформації, навчатися на цих закономірностях і змінювати свою поведінку на основі нової поступаючої інформації.– Емерджентність (від існуючого до виникаючого): складні системи продукують неочікувану поведінку; фактично вони продукують патерни і властивості, котрі неможливо передбачити на основі знань властивостей їх складових, якщо розглядати їх ізольовано.Ці та деякі менш важливі характерні риси дозволяють відділити просте від складного, притаманного найбільш фундаментальним процесам, які мають місце як в природничих, так і в гуманітарних науках і створюють тим самим істинний базис міждисциплінарності. За останні 30–40 років в теорії складності було розроблено нові наукові методи, які дозволяють універсально описати складну динаміку, будь то в явищах турбулентності, або в поведінці електорату напередодні виборів.Оскільки більшість складних явищ і процесів в таких галузях як екологія, соціологія, економіка, політологія та ін. не існують в реальному світі, то лише поява сучасних ЕОМ і створення комп’ютерних моделей цих явищ дозволило вперше в історії науки проводити експерименти в цих галузях так, як це завжди робилось в природничих науках. Але комп’ютерне моделювання спричинило розвиток і нових теоретичних підходів: фрактальної геометрії і р-адичної математики, теорії хаосу і самоорганізованої критичності, нейроінформатики і квантових алгоритмів тощо. Теорія складності дозволяє переносити в нові галузі дослідження ідеї і підходи, які стали успішними в інших наукових дисциплінах, і більш рельєфно виявляти ті проблеми, з якими інші науки не стикалися. Узагальнюючому погляду з позицій теорії складності властиві більша евристична цінність при аналізі таких нетрадиційних явищ, як глобалізація, “економіка, що заснована на знаннях” (knowledge-based economy), національні і світові фінансові кризи, економічні катастрофи і ряд інших.Однією з інтригуючих проблем теорії є дослідження властивостей комплексних мережеподібних високотехнологічних і інтелектуально важливих систем [3]. Окрім суто наукових і технологічних причин підвищеної уваги до них є і суто прагматична. Справа в тому, що такі системи мають системоутворюючу компоненту, тобто їх структура і динаміка активно впливають на ті процеси, які ними контролюються. В [4] наводиться приклад, коли відмова двох силових ліній системи електромережі в штаті Орегон (США) 10 серпня 1996 року через каскад стимульованих відмов призвели до виходу із ладу електромережі в 11 американських штатах і 2 канадських провінціях і залишили без струму 7 млн. споживачів протягом 16 годин. Вірус Love Bug worm, яких атакував Інтернет 4 травня 2000 року і до сих пір блукає по мережі, приніс збитків на мільярди доларів.До таких систем відносяться Інтернет, як складна мережа роутерів і комп’ютерів, об’єднаних фізичними та радіозв’язками, WWW, як віртуальна мережа Web-сторінок, об’єднаних гіперпосиланнями (рис. 1). Розповсюдження епідемій, чуток та ідей в соціальних мережах, вірусів – в комп’ютерних, живі клітини, мережі супермаркетів, актори Голівуду – ось далеко не повний перелік мережеподібних структур. Більш того, останнє десятиліття розвитку економіки знань привело до зміни парадигми структурного, функціонального і стратегічного позиціонування сучасних підприємств. Вертикально інтегровані корпорації повсюдно витісняються розподіленими мережними структурами (так званими бізнес-мережами) [5]. Багато хто з них замість прямого виробництва сьогодні займаються системною інтеграцією. Тому дослідження структури та динаміки мережеподібних систем дозволить оптимізувати бізнес-процеси та створити умови для їх ефективного розвитку і захисту.Для побудови і дослідження моделей складних мережеподібних систем введені нові поняття і означення. Коротко опишемо тільки головні з них. Хай вузол i має ki кінців (зв’язків) і може приєднати (бути зв’язаним) з іншими вузлами ki. Відношення між числом Ei зв’язків, які реально існують, та їх повним числом ki(ki–1)/2 для найближчих сусідів називається коефіцієнтом кластеризації для вузла i:. Рис. 1. Структури мереж World-Wide Web (WWW) і Інтернету. На верхній панелі WWW представлена у вигляді направлених гіперпосилань (URL). На нижній зображено Інтернет, як систему фізично з’єднаних вузлів (роутерів та комп’ютерів). Загальний коефіцієнт кластеризації знаходиться шляхом осереднення його локальних значень для всієї мережі. Дослідження показують, що він суттєво відрізняється від одержаних для випадкових графів Ердаша-Рені [4]. Ймовірність П того, що новий вузол буде приєднано до вузла i, залежить від ki вузла i. Величина називається переважним приєднанням (preferential attachment). Оскільки не всі вузли мають однакову кількість зв’язків, останні характеризуються функцією розподілу P(k), яка дає ймовірність того, що випадково вибраний вузол має k зв’язків. Для складних мереж функція P(k) відрізняється від розподілу Пуассона, який мав би місце для випадкових графів. Для переважної більшості складних мереж спостерігається степенева залежність , де γ=1–3 і зумовлено природою мережі. Такі мережі виявляють властивості направленого графа (рис. 2). Рис. 2. Розподіл Web-сторінок в Інтернеті [4]. Pout – ймовірність того, що документ має k вихідних гіперпосилань, а Pin – відповідно вхідних, і γout=2,45, γin=2,1. Крім цього, складні системи виявляють процеси самоорганізації, змінюються з часом, виявляють неабияку стійкість відносно помилок та зовнішніх втручань.В складних системах мають місце колективні емерджентні процеси, наприклад синхронізації, які схожі на подібні в квантовій оптиці. На мові системи зв’язаних осциляторів це означає, що при деякій критичній силі взаємодії осциляторів невелика їх купка (кластер) мають однакові фази і амплітуди.В економіці, фінансовій діяльності, підприємництві здійснювати вибір, приймати рішення доводиться в умовах невизначеності, конфлікту та зумовленого ними ризику. З огляду на це управління ризиками є однією з найважливіших технологій сьогодення [2, 6].До недавніх часів вважалось, що в основі розрахунків, які так чи інакше мають відношення до оцінки ризиків лежить нормальний розподіл. Йому підпорядкована сума незалежних, однаково розподілених випадкових величин. З огляду на це ймовірність помітних відхилень від середнього значення мала. Статистика ж багатьох складних систем – аварій і катастроф, розломів земної кори, фондових ринків, трафіка Інтернету тощо – зумовлена довгим ланцюгом причинно-наслідкових зв’язків. Вона описується, як показано вище, степеневим розподілом, “хвіст” якого спадає значно повільніше від нормального (так званий “розподіл з тяжкими хвостами”). У випадку степеневої статистики великими відхиленнями знехтувати вже не можна. З рисунку 3 видно, наскільки добре описуються степеневою статистикою торнадо (1), повені (2), шквали (3) і землетруси (4) за кількістю жертв в них в США в ХХ столітті [2]. Рис. 3. Системи, які демонструють самоорганізовану критичність (а саме такі ми і розглядаємо), самі по собі прагнуть до критичного стану, в якому можливі зміни будь-якого масштабу.З точки зору передбачення цікавим є той факт, що різні катастрофічні явища можуть розвиватися за однаковими законами. Незадовго до катастрофи вони демонструють швидкий катастрофічний ріст, на який накладені коливання з прискоренням. Асимптотикою таких процесів перед катастрофою є так званий режим з загостренням, коли одна або декілька величин, що характеризують систему, за скінчений час зростають до нескінченності. Згладжена крива добре описується формулою,тобто для таких різних катастрофічних явищ ми маємо один і той же розв’язок рівнянь, котрих, на жаль, поки що не знаємо. Теорія складності дозволяє переглянути деякі з основних положень ризикології та вказати алгоритми прогнозування катастрофічних явищ [7].Ключові концепції традиційних моделей та аналітичних методів аналізу і управління капіталом все частіше натикаються на проблеми, які не мають ефективних розв’язків в рамках загальноприйнятих парадигм. Причина криється в тому, що класичні підходи розроблені для опису відносно стабільних систем, які знаходяться в положенні відносно стійкої рівноваги. За своєю суттю ці методи і підходи непридатні для опису і моделювання швидких змін, не передбачуваних стрибків і складних взаємодій окремих складових сучасного світового ринкового процесу. Стало ясно, що зміни у фінансовому світі протікають настільки інтенсивно, а їх якісні прояви бувають настільки неочікуваними, що для аналізу і прогнозування фінансових ринків вкрай необхідним став синтез нових аналітичних підходів [8].Теорія складних систем вводить нові для фінансових аналітиків поняття, такі як фазовий простір, атрактор, експонента Ляпунова, горизонт передбачення, фрактальний розмір тощо. Крім того, все частіше для передбачення складних динамічних рядів використовуються алгоритми нейрокомп’ютинга [9]. Нейронні мережі – це системи штучного інтелекту, які здатні до самонавчання в процесі розв’язку задач. Навчання зводиться до обробки мережею множини прикладів, які подаються на вхід. Для максимізації виходів нейронна мережа модифікує інтенсивність зв’язків між нейронами, з яких вона побудована, і таким чином самонавчається. Сучасні багатошарові нейронні мережі формують своє внутрішнє зображення задачі в так званих внутрішніх шарах. При цьому останні відіграють роль “детекторів вивчених властивостей”, оскільки активність патернів в них є кодування того, що мережа “думає” про властивості, які містяться на вході. Використання нейромереж і генетичних алгоритмів стає конкурентноздібним підходом при розв’язанні задач передбачення, класифікації, моделювання фінансових часових рядів, задач оптимізації в галузі фінансового аналізу та управляння ризиком. Детермінований хаос пропонує пояснення нерегулярної поведінки і аномалій в системах, котрі не є стохастичними за природою. Ця теорія має широкий вибір потужних методів, включаючи відтворення атрактора в лаговому фазовому просторі, обчислення показників Ляпунова, узагальнених розмірностей і ентропій, статистичні тести на нелінійність.Головна ідея застосування методів хаотичної динаміки до аналізу часових рядів полягає в тому, що основна структура хаотичної системи (атрактор динамічної системи) може бути відтворена через вимірювання тільки однієї змінної системи, фіксованої як динамічний ряд. В цьому випадку процедура реконструкції фазового простору і відтворення хаотичного атрактора системи при динамічному аналізі часового ряду зводиться до побудови так званого лагового простору. Реальний атрактор динамічної системи і атрактор, відтворений в лаговому просторі по часовому ряду при деяких умовах мають еквівалентні характеристики [8].На завершення звернемо увагу на дидактичні можливості теорії складності. Розвиток сучасного суспільства і поява нових проблем вказує на те, що треба мати не тільки (і навіть не стільки) експертів по деяким аспектам окремих стадій складних процесів (професіоналів в старому розумінні цього терміну), знадобляться спеціалісти “по розв’язуванню проблем”. А це означає, що істинна міждисциплінарність, яка заснована на теорії складності, набуває особливого значення. З огляду на сказане треба вчити не “предметам”, а “стилям мислення”. Тобто, міждисциплінарність можна розглядати як основу освіти 21-го століття.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Бурлєєв, Олег, Олег Василенко та Ростислав Іваненко. "ЕФЕКТИВНІСТЬ ВИКОРИСТАННЯ ШТУЧНИХ НЕЙРОННИХ МЕРЕЖ В ЕКОНОМІЦІ". Економіка та суспільство, № 31 (28 вересня 2021). http://dx.doi.org/10.32782/2524-0072/2021-31-27.

Повний текст джерела
Анотація:
В статті досліджено особливості створення штучних нейронних мереж, їх навчання, застосування в економічній сфері та порівняння їх ефективності з статистичними методами. Встановлено, що наукові роботи стосовно нейронних мереж є лише загальними та не відображають особливості використання різних архітектур. Проведене дослідження особливостей різних ядер нейромереж на основі методу опорних векторів та порівняння їх ефективності між собою для класифікації даних. Завдяки дослідженню показано, що метод опорних векторів дозволяє нам ефективно класифікувати дані, в тому числі з нелінійною структурою. З’ясовано, що нейронні мережі дійсно ефективні для аналізу економічних показників і вже значно випереджають класичні методи аналізу. Встановлено, що нейромережі використовуються для вирішення трьох основних типів задач: прогнозування, класифікація та моделювання. Представлено платформи та бібліотеки, що допомагають при створенні нейронної мережі та мають готові зразки використання та детальну документацію. Підтверджено, що основні переваги нейронних мереж – це здатність до навчання, можливість працювати з неповними даними, можливість автоматизувати аналіз, висока точність результатів. З’ясовано, що основні недоліки нейромереж – це технічні вимоги, необхідність великої кількості зібраних і оброблених даних для навчання та складність реалізації в кожному окремому випадку. Представлено найбільш поширені типи нейромереж та алгоритми навчання, а також в задачах яких типів будуть ефективними різні нейронні мережі. Запропоновано порівняння ефективності перцептрона та логістичної регресії при вирішенні однакової задачі класифікації. Отже, штучні нейронні мережі дійсно переважають класичні методи аналізу даних, а розмір цієї переваги буде залежати від кількості факторів, що впливають на результат та складності взаємозв’язків між ними.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Huk, N. A., та D. S. Malyshko. "ЗАСТОСУВАННЯ ЗГОРТКОВИХ НЕЙРОННИХ МЕРЕЖ ДО ЗАДАЧ КЛАСИФІКАЦІЇ ЗОБРАЖЕНЬ". Problems of applied mathematics and mathematic modeling, 2 лютого 2021. http://dx.doi.org/10.15421/322004.

Повний текст джерела
Анотація:
Роботу присвячено вибору архітектури згорткової нейронної мережі для розв’язання задач класифікації зображень. Побудовано математичну модель нейронної мережі. Для запобігання проблемі перенавчання застосовано регуляризацію Тихонова. Проведено серію обчислювальних експериментів, за якими створено рекомендації щодо проектування архітектури мережі.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Осієвський, Сергій, Олексій Коломійцев, Вячеслав Третяк, Дмитро Євстрат, Олексій Філіппенков, Євген Логвиненко та Сергій Хабоша. "МЕТОД УСУНЕННЯ ПОМИЛОК В НЕЙРОМЕРЕЖЕВОМУ СЕРЕДОВИЩІ ІНТЕЛЕКТУАЛЬНИХ СИСТЕМ ПІДТРИМКИ ПРИЙНЯТТЯ РІШЕНЬ". InterConf, 27 червня 2021, 264–80. http://dx.doi.org/10.51582/interconf.21-22.06.2021.29.

Повний текст джерела
Анотація:
Розглянуті питання виявлення помилок в штучних нейромережах, що пов’язані з суперечливістю думок експертів та/або обмеженістю (недосконалістю) опису предметної області. Проаналізовано підходи щодо їх відлагодження. Показані шляхи вдосконалення існуючих підходів щодо відлагодження помилок типу “забування про виключення”. Показано можливі шляхи застосування отриманих рішень для відлагодження помилок “перетин критичних подій”. Запропоновано формалізоване визначення помилки нейромережевої інтелектуальної системи з урахуванням вимог до оперативності і точності подання інформації. Розглянуті питання впливу некоректної організації машинного навчання на точність класифікації елементів нейромережевої інтелектуальної системи. Доведено можливість застосування методів контрастування мереж на підготовчому етапі до тестування бази знань інтелектуальної системи підтримки прийняття рішень, що дозволяє зменшити ймовірність виникнення помилок даного типу для зазначених систем. Наведено класифікацію алгоритмів вибірки знань з інтелектуальної нейронної мережі, виконано їх аналіз та показано, що для виявлення зазначених типів помилок доцільно використовувати модифікований алгоритм GLARE з процедурою адаптації. Наведено блок-схеми алгоритмів відлагодження БЗ ІСППР, що використовують отримані теоретичні рішення. Запропоновано схему організації процесу тестування за рівнями деталізації для інтеграційного та модульного тестування, що може бути застосована для реалізації процесів тестування Agile-методології, зокрема: Agile Modeling, Agile Unified Process, Agile Data Method, Essential Unified Process, Extreme Programming, Feature Driven Development, Getting Real, Open UP, Scrum, Kanban.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Осієвський, Сергій, Олексій Коломійцев, Вячеслав Третяк, Олена Толстолузька, Михайло Пічугін, Олександр Кулєшов та Сергій Клівець. "МЕТОД УСУНЕННЯ ПОМИЛОК В НЕЙРОМЕРЕЖЕВОМУ СЕРЕДОВИЩІ ІНТЕЛЕКТУАЛЬНИХ СИСТЕМ ПІДТРИМКИ ПРИЙНЯТТЯ РІШЕНЬ". InterConf, 2 серпня 2021, 461–77. http://dx.doi.org/10.51582/interconf.19-20.07.2021.047.

Повний текст джерела
Анотація:
Розглянуті питання виявлення помилок в штучних нейромережах, що пов’язані з суперечливістю думок експертів та/або обмеженістю (недосконалістю) опису предметної області. Проаналізовано підходи щодо їх відлагодження. Показані шляхи вдосконалення існуючих підходів щодо відлагодження помилок типу “забування про виключення”. Показано можливі шляхи застосування отриманих рішень для відлагодження помилок “перетин критичних подій”. Запропоновано формалізоване визначення помилки нейромережевої інтелектуальної системи з урахуванням вимог до оперативності і точності подання інформації. Розглянуті питання впливу некоректної організації машинного навчання на точність класифікації елементів нейромережевої інтелектуальної системи. Доведено можливість застосування методів контрастування мереж на підготовчому етапі до тестування бази знань інтелектуальної системи підтримки прийняття рішень, що дозволяє зменшити ймовірність виникнення помилок даного типу для зазначених систем. Наведено класифікацію алгоритмів вибірки знань з інтелектуальної нейронної мережі, виконано їх аналіз та показано, що для виявлення зазначених типів помилок доцільно використовувати модифікований алгоритм GLARE з процедурою адаптації. Наведено блок-схеми алгоритмів відлагодження БЗ ІСППР, що використовують отримані теоретичні рішення. Запропоновано схему організації процесу тестування за рівнями деталізації для інтеграційного та модульного тестування, що може бути застосована для реалізації процесів тестування Agile-методології, зокрема: Agile Modeling, Agile Unified Process, Agile Data Method, Essential Unified Process, Extreme Programming, Feature Driven Development, Getting Real, Open UP, Scrum, Kanban.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Karpovych, Artem. "USE OF CONVOLUTIONAL NEURAL NETWORKS FOR THE TASK OF CLASSIFYING TEXTS." International scientific journal "Internauka", no. 14 (August 15, 2018). http://dx.doi.org/10.25313/2520-2057-2018-14-4105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Fedorin, Illia, and Yana Ivanova. "SLEEP STAGES CLASSIFICATION BASED ON BIORADAR USING CNN-LSTM NEURAL NETWORK." International scientific journal "Internauka", no. 16(116) (2018). http://dx.doi.org/10.25313/2520-2057-2021-16-7662.

Повний текст джерела
Анотація:
The research is devoted to the automatic sleep stages classification based on non-invasive biosensor. A deep learning framework for classification of wakefulness, REM and NREM sleep stages (N1, N2, and N3) is proposed. The system consists of a combined convolutional and recurrent (long short-term memory, LSTM) neural network (CNN-LSTM). The proposed CNNLSTM neural network significantly outperforms existing machine learning methods based on traditional manual feature engineering. The model achieves an accuracy of 0.88 and a Cohen's Kappa agreement coefficient of 0.84, that is almost perfect agreement. The results of the study could be a promising solution for automatic sleep assessment without manual data processing and can be very useful for sleep screening.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії