Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Звичайні диференціальні рівняння.

Статті в журналах з теми "Звичайні диференціальні рівняння"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-28 статей у журналах для дослідження на тему "Звичайні диференціальні рівняння".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Лупіна, Т. О., Є. Т. Горалік та М. М. Крюков. "РУХ РЯТУВАЛЬНОЇ ШЛЮПКИ ВІЛЬНОГО ПАДІННЯ ПРИ СХОДЖЕННІ З ПОХИЛОЇ РАМПИ". Vodnij transport, № 2(33) (14 грудня 2021): 23–35. http://dx.doi.org/10.33298/2226-8553.2022.2.33.03.

Повний текст джерела
Анотація:
В статті наведено короткий огляд історії створення та розробок рятувальних шлюпок вільного падіння (РШВП), призначених для термінової безпечної евакуації людей з морських суден та морських нафтодобувних платформ у випадку аварій за екстремальних погодних умов. Розглядається задача про рух РШВП, яка моделюється однорідним стрижнем, при сходженні з похилої рампи протягом першої фази падіння з наростаючим кутом нахилу (тангажу -tangage)–з моменту, коли центр мас шлюпки опиняється над краєм опори (крайнім роликом рампи) , до моменту сходу з рампи кінця опорних поверхонь шлюпки.Диференціальні рівняння руху в полярних координатах складені за допомогою рівнянь Лагранжа другого роду. Отриманорозв’язувальну систему звичайних диференціальних рівнянь і сформульовано відповідну задачу Коші, яка розв’язується чисельно за допомогою методу Рунге-Кутта четвертого порядку точності. На основі запропонованого підходу проведеночисельні експерименти длявизначення часу скочування РШВП, швидкості її центру мас, кутів повороту та кутової швидкості шлюпки в момент відриву від рампи при значенні кута нахилу рампи та різних значеннях початкової швидкості центру мас в діапазоні від 1 до 10 м/с і довжини шлюпки в діапазоні від 5 до 15 м.За результатами чисельних експериментівздійснено аналіз впливу початкової швидкості і довжини РШВП на параметри її руху при сходженні з похилої рампи. Розрахункові значення часу першої фази падіння, кута тангажу, кутової швидкості тангажу та модуля швидкості центру мас РШВП в ході виконаних чисельних експериментів змінювались в діапазоні 1,424 -0,234 с,, та м/свідповідно. При цьому зі збільшенням довжини шлюпки час першої фази падіння зростає, а зі збільшенням початкової швидкості зменшується. Кути тангажу зі збільшенням швидкості зменшуються, а зі збільшенням довжини шлюпки зростають, в той час як кутові швидкості тангажу зі збільшенням початкової швидкості так само, які зі збільшенням довжини шлюпки спадають. За результатами роботи зроблено висновок про можливість використання запропонованогопідходу і чисельних експериментів для раціонального вибору параметрів руху РШВП та напрямів подальших досліджень.Ключові слова:рятувальна шлюпка вільного падіння, плоско-паралельний рух, стрижень, похила рампа, рівняння Лагранжа другого роду, звичайні диференціальні рівняння, задача Коші, чисельне моделювання, метод Рунге-Кутта.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Prystavka, Yu. "ТОЧНІ РОЗВ’ЯЗКИ НЕЛІНІЙНОГО (1+2)-ВИМІРНОГО РІВНЯННЯ РЕАКЦІЇ-КОНВЕКЦІЇ-ДИФУЗІЇ". Системи управління, навігації та зв’язку. Збірник наукових праць 3, № 49 (3 липня 2018): 78–82. http://dx.doi.org/10.26906/sunz.2018.3.078.

Повний текст джерела
Анотація:
Предметом вивчення в статті є застосування ліївського методу до побудови інваріантних анзаців, редукції та знаходження точних розв’язків (1+2)-вимірного рівняння реакції-конвекції-дифузії. Мета - здійснити побудову точних розв’язків (1+2)-вимірного рівняння реакції-конвекції-дифузії на основі використання симетричних властивостей цього рівняння. Задача − використати ліївську симетрію рівняння (1+2)-вимірного рівняння реакції-конвекціїдифузії для побудови інваріантних анзаців, редукції та знаходження його точних розв’язків. Для реалізації цієї задачі використано метод Софуса Лі, в основі його лежить принцип симетрії. Згідно з методом С. Лі диференціальні рівняння з частинними похідними, які володіють класичною лііївською симетрією, можна редукувати до звичайних диференціальних рівнянь за допомогою спеціальних підстановок(анзаців). Розв’язавши редуковані рівняння, можна побудувати точні розв’язки вихідного диференціального рівняння з частинними похідними. Висновки: використано симетрійні властивості (1+2)-вимірного рівняння реакції-конвекції-дифузії для побудови інваріантних анзаців, редукції та знаходження його точних розв’язків.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Havrysh, V. I., та Yu I. Hrytsiuk. "Аналіз температурних режимів у термочутливих шаруватих елементах цифрових пристроїв, спричинених внутрішнім нагріванням". Scientific Bulletin of UNFU 31, № 5 (25 листопада 2021): 108–12. http://dx.doi.org/10.36930/10.36930/40310517.

Повний текст джерела
Анотація:
Розроблено нелінійну математичну модель для визначення температурного поля, а в подальшому і аналізу температурних режимів у термочутливій ізотропній багатошаровій пластині, яка піддається внутрішнім тепловим навантаженням. Для цього коефіцієнт теплопровідності для шаруватої системи описано єдиним цілим за допомогою асиметричних одиничних функцій, що дає змогу розглядати крайову задачу теплопровідності з одним неоднорідним нелінійним звичайним диференціальним рівнянням теплопровідності з розривними коефіцієнтами та нелінійними крайовими умовами на межових поверхнях пластини. Введено лінеаризуючу функцію, за допомогою якої лінеаризовано вихідне нелінійне рівняння теплопровідності та нелінійні крайові умови і внаслідок отримано неоднорідне звичайне диференціальне рівняння другого порядку зі сталими коефіцієнтами відносно лінеаризуючої функції з лінійними крайовими умовами. Для розв'язування отриманої крайової задачі використано метод варіації сталих і отримано аналітичний розв'язок, який визначає запроваджену лінеаризуючу функцію. Розглянуто двошарову термочутливу пластину і, як приклад, вибрано лінійну залежність коефіцієнта теплопровідності від температури, яку часто використовують у багатьох практичних задачах. Внаслідок цього отримано аналітичні співвідношення у вигляді квадратних рівнянь для визначення розподілу температури у шарах пластини та на їх поверхні спряження. Отримано числові значення температури з певною точністю для заданих значень товщини пластини та її шарів, просторових координат, питомої потужності внутрішніх джерел тепла, опорного та температурного коефіцієнтів теплопровідності конструкційних матеріалів пластини. Матеріалом шарів пластини виступають кремній та германій. Для визначення числових значень температури в наведеній конструкції, а також аналізу теплообмінних процесів в середині шаруватої пластини, зумовлених внутрішніми тепловими навантаженнями, розроблено програмні засоби, із використанням яких виконано геометричне зображення розподілу температури залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розробленої математичної моделі аналізу теплообмінних процесів у термочутливій шаруватій пластині з внутрішнім нагріванням, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду середовища, які піддаються внутрішнім тепловим навантаженням, щодо їх термостійкості. Як наслідок, стає можливим її підвищити і захистити від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ivan. "Симетрія Лі-Беклунда, редукція і розв'язки нелінійних еволюційних рівнянь". Ukrains’kyi Matematychnyi Zhurnal 74, № 3 (26 квітня 2022): 342–50. http://dx.doi.org/10.37863/umzh.v74i3.7007.

Повний текст джерела
Анотація:
В роботі вивчається симетрійна редукцію нелінійних рівнянь, що використовуються для опису дифузійних процесів в неоднорідних середовищах. Знаходияться анзаци, які редукують рівняння з частинними похідними до системи звичайних диференціальних рівнянь. Ці анзаци будуються з використанням операторів Лі-Беклунда симетрії звичайних диференціальних рівнянь третього порядку. Метод дає можливість знайти розв'язки, які не можна отримати класичним методом С.Лі. Такі розв'язки знайдено для нелінійних дифузійних рівнянь, які є інваріантними відносно однопараметричної, двопараметричної і трипараметричної групи Лі точкових перетворень.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ivan. "Симетрія Лі-Беклунда, редукція і розв'язки нелінійних еволюційних рівнянь". Ukrains’kyi Matematychnyi Zhurnal 74, № 3 (26 квітня 2022): 342–50. http://dx.doi.org/10.37863/umzh.v74i3.7007.

Повний текст джерела
Анотація:
В роботі вивчається симетрійна редукцію нелінійних рівнянь, що використовуються для опису дифузійних процесів в неоднорідних середовищах. Знаходияться анзаци, які редукують рівняння з частинними похідними до системи звичайних диференціальних рівнянь. Ці анзаци будуються з використанням операторів Лі-Беклунда симетрії звичайних диференціальних рівнянь третього порядку. Метод дає можливість знайти розв'язки, які не можна отримати класичним методом С.Лі. Такі розв'язки знайдено для нелінійних дифузійних рівнянь, які є інваріантними відносно однопараметричної, двопараметричної і трипараметричної групи Лі точкових перетворень.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Юрик, Іван Іванович. "Точні розв'язки з узагальненим відокремленням змінних рівняння нелінійної теплопровідності". Ukrains’kyi Matematychnyi Zhurnal 74, № 3 (26 квітня 2022): 294–310. http://dx.doi.org/10.37863/umzh.v74i3.6667.

Повний текст джерела
Анотація:
Запропоновано метод побудови точних розв'язків рівняння нелінійної теплопровідності, який базується на класичному методі відокремлення змінних та його узагальненні і методі редукції, що є основою симетричного методу С.~Лі. Розглянуто підстановки, що редукують рівняння нелінійної теплопровідності до звичайних диференціальних рівнянь та побудовані класи точних розв'язків з узагальненим відокремленням змінних даного рівняння.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Юрик, Іван Іванович. "Точні розв'язки з узагальненим відокремленням змінних рівняння нелінійної теплопровідності". Ukrains’kyi Matematychnyi Zhurnal 74, № 3 (26 квітня 2022): 294–310. http://dx.doi.org/10.37863/umzh.v74i3.6667.

Повний текст джерела
Анотація:
Запропоновано метод побудови точних розв'язків рівняння нелінійної теплопровідності, який базується на класичному методі відокремлення змінних та його узагальненні і методі редукції, що є основою симетричного методу С.~Лі. Розглянуто підстановки, що редукують рівняння нелінійної теплопровідності до звичайних диференціальних рівнянь та побудовані класи точних розв'язків з узагальненим відокремленням змінних даного рівняння.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ракушев, Михайло, та Микола Філатов. "Визначення диференціально-тейлорівського спектру складної функції для випадку суперпозиції при аналізі точності динамічних систем". Сучасні інформаційні технології у сфері безпеки та оборони 42, № 3 (17 грудня 2021): 25–30. http://dx.doi.org/10.33099/2311-7249/2021-42-3-25-30.

Повний текст джерела
Анотація:
У статті отримано залежності для визначення диференціально-тейлорівського спектру складної функції, яка задана у вигляді суперпозиції функцій. А саме, для випадку коли вихідна функція задається рядом Тейлора за степенями деякої змінної – першого аргументу, а кінцева функція задається рядом Тейлора за степенями вихідної функції. Далі вирішується завдання щодо визначення диференціально-тейлорівського спектру – коефіцієнтів ряду Тейлора кінцевої функції за степенями першого аргументу. У класичній літературі з диференціально-тейлорівських перетворень, зазначений диференціально-тейлорівський спектр (окремі члени ряду Тейлора), подається у вигляді нескінченної суми за степенями першого аргументу. Натомість, у статті отримані залежності, які диференціально-тейлорівський спектр суперпозиції функцій визначають як кінцеву суму за степенями першого аргументу. При цьому, наведено залежності у двох різних формах, що дозволяє обирати більш зручну для конкретного практичного використання форму. Особливістю отриманих формул є використання скороченої алгебраїчної згортки при розрахунку диференціально-тейлорівського спектру степеневої функції для першого аргументу – у згортці не враховується нульова дискрета диференціально-тейлорівського спектру вихідної функції за першим аргументом. Отримані співвідношення є суттєвими для завдань аналізу залежності точності подання кінцевої функції від заданої кількості врахованих дискрет диференціально-тейлорівського спектру вихідної функції, а також вирішення завдання оцінки залежності точності рішення задачі Коші для звичайних диференціальних рівнянь методом диференціально-тейлорівських перетворень при зміні кількості врахованих дискрет диференціально-тейлорівського спектру, що приймають участь у розрахунках. Отримані залежності є подальшим розвитком теоретичних основ вітчизняного математичного апарату диференціально-тейлорівських перетворень Пухова.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vakal, L. P., and Ye S. Vakal. "The solution of boundary value problems for ordinary differential equations using the differential evolu-tion algorithm." Mathematical machines and systems 1 (2020): 43–52. http://dx.doi.org/10.34121/1028-9763-2020-1-43-52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Фуртат, І. Е., та Ю. О. Фуртат. "МЕТОД МОДЕЛЮВАННЯ РУХУ ТЕМПЕРАТУРНОГО ФРОНТУ ЗА НЕІЗОТЕРМІЧНОЇ ФІЛЬТРАЦІЇ". Таврійський науковий вісник. Серія: Технічні науки, № 3 (2 листопада 2021): 47–54. http://dx.doi.org/10.32851/tnv-tech.2021.3.6.

Повний текст джерела
Анотація:
Динаміка об’єктів з розподіленими параметрами описується диференціальними рівняннями в частинних похідних параболічного типу, які з крайовими умовами є мате- матичними моделями багатьох нестаціонарних нелінійних процесів. Математичними моделями тепломасопереносу є системи рівнянь параболічного типу з такими ж гранич- ними умовами. Усі реальні процеси, як правило, є нелінійними. Вибір оптимального методу розв’я- зання тієї або іншої задачі теорії поля і технічного засобу для її реалізацій є складним питанням. У наш час найбільше поширення при математичному моделюванні складних об’єк- тів з розподіленими параметрами одержали методи дискретизації математичної моделі шляхом просторово-тимчасового квантування. Представлення математичної моделі об’єктів з розподіленими параметрами системами звичайних диференціальних або алгебраїчних рівнянь дозволяє моделювати їх на аналогових і цифрових обчислю- вальних машинах. Можна прийняти, що час роботи циркуляційної системи обмежений часом досягнення температурним фронтом експлуатаційної свердловини. Проведеними дослідженнями [1] встановлено, що теплоприток від гірського масиву, що оточує шар, у реальних пласто- вих умовах не виявляє істотного впливу на час роботи циркуляційної системи в постій- ному температурному режимі. Тому в розрахунках теплопритоком нехтуємо. У добуванні геотермальної енергії має місце напірна фільтрація, при якій величина μ має значення порядку 10-6 м-2. У зв’язку з цим система виходить на стаціонарний режим за час, малий у порівнянні з часом її роботи. У статті пропонується метод моделювання руху температурного фронту з вико- ристанням диференціальної моделі з переходом до кінцево-різницевої. Після обчислення першого наближення значення швидкості руху холодної води це значення уточнюється з використанням ітерацій за різними параметрами моделі.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Трасковецька, Лілія. "КОМП’ЮТЕРНЕ МОДЕЛЮВАННЯ ЕЛЕКТРОДИНАМІЧНИХ ПРОЦЕСІВ". Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: військові та технічні науки 86, № 4 (16 квітня 2022): 204–19. http://dx.doi.org/10.32453/3.v86i4.945.

Повний текст джерела
Анотація:
Робота присвячена комп’ютерному моделюванню систем, що змінюються з часом. У процесі пізнання та практичної діяльності людство широко використовує різноманітні моделі. Моделювання – це універсальний метод наукового пізнання, який базується на побудові, дослідженні та використанні моделей об’єктів і явищ. Найбільш важливим різновидом моделей є математичні моделі. До їхньої основи покладено припущення про те, що всі параметри досліджуваного об’єкта можна подати у кількісному вигляді й описати математичними співвідношеннями. Унаслідок широкого впровадження обчислювальної техніки і відповідного програмного забезпечення методи математичного моделювання поширилися в повсякденній практиці. Комп’ютерна реалізація дослідження складних математичних моделей ґрунтується на основі чисельних методів. Тому сучасне математичне моделювання завжди передбачає застосування чисельних методів аналізу та комп’ютерних обчислювальних експериментів. Водночас значення аналітичних методів з розвитком ЕОМ і обчислювальної математики ніяк не зменшується. Великі можливості проведення математичного моделювання відкриває, наприклад, матрична система комп’ютерної математики MATLAB у дослідженні складних технічних процесів, які характеризуються нелінійністю та багатогранністю зв’язків між елементами. Система пристосована до будь-якої галузі науки й техніки,міст ить засоби, які особливо зручні для електро- і радіотехнічних обчислень (операції з комплексними числами, матрицями, векторами й поліномами, опрацювання даних, аналіз сигналів, моделювання динамічних процесів і цифрова фільтрація). У роботі обґрунтовано динаміку процесів у лінійному колі (електричному фільтрі), побудовано математичну модель, що відображає процес протікання електричного струму в колі, у вигляді системи диференціальних рівнянь другого порядку. Отриману систему диференціальних рівнянь розв’язано аналітичним методом. Крім того, на основі вбудованих в MATLAB чисельних алгоритмів розв’язування звичайних диференціальних рівнянь побудовано наближений розв’язок математичної моделі, що відображає зміну струму в колі залежно від часу. Поряд з цим, використовуючи пакет імітаційного моделювання Simulink, складено структурну модель, яка повністю імітує роботу електричного фільтру. Розв’язок диференціального рівняння можна побачити на віртуальному осцилографі, який дозволяє представити результати моделювання у вигляді часових графіків або у вигляді чисел, графіків, таблиць.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Бак, С. М. "Стоячі хвилі в дискретних рівняннях типу Клейна-Ґордона зі степеневими нелінійностями". Науковий вісник Ужгородського університету. Серія: Математика і інформатика 39, № 2 (16 листопада 2021): 7–21. http://dx.doi.org/10.24144/2616-7700.2021.39(2).7-21.

Повний текст джерела
Анотація:
Дана стаття присвячена вивченню дискретних рівнянь типу Клейна-Ґордона, які описують динаміку нескінченного ланцюга лінійно зв’язаних нелінійних осциляторів. Ці рівняння представляють собою зчисленну систему звичайних диференціальних рівнянь. Такі системи є нескінченновимірними гамільтоновими системами. Розглядаються рівняння типу Клейна-Ґордона зі степеневими нелінійностями непарного степеня. При підстановці анзаца у вигляді стоячої хвилі одержується система алгебраїчних рівнянь для амплітуди стоячої хвилі. Далі розглядається система з більш загальним оператором L лінійної взаємодії осциляторів, який є обмеженим і самоспряженим у гільбертовому просторі дійсних двохсторонніх послідовностей l2. Розглядається задача про існування періодичних і локалізованих (збігаються до нуля на нескінченності) розв’язків для таких систем. Основними умовами існування цих розв’язків є просторова періодичність коефіцієнтів оператора лінійної взаємодії осциляторів та належність частоти стоячої хвилі спектральному проміжку оператора L. Якщо правий кінець спектрального проміжка скінченний, то система має нетривіальні розв’язки. У цій статті показано, що періодичні і локалізовані розв’язки цієї системи можна побудувати як критичні точки відповідних функціоналів Jk та J. Існування періодичних розв’язків встановлено за допомогою теореми про зачеплення. Зокрема, показано, що функціонал Jk задовольняє так звану умову Пале-Смейла та геометрію зачеплення, а отже, має нетривіальні критичні точки. Останні і є періодичними розв’язками системи. У випадку локалізованих розв’язків використати теорему про зачеплення не можна, оскільки для функціоналу J не виконується умова Пале-Смейла. Тому у цьому випадку використано метод періодичних апроксимацій, тобто критичні точки функціоналу J будуються за допомогою граничного переходу при k→∞ в критичних точках функціоналу Jk. В силу відомих властивостей дискретного оператора Лапласа одержано наслідок, в якому встановлено умови існування локалізованих розв’язків для вихідної системи.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Pelekh, Ya M., I. S. Budz, A. V. Kunynets, S. M. Mentynskyi та B. M. Fil. "Методи розв'язування початкової задачі з двосторонньою оцінкою локальної похибки". Scientific Bulletin of UNFU 29, № 9 (26 грудня 2019): 153–60. http://dx.doi.org/10.36930/40290927.

Повний текст джерела
Анотація:
Багато прикладних задач, наприклад для проектування радіоелектронних схем, автоматичних систем управління, розрахунку динаміки механічних систем, задачі хімічної кінетики загалом зводяться до розв'язування нелінійних диференціальних рівнянь і їх систем. Точні розв'язки досліджуваних задач можна отримати лише в окремих випадках. Тому потрібно використовувати наближені методи. Під час дослідження математичних моделей виникає потреба знаходити не тільки наближений розв'язок, але й гарантовану оцінку похибки результату. Використання традиційних двосторонніх методів Рунге-Кутта призводить до істотного збільшення обсягу обчислень. Ланцюгові (неперервні) дроби набули широкого застосування у прикладній математиці, оскільки вони за відповідних умов дають високу швидкість збіжності, монотонні та двосторонні наближення, мають слабку чутливість до похибки заокруглення. У роботі виведено методи типу Рунге-Кутта третього порядку точності для розв'язування початкової задачі для звичайних диференціальних рівнянь, що базуються на неперервних дробах. Характерною особливістю таких алгоритмів є те, що за певних значень відповідних параметрів можна отримати як нові, так і традиційні однокрокові методи розв'язання задачі Коші. Запропоновано розрахункові формули другого порядку точності, які на кожному кроці інтегрування дають змогу без додаткових звертань до правої частини диференціального рівняння отримати не тільки верхні та нижні наближення до точного розв'язку, а також дають інформацію про величину головного члена локальної похибки. Для практичної оцінки похибки на кожному кроці інтегрування у разі використання односторонніх формул типу Рунге-Кутта порядку p застосовують двосторонні обчислювальні формули порядку (p–1). Зауважимо, що використовуючи запропоновані розрахункові формули в кожному вузлі сітки будуть отримані декілька наближень до точного розв'язку, порівняння яких дає корисну інформацію, зокрема в питанні вибору кроку інтегрування, або в оцінці точності результату.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Локазюк, О. В. "Ліївські симетрії лінійних сис- тем двох звичайних диференціальних рівнянь другого порядку". Reports of the National Academy of Sciences of Ukraine, № 5 (27 жовтня 2021): 3–11. http://dx.doi.org/10.15407/dopovidi2021.05.003.

Повний текст джерела
Анотація:
Розв’язано задачу повної групової класифікації класу нормальних лінійних систем звичайних диференціальних рівнянь другого порядку з двома залежними змінними над дійсним полем. Доведення суттєво використовує опис допустимих перетворень цього класу та теорему Лі про реалізації алгебр Лі на прямій.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Михайлець, В. А., та Т. Б. Скоробогач. "Фредгольмовi крайові задачі з параметром у просторах Соболєва—Слободецького". Reports of the National Academy of Sciences of Ukraine, № 4 (26 серпня 2021): 3–8. http://dx.doi.org/10.15407/dopovidi2021.04.003.

Повний текст джерела
Анотація:
Вивчаються розв’язки лінійних крайових задач для систем звичайних диференціальних рівнянь, що належать до заданого простору Соболєва—Слободецького Wsp, 1 ≤ p <∞, s >1. Знайдено необхідні і достатні умови їх неперервності за параметром. Отримано застосування до багатоточкових крайових задач.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Atlasiuk, O. M. "Граничні теореми для розв’язків багатоточкових крайових задач із параметром у просторах Соболєва". Ukrains’kyi Matematychnyi Zhurnal 72, № 8 (18 серпня 2020): 1015–23. http://dx.doi.org/10.37863/umzh.v72i8.6158.

Повний текст джерела
Анотація:
УДК 517.927 Розглянуто найбільш загальний клас багатоточкових крайових задач для систем лінійних звичайних диференціальних рівнянь довільного порядку, розв'язки яких належать заданому простору Соболєва , де , і . Встановлено конструктивні достатні умови, за яких розв'язки цих задач неперервні за параметром при у просторі .
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Марценюк, В. П., Д. В. Вакуленко та С. М. Скочиляс. "МОДЕЛЮВАННЯ В ГАЛУЗІ ОХОРОНИ ЗДОРОВ’Я НА РЕГІОНАЛЬНОМУ РІВНІ". Medical Informatics and Engineering, № 1 (22 червня 2020): 71–77. http://dx.doi.org/10.11603/mie.1996-1960.2020.1.11131.

Повний текст джерела
Анотація:
Запропоновано інвестиційну модель охорони здоров'я, котра орієнтується на збереження високої інвестиційної активності та відносне поліпшення конкурентоспроможності області. Відповідно до побудованої моделі управління розвитком медичної галузі за допомогою системи нелінійних звичайних диференціальних рівнянь із двома розподіленими запізненнями, представлено економічну інтерпретацію кожного. Дану умову можна трактувати, як одну з умов інвестиційної привабливості галузі охорони здоров'я.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Yevstafyeva, V. V. "Існування двоточково-коливальних розв’язків релейної неавтономної системи з кратним власним числом дійсної симетричної матриці". Ukrains’kyi Matematychnyi Zhurnal 73, № 5 (24 травня 2021): 640–50. http://dx.doi.org/10.37863/umzh.v73i5.6379.

Повний текст джерела
Анотація:
УДК 517.925 Досліджено -вимірну систему звичайних диференціальних рівнянь з релейною нелінійністю гістерезисного типу й періодичною функцією збурення у правій частині.Дійсна симетрична матриця системи має власні числа, серед яких власне число кратності два.Розглянуто неперервні обмежені коливальні розв'язки з двома фіксованими точками у фазовому просторі системи й однаковим часом повернення в кожну з цих точок.Доведено теореми існування й неіснування таких розв'язків.Числовий приклад демонструє отримані результати для тривимірної системи.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Головко, Юрій. "МАТЕМАТИЧНА МОДЕЛЬ МЕХАНІЧНОЇ СИСТЕМИ ПРИЙМАЧА СЕЙСМОАКУСТИЧНИХ КОЛИВАНЬ". Математичне моделювання, № 1(44) (1 липня 2021): 123–32. http://dx.doi.org/10.31319/2519-8106.1(44)2021.236037.

Повний текст джерела
Анотація:
При дослідженнях сейсмоакустичних коливань відзначається істотний вплив властивостей ґрунту в точці розміщення сейсмоприймача. У даній статті розглядається динаміка сейсмоприймача, що враховує умови на контакті з ґрунтом. Модель описується системою звичайних диференціальних рівнянь. Для вирішення системи використано перетворення Лапласа. Знайдені передаточна функція, частотна характеристика, імпульсна перехідна функція. Отримано кінцеві вирази для вимірюваних кінематичних параметрів інерційної маси геофону при різних впливах та початкових умовах. Наведено результати розрахунків для сейсмоприймача дорезонансного типу.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Григоренко, О. Я., І. А. Лоза, С. О. Сперкач та А. Д. Безугла. "Чисельний розв’язок задачі про розповсюдження електропружних хвиль в суцільному п’єзокерамічному циліндрі". Reports of the National Academy of Sciences of Ukraine, № 2 (10 травня 2022): 32–40. http://dx.doi.org/10.15407/dopovidi2022.02.032.

Повний текст джерела
Анотація:
Дослідження поширення вільних осесисиметричних хвиль в суцільному п’єзоелектричному циліндрі з осьовоюполяризацією здійснюється на основі лінійної теорії пружності і лінійного електромеханічного зв’язку. Бічнаповерхня циліндра вільна від навантажень та вкрита тонкими електродами, до яких підведена знакозмінна різ-ниця потенціалів Побудовано розв’язувальну систему диференціальних рівнянь в частинних похідних зі змінни-ми коефіцієнтами. Тривимірна задача теорії електропружностi в частинних похідних (шляхом представленнякомпонентів тензора пружності, компонент векторів переміщень, електричної індукції та електростатичногопотенціалу біжучими хвилями в осьовому напрямку) зведена до крайової задачі на власні значення для звичай-них диференціальних рівнянь. Отриману задачу розв’язано стійким методом дискретної ортогоналізації разомз методом покрокового пошуку. Запропонований підхід дозволяє дослідити характер розповсюдження елек-тропружних біжучих хвиль для випадку неперевно-неоднорідного матеріалу суцільного циліндра. Розглянутовипадок, коли властивості матеріалу змінюються за степеневим законом по товщині. Наведено спектральніхарактеристики біжучих хвиль для однорідних та неоднорідних матеріалів та проведено порівняльний аналіз.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Murach, A. A., O. B. Pelekhata та V. O. Soldatov. "Апроксимативні властивості розв’язків багатоточкових крайових задач". Ukrains’kyi Matematychnyi Zhurnal 73, № 3 (11 березня 2021): 341–53. http://dx.doi.org/10.37863/umzh.v73i3.6505.

Повний текст джерела
Анотація:
УДК 517.927 Розглянуто широкий клас лінійних крайових задач для систем звичайних диференціальних рівнянь порядку ~ так звані загальні крайові задачі.Їхні розв'язки належать до простору Соболєва а крайові умови задаються у вигляді де ~ довільний неперервний лінійний оператор.Доведено, що розв'язок такої задачі можна з довільною точністю апроксимувати в розв'язками багатоточкових крайових задач із тими ж правими частинами.Ці багатоточкові задачі будуються явно та не залежать від правих частин загальної крайової задачі.Для цих задач отримано оцінки похибки розв'язків у нормованих просторах і
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Kutniv, M. V., та М. Krol. "Нова алгоритмічна реалізація точних триточкових різницевих схем для систем нелінійних звичайних диференціальних рівнянь другого порядку". Ukrains’kyi Matematychnyi Zhurnal 74, № 2 (21 лютого 2022): 204–19. http://dx.doi.org/10.37863/umzh.v74i2.6935.

Повний текст джерела
Анотація:
УДК 519.62Побудовано та обґрунтовано триточковi рiзницевi схеми високого порядку точностi на нерiвномiрнiй сiтцi для систем нелiнiйних звичайних диференцiальних рiвнянь другого порядку з похiдною у правiй частинi i крайовими умовами першого роду. Побудовано нову апроксимацiю похiдної розв’язку крайової задачi у вузлах сiтки. Доведено iснування та єдинiсть розв’язку, встановлено порядок точностi рiзницевих схем. Розроблено iтерацiйний метод типу Ньютона знаходження розв’язку цих схем. Запропоновано алгоритм автоматичного вибору точок сiтки, який гарантує досягнення заданої точностi. Наведено чисельнi розв’язування прикладiв, якi пiдтверджують ефективнiсть i надiйнiсть розробленого алгоритму.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Ковалюк, А. "Метод прогонки в задачах мінімаксного оцінювання розв"язків двоточкових крайових задач для звичайних диференціальних рівнянь". Вісник Київського університету. Серія "Фізико-математичні науки", Вип. 2 (2001): 262–68.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Рябікова, Г. В. "Оптимальне оцінювання за неповними даними функціоналів від правих частин рівнянь у крайових задачах для лінійних звичайних диференціальних операторів". Вісник Київського національного університету імені Тараса Шевченка. Серія "Фізико-математичні науки", Вип. 3 (2005): 344–50.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Gerasimova, T. O., and A. N. Nesterenko. "Parallel algorithms for the solving both of non-linear systems and initial-value problems for systems of ordinary differential equations on multi-core computers with processors Intel Xeon Phi." PROBLEMS IN PROGRAMMING, no. 2-3 (2018): 054–60. http://dx.doi.org/10.15407/pp2018.02.054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Turchyn, I. M., та O. Yu Turchyn. "НЕСТАЦІОНАРНА ЗАДАЧА ТЕПЛОПРОВІДНОСТІ ДЛЯ ШАРУВАТОЇ ПІВ БЕЗМЕЖНОЇ ПЛИТИ". Visnyk of Zaporizhzhya National University Physical and Mathematical Sciences, № 2 (12 березня 2021): 21–26. http://dx.doi.org/10.26661/2413-6549-2020-2-03.

Повний текст джерела
Анотація:
У багатьох задачах про поширення тепла в неоднорідних тілах слід ураховувати нестаціонарність процесу. Під час побудови точних аналітичних розв’язків просторових нестаціонарних задач теплопровідності неоднорідних тіл на дослідників чекають значні труднощі математичного характеру, пов’язані із застосуванням інтегрального перетворення Лапласа. Особливо це стосується випадків, коли одночасно з цим перетворенням застосовується інтегральне за просторовою змінною. У роботі до таких задач пропонується застосовувати новий метод – інтегральне перетворення Лагерра. Розглянуто нестаціонарну задачу теплопровідності про нагрів пів безмежної плити тепловим потоком, який діє на її боковій поверхні. На межах поділу матеріалів плити виконуються умови ідеального теплового контакту. На нижній і верхній основах неоднорідної плити відбувається теплообмін за законом Ньютона. До рівнянь нестаціонарної теплопровідності для кожного шару, крайових умов та умов спряження застосовано спочатку інтегральне перетворення Лагерра за часовою змінною, а потім інтегральне cos-перетворення Фур’є за просторовою змінною. Як наслідок, отримано трикутні послідовності звичайних диференціальних рівнянь, у які ввійшли задані інтенсивності теплових потоків на бічній поверхні. Загальний розв’язок цих послідовностей отримано у вигляді алгебричної згортки фундаментальних розв’язків та набору сталих. Фундаментальні розв’язки трикутних послідовностей побудовано методом невизначених коефіцієнтів, а набір сталих визначено з трансформованих за Лагерром і Фур’є крайових умов та умов ідеального теплового контакту складників півсмуги у вигляді рекурентних співвідношень. Остаточний розв’язок вихідної задачі записано у вигляді ряду за поліномами Лагерра з коефіцієнтами у вигляді інтегралів Фур’є. Числовий експеримент проведено для пів безмежної плити з двостороннім покриттям і з тепловими властивостями алюмінієвого стопу та кераміки. Виявлено фізично обґрунтовані закономірності нестаціонарного поширення тепла в таких шаруватих тілах.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Вороненко, Микита Дмитрович, та Максим Вікторович Сидоров. "КОНСТРУКТИВНЕ ДОСЛІДЖЕННЯ НЕЛІНІЙНИХ КРАЙОВИХ ЗАДАЧ ДЛЯ ЗВИЧАЙНИХ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ". Радиоэлектроника и информатика, № 1(80) (27 березня 2018). http://dx.doi.org/10.30837/1563-0064.1.2018.152795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Жихарєва, Н. В., та М. Г. Хмельнюк. "МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ НЕСТАЦІОНАРНОГО ТЕПЛОВОГО ОБМІНУ ПРИМІЩЕНЬ". Refrigeration Engineering and Technology 52, № 6 (28 травня 2017). http://dx.doi.org/10.15673/ret.v52i6.479.

Повний текст джерела
Анотація:
Розроблено математичну модель нестаціонарного теплового обміну приміщень. Тепловий баланс об'єкта моделюється системою звичайних неоднорідних диференціальних рівнянь з нелінійними коефіцієнтами. В розробленій моделі враховуються нестаціонарні характери процесу передачі тепла через конструкції, що обгороджують поверхні, інтенсивності сонячної радіації ,від людей, обладнання та освітлення. За результатами розрахунку підібране кліматичне обладнання, яке дозволить: забезпечити необхідні параметри мікроклімату в кондиціонованих приміщеннях за умовами максимальних теплоприпливів влітку і максимальних тепловтрат взимку, та забезпечити високу енергетичну ефективність при невеликому тепловому навантаженні в міжсезоння. Результати математичного моделювання дозволили визначити по середньомісячним температур необхідну холодопродуктивність або теплопродуктивність і відповідну споживану потужність системи та доповняють набір коректних вихідних даних для розрахунку повних витрат на забезпечення мікроклімату об'єкта, включаючи проектування, придбання обладнання, монтаж і експлуатаційні витрати протягом терміну служби системи та дозволяє оцінити термін окупності системи.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії