Добірка наукової літератури з теми "Електромагнітний перетворювач"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Електромагнітний перетворювач".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Електромагнітний перетворювач"

1

Михайленко, В., Г. Міхненко та В. Бачинський. "Математична модель перетворювача трифазної напруги у постійну з чоти- ризонним регулюванням напруги і активно-індуктивним навантаженням". Адаптивні системи автоматичного управління 1, № 38 (31 травня 2021): 57–61. http://dx.doi.org/10.20535/1560-8956.38.2021.233187.

Повний текст джерела
Анотація:
У статті проведено аналіз електромагнітних процесів в електричних колах з напівпровідниковими комутаторами. Створено математичну модель напівпровідникового перетворювача з чотиризонним регулюванням вихідної напруги для аналізу електромагнітних процесів у напівпровідникових перетворювачах з широтно-імпульсним регулюванням. Наведено графіки, що відображають електромагнітні процеси у електричних колах. Математична модель напівпровідникового перетворювача також використовується для дослідження перехідних процесів у напівпровідникових перетворювачах з активно-індуктивним навантаженням. Розвинуто метод багатопараметричнихфункцій, які входять до алгоритмічних рівнянь аналізу усталених і перехідних процесів у розгалужених електричних колах з напівпровідниковими комутаторами і реактивними елементами, в напрямку урахування особливостей використання фазних і лінійних напруг мережі електроживлення. Розроблено нову математичну модель усталених іперехідних процесів у електричних колах напівпровідникових перетворювачів модуляційного типу з багатоканальним зонним використанням фазних напруг трифазної мережі живлення без урахування втрат електроенергії у комутаторах для швидкої оцінки впливу параметрів навантаження на характеристики регульованих синусоїдних і постійних напруг. Результати цієї роботи можна використати для розвитку методу багатопараметричних модулюючих функцій для спрощення аналізу перехідних процесів у електричних колах без врахуванням втрат у ключових елементах. Бібл. 4, іл. 3
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Бєлоха, Г. С. "Перетворювач частоти в системі генерування енергії вітроенергетичних установок". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 7 (263) (10 грудня 2020): 35–39. http://dx.doi.org/10.33216/1998-7927-2020-263-7-35-39.

Повний текст джерела
Анотація:
В останній час системи перетворення енергії вітру збільшують своє проникнення в електричні мережі в майже усі країни світу. Інтеграція енергії вітру в енергетичні системи спричиняє проблему з точки зору якості електроенергії. У статті розглянуто електричну систему у складі вітрогенераторних установок зі змінною швидкістю обертання ротора, щоб отримати максимальну потужність із вітру. Показано основні задачі керування вітрогенераторних установок то зони роботи вітряків. Приведено огляд перетворювачів частоти. Запропоновано перетворювач частоти (AC-DC-AC) з ланкою постійного струму. До його складу входять вхідний AC/DC перетворювач, система управління якого та регулятор швидкості генератора забезпечують оптимальну передачу енергії від вітрогенератора, і вихідний DC/AC перетворювача, виконаного на базі активного випрямляча. Між вхідним інвертором і активним випрямлячем знаходиться ланка постійної напруги (конденсатор). Система керування такого перетворювача релейна. Таке керування забезпечує з релейним керування, дозволяє забезпечити практично миттєву реакцію на відхилення від завдання. Точність відтворення (відстеження) сигналу завдання буде визначатися шириною петлі гістерезису релейних регуляторів. Таким чином забезпечується електромагнітна сумісність з мережею живлення. Представлено математичний опис електромагнітних процесів в активному випрямлячі та інверторі, які входять до складу перетворювача. За допомогою цифрового моделювання в програмі Matlab проведено дослідження режимів роботи (змінення напруги генератора, частоти струму генератора) та виконан аналіз струмів на вміст гармонік. Гармонійний аналіз показав, що запропонований перетворювач забезпечує хорошу якість споживаної енергії THD істотно менше 5% що задовольняє міжнародним стандартам на якість електроенергії.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Шевченко, І. С., Д. І. Морозов та Г. С. Бєлоха. "«Пряме» векторне управління асинхронною машиною подвійного живлення". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 8(264) (12 січня 2021): 62–65. http://dx.doi.org/10.33216/1998-7927-2020-264-8-62-65.

Повний текст джерела
Анотація:
Побудова регульованого електропривода на базі асинхронної машини подвійного живлення є досить актуальною задачею, оскільки дозволяє управляти великими потоками електроенергії при високих енергетичних показниках. У таких відомих системах електропривода є досить складна система управління ними, оскільки передбачає використовування перетворювачів координат (прямі-зворотні) та наявність нелінійних зв’язків між каналами управління, це погіршує надійність таких систем. У роботі пропонується«пряме» векторне керування асинхронною машиною подвійного живлення без використання перетворювачів координат. Струми ротора запропоновано примусово формувати повністю керованим перетворювачем частоти, щоб зробити його активним та синфазним фазній е.р.с ротора. Перетворювач включається у роторне коло. Для схемної реалізації у якості перетворювачаобраний перетворювач частоти з ланкою постійної напруги з релейним керуванням. Вхідний випрямляч якого є активний випрямляч. Крім того перетворювач забезпечує електромагнітну сумісність з мережею живлення, та задовольняє вимогам, які зазначені в стандартах, на якість струму мережі. Представлена модель асинхронної машини подвійного живлення з традиційною системою керуванням з використанням перетворювачів координат «прямі-зворотні».Проведено порівняння математичної моделі при традиційному векторному керуванні та моделі з «прямим» векторним керуванням за допомогою Matlab. Отримані осцилограми роботи з запропонованим керуванням, вони демонструють наростання швидкості в машині подвійного живлення, при цьому струми з мережі синусоїдальні та співпадають за фазою зі своїми напругами, а пуск електропривода супроводжується віддачою енергії ротора через перетворювач до мережі.Результати показують, що електропривод формує раціональну динаміку без перерегулювання координат.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Пільтяй, Степан Іванович, Андрій Васильович Булашенко, Ірина Володимірівна Фесюк та Олександр Васильович Булашенко. "КОМПАКТНИЙ ПЕРЕТВОРЮВАЧ ПОЛЯРИЗАЦІЇ ДЛЯ СУПУТНИКОВИХ АНТЕННИХ СИСТЕМ". Вісник Черкаського державного технологічного університету, № 1 (15 квітня 2021): 86–98. http://dx.doi.org/10.24025/2306-4412.1.2021.227633.

Повний текст джерела
Анотація:
У статті запропонований простий метод оптимізації та розробки поляризаційних пристроїв с діафрагмами за допомогою методу еквівалентних мікрохвильових схем. Принцип методу полягає у розбитті схеми хвилеводного пристрою обробки поляризації на прості еквівалентні схеми. Кожна схема описується своїми матрицями розсіювання та передачі. Далі основні характеристики представленого пристрою виражаємо через елементи загальної хвильової матриці розсіювання. До базових електромагнітних характеристик пристрою належать такі: фазові, узгоджуючи та поляризаційні. Було розроблено поляризаційний пристрій із трьома діафрагмами на основі квадратного хвилеводу. У діапазоні частот 13,0-14,4 ГГц було здійснена процедура оптимізації електромагнітних характеристик. Сконструйований хвилевідний пристрій у робочому діапазоні частот підтримує диференційний фазовий зсув у межах 90° ± 4,0°. Пікове значення його коефіцієнта стійної хвилі за напругою приймає значення 2,04. Максимальне значення коефіцієнту еліптичності становить 0,6 дБ, а мінімальній рівень кросполярізаційної розв’язки становить 29,5 дБ. Для перевірки правильності отриманих результатів була здійснене числове моделювання пристрою із використанням методу скінченного інтегрування в частотній області та методо скінчених елементів в часовій області. Результати моделювання показали, що представлений метод має невелику розбіжність із відомими електродинамічними методами аналізу мікрохвильових пристроїв. Тому, розроблений новий хвилевідний поляризаційний пристрій з трьома діафрагмами представляє узгоджені та якісні електромагнітні характеристики у всьому робочому діапазоні частот 13,0–14,4 ГГц. Розроблений поляризаційний пристрій може використовуватися у антенних системах, де здійснюється поляризаційна обробка сигналів
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Батигін Ю.В., д.т.н., Єрьоміна О.Ф, Шиндерук С.О, та Чаплигін Є. О. "АНАЛИЗ ЭЛЕКТРОМАГНИТНЫХ ПРОЦЕССОВ В РЕЗОНАНСНОМ УСИЛИТЕЛЕ ЭЛЕКТРИЧЕСКОЙ МОЩНОСТИ". Перспективні технології та прилади, № 17 (13 грудня 2020): 12–20. http://dx.doi.org/10.36910/6775-2313-5352-2020-17-2.

Повний текст джерела
Анотація:
Метою цієї роботи була пропозиція і теоретичне обґрунтування принципової працездатності схеми трансформатора реактивної електричної потужності, що складається з двох послідовних резонансних контурів з регульованим рівнем електромагнітного зв'язку між ними. Отримано базові аналітичні вирази для характеристики електромагнітних процесів в схемі прийнятого резонансного перетворювача. Показано, що максимально можливий коефіцієнт посилення електричної реактивної потужності пропорційний добротності вторинного контуру трансформатора. Достовірність отриманих результатів підтверджується проведеними експериментальними дослідженнями. Їх результати продемонстрували, що розбіжності теоретичних оцінок і дослідних даних досить незначні, і їх можна пояснити впливом зовнішніх електромагнітних полів (суперпозиція полів «ви-перехідного» соленоїда і трансформатора зв'язку). В цілому, отримані результати ілюструють реальні можливості багаторазового посилення реактивної електричної потужності в запропонованій схемі резонансного трансформатора. Подальші роботи припускають розробку і створення перетворювача реактивної електричної енергії в активну.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Михайленко, Владислав Володимирович, Ірина Віталіївна Майкович, Таміла Анатоліївна Наухацька, Ганна Леонідівна Карпчук, Вікторія Сергіївна Ярош та Артем Михайлович Панченко. "ДОСЛІДЖЕННЯ ЕЛЕКТРОМАГНІТНИХ ПРОЦЕСІВ У ПЕРЕТВОРЮВАЧІ З СЕМИЗОННИМ РЕГУЛЮВАННЯМ НАПРУГИ". Адаптивні системи автоматичного управління 2, № 31 (29 грудня 2017): 46–50. http://dx.doi.org/10.20535/1560-8956.31.2017.128058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mykhailenko, V., G. Mikhnenko та О. Charnyak. "Дослідження електромагнітних процесів у перетворювачі з тризонним регулюванням напруги". Адаптивні системи автоматичного управління 2, № 35 (25 грудня 2019): 48–53. http://dx.doi.org/10.20535/1560-8956.35.2019.197430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Михайленко, Владислав Володимирович, Дмитро Костянтинович Зіменков, Вадим Анатолійович Святненко, Костянтин Вікторович Трубіцин та Ольга Сергіївна Чарняк. "ДОСЛІДЖЕННЯ ЕЛЕКТРОМАГНІТНИХ ПРОЦЕСІВ У ПЕРЕТВОРЮВАЧІ З ДЕСЯТИЗОННИМ РЕГУЛЮВАННЯМ НАПРУГИ І ЕЛЕКТРОМЕХАНІЧНИМ НАВАНТАЖЕННЯМ". Адаптивні системи автоматичного управління 2, № 33 (1 грудня 2018): 42–47. http://dx.doi.org/10.20535/1560-8956.33.2018.164673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Мihaylenko, Vladyslav, Oleg Petruchenko, Ruslan Rokytskiy, and Julia Jazenok. "RESEARCH ON THE ELECTRIC MAGNETIC PROCESSES IN SEMICONDUCTOR CONVERTER WITH TWENTY FOURTH ZONED REGULATION OF THE OUTPUT VOLTAGE." TECHNICAL SCIENCES AND TECHNOLOG IES, no. 1(7) (2017): 171–76. http://dx.doi.org/10.25140/2411-5363-2017-1(7)-171-176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bakiko, V. M., P. V. Popovich, and V. B. Shvaichenko. "FEATURES OF ELECTROMAGNETIC COMPATIBILITY OF SEMICONDUCTOR CONVERTERS IN STRUCTURES WITH WIRELESS CHANNELS." Tekhnichna Elektrodynamika 2019, no. 3 (April 5, 2019): 55–59. http://dx.doi.org/10.15407/techned2019.03.055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Електромагнітний перетворювач"

1

Пушкар, К. С., та Юрій Валентинович Хомяк. "Електромагнітний контроль трубчастих виробів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/49099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Шібан, Тамер. "Електромагнітний багатопараметровий перетворювач з просторово-періодичним полем для контролю циліндричних виробів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41997.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) зі спеціальності 05.11.13 – прилади і методи контролю та визначення складу речовин. Національний технічний університет "Харківський політехнічний інститут", Харків, 2019. В роботі розроблена фізико-математична модель електромагнітного перетворювача з неоднорідним розподілом електромагнітного поля провідника зі струмом, розташованого уздовж бічної поверхні циліндричного виробу на деякій відстані d від центра металевого циліндра радіуса a. Отримано математичні вирази для визначення напруженості магнітного поля для r-ї і φ-ї складової, створюваного струмом одного провідника або полюса. Проведено облік товщини стрічки полюса, який призводить до заміни в формулах для напруженості поля значення r на деякий ефективний радіус. Отримано математичні вирази для амплітуди і фази n-ї просторової гармоніки сигналу перетворювача, що наводиться в вимірювальних обмотках, розташованих уздовж поверхні циліндричного об'єкту контролю з кутовою координатою φ по колу радіуса d. Для підтвердження адекватності запропонованої моделі перетворювача проведені експерименти, які показали хороший збіг між розрахунковими і експериментальними значеннями ЕРС сигналу перетворювача. Так, наприклад, для вимірювальних обмоток, з кутовими координатами φ = 0° і φ = 180° розбіжність значень напруг склала не більше 5%, а для обмоток з розташуванням по φ = 30°, 60°, 300° і 330° розбіжність склала не більше 10%. Розроблено метод на основі електромагнітного перетворювача з двома полюсами і різним напрямком струму. Отримано універсальні функції перетворення з використанням 1-ї і 3-ї просторових гармонік, а також запропонований алгоритм реалізації багатопараметрового контролю параметрів циліндричних виробів.
Dissertation for the degree of candidate of technical sciences (doctor of philosophy) in specialty 05.11.13 – instruments and methods of substance composition control and determination. National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. The physic-mathematical model of an electromagnetic transducer with non-uniform distribution of an electromagnetic field for a conductor with a current located along the lateral surface of a cylindrical product at a distance d from the center of a metallic cylinder of radius a. Mathematical expressions are obtained to determine the intensity of the magnetic field for r-th and φ-th components, generated by the current of one conductor (or pole with finite angular dimensions). The thickness of the pole with a total current is taken into account, which leads to the replacement of r quantity in the formulas for field strength by effective radius. Mathematical expressions are obtained to determine amplitude and phase of transducer’s signal n-th spatial harmonics, which are generated in the measuring windings located along the surface of the cylindrical object with the angular coordinate φ on a circle of radius d. Experiments have been carried out to confirm the adequacy of the transducer’ proposed model, which showed the difference between the calculated and experimentally obtained values of the EMF of the transducer’ output signal. For instance, for measuring windings with angular coordinates φ = 0° і φ = 180° difference of voltage values is less than 5% and for measuring windings with angular coordinates φ = 30°, 60°, 300° і 330° difference is less than 10%. The method based on the electromagnetic transducer with two magnetized poles and a different direction of current is developed. The universal functions of conversion with use of 1-st and 3-rd spatial harmonics are obtained, also the algorithm of realization of cylindrical wares’ parameters multi-parameter control is offered.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Шібан, Тамер. "Електромагнітний багатопараметровий перетворювач з просторово-періодичним полем для контролю циліндричних виробів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41998.

Повний текст джерела
Анотація:
У дисертаційній роботі представлені науково-технічні результати дослідження електромагнітного багатопараметрового перетворювача для визначення параметрів циліндричних металевих виробів, принцип роботи якого ґрунтується на виділенні амплітуди та фази просторових гармонік неоднорідного магнітного поля, представленого у вигляді ряду Фур'є. Об'єкт дослідження достатньо повно описаний в науковій літературі. Показано, що подальше збільшення інформаційних параметрів, які контролюються одним перетворювачем може здійснюватися декількома шляхами. Наприклад, використання для живлення перетворювача струмом різних частот з подальшою фільтрацією і виділенням амплітуди і фази на кожній частоті. Така реалізація багатопараметрових датчиків досить складна і не завжди відображає справжню картину процесів, що відбуваються в об'єкті контролю через різну глибину проникнення поля (скін-ефект). Показано, що застосування результатів дослідження дає можливість отримати більш повну інформацію про об'єкт контролю, яка не могла бути отримана при використанні традиційних методів. Тому, застосування розробленого методу, є перспективним. В роботі розроблена фізико-математична модель електромагнітного перетворювача з неоднорідним розподілом електромагнітного поля для провідника зі струмом, розташованого уздовж бічної поверхні циліндричного виробу на деякій відстані d від центра металевого циліндра радіуса a. Вирішена просторова задача розподілу змінного в часі магнітного поля і отримані вирази, за якими можна обчислити функції для будь-якої просторової гармоніки, за якими можна скласти картину розподілу поля в будь-який області (всередині виробу, між виробом і провідником зі струмом, а також поза цим провідником). Отримано математичні вирази для визначення напруженості магнітного поля для r-ї і φ-ї складової, створюваного струмом одного провідника (або полюса з кінцевими кутовими розмірами). Проведено облік товщини стрічки полюса з сумарним струмом, який призводить до заміни в формулах для напруженості поля значення r на деякий ефективний радіус. Отримано математичні вирази для амплітуди і фази n-ї просторової гармоніки сигналу перетворювача, що наводиться в вимірювальних обмотках, розташованих уздовж поверхні циліндричного об'єкту контролю з кутовою координатою φ на окружності радіуса d. Для підтвердження адекватності запропонованої моделі перетворювача проведені експерименти, які показали відмінність між розрахунковими і експериментально отриманими значеннями ЕРС вихідного сигналу перетворювача. Так, наприклад, для вимірювальних обмоток, з кутовими координатами φ = 0° і φ = 180° розбіжність значень напруг склала не більше 5%, а для обмоток з розташуванням по φ = 30°, 60°, 300° і 330° розбіжність склала не більше 10%. Запропоновано також прийоми і способи виділення необхідних просторових гармонік і приглушення гармонік з високими номерами. Останнє дозволяє знизити вплив вищих просторових гармонік до 1%. Для виключення з картини просторового розподілу поля парних або непарних гармонік запропоновано використовувати систему провідників з однаковими і протилежними напрямками струмів в них. Отримано універсальні функції перетворення для амплітуди і фази n-ї складової гармоніки для перетворювача. Розроблено метод спільного контролю електричних (σ), магнітних (μr) і геометричних (а) параметрів циліндричних виробів, на основі перетворювача з одним намагнічувальним полюсом при використанні 1-ї і 2-ї просторових гармонік, який дозволяє однозначно вирішувати задачу багатопараметрового контролю для широкого сортименту виробів, різних конструкцій і режимів роботи перетворювачів. Розроблено метод на основі електромагнітного перетворювача з двома намагнічувальними полюсами і різним напрямком струму. Отримано універсальні функції перетворення з використанням 1-ї і 3-ї просторових гармонік, а також запропонований алгоритм реалізації багатопараметрового контролю параметрів циліндричних виробів. Визначено чутливості методу і знайдено раціональні режими роботи перетворювача. Виконано розрахунок і показано вплив вищих гармонік поля на вихідні сигнали перетворювача. Так, наприклад, для перетворювача з одним збуджувальним провідником, відкидання 3-ї гармоніки призведе до похибки розрахунку результуючої ЕРС, яка дорівнює 5%, а для перетворювача з двома збуджувальними провідниками, при відкиданні 5-ї гармоніки, становить 1,5%. Розроблено макет лабораторної установки з електромагнітним перетворювачем з просторово-періодичною структурою поля і проведені експериментальні дослідження по визначенню μr σ, і а з імітаційними зразками різного сортаменту для підтвердження адекватності розробленого методу. Наведена конструкція електромагнітного перетворювача з двома збуджувальними полюсами і різним напрямком намагнічувального струму з використанням амплітуди 1-ї і 3-ї просторових гармонік і фази 1-ї гармоніки. Оскільки безпосередньо оцінити похибки контролю μr, σ і а для розробленого багатопараметрового перетворювача досить складно, в роботі проведено вимірювання цих же параметрів контрольними методами. Так для визначення а досліджуваного зразка використовувався мікрометр з діапазоном вимірювання діаметра (50 ± 0,01) мм, для визначення σ циліндричного зразка використовувався контактний електричний метод на базі потенціометра постійного струму Р363-3, з класом точності 0,005, а для визначення μr використовувався метод амперметра - вольтметра для кільцевого зразка. Показано, що застосування розробленого перетворювача дозволяє отримувати найбільш повну інформацію про стан повітряних ліній електропередач, тобто визначати μr, σ, і a циліндричних дротів, а також корельованих з ними механічним навантаженням, температурою, величиною струму, що протікає в лінії та визначення питомих електричних втрат при діагностиці стану повітряних ліній електропередач, що підтверджується актом впровадження від 18.12.2015р (договір № 377551 від 27.07.2015р між НТУ «ХПІ» та ПАТ «Укргідропроект» м. Харків).
The dissertation presents the scientific and technical results of the study of the electromagnetic multi-parameter transducer for the cylindrical metal products parameters determining, which principle is based on the allocation of the amplitude and phase of the spatial harmonics of a nonuniform magnetic field presented in the form of a Fourier series. The object of the study is in the full extent described in the scientific literature. It is shown that further increase of information parameters controlled by one transducer can be carried out in several ways. For example, the use of different frequency to power the transducers, signal filtering and separation of amplitude and phase at each frequency. Such implementation of multiparameter sensors is quite complicated and does not always give the true picture of the processes taking place in the controlled object due to the different depth of field penetration (skin effect). It has been shown that the application of the study results provides an opportunity to obtain more information about the studied object that could not be obtained by using traditional methods. Therefore, the application of the developed method is promising. The physic-mathematical model of an electromagnetic transducer with non-uniform distribution of an electromagnetic field for a conductor with a current located along the lateral surface of a cylindrical product at a distance d from the center of a metallic cylinder of radius a. The spatial problem of the distribution of a magnetic field variable in time is solved and expressions allowing calculating the functions for any spatial harmonic are obtained and it is possible to make a picture of the distribution of the field in any area (inside the product, between the product and conductor with current, as well as beyond this conductor). Mathematical expressions are obtained to determine the intensity of the magnetic field for r-th and φ-th components, generated by the current of one conductor (or pole with finite angular dimensions). The thickness of the pole with a total current is taken into account, which leads to the replacement of r quantity in the formulas for field strength by effective radius. Mathematical expressions are obtained to determine amplitude and phase of transducer’s signal n-th spatial harmonics, which are generated in the measuring windings located along the surface of the cylindrical object with the angular coordinate φ on a circle of radius d. Experiments have been carried out to confirm the adequacy of the transducer’ proposed model, which showed the difference between the calculated and experimentally obtained values of the EMF of the transducer’ output signal. For instance, for measuring windings with angular coordinates φ = 0° і φ = 180° difference of voltage values is less than 5% and for measuring windings with angular coordinates φ = 30°, 60°, 300° і 330° difference is less than 10%. Methods and algorithms of allocating the necessary spatial harmonics and eliminating harmonics with high numbers are offered also. The latter allows us to reduce the influence of the higher spatial harmonics down to 1%. To exclude from the spatial distribution of the field odd or even harmonics it is suggested to use a system of conductors with the same and opposite directions of currents in them. The universal transformation functions for the amplitude and phase of the n-th harmonic component for the transducer are obtained. Method is developed for simultaneous testing electrical (σ), magnet (μr) and geometrical (а) parameters of cylindrical objects, by the use of transducer with on magnetizing pole considering 1-st and 2-nd spatial harmonics, which allows unambiguously solve the task of multi-parameter testing for a wide variety of products, various designs and modes of operation of transducers. The method based on the electromagnetic transducer with two magnetized poles and a different direction of current is developed. The universal functions of conversion with use of 1-st and 3-rd spatial harmonics are obtained, also the algorithm of realization of cylindrical wares’ parameters multi-parameter control is offered. The sensitivity of the method is determined and rational modes of transducer operation are found. The calculation is performed and the effect of the higher harmonics of the field on the output signals of the transducer is shown. For example, for a transducer with one excitation wire, the rejection of the 3-rd harmonic will result in an error of the resulting EMF calculation equal to 5%, and for a transducer with two excitatory wires, when the 5-th harmonic is rejected, it is 1.5%. A layout of a laboratory unit with an electromagnetic transducer with a spatial-periodic field structure was developed and experimental studies were carried out to determine μr σ, and а with simulation samples of different sorts to confirm the adequacy of the developed method. The construction of an electromagnetic transducer with two excitation poles and a different direction of the magnetizing current with the use of the amplitude of the 1-st and 3-rd spatial harmonics and the 1-st harmonic phase is presented. As soon as direct estimation of error of testing μr, σ and а for the developed multi-parameter transducer is quite complicated, in the work the measurements of these parameters were carried out by control methods. So, to estimate а of the studied sample micrometer with a diameter measuring range (50 ± 0,01) mm was used, to estimate σ of a cylindrical sample, a contact electric method was used based on the potentiometer of direct current Р363-3 (R363-3), having accuracy class of 0,005, to estimate μr the method of an ammeter – voltmeter for a ring sample was used. It is shown that implementation of the developed transducer allows to receive the most complete information about the condition of electric power lines, that is to define μr, σ, and a of cylindrical wires, as well as the mechanical load, temperature, magnitude of the current flowing in the line correlated with them and the determination of specific electrical losses during the diagnosis of the state of electric power lines, as evidenced by the implementation act dated 18.12.2015 (agreement № 377551 dated 27.07.2015 between NTU “KhPI” and PJSC “Ukrhydroproekt” city of Kharkiv).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Пальчик, В. А. "Перетворювач для керування лінійним кроковим пристроем". Thesis, Київський національний університет технологій та дизайну, 2019. https://er.knutd.edu.ua/handle/123456789/13738.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Петренко, Д. В., та Юрій Валентинович Хомяк. "Дослідження вимірювача електропровідності циліндричних виробів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Горкунов, Борис Митрофанович, Сергій Геннадійович Львов, О. С. Єфімцева та О. С. Хроменко. "Трансформаторний перетворювач для двохпараметрових вимірювань". Thesis, НТУ "ХПІ", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/38766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Подолян, О. О., В. Ю. Тесленко та В. В. Атаманенко. "Формування магнітного поля в ЕМА перетворювачах з використанням електромагніту". Thesis, Сумський державний університет, 2014. http://essuir.sumdu.edu.ua/handle/123456789/39394.

Повний текст джерела
Анотація:
Магнітні системи електромагнітно-акустичних ЕМА датчиків систем неруйнівного контролю повинні забезпечувати адаптивну регулювання магнітної індукції в контрольованому об'єкті з метою вибору її оптимального значення.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Салам, Буссі. "Електромагнітно-акустичні перетворювачі для ультразвукового контролю металовиробів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48184.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 05.11.13 «Прилади і методи контролю та визначення складу речовин» – Національний технічний університет «Харківський політехнічний інститут». Дисертація присвячена розробці нових ультразвукових електромагнітно-акустичних перетворювачів з джерелом імпульсного поляризуючого магнітного поля, методів підвищення чутливості контролю та діагностики металовиробів з використанням перетворювачів такого типу. Виконано аналітичний огляд та аналіз сучасних засобів і методів контролю та діагностики електромагнітно-акустичним методом [1–3] феромагнітних і електропровідних або тільки електропровідних виробів в умовах дії постійних та імпульсних поляризуючих магнітних полів з урахуванням наявності когерентних завад різного типу, технічного рівня сучасних електромагнітно – акустичних перетворювачів, схемотехнічних рішень засобів їх живлення, прийому з виробів ультразвукових імпульсів та їх обробки, визначення відомих переваг, недоліків та можливостей використання в дослідженнях і розробках. Визначені та обґрунтовані напрямки дисертаційного дослідження: розробка електромагнітно-акустичного перетворювача у вигляді спрощеної одновиткової моделі [4] джерела магнітного поляризуючого поля з феромагнітним осердям та високочастотною котушкою, яка розміщена між осердям та металовиробом; шляхом моделювання [5] розподілення індукції поляризуючого магнітного поля на торці осердя джерела магнітного поля та в поверхневому шарі як феромагнітного так і неферомагнітного металовиробу визначено особливості розташування високочастотної котушки індуктивності під джерелом магнітного поля для ефективного збудження зсувних ультразвукових імпульсів (в центральній частині торця феромагнітного осердя) або поздовжніх ультразвукових імпульсів (біля периферійної частини торця феромагнітного осердя) [6]. Збільшення кількості витків котушки намагнічування при наявності феромагнітного осердя призводить до значного збільшення часу перехідних процесів при включенні живлення імпульсного джерела поляризуючого магнітного поля і при його виключенні. В результаті час дії імпульсу живлення збільшується до 1 мс і більше, що призводить до збільшення сили притягування ЕМАП до феромагнітного виробу, додаткових втрат електроенергії, погіршенню температурного режиму перетворювача. Для зменшення часу дії імпульсу живлення джерела магнітного поля необхідно зменшувати кількість витків котушки намагнічування, але це призводить до зменшення величини магнітної індукції навіть при наявності феромагнітного осердя. В результаті раціонального вибору конструкції джерела магнітного поля встановлена необхідність виконання його котушки намагнічування плоскою двовіконною трьохвитковою і виготовляти з високоелектропровідного високотеплопровідного матеріалу [7-9]. Осердя повинно бути розміщено в вікнах котушки намагнічування тільки торцями. В результаті час дії імпульсу намагнічування зменшено до 200 мкс, що достатньо для контролю виробів товщиною до 300 мм. Високочастотна котушка індуктивності виконана з двома лінійними робочими ділянками, які розташовуються під вікнами котушки намагнічування [9]. При протилежних напрямках високочастотного струму в цих робочих ділянках в поверхневому шарі виробу збуджуються синфазні потужні імпульси зсувних ультразвукових хвиль. При цьому відношення збуджуваних амплітуд зсувних та поздовжніх імпульсів перевищує 30 дБ. Тобто когерентні імпульси поздовжніх хвиль при контролі луна методом практично не будуть впливати на результати діагностики феромагнітних виробів. Розроблені варіанти конструкцій електромагнітно-акустичних перетворювачів з одновитковими [7], двовитковими [8] та трьохвитковими [9] котушками намагнічування джерела імпульсного поляризуючого магнітного поля. При одновитковій котушці [7] перехідні процеси при включенні імпульсу живлення мінімальні. Проте необхідно збуджувати в котушці струм з силою в кілька кА, що ускладнює температурний режим перетворювача та апаратуру живлення. При трьохвитковій котушці [9] намагнічування амплітуда донних імпульсів по відношенню до амплітуди завад перевищує 24 дБ, що дозволяє проводити контроль та діагностику значної кількості металовиробів. При використанні шихтованого осердя [9] відношення амплітуд корисного сигналу і шуму збільшилося до 38 дБ, що дає можливість проводити ультразвуковий контроль лунаметодом. Розроблено метод [10 ] ультразвукового електромагнітно- акустичного контролю феромагнітних виробів, суть якого заключається в збудженні ультразвукових імпульсів шляхом формування в поверхневому шарі феромагнітного виробу двох рядом розташованих короткочасно намагнічених ділянок з протилежним напрямком векторів магнітної індукції поляризуючого поля, збудженні в намагнічених ділянках пакетних імпульсів електромагнітного поля з протилежно направленими векторами напруженості тривалістю в кілька періодів високої частоти заповнення, при цьому збудження імпульсів електромагнітного поля виконують в момент часу, який дорівнює часу перехідних процесів з встановлення робочої величини індукції поляризуючого магнітного поля, а прийом ультразвукових імпульсів відбитих з виробу виконується в період часу tпр, який визначається за виразом T – t1 – t2 – t3 < tпр = t1 + t2 + t3 + 2H/C, де Т – тривалість імпульсу намагнічування; t1 – час перехідних процесів з встановлення робочої величини індукції поляризуючого магнітного поля; t2 – час дії пакетного імпульсу електромагнітного поля; t3 – час затухаючих коливань в плоскій високочастотній котушці індуктивності; Н – товщина виробу або відстань в об’ємі виробу, які підлягають ультразвуковому контролю; С – швидкість поширення зсувних ультразвукових хвиль в матеріалі виробу. Встановлено [9] [9], що завади в феромагнітному осерді, обумовлені ефектом Баркгаузена та магнітострикційним перетворенням електромагнітної енергії в ультразвукову при збудженні ультразвукових імпульсів, практично виключаються за рахунок виготовлення осердя шихтованим, матеріал пластин осердя повинен мати низький коефіцієнт магнітострикційного перетворення, пластини осердя повинні бути орієнтовані перпендикулярно провідникам робочих ділянок плоскої високочастотної котушки індуктивності, а також заповненням щілин між пластинами осердя рідиною із значною густиною, наприклад гліцерином. Показано, що чутливість прямих ЕМА перетворювачів з імпульсним намагнічуванням при живленні розробленим генератором пакетних зондуючих високочастотних імпульсів [11 ] та прийомі малошумлячим підсилювачем [12 ] забезпечують виявлення плоскодонних відбивачів діаметром 3 мм і більше при частоті зондування 40 Гц, піковому високочастотному струмі 120 А, частоті зсувних лінійно поляризованих ультразвукових коливань 2,3 МГц, тривалості високочастотного пакетного імпульсу 6…7 періодів частоти заповнення, тривалості імпульсу намагнічування 200 мкс, густині струму намагнічування 600 А/мм2 та при зазорі між ЕМАП і виробом 0,2 мм [9] [9]. При цьому амплітуда луна імпульсу відбитого від дефекту по відношенню до амплітуди завад досягає 20 дБ. Розроблені ЕМАП захищені 2 патентами на корисну модель.
Thesis for a Candidate Degree in Engineering (Doctor of Philosophy), specialty 05.11.13 "Devices and methods of testing and determination of composition of substances" - National Technical University "Kharkiv Polytechnic Institute". The dissertation is devoted to development of new ultrasonic electromagnetic-acoustic transducers with a source of pulsed polarizing magnetic field, methods of sensitive testing and diagnostics of metalware with the use of transducers of this type. Analytical review and analysis of modern means and methods of testing and diagnostics via electromagnetic-acoustic method [1-3] of ferromagnetic and electrically conductive or strictly electrically conductive products under conditions of impact of constant and pulse polarizing magnetic fields taking into account the presence of coherent interferences of different types, technical level of modern electromagnetic circuits, means of their power supply, reception of ultrasonic pulses from metalware and their processing, determination of known advantages and disadvantages, and opportunities of their use in research and development. The direction of the research is defined and justified: development of electromagnetic-acoustic transducer in the form of a simplified single-wind coil model [4] of a source of a magnetic polarizing field with a ferromagnetic core and a high-frequency coil, which is located between the core and the sample; by modeling [5] the distribution of induction of polarizing magnetic field at the end face of the core of the magnetic field source and in the surface layer of both ferromagnetic and non-ferromagnetic metallurgy the features of the location of the high frequency coil of inductance under the magnetic field source are effectively determined for the effective excitation of shear ultrasonic pulses (near the peripheral end of the ferromagnetic core) [6]. The increase in number of winds of magnetization coil in presence of a ferromagnetic core leads to a significant increase in time of transients during the process of powering of a pulsed source of a polarizing magnetic field and during its switching off. As a result, the duration of the power pulse increases to 1 ms or more, which leads to an increase in the force of attraction of EMAP to the ferromagnetic product, additional losses of electricity, deterioration of temperature conditions of the transducer. To reduce the duration of powering pulse of magnetic field it is necessary to reduce the number of winds of the magnetizing coil, but this leads to a decrease in magnetic induction magnitude, even in presence of a ferromagnetic core. As a result of rational choice of the design of the magnetic field source, the flat coil of magnetization must be made with a two-window three-wind and made of high-conductive high-heat-conducting material [7-9]. The core should be placed in the windows of the magnet coil only by the ends. As a result, the action time of the magnetization pulse is reduced to 200 μs, which is sufficient for testing of samples up to 300 mm thick. The high-frequency inductor coil is made of two linear working sections that are located under the windows of the coil [9]. In opposite directions of high-frequency current in these working areas, in-phase powerful pulses of shear ultrasonic waves are excited in the surface layer of the product. The ratio of the excited amplitudes of the shear and longitudinal pulses exceeds 30 dB. That is, the coherent pulses of longitudinal waves in the testing of the moon by the method will practically not affect the results of the diagnosis of ferromagnetic products. Design variants of electromagnetic-acoustic transducers with one-wind [7], two-wind [8] and three-wind magnetization coils [9] of a source of a pulsed polarizing magnetic field are developed. With a single-coil [7], the transients are minimal when the power pulse is winded on. However, it is necessary to excite in the coil a current of several kA, which complicates the temperature conditions of the transducer and power equipment. With a three-coil [9] magnetization, the amplitude of the bottom pulses in relation to the amplitude of the interference exceeds 24 dB, which allows for testing and diagnostics of large variety of samples. When using the charge core [9], the ratio of amplitudes increased to 38 dB, which makes it possible to monitor the echo by the method. The method [10] of ultrasonic electromagnetic - acoustic testing of ferromagnetic products is developed. vectors of intensity with duration of several periods of high filling frequency, n and this excitation of the pulses of the electromagnetic field is performed at a time equal to the time of transients to establish the operating value of the induction of the polarizing magnetic field, and the reception of ultrasonic pulses reflected from the product is performed in the time period tпр, which is determined by the expression T – t1 – t2 – t3 < tпр = t1 + t2 + t3 + 2H/C, where T is the duration of the magnetization pulse; t1 is the time of transients to establish the working value of the induction of a polarizing magnetic field; t2 - time of packet pulse of electromagnetic field; t3 is the time of damping oscillations in the flat high frequency inductor; H is the thickness of the product or the distance in volume of the product to be ultrasound; C is the velocity of propagation of shear ultrasonic waves in the material of the product. It is established [9] that the interferences in the ferromagnetic core caused by the Barkhausen effect and magnetostrictive transformation of electromagnetic energy into ultrasound are practically excluded by production of the core blended, usage of the material of the core plates which has a low coefficient of magnetostrictive conversion, perpendicular core plates orientation in relation to the conductors of the working areas of the flat high-frequency inductor, as well as filling of the gaps between the plates with a high density fluid, such as glycerol. It is shown that the sensitivity of direct EMA transducers with pulse magnetization when powered by a batch high frequency probe pulse generator [11] and when receiving via a low noise amplifier [12] provide detection of flat-bottomed reflectors with a diameter of 3 mm or more, probe frequency of 40 Hz, peak high-frequency current of 120A, shear linearly polarized ultrasonic oscillations of 2.3 MHz, high frequency packet pulse duration 6…7 filling frequency periods, magnetization pulse duration 200 μs, magnetization current density of 600 A / mm2 and at the gap between the EMAP and the product of 0.2 mm [9]. The amplitude of the echo momentum reflected from the flaw in relation to the noise amplitude reaches 20 dB. The EMATs developed are protected with 2 utility model patents.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Салам, Буссі. "Електромагнітно-акустичні перетворювачі для ультразвукового контролю металовиробів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48181.

Повний текст джерела
Анотація:
Дисертація на здобуття вченого ступеня кандидата технічних наук за спеціальністю 05.11.13 – прилади і методи контролю та визначення складу речовин. Національний технічний університет «Харківський політехнічний інститут», Харків, 2020. В дисертаційній роботі вирішено актуальну науково-практичну задачу з розробки нових типів ЕМАП для ефективного ультразвукового контролю металовиробів. В роботі виконано комп’ютерне моделювання розподілу магнітних полів ЕМАП при імпульсному намагнічуванні феромагнітних та немагнітних виробів. Встановлені шляхи побудови перетворювачів з максимальною чутливістю. Розроблено метод збудження імпульсних пакетних ультразвукових імпульсів за рахунок послідовного в часі формування імпульсного магнітного та електромагнітного полів. Розроблено технічні рішення пригнічення когерентних завад в осерді та у виробі. Визначені геометричні та конструктивні параметри джерела імпульсного магнітного поля, що дало можливість збуджувати потужні синфазні пакетні імпульси високочастотних зсувних коливань в ОК. Показано, що чутливість прямих ЕМА перетворювачів з імпульсним намагнічуванням забезпечують виявлення плоскодонних відбивачів діаметром 3 мм і більше при частоті зондування 40 Гц, частоті зсувних лінійно поляризованих ультразвукових коливань 2,3 МГц, піковому струмі високочастотних пакетних імпульсів 120 А, тривалості пакетних високочастотних імпульсів струму в 6 періодів частоти заповнення, тривалості імпульсу намагнічування 200 мкс, щільності струму намагнічування 600 А/мм2 та при зазорі між ЕМАП і виробом 0,2 мм. При цьому амплітуда луна-імпульсу від дефекту по відношенню до амплітуди завад досягає 20 дБ, що дає можливість забезпечити якісну дефектоскопію металовиробів.
Thesis for a Candidate Degree in Engineering, specialty 05.11.13 – Devices and methods of testing and determination of composition of substances. National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, 2020. A relevant scientific – practical problem on development of new types of EMAP for effective ultrasonic control of metal products is solved in the dissertation. Computer simulation of EMAT magnetic fields distribution in pulse magnetization of ferromagnetic and non-magnetic products is performed. Ways to build transducers with maximum sensitivity are established. The method of excitation of pulsed batch ultrasonic pulses due to the sequential formation of pulsed magnetic and electromagnetic fields is developed. Technical solutions for suppression of coherent interference in the core and in the product have been developed. The geometrical and structural parameters of pulsed magnetic field source were determined, which made it possible to excite powerful in-phase packet pulses of high-frequency shear oscillations in a sample. It is shown that the sensitivity of direct EMA transducers with pulse magnetization provide detection of flat-bottom reflectors with a diameter of 3 mm and more at a probing frequency of 40 Hz, a frequency of shear linearly polarized ultrasonic oscillations of 2.3 MHz, a peak current of high-frequency packet pulses of 120 A, duration of batch high frequency current pulses in 6 periods of filling frequency, magnetization pulse duration of 200 μs, magnetization current of 600 A and at the gap between EMAP and product of 0.2 mm.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ходневич, С. В. "Моделювання електромагнітно-акустичних перетворювачів хвиль Релея в программному комплексі Comsol". Thesis, Сумський державний університет, 2015. http://essuir.sumdu.edu.ua/handle/123456789/41122.

Повний текст джерела
Анотація:
Останнім часом широко почали використовуватись у неруйнівному контролі безконтактні електромагніто-акустичні перетворювачі - ЕМАП. Проте даний тип перетворювачів має досить низький коефіцієнт перетворення [1]. Його можна збільшити оптимізував конструкцію перетворювача.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії