Статті в журналах з теми "Дисципліна "Хімія""

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Дисципліна "Хімія".

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Дисципліна "Хімія"".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Horlachuk, N. V., N. O. Zarivna та L. M. Mosula. "МЕТОДИЧНІ АСПЕКТИ ВИКЛАДАННЯ ТОКСИКОЛОГІЧНОЇ ТА СУДОВОЇ ХІМІЇ ВІТЧИЗНЯНИМ СТУДЕНТАМ". Медична освіта, № 3 (15 жовтня 2020): 24–28. http://dx.doi.org/10.11603/me.2414-5998.2020.3.11437.

Повний текст джерела
Анотація:
Викладено основні методичні підходи до викладання дисципліни «Судова та токсикологічна хімія» вітчизняним студентам фармацевтичного факультету, спеціальності «Фармація». Базовими завданнями вищої школи є підготовка фахівців, що володіють глибокими знаннями фундаментальних та прикладних дисциплін і вміють творчо застосовувати ці знання для вирішення різноманітних завдань. Розроблена дисципліна включає курс лекцій, методичні вказівки до практичних робіт і підготовки до лекцій та занять, які доступні в системі Moodle. Лекційний курс представлений у вигляді мультимедійних презентацій з десяти тем та охоплює класифікацію токсичних речовин, методи ізолювання отрут із біологічного матеріалу, їх ідентифікацію та кількісне визначення. Дисципліна включає дванадцять практичних робіт, на яких проводять хіміко-токсикологічний аналіз та судово-токсикологічне дослідження обʼєктів біологічного походження на наявність і вміст отруйних речовин різної природи і характеру.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mykhalkiv, M. M., I. B. Ivanusa та H. Ya Zahrychuk. "АНАЛІТИЧНА ХІМІЯ У ФАРМАЦЕВТИЧНІЙ ОСВІТІ УКРАЇНИ ТА ПОЛЬЩІ". Медична освіта, № 4 (6 січня 2021): 47–51. http://dx.doi.org/10.11603/me.2414-5998.2020.4.11659.

Повний текст джерела
Анотація:
Аналітична хімія належить до базових дисциплін у фармацевтичній освіті. Вона є підґрунтям для подальшого вивчення таких дисциплін, як фармацевтична хімія, токсикологічна та судова хімія, стандартизація лікарських засобів тощо, та передбачає формування умінь застосування одержаних знань для вивчення спеціальних дисциплін та у професійній діяльності. Навички виконання якісного та кількісного аналізу хімічними й інструментальними методами вкрай необхідні для подальшого успішного засвоєння фізичної та колоїдної, органічної, біологічної, фармацевтичної, токсикологічної та судової хімії, технології ліків й інших спеціальних дисциплін. У рамках проєкту “New and innovative teaching methods in pharmacy” доценти Тернопільського національного медичного університету імені І. Я. Горбачевського МОЗ України (ТНМУ) М. М. Михалків, І. Б. Івануса та Г. Я. Загричук відвідали Uniwersytet Medyczny w Lublinie. Ми мали можливість відвідати кафедри, на яких навчаються студенти фармацевтичного факультету, та поспілкуватися із професорсько-викладацьким складом цих кафедр щодо методик викладання дисциплін, у тому числі й аналітичної хімії, та познайомитися із напрямками їх наукових досліджень. В Україні, відповідно до навчального плану підготовки здобувачів вищої освіти галузі знань 22 «Охорона здоровʼя», спеціальності 226 «Фармація, промислова фармація» (другий (магістерський) рівень вищої освіти), кваліфікації «Магістр фармації», аналітична хімія належить до нормативних навчальних дисциплін, а саме до циклу загальної підготовки. Дану дисципліну студенти вивчають на другому курсі навчання (3 та 4 семестри). У Польщі, а саме в Люблінському медичному університеті до 2019 р. аналітичну хімію на фармацевтичному факультеті (спеціальність «Фармація») студенти вивчали також на другому курсі навчання (3 та 4 семестри), тоді як з 2019–2020 навчального року студенти вивчатимуть аналітичну хімію на першому курсі (2 семестр). Спільні підходи та відмінності у викладанні аналітичної хімії в Україні та Польщі наведено в даній статті.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Борщевич, Лариса Вікторівна, та Надія Вікторівна Стець. "Мультимедійні засоби в науці та освіті". Theory and methods of e-learning 4 (13 лютого 2014): 13–18. http://dx.doi.org/10.55056/e-learn.v4i1.363.

Повний текст джерела
Анотація:
Серед пріоритетних напрямів розвитку галузі освіти, визначених у «Національній доктрині розвитку освіти», важливе місце займає застосування освітніх інновацій, інформаційних технологій, створення індустрії сучасних засобів навчання та виховання. Комп’ютеризація та інформатизація є новітніми процесами, що впроваджуються у сферу навчання, набуваючи статус не лише об’єкта вивчення, але й засобу навчання тієї чи іншої дисципліни, зокрема хімії.Мультимедійні технології є на сьогоднішній день найбільш необхідним та новим напрямом використання інформаційно-комп’ютерних технологій у сфері освіти. Мультимедійному навчанню присвячений багато фундаментальних досліджень [1; 2] як в теорії педагогіки, так і в частинних методиках викладання окремих навчальних дисциплін. Однак, незважаючи на це, проблема використання мультимедіа, як в теорії навчання, так і в реальній педагогічній практиці залишається дуже актуальною і викликає гострі дискусії.З 2012-2013 навчального року на хімічному факультеті Дніпропетровського національного університету ім. О. Гончара введена нова дисципліна «Мультимедійні засоби в науці та освіті». Вона викладається студентам ІІІ курсу (34 години лекційні та 34 години відведено на практичні заняття) та IV курсу (відповідно 32 та 16 годин).Цілями даної дисципліни є застосування знань у сфері комп’ютерних технологій при проведенні наукових досліджень та в освітньому процесі. Завданнями вивчення дисципліни є формування загальнотеоретичного кругозору, професійних знань і практичних навичок, необхідних бакалавру, спеціалісту та магістру напряму підготовки «Хімія» для успішної професійної діяльності в інформаційному суспільстві.Дисципліна «Мультимедійні засоби в науці та освіті» належить до вибіркової частини загальнонаукового циклу. Вона базується на знанні наступних предметів, що викладаються в рамках бакалаврату: педагогіка, інформатика, методологія наукових досліджень, методика викладання хімії тощо. Ця дисципліна носить узагальнюючий характер. Знання та навички, отримані при вивченні дисципліни, сприяють більш успішній роботі над дипломними та магістерськими роботами.У результаті освоєння дисципліни «Мультимедійні засоби в науці та освіті» студент повинен знати базис сучасних комп’ютерних технологій, основи організації сучасних інформаційних мереж, перспективи розвитку комп’ютерних технологій в науці та освіті. Студенти повинні вміти використовувати мережні та мультимедіа-технології в освіті і науці, виконувати підготовку документів (тези доповідей, реферати, аналітичні довідки, плани-конспекти уроків, лекцій та практичних занять, науково-дослідні роботи), використовуючи різні методи обробки інформації.Після вивчення даної дисципліни студенти володітимуть методами розв’язування спеціальних завдань із застосуванням комп’ютерних та мультимедіа-технологій у професійній і науковій діяльності з хімії, термінологією сучасних інформаційних технологій та навичками забезпечення інформаційної безпеки науково-технічної та освітньої інформації. Засоби мультимедіа сприяють:– стимулюванню когнітивних аспектів навчання, таких як сприйняття та усвідомлення інформації;– підвищенню мотивації студентів до навчання;– розвитку навичок самостійної роботи студентів;– глибшому підходу до навчання, формуванню глибшого розуміння навчального матеріалу [3].У широкому сенсі «мультимедіа» означає спектр інформаційних технологій, що використовують різноманітні програмні та технічні засоби з метою найбільш ефективного впливу на користувача. Завдяки застосуванню в мультимедійних продуктах і послугах одночасної дії графічної, аудіо (звукової) і візуальної інформації, ці засоби мають великий емоційний заряд і активно включають увагу користувача.Засобами мультимедіа можна осмислено і гармонійно інтегрувати різні види інформації. Це дозволяє за допомогою комп’ютера подавати інформацію в різноманітних формах: зображення, включаючи відскановані фотографії, креслення, карти і слайди; звукозапис, звукові ефекти і музику; відео, складні відеоефекти; анімації та анімаційне імітування [4].До засобів мультимедіа можна віднести практично будь-які засоби, здатні привнести в навчання та інші види освітньої діяльності інформацію різних видів. В даний час широко використовуються:– засоби для запису і відтворення звуку (електрофони, магнітофони, CD-програвачі);– системи та засоби телефонного, телеграфного та радіозв’язку (телефонні апарати, факсимільні апарати, телетайпи, телефонні станції, системи радіозв’язку);– системи та засоби телебачення, радіомовлення (теле- та радіоприймачі, навчальне телебачення і радіо, DVD-програвачі);– оптична та проекційна кіно- і фотоапаратура (фотоапарати, кіно-камери, діапроектори, кінопроектори, епідіаскопи);– поліграфічна, копіювальна, розмножувальна та інша техніка, призначена для документування і розмноження інформації (ротапринти, ксерокси, різографи, системи мікрофільмування);– комп’ютерні засоби, що забезпечують можливість електронного подання, обробки і зберігання інформації (комп’ютери, принтери, сканери, графічні пристрої), телекомунікаційні системи, що забезпечують передачу інформації по каналах зв’язку (модеми, мережі дротових, супутникових, радіорелейних та інших видів каналів зв’язку, призначених для передачі інформації) [5].Про всі ці мультимедійні засоби навчання студенти отримують інформацію під час вивчення дисципліни «Мультимедійні засоби в науці та освіті».Крім того, вони знайомляться з різноманітними програмними продуктами, що використовуються при викладанні хімічних дисциплін та в хімічних наукових дослідженнях. Ці продукти можна умовно класифікувати за основним призначенням (рис. 1) [6].Рис. 1. Програми, що використовуються при викладанні хімічних дисциплін Значна частина курсу «Мультимедійні засоби в науці та освіті» присвячена застосуванню мультимедійних засобів навчання у викладанні хімічних дисциплін, оскільки випускники хімічного факультету отримують після закінчення університету спеціальність «хімік, викладач хімії».Головним питанням сьогодення в системі нової освіти є опанування учнями вмінь і навичок саморозвитку особистості, що значною мірою досягається шляхом впровадження інноваційних технологій, організації процесу навчання. Нові форми розвитку вимагають нових правил і нових шляхів досягнення результатів. Така позиція вимагає від сучасної освіти реформаційних кроків щодо оновлення її змісту та застосування нових педагогічних підходів, впровадження інформаційних і комунікаційних технологій, що модернізують навчальний процес. У зв’язку з цим студенту, як майбутньому вчителю, слід вміти застосовувати інформаційні технології у викладанні хімії. Ці вміння вони формують при вивченні дисципліни «Мультимедійні засоби в науці та освіті».Мультимедійні засоби навчання є універсальними, оскільки можуть бути використані на різних етапах заняття:– під час мотивації як постановка проблеми перед вивченням нового матеріалу;– у поясненні нового матеріалу як ілюстрації;– під час закріплення та узагальнення знань;– для контролю знань.Майбутнім учителям та викладачам слід дати уявлення стосовно методичних аспектів застосування мультимедійних засобів на різних етапах викладання хімії. Студенти повинні засвоїти, що використання засобів мультимедіа з метою повторення, узагальнення та систематизації знань не тільки допомагає створити конкретне, наочно-образне уявлення про предмет, явище чи подію, які вивчаються, але й доповнити відоме новими даними. При цьому відбувається не лише процес пізнання, відтворення та уточнення вже відомого, але й поглиблення знань. Студенти повинні усвідомлювати, що під час роботи з навчальною програмою важливо зосередити увагу учнів на найбільш складну для засвоєння частину, активізувати самостійну пошукову діяльність учнів [7].Метою застосування відеоматеріалів та інших мультимедійних засобів є ліквідація прогалин у наочності викладання хімії в середніх загальноосвітніх та вищих навчальних закладах. На одному з практичних занять з дисципліни «Мультимедійні засоби в науці та освіті» студенти створюють відеофрагменти хімічних демонстраційних дослідів, які можна використовувати на уроках хімії в середніх навчальних закладах та на лекціях з курсу «Загальна та неорганічна хімія». При розробці та виготовленні відеофрагментів студенти застосовують основні принципи створення відеоматеріалів з демонстраційного експерименту:– ілюстративність (надають можливість ілюструвати матеріал, що викладається, не розкриваючи зміст теми замість викладача);– фрагментарність (надають можливість дозовано викладати матеріал, залежно від швидкості сприйняття учнями та студентами);– методична інваріантність (відео фрагменти можна використовувати на розсуд викладача на різних етапах заняття);– лаконічність (ефективного викладення більшої кількості інформації за короткий час);– евристичність (подання нового матеріалу настільки зрозуміло, щоб нові знання виявились доступними для свідомого засвоєння учнями та студентами).Створені студентами відео продукти розглядаються на узагальнюючому занятті, обговорюються всіма членами групи та викладачем, що проводить практичне заняття. Найкращі з них застосовуються під час проведення педагогічного практикуму та на заняттях з «Методики викладання хімії».Використовуючи мультимедійні засоби навчання, можна проводити повноцінні уроки і заняття з хімії поза кабінетом хімії або в кабінетах без спеціального обладнання: витяжної шафи, демонстраційного стола, водопроводу тощо. Це дає змогу розширити можливості проведення уроків хімії в інших навчальних кабінетах, забезпечуючи мобільність.Засоби мультимедіа дозволяють одночасно використовувати різні канали обміну інформацією між комп’ютером і навколишнім середовищем. Одним із достоїнств застосування засобів мультимедіа в освіті є підвищення якості навчання.Розвиток сучасної освіти дозволяє чітко визначити місце та роль мультимедійних технологій у системі засобів навчання. Викладачі різних дисциплін використовують мультимедійні засоби в процесі відбору й накопичення інформації з даного предмету, систематизації й передачі знань, організації навчальної діяльності, створення різних її видів і форм. Це сприяє розробленню різноманітних мультимедійних навчальних продуктів та методичних рекомендацій щодо їх застосування в загальноосвітній та вищій школі. Модернізація системи освіти, яка характеризується впровадженням мультимедійних технологій у навчальний процес, призводить до значної корекції навчальних планів, програм, підручників, методичних розробок. Усвідомлення особливої ролі мультимедійних технологій приведе до ще більшої суттєвої інтеграції навчальних дисциплін. У зв’язку із зростаючим значенням комп’ютеризації виникає потреба в усвідомленому використанні цього потужного інтелектуального засобу. А це під силу буде лише досвідченому кваліфікованому спеціалісту-викладачу. Саме введення нової дисципліни «Мультимедійні засоби в науці та освіті» дозволить майбутнім фахівцям з хімії набути відповідних знань і вмінь.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Бабай, І. М. "Хімія як наукова та навчальна дисципліна у Харківському технологічному інституті (1885-1914 рр.)". Дослідження з історії техніки, Вип. 7 (2005): 46–56.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ivanusa, I. B., та M. M. Mykhalkiv. "ОСОБЛИВОСТІ ВИКЛАДАННЯ АНАЛІТИЧНОЇ ХІМІЇ ДЛЯ СТУДЕНТІВ ФАРМАЦЕВТИЧНОГО ФАКУЛЬТЕТУ (ЗАОЧНОЇ ФОРМИ НАВЧАННЯ)". Медична освіта, № 4 (13 лютого 2020): 14–17. http://dx.doi.org/10.11603/me.2414-5998.2019.4.10860.

Повний текст джерела
Анотація:
Абітурієнти, які мають освітньо-кваліфікаційний рівень молодшого спеціаліста або бакалавра фармацевтичного спрямування, можуть вступати на фармацевтичний факультет Тернопільського національного медичного університету імені І. Я. Горбачевського МОЗ України на заочну форму навчання і здобувати вищу освіту за спеціальністю 226 «Фармація, промислова фармація». Аналітична хімія – одна із базових дисциплін у фармацевтичній освіті майбутнього провізора, яка є основою для вивчення всіх інших хімічних дисциплін відповідно до навчальних програм освітньо-кваліфікаційного рівня «Магістр фармації». У своїй структурі аналітична хімія містить три основні розділи: якісний аналіз, кількісний аналіз та фізико-хімічні методи дослідження. Студенти заочної форми навчання вивчають аналітичну хімію на ІІ курсі, в ІІІ та ІV семестрах. Згідно з навчальним планом підготовки фахівців освітньо-кваліфікаційного рівня «Магістр фармації», для вивчення курсу аналітичної хімії виділено 10 год лекцій, 36 год практичних занять, 194 год самостійної роботи студентів (СПРС). Лекції здебільшого мають оглядовий характер, оскільки робиться огляд більш складних питань. Практичні заняття третього семестру присвячені якісному аналізу. Особлива увага приділяється вивченню реакцій виявлення, які включені до Фармакопеї України (фармакопейні), що надалі допомагає кращому засвоєнню фахових дисциплін, зокрема фармацевтичної хімії, токсико­логічної та судової хімії, стандартизації лікарських засобів. Практичні заняття четвертого семестру присвячені кількісному аналізу, зокрема титриметричним та фізико-хімічним методам аналізу. Для підвищення професійної орієнтації майбутніх провізорів всі практичні роботи поставлені на аналізі готових лікарських засобів. На семінарській частині занять розглядаються теоретичні основи всіх методів аналізу, які використовуються в аналітичній хімії. Оскільки 19 червня 2019 р. всі студенти заочної форми навчання фармацевтичного факультету складали ліцензійний інтегро­ваний тестовий іспит «Крок-1. Фармація», то на кожній частині практичного заняття, а також на лекціях, частина часу присвячена вивченню питань, які входять у буклети ліцензійного іспиту «Крок-1. Фармація» за всі роки та бази тестових питань.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

СЛІПЧУК, Валентина, та Інна ТОКМЕНКО. "Організація навчально-пізнавальної діяльності здобувачів вищої фармацевтичної освіти у процесі вивчення фізичної та колоїдної хімії". EUROPEAN HUMANITIES STUDIES: State and Society 1, № I (23 березня 2019): 166–77. http://dx.doi.org/10.38014/ehs-ss.2019.1-i.13.

Повний текст джерела
Анотація:
У статті охарактеризовано організацію навчально-пізнавальної діяльності здобувачів вищої фармацевтичної освіти у процесі вивчення навчальної дисципліни «Фізична та колоїдна хімія». Визначені напрями підвищенні якісного рівня вищої фармацевтичної освіти у процесі навчання у вищих медичних (фармацевтичних) закладах освіти України. Показано, що загальною тенденцією є удосконалення парадигми забезпечення якості надання освітніх послуг, щоб витримати конкуренцію з іншими країнами. Враховуючи особливості професійної підготовки майбутніх фахівців галузі «Охорони здоров’я» у вищих медичних закладах освіти України визначено необхідність удосконалення освітнього процесу за рахунок активного використання інноваційних технологій у процесі вивчення фізичної та колоїдної хімії. Відображено досвід методики викладання навчальної дисципліни «Фізична та колоїдна хімія» на кафедрі медичної та загальної хімії Національного медичного університету імені О.О. Богомольця.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Моісеєнко, Михайло Вікторович, Світлана Вікторівна Шокалюк та Наталя Володимирівна Моісеєнко. "Елементи комп’ютерного моделювання в підготовці вчителів хімії та інформатики". New computer technology 15 (25 квітня 2017): 31–34. http://dx.doi.org/10.55056/nocote.v15i0.644.

Повний текст джерела
Анотація:
Метою дослідження є проектування та реалізація комп’ютерно-орієнтованого навчання майбутніх учителів хімії та інформатики моделюванню об’єктів (процесів, явищ та систем) квантової механіки на другому рівні вищої освіти. Задачами дослідження є обґрунтування необхідності навчання магістрів хімії – майбутніх учителів хімії та інформатики – комп’ютерного моделювання об’єктів квантової механіки за підтримки спеціалізованого програмного засобу «Активний конструктор ієрархічних систем»; визначення змісту лабораторного практикуму з дисципліни (факультативного курсу) «Новітні інформаційні технології в наукових дослідженнях та освіті» та особливостей методики його навчання. Об’єктом дослідження є процес навчання бакалаврів та магістрів хімії – майбутніх учителів хімії та інформатики. Предметом дослідження є зміст та програмні засоби навчання комп’ютерного моделювання об’єктів квантової механіки. У роботі засвідчено необхідність навчання майбутніх учителів хімії та інформатики теорії та практики комп’ютерного моделювання об’єктів квантової механіки, подано розгорнутий зміст комп’ютерно-орієнтованого лабораторного практикуму вибіркової дисципліни (факультативного курсу) «Новітні інформаційні технології в наукових дослідженнях та освіті» для магістрів спеціальності 014 Середня освіта (Хімія), зазначено особливості методики його упровадження. Результати дослідження: узагальнення рекомендацій щодо проектування освітніх стандартів та навчальних планів підготовки магістрів за спеціальністю 014 Середня освіта (Хімія) та спеціалізацією 014 Середня освіта (Інформатика).
Стилі APA, Harvard, Vancouver, ISO та ін.
8

ВАЛЬКО, НАТАЛІЯ. "АНАЛІЗ ТА ПЕРСПЕКТИВИ ПІДГОТОВКИ МАЙБУТНІХ УЧИТЕЛІВ ІНТЕГРОВАНОГО КУРСУ “ПРИРОДНИЧІ НАУКИ”". Scientific papers of Berdiansk State Pedagogical University Series Pedagogical sciences 2 (2019): 170–78. http://dx.doi.org/10.31494/2412-9208-2019-1-2-170-178.

Повний текст джерела
Анотація:
У роботі представлено аналіз чотирьох освітніх програм підготовки вчителів природничих дисциплін закладів вищої освіти. Введення нової спеціалізації в освітню галузь “014 Середня освіта” потребує вивчення питання про розробку освітніх програм навчання майбутніх вчителів природничих дисциплін і запровадження інтегрованих курсів вивчення біології, фізики та хімії. Нами проведено аналіз характеристик та сучасного стану введення освітніх програм в освітній процес. Також зроблено аналіз нормативної бази, яка регламентує роботу вчителя. У статті розглянуто рамку складових професійної діяльності вчителя з точки зору кваліфікаційних характеристик. Проаналізовані професійні стандарти і кваліфікаційні характеристики дозволили зробити висновок про відповідність освітніх програм нормативним документам і сучасним вимогам до професійної діяльності вчителя. Проведений аналіз чотирьох освітніх програм за розділами. Це дозволило порівняти перелік їх компонент та логічну послідовність курсів, визначити їх спільні й відмінні риси. Було встановлено наявність інтегративної складової кожної програми та їх відповідність формуванню фахових компетентностей майбутніх учителів. Використання технології проблемно-орієнтованого навчання дозволяє сформувати предметні компетентності відповідно до основних предметів: фізика, хімія, біологія, природознавство. Предметні компетентності з природознавства є інтегрованого складовою курсу. В їх основу покладено формування цілісності уявлень про природу, використання природничо-наукової інформації на основі оперування базовими загальними закономірностями природи. Зроблено класифікацію інтегрованих курсів на основі характеру взаємозв'язків між дисциплінами і ступеня їх інтегрованості. Встановлено наявність інтегрованих компонент у переліку освітньо-професійної/наукової програми і їх відповідність класифікації інтегрованості курсів. Також визначено дисципліни впливу на формування інтегрованих компетентностей майбутніх вчителів інтегрованих курсів природничих наук. Ключові слова: STEM-освіта, освітні програми, міжпредметні зв'язки, міждисциплінарність, майбутні вчителі, природничо-математичні науки, інтегрований курс.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Білик, Л. В., О. А. Снісар та К. О. Ліфер. "РОЛЬ І МІСЦЕ БІОЛОГІЧНОЇ ХІМІЇ У СИСТЕМІ ПІДГОТОВКИ ФАХІВЦІВ З МЕДИЧНОЇ РЕАБІЛІТАЦІЇ". Visnik Zaporiz kogo naciohai nogo universitetu Pedagogicni nauki, № 2 (12 листопада 2021): 101–6. http://dx.doi.org/10.26661/2522-4360-2021-2-16.

Повний текст джерела
Анотація:
У статті проаналізовано роль і місце біологічної хімії як дисципліни медико- біологічного циклу в процесі підготовки фахівців з медичної реабілітації. Оскільки в Україні є багато людей, які перенесли захворювання, після яких необхідна тривала реабілітація (Covid-19, захворювання серцево-судинної та нервової систем, опорно-рухового апарату, поранення під час бойових дій на Сході України), питання розбудови та реформування системи реабілітації у сфері охорони здоров’я є надзвичайно актуальним. Вивчено сучасне законодавство України про реабілітацію у сфері охорони здоров’я. Охарактеризовано систему підготовки фахівців з реабілітації та визначено основні завдання біологічної хімії для формування спеціаліста з глибоким розумінням біохімічних процесів людського організму при різних формах патології, готового використовувати результати біохімічних досліджень для контролю стану пацієнта, реакцій його організму на проведені реабілітаційні заходи. Наведено основні компетентності майбутніх фахівців з медичної реабілітації, формування яких забезпечує вивчення біологічної хімії. До таких компетентностей належить здатність аналізувати результати біохімічних досліджень, які застосовуються для діагностики найбільш розповсюджених захворювань людини, розуміння діагностичних можливостей сучасних лабораторій, уміння використовувати біохімічні методики для контролю ефективності заходів з медичної реабілітації. Акцентовано увагу на основних біохімічних маркерах найбільш поширених захворювань, які потребують реабілітації. Оскільки кінезіотерапія займає важливе місце у реабілітаційних планах, особливу увагу приділено питанням біохімії м’язів, м’язового скорочення, відновлення м’язової діяльності. Зроблено висновок про те, що біологічна хімія є однією з фундаментальних дисциплін у підготовці майбутніх фахівців з медичної реабілітації та забезпечує ґрунтовне розуміння процесів в організмі при різних формах патології. Це важливо для розробки плану реабілітації та контролю ефективності заходів під час усіх реабілітаційних періодів.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Logoyda, L. S., та N. O. Zarivna. "МЕТОДИЧНІ АСПЕКТИ ВИКЛАДАННЯ ФАРМАЦЕВТИЧНОГО АНАЛІЗУ В КОНТЕКСТІ ВИВЧЕННЯ ФАРМАЦЕВТИЧНОЇ ХІМІЇ ІНОЗЕМНИМ СТУДЕНТАМ". Медична освіта, № 2 (16 серпня 2019): 131–36. http://dx.doi.org/10.11603/me.2414-5998.2019.2.10354.

Повний текст джерела
Анотація:
У статті висвітлено шляхи вирішення основних проблем, з якими стикаються викладачі, що працюють зі студентами-іноземцями при викладанні фармацевтичного аналізу в контексті вивчення дисципліни «Фармацевтична хімія». Проаналізовано основні проблеми, які можуть впливати на результативність навчання студентів-іноземців. Дослідження базується на вивченні матеріалів, отриманих із відкритих джерел інформації та власного досвіду авторів. У статті наведені сучасні технології викладання та тестування іноземних студентів з фармацевтичної хімії, впроваджені на кафедрі фармацевтичної хімії. Оскільки якість препарату закладається ще на етапі фармацевтичної розробки, студент чітко повинен знати елементи фармацевтичної розробки та фармацевтичного аналізу. Ціллю фармацевтичного аналізу є: засвоїти загальні методи аналізу субстанцій лікарських речовин та підтвердження їх доброякісності за зовнішнім виглядом, розчинністю та реакцією середовища згідно з вимогами ДФУ; вивчити і пояснювати фізичні та фізико-хімічні методи аналізу органічних лікарських засобів; вміти проводити реакції ідентифікації субстанцій лікарських речовин за катіонним і аніонним складом згідно з вимогами ДФУ; використовувати хімічні методи для ідентифікації лікарських засобів органічної структури за аналітико-функціональними групами; визначати фізичні константи органічних речовин для ідентифікації та встановлення чистоти лікарських засобів; використовувати визначення показника заломлення і питомого обертання розчинів лікарських засобів для їх ідентифікації і встановлення чистоти; практикувати загальні вимоги ДФУ щодо випробувань на граничний вміст домішок; вміти проводити кількісне визначення вмісту лікарських речовин у субстанції різними методами; вміти проводити якісний та кількісний експрес-аналіз діючих речовин в екстемпоральних лікарських засобах. Детальне і ґрунтовне ознайомлення з основами фармацевтичного аналізу в контексті вивчення дисципліни «Фармацевтична хімія» дає можливість більш повно засвоїти матеріал, що вивчається, реалізувати науково-творчий потенціал студентів, збагачує їх знаннями, які безпосередньо будуть використані в їхній практичній діяльності. Запропонований метод дозволяє викладачеві успішніше будувати освітній процес, що, в кінцевому підсумку, позитивно позначається на загальному засвоєнні курсу.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Борщевич, Лариса Вікторівна. "Методичні аспекти викладання дисципліни «Загальна та неорганічна хімія» для студентів біологічного факультету". Theory and methods of e-learning 2 (22 листопада 2013): 04–09. http://dx.doi.org/10.55056/e-learn.v2i1.170.

Повний текст джерела
Анотація:
В статті розглянуті методологічні аспекти викладання дисципліни “Загальна та неорганічна хімія” для студентів біологічного факультету ДНУ ім. О.Гончара. Показано, що використання навчального посібника для самостійної роботи студентів, застосування інформаційних технологій, введення алгоритмічних приписів розв’язування хімічних задач при викладанні дисципліни “Загальна та неорганічна хімія”, дозволяє інтенсифікувати процес навчання.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Сирова, Г. О., О. О. Завада та В. О. Макаров. "КОНЦЕПЦІЯ ВИКЛАДАННЯ ДИСЦИПЛІНИ «МЕДИЧНА ТА БІООРГАНІЧНА ХІМІЯ» СТУДЕНТАМ ЗІ СПЕЦІАЛЬНОСТІ «МЕДСЕСТРИНСТВО»". Медсестринство, № 3 (23 грудня 2021): 24–26. http://dx.doi.org/10.11603/2411-1597.2021.3.12644.

Повний текст джерела
Анотація:
У статті розглянуто основні напрямки оптимізації самостійної роботи студентів під час вивчення дисципліни «Медична та біоорганічна хімія» студентам зі спеціальності «Медсестринство». Метою дослідження стало вивчення сучасних тенденцій в галузі охорони здоров’я, які моделюють майбутнє сестринської справи, та формування концепції викладання фундаментальної дисципліни «Медична та біоорганічна хімія» як підґрунтя при вивченні фахових предметів.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Большаніна, Світлана Борисівна, Тетяна Василівна Диченко та Надія Натанівна Чайченко. "ЗАСТОСУВАННЯ ПЛАТФОРМИ MIX ДЛЯ ОРГАНІЗАЦІЇ ЗМІШАНОГО НАВЧАННЯ ЗАГАЛЬНОЇ ХІМІЇ ЗДОБУВАЧІВ ІНЖЕНЕРНИХ СПЕЦІАЛЬНОСТЕЙ". Information Technologies and Learning Tools 75, № 1 (24 лютого 2020): 138–52. http://dx.doi.org/10.33407/itlt.v75i1.2577.

Повний текст джерела
Анотація:
Актуальність статті обумовлена тим, що систематичних досліджень використання змішаного навчання в сучасній методиці викладання хімії в закладах вищої освіти недостатньо. Обґрунтовано доцільність втілення моделі «перевернутий клас» у процес викладання загальної хімії здобувачам вищої освіти інженерних спеціальностей. З’ясовано, що змішування очного та дистанційного навчання, – одна з найбільш поширених комбінацій. Наведено моделі змішаного навчання, які класифікуються за співвідношенням традиційної та електронної форми навчання й ступенем самостійності здобувачів вищої освіти в процесі опанування навчального матеріалу. У межах педагогічного експерименту обрано модель «перевернутий клас», оскільки її реалізація не потребує змін у навчальних планах підготовки фахівців. Під час педагогічного експерименту навчально-методичні матеріали розміщувались на платформі MIX електронного ресурсу Сумського державного університету. Запропоновано модель вивчення тем із загальної хімії. Аналіз результатів педагогічного експерименту показав, що: 1) успішність здобувачів вищої освіти під час проходження атестаційних заходів в експериментальних групах є значно вищою, ніж у контрольній групі; 2) студенти вважають змішану форму навчання сучасною, зручною та більш ефективною; 3) під час самостійного опрацювання матеріалу здобувачі вищої освіти краще сприймають не текстовий матеріал, хоча він ілюстрований і прекрасно оформлений, а презентацію з аудіо і відеосупроводженням; 4) для заохочення здобувачів вищої освіти до регулярного і самостійного опрацьовування матеріалу доцільно ввести коефіцієнт (у нашому експерименті – 1,5). На цей коефіцієнт помножують усі бали з кожної теми за умови успішного домашнього тестування (не менше ніж на 60%) здобувача вищої освіти напередодні відповідного заняття. Використання моделі змішаного навчання «перевернутий клас» під час викладання дисципліни «Загальна хімія» сприяє підвищенню ефективності процесу підготовки здобувачів інженерних спеціальностей, а також набуттю ними предметної компетентності з загальної хімії. Дисперсійний аналіз одержаних результатів педагогічного експерименту показав їх достовірність.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Мосула, Л. М., Т. В. Кучер та Н. В. Горлачук. "ДОСВІД ВИКЛАДАННЯ ВИБІРКОВОЇ ДИСЦИПЛІНИ «ОСНОВИ ХІМІЧНОЇ МЕТРОЛОГІЇ» ПРИ ПІДГОТОВЦІ МАЙБУТНІХ ПРОВІЗОРІВ В УМОВАХ ДИСТАНЦІЙНОГО НАВЧАННЯ". Медична освіта, № 2 (5 серпня 2021): 41–46. http://dx.doi.org/10.11603/me.2414-5998.2021.2.12264.

Повний текст джерела
Анотація:
У статті представлений перший досвід викладання вибіркової дисципліни «Основи хімічної метрології» в умовах дистанційного навчання для студентів 2 курсу фармацевтичного факультету Тернoпільського нaціoнaльного медичного університету імені І. Я. Гoрбaчевськoгo (спеціальність 226 «Фармація, промислова фармація», денної форми навчання). Курс за вибором «Основи хімічної метрології» закладає основи всіх видів вимірювань у хімії, статистичної обробки результатів хімічного аналізу та визначення валідності результатів кількісного визначення хімічних сполук. Зазначена дисципліна є важливою складовою всебічного розвитку майбутнього фахівця фармацевтичної галузі. У важких для освітнього процесу реаліях, спричинених пандемією COVID-19, ТНМУ імені І. Я. Горбачевського створив належні умови для повноцінного дистанційного навчання студентів. Студенти мали змогу активно взаємодіяти з викладачем, працюючи в програмі Microsoft Teams у режимі живого спілкування та використовуючи матеріали СДО Moodle, одержувати змістовні, актуальні та ефективні знання. У статті відображено структуру вибіркової дисципліни «Основи хімічної метрології», особливості проведення лекцій, практичних занять та організації самостійної роботи студентів. Узагальнивши набутий досвід викладання в умовах карантину, автори виокремили позитивні та негативні сторони дистанційної форми навчання. Також висвітлено основні проблемні питання при вивченні зазначеної дисципліни та показані шляхи їх вирішення. Визначено теми, що потребують доопрацювання з метою полегшення розуміння їх студентами. Запропоновано, поряд із традиційним вивченням статистичної обробки результатів аналізу хімічного експерименту, в майбутньому застосовувати комп’ютерні програми математико-статистичної обробки даних, такі, як Microsoft Excel і Statistica, що мають великий набір статистичних функцій та засобів візуальної інтерпретації одержаних результатів.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ясакова, Т. Ю. "Викладання дисципліни "хімія" за умов впровадження кредитно-модульної системи навчання". Актуальні проблеми педагогіки: методологія, теорія і практика, Вип. 3, ч. 2 (2006): 287–94.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Лопаткін, Роман Юрійович, Віктор Вікторович Купрієнко, Роман Леонідович Пелепей, Віталій Анатолійович Іващенко та Сергій Миколайович Ігнатенко. "Програмно-апаратний комплекс для комп’ютеризації навчального експерименту". Theory and methods of e-learning 1 (11 листопада 2013): 137–39. http://dx.doi.org/10.55056/e-learn.v1i1.146.

Повний текст джерела
Анотація:
Розроблено програмно-апаратний комплекс (ПАК) для реєстрації і обробки фізичних величин для проведення навчального і наукового експерименту. ПАК призначений для проведення демонстраційного і фронтального експерименту, лабораторних та практичних робіт, робіт фізичного практикуму відповідно до чинних навчальних програм МОН України для загальноосвітніх навчальних закладів (12-річна школа) з природничих дисциплін (фізика, хімія і біологія).
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Летняк, Н. Я., та І. П. Кузьмак. "ОСОБЛИВОСТІ ДИСТАНЦІЙНОГО НAВЧAННЯ СТУДЕНТІВ СПЕЦІАЛЬНОСТІ «МЕДСЕСТРИНСТВО» ПРИ ВИВЧЕННІ ДИСЦИПЛІНИ «БІОЛОГІЧНА ХІМІЯ»". Медична освіта, № 1 (20 квітня 2021): 29–34. http://dx.doi.org/10.11603/me.2414-5998.2021.1.11968.

Повний текст джерела
Анотація:
У стaтті описано oсoбливoсті виклaдaння дисципліни «Біологічна хімія» в умoвaх кaрaнтину. В умовах пандемії COVID-19 дистанційне навчання є однією з провідних світових тенденцій в освіті. Ця технологія реалізує принцип безперервної освіти і здатна задовольнити постійно зростаючий попит на знання в інформаційному суспільстві. Сучaсні реaлії життя, які вимaгaють ширoкoгo викoристaння дистaнційнoгo нaвчaння у ВНЗ Укрaїни, мають свoї перевaги тa недоліки. Поширення пандемії COVID-19 і необхідність дотримання всіх карантинних заходів задля збереження здоров’я та життя всіх учасників освітнього процесу поставили нові виклики перед здобувачами вищої освіти, подолати які необхідно спільними зусиллями всіх зацікавлених сторін, і з підвищення мотиваційного фактора у здобутті нових знань. В умовах карантинних обмежень застосування дистанційних технологій дозволяє проводити освітній процес на достатньо високому рівні. Найбільш придатними для потреб дистанційного навчання є платформи Microsoft Teams. Бaгaтoрічний дoсвід викoристaння нoвітніх іннoвaційних технoлoгій у Тернoпільськoму нaціoнaльнoму медичнoму університеті імені І. Я. Гoрбaчевськoгo МОЗ України сприяв ефективній oргaнізaції дистaнційнoгo нaвчaння нa кaфедрі медичної біохімії. При викoнaнні зaвдaнь студенти кoристувaлися мaтеріaлaми СДO Moodle ТНМУ, щo дoзвoлилo їм oтримaти якісні та глибoкі знaння.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Reznichenko, Liliia V. "ПРОГРАМА AUTODOCK VINA ЯК ЗАСІБ НАВЧАННЯ МАЙБУТНІХ УЧИТЕЛІВ ПРИРОДНИЧИХ ДИСЦИПЛІН". Information Technologies and Learning Tools 38, № 6 (14 грудня 2013): 149–61. http://dx.doi.org/10.33407/itlt.v38i6.928.

Повний текст джерела
Анотація:
Стаття присвячена проблемі впровадження засобів комп’ютерних технологій у процес навчання майбутніх учителів природничих дисциплін, зокрема учителів хімії. Обґрунтовано важливість комп’ютерного моделювання під час дослідження хімічних процесів і явищ. Висвітлено особливості процесу молекулярного докінгу, як одного з методів комп’ютерного моделювання. Запропонована програма для молекулярного докінгу AutoDock Vina розглядається як засіб підвищення ефективності навчання майбутніх учителів хімії. Окреслено теоретичні положення і запропоновано практичні рекомендації щодо формування у студентів навичок роботи з програмним продуктом AutoDock Vina.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Аулін, Віктор Васильович, Тетяна Миколаївна Ауліна, Олександр Степанович Магопець та Олександр Георгійович Новіков. "Системно-спрямований підхід при викладанні фундаментальних і загальнотехнічних дисциплін". Theory and methods of learning fundamental disciplines in high school 1 (16 листопада 2013): 52–56. http://dx.doi.org/10.55056/fund.v1i1.147.

Повний текст джерела
Анотація:
Останнім часом у теорію і практику викладання фундаментальних і загальнотехнічних дисциплін у технічному вузі міцно входять і показують свою ефективність нові інформаційні технології навчання [1–4]. Викладання фізики, хімії, вищої математики, креслення і нарисної геометрії вимагає розробки таких науково-педагогічних технологій навчання, що формують знання у вигляді деякої цілісної структури на основі інформаційних полів узагальнених фундаментальних понять і спеціальних термінополів дисципліни [5–7]. Інформаційна цілісність структури на різних етапах навчання передбачає певне завершення побудови і деякі перетворення інформаційно-предметних моделей, причому це відбувається на рівні свідомості, так і підсвідомості студента. З погляду психології ефективність навчання і формування міцних знань залежить передусім від співвідношення процесів, що розвиваються на свідомому і підсвідомому рівнях. Необхідно також враховувати, що гуманізация освіти повинна визначатися не тільки змістом знань, але їхньою структурою. Такий підхід у науково-педагогічних технологіях навчання називають системно-спрямованим [7, 8].Навчально-пізнавальну діяльність педагогічного процесу в цьому ракурсі можна уявити як взаємозв’язок системно-спрямованого навчання і самонавчання. У системно-спрямованому навчанні суб’єктом є викладач, а об’єктом – студент. Джерелом знань є суб’єкт. При самонавчанні (контрольно-керованої творчої самостійної діяльності) суб’єктом є студент і знання здобуваються за рахунок його власних зусиль. Процес накопичення знань є творчим процесом, що передбачає використання знань психології та розвиток психічних функцій і здібностей студентів.Системно-спрямоване навчання – це світоглядне навчання, орієнтоване не на повідомлення і засвоєння фактів і деталей, а на формування бачення проблем або задач певної навчальної дисципліни, тобто на формування предметного світогляду.Предметний світогляд – це відображення і наявність у свідомості і підсвідомості студента поля узагальнених фундаментальних понять, спеціальних термінополів, співвідношень між полями і поняттями, використання методів, способів і принципів побудови інформаційно-структурних моделей певної навчальної дисципліни і концептуальної картини бачення навколишнього світу, розв’язання проблем і задач з погляду цього предмета.Викладення матеріалу теоретичного або практичного характеру в пропонованому підході здійснюється в основному дедуктивним методом: від фундаментально-узагальненого понятійного поля до спеціального термінополя, від інформаційно-структурних моделей до конкретної їх реалізації.При побудові спеціальних термінополів і їхньому засвоєнню студентами повинні використовуватися способи наукового мислення: порівняння, аналогія, аналіз, синтез, абстрагування, ідеалізація, індукція, дедукція, гіпотеза, уявний експеримент. Цілісність картини певного явища, проблеми, задачі, пов’язані з ним, формуються методами побудови інформаційних моделей.Пропонований підхід інтенсифікує навчання, забезпечуючи прискорений і одночасно якісний навчально-пізнавальний процес. На авансцену виходять нові прийоми і процедури, пов’язані з проблемізацією і евристізацією навчання, комплексною технізацією навчально-пізнавальної діяльності. Основна увага приділяється самопізнавальному компоненту з використанням комп’ютерної й аудіовідеотехніки.Нові інформаційні технології навчання дають можливість усвідомлено керувати побудовою і перетворенням інформаційно-предметних моделей при формуванні знань як деякої цілісної структури шляхом створення предметного світогляду.Щоб полегшити роботу студента в освоєнні фундаментальних і загальнотехнічних дисциплін необхідно докорінно переглянути пріоритети, що впливають на структуру формування знань. В основі інформаційних технологій навчання, на відмінність від традиційних технологій, лежить послідовність: психологія – педагогіка – інформатика – методика викладання - навчальна дисципліна. Природно, що розробка технологій навчання на цій основі вимагає величезного обсягу роботи, що не під силу викладачу-предметнику. І все-таки дуже важливо знайти методи, підходи або такі педагогічні технології, що уже зараз допомагають зовсім по-іншому структурувати навчальний курс певної дисципліни, розробити способи перекодування інформації в підсвідомій діяльності студентів. Вважаємо, що будь-яке перекодування інформації є могутнім важелем керування деякими підсвідомими процесами.Цікаво відзначити, що ідея структурування навчального матеріалу виникла через необхідність допомогти слабко встигаючому студенту зрозуміти узагальнені і спеціальні термінополя і завершити свої внутрішні інформаційні моделі з певної дисципліни, тобто за деревами побачити ліс. Однак, як показали наші дослідження, структурування навчального матеріалу надає ефективну допомогу і добре встигаючим студентам.Системно-спрямований підхід дає узагальнені знання і принципи структурування навчального матеріалу.Наприклад, узагальнені знання в нарисній геометрії [5, 8] являють собою інформаційне поле взаємозалежних фундаментальних понять (точка; лінія; поверхня; просторова фігура, як сукупність поверхонь та ін.), цілісну систему понять стереометрії і спеціальну систему понять нарисної геометрії, що ґрунтується на методі проектування.У кожному конкретному питанні теоретичного або практичного характеру варто чітко виділяти елементи інформаційного поля, розмежовуючи систему понять і одночасно вказуючи, яким чином вони зв’язані між собою.Доцільно весь курс нарисної геометрії структурувати у вигляді взаємозалежних інформаційних моделей на основі узагальнених знань з метою формування в студентів інженерних спеціальностей раціонального бачення (з погляду нарисної геометрії) при конструюванні складних поверхонь технічних форм і складанні креслень на цій основі.Подання структурної моделі на початку вивчення теми несе в собі переваги суто дедуктивного підходу в методиці викладання.Системно-спрямований підхід передбачає розвиток дедуктивного методу, а також дає нові можливості при розробці автоматичних навчальних курсів, відеопосібників, відеопідручників і відеоконсультацій на ПЕОМ.Автори розробили теоретичні основи і мають досвід застосування системно-спрямованого підходу на лекційних і практичних заняттях з нарисної геометрії і інженерної графіки, вищої математики та фізики [5, 8].Таким чином, системно-спрямований підхід при викладанні фундаментальних і загальнотехнічних дисциплін, системно-спрямоване навчання за оптимально структурованим курсом дисципліни скорочує термін опрацювання, підвищує якість засвоєння знань, сприяє ефективному формуванню предметного світогляду у студентів.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Карпець, М. В. "Інтерактивні технології до організації практичних занять з дисципліни "Біологічна та біоорганічна хімія"". Вісник проблем біології і медицини, Вип. 4, т. 2 (134) (2016): 143–46.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Pershko, I. O., та N. A. Todosiichuk. "МІЖДИСЦИПЛІНАРНА ІНТЕГРАЦІЯ ПРИ ВИКЛАДАННІ БІОХІМІЇ У ФАРМАЦЕВТИЧНОМУ КОЛЕДЖІ НА ПРИКЛАДІ ТЕМИ «ВСТУП ДО ОБМІНУ РЕЧОВИН ТА ЕНЕРГІЇ»". Медична освіта, № 3 (15 жовтня 2020): 49–55. http://dx.doi.org/10.11603/me.2414-5998.2020.3.10772.

Повний текст джерела
Анотація:
У статті проаналізовано теоретичні та практичні аспекти міждисциплінарної інтеграції при викладанні біологічної хімії. Розглянуто механізм реалізації предметно-орієнтованого навчання в межах вертикальної міждисциплінарної інтеграції на прикладі теми «Вступ до обміну речовин та енергії». Запропоновано конкретні шляхи підвищення ефективності викладання біохімії засобами міжпредметних зв’язків. Реалізація принципів міждисциплінарної інтеграції під час проведення лекційних занять вимагає від викладача глибоких знань не лише його предмета, але й багатьох інших навчальних дисциплін, у тому числі і предметів фахової підготовки студентів-фармацевтів. Вкрай важливо дотримуватися оптимального балансу між матеріалом теми, що вивчається під час лекції, та інформацією суміжних тем чи навчальних дисциплін. Використання принципів міждисциплінарної інтеграції при вивченні біологічної хімії сприяє підвищенню мотивації студентів, а саме усвідомленню практичної значущості навчального матеріалу та набутих компетентностей у майбутній професійній діяльності.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

ВАЛЮК, ВІКТОРІЯ. "ПРОБЛЕМА ПРИКЛАДНОЇ СПРЯМОВАНОСТІ НАВЧАННЯ ХІМІЇ В СИСТЕМІ ШКІЛЬНОЇ ОСВІТИ". Scientific papers of Berdiansk State Pedagogical University Series Pedagogical sciences 2 (2019): 103–14. http://dx.doi.org/10.31494/2412-9208-2019-1-2-103-114.

Повний текст джерела
Анотація:
Досліджено, що прикладна спрямованість навчання хімії здійснюється в рамках інваріантної і варіативної складових змісту освіти та реалізується на уроках, факультативних та позаурочних заняттях, через інтеграцію хімії з іншими шкільними дисциплінами природничого циклу. Обґрунтовано, що прикладна спрямованість змісту курсу хімії може бути реалізована за допомогою різних способів: включення в зміст навчального матеріалу прикладних знань; наповнення прикладною інформацією текстів хімічних розрахункових задач і інструкцій по виконанню практичних робіт; використання хімічного експерименту, орієнтованого на практику; здійснення інтеграції хімії з іншими шкільними дисциплінами природничого циклу; реалізація діяльнісного підходу до навчання. Прикладні знання виступають як засіб підвищення мотивації навчання і більш міцного засвоєння хімічних знань. Їх велика дидактична цінність полягає і в тому, що вони сприяють засвоєнню наукових знань. Способами включення прикладних знань у процес навчання хімії є: супровід учнів, що навчаються за програмою, доповненнями, в яких розкривається значення речовин, закономірностей та явищ у природі; включення в зміст уроків, на яких розкриваються питання прикладного характеру; розробка сюжетних уроків, що містять систему проблемних завдань, змістовно пов’язаних практичною діяльністю людини; включення прикладної інформації в текстову частину розрахункових хімічних задач, в інструкції з виконання практичних робіт; в зміст екскурсій та інших позаурочних занять. Доведено, що реалізація прикладної спрямованості навчання хімії особливо перспективна в позаурочній роботі. Однією з прийнятних форм організації навчальної діяльності учнів, спрямованої на розвиток умінь застосовувати отримані знання і здійснення діяльнісного підходу до навчання, визначається навчальна експедиція. Проведення навчальних експедицій передбачає таку організацію освітнього процесу, при якій учні, використовуючи отримані на уроках хімії, біології, географії знання про методи дослідження об’єктів природи, можуть самостійно проводити польові дослідження з вивчення екологічного стану компонентів навколишнього природного середовища. Дослідницька робота, що проводиться в рамках навчальної експедиції, виступає однією з активних форм здійснення допрофільної підготовки з хімії учнів основної школи. Ключові слова: прикладна спрямованість навчання хімії, прикладні знання, шкільний курс хімії, пізнавальна активність, позаурочна робота, навчальна експедиція.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Галущак, Мар’ян Олексійович. "Вища освіта в Україні та шляхи її вдосконалення: фундаментальна підготовка в технічному університеті". Theory and methods of learning fundamental disciplines in high school 1 (28 березня 2014): 86–91. http://dx.doi.org/10.55056/fund.v1i1.408.

Повний текст джерела
Анотація:
Реформа системи вищої освіти завдяки цілеспрямованій праці Міністерства освіти і науки та вузів дала позитивні результати, але ще не вирішила головного завдання – підвищення якості підготовки спеціалістів, які потрібні державі і суспільству для творчої професійної діяльності в період науково-технічного прогресу людства і ринкових відносин.Головною причиною цього, на мій погляд, є те, що розвиток системи освіти тісно пов’язаний з економічними проблемами держави та національними особливостями суспільства, а ми намагаємось розв’язати освітянські проблеми за іноземним зразком, забуваючи що, наприклад, в Америці, звідки взято найбільше запозичень, цивілізована ринкова економіка, в якій визначальними є закони та справа. В них життєвий успіх спеціаліста визначається рівнем його підготовки у вузі, а недоукам не дають роботи на власних фірмах навіть батьки. У нас життєвий успіх спеціаліста у великій мірі залежить від зв’язків, причому ця “хвороба” так укоренилася, що сприймається за нормальні речі. Дане явище потрібно якнайшвидше ліквідувати, бо воно сильно гальмує прогресивний розвиток.В порівнянні з економікою передових капіталістичних держав, економіка України має інші проблеми. Там її основою є новітні технології з використанням сучасної техніки і головним для них є знайти ринки збуту для конкурентноспроможної продукції. В нас же головною проблемою є необхідність технічного переозброєння більшості галузей промисловості і сільського господарства, тому що на одиницю продукції (в більшості низької якості) відносно світових показників набагато вищі витрати енергоносіїв та сировини.Зрозуміло, що ці проблеми можуть успішно вирішувати спеціалісти високої кваліфікації, які підготовлені до творчої професійної діяльності по створенню ефективних технологій та машин для їх реалізації. Рівень кваліфікації спеціаліста будь-якого профілю, а особливо це стосується підготовки сучасних інженерів, залежить від рівня його базової фундаментальної підготовки, яка є наріжним каменем технічної освіти. За всіх часів дана теза була постулатом і ніким не спростовувалась. Тим більш вражаючим є той факт, що роль фундаментальних дисциплін в навчальному процесі постійно знижується. Щоб переконатися в цьому, достатньо порівняти обсяги годин, що відводяться на їх викладання в недалекому минулому з нинішніми. Але ж ми хочемо, щоб наші випускники мали рівень кваліфікації не нижчий за рівень спеціалістів, що випускають кращі закордонні вузи!Проведений порівняльний аналіз навчального навантаження з математики, фізики і хімії для різних напрямків підготовки у нас і в деяких закордонних вузах також засвідчує, що питома вага майже з усіх фундаментальних дисциплін в них приблизно в два рази більша, ніж у нас. Деякі відхилення маємо в Краківській гірничій академії, але в Польщі зовсім інша система середньої освіти. В них дванадцятирічна середня освіта, причому в технічних ліцеях чи гімназіях, наприклад, учні вже вивчили матаналіз, який в нас студенти вивчають протягом першого курсу. Крім цього, в них має місце тісний зв’язок фундаментальних дисциплін з майбутньою професією. В австрійських і німецьких вузах, наприклад, назва дисциплін звучить так: математика для машинобудівників, чи електриків, чи економістів. Точно так само і фізика та хімія читаються відповідно до обраної спеціальності. Тут, на мою думку, йдеться про питання державної ваги і його треба вирішувати на відповідному рівні. Не принижуючи значення інших наук, необхідно все ж наголосити, що саме фундаментальні дисципліни формують основи наукового світогляду кожної людини, саме фізика, хімія і математика складають основу науково-технічного прогресу людства.Також треба визнати, що у справу погіршення фундаментальної освіти значний “внесок” робить і середня школа, в якій рівень знань учнів, наприклад, з фізики і хімії, вже опускається до критичної межі. Одним із каталізаторів такого становища стала відміна вступного іспиту з фізики на переважну більшість факультетів багатьох технічних університетів. Цей сигнал чітко зрозуміли вчителі, учні і їхні батьки. В результаті вузівські викладачі, а пізніше і викладачі інших технічних дисциплін, в розпачі від низького рівня знань фундаментальних дисциплін своїх студентів. Вони за перші семестри намагаються ліквідувати прогалини шкільної освіти, але це, як правило, не вдається. Пізніше такі студенти отримують дипломи інженерів, деякі вступають до аспірантури та стають викладачами, тобто колесо виродження все більше розкручується. Те, що в даний час відбувається із шкільними і вузівськими програмами фундаментальних дисциплін, є копіюванням нашою освітою чужих методик і ідей. Але саме наші спеціалісти, які навчались математики, фізики і хімії за традиційними програмами, є бажаними в різних зарубіжних наукових центрах, які працюють в галузі фізики плазми, твердого тіла, квантової електроніки, тощо. Тому не варто відкидати те позитивне, що напрацьовано десятиріччями і яке давало нам Нобелівських лауреатів та здобутки світового рівня у різних областях знань, технологій і техніки.Треба відзначити, що одне із найгостріших питань, які обговорювались на загальних зборах Відділення фізики і астрономії НАН України – низький рівень освіти з фізики у школах і вузах країни. До Президента України і уряду відповідне звернення підписали сорок дійсних членів та членів-кореспондентів НАН України. Як же покращити фундаментальну підготовку фахівців? Відомо, що тепер вузи мають значні автономні права і варто ними скористатися, не чекаючи рішень “згори”. В нашому національному університеті нафти і газу завдяки правильному розумінню ситуації з боку ректора, відомого у світі вченого в області механіки машин, академіка Української нафтогазової академії, професора Крижанівського Є.І., зроблені відповідні кроки щодо виправлення ситуації та покращення викладання фундаментальних дисциплін, без яких не може бути повноцінного інженера, який би успішно конкурував на міжнародному ринку праці. Два роки тому Вченою Радою університету було створено інститут фундаментальної підготовки, який згідно Положення є навчально-методичним, навчально-організаційним і науково-дослідним підрозділом університету на правах факультету для практичного втілення концепції вищої багатоступеневої інженерно-технічної освіти на базі глибоких фундаментальних знань з вищої математики, фізики і хімії. До складу інституту входять три кафедри фундаментальних наук, на черзі створення іще двох кафедр. Сьогодні можна констатувати, що створення такого інституту було необхідним і корисним, так як кафедри фізики, вищої математики і хімії вирішують спільні питання та об’єднані однією метою – покращити базову фундаментальну підготовку фахівців. Викладачі мають можливість обмінюватись досвідом своєї роботи, бо знаходяться на одному рівні, тоді як раніше були в певній мірі на другорядних ролях, оскільки кафедри відносились до різних факультетів, які більше розв’язують задачі спеціальної підготовки.Дуже важливим моментом у діяльності інституту була участь в організації і проведенні VIII науково-методичної конференції, на якій обговорювались питання фундаментальної підготовки фахівців і на яку були запрошені викладачі з інших вузів та вчителі шкіл і коледжів. При підготовці до конференції виконано значний об’єм роботи по вивченню і порівнянню навчальних планів різних спеціальностей у нашому університеті та багатьох європейських технічних вузах. Цей аналіз було покладено в основу рекомендацій, які затвердила наша Вчена Рада і які стали програмою діяльності інституту. Так, враховуючи неможливість перегляду навчальних планів спеціальностей в сторону збільшення аудиторних годин на вивчення фізики, математики, хімії, інформатики і програмування ми змістили акцент при їх викладанні в сторону профілізації навчального процесу в залежності від потреб профілюючої кафедри, тобто змінили зміст робочих програм дисциплін. Також на кафедрах інституту запроваджено керовану і контрольовану самостійну роботу, тобто йде мова про індивідуалізацію навчального процесу, оскільки світ на початку ХХ1 століття надзвичайно швидко змінюється, – вперше в історії розвитку людства покоління теоретичних ідей і машин змінюються в часі швидше, ніж покоління людей, а тому потрібно навчити студентів, майбутніх фахівців, самостійно знаходити необхідні знання в морі інформації що нас оточує для досягнення певного освітнього рівня. Для реалізації даного напрямку роботи потрібно змінити роль викладача: замість передавача певної суми знань студенту, він повинен стати координатором навчального процесу, консультантом, керівником навчання. Зауважу, що зміна функцій викладача – це довготривалий процес по підвищенню фахового рівня професорсько-викладацького складу.Проведений аналіз показав, що в нас є недостатнє забезпечення студентів навчально-методичною літературою. Тому в інституті сформовано єдиний план підготовки і випуску підручників, навчальних посібників, конспектів лекцій, електронних посібників тощо, а також створені творчі колективи, які повинні якнайшвидше забезпечити всіх студентів необхідними дидактичними матеріалами українською мовою.Дуже важливим напрямком діяльності інституту є налагодження співпраці і зв’язків наших кафедр із спорідненими кафедрами технічних вузів України. До речі, це один із шляхів більш швидкого забезпечення методичною літературою студентів внаслідок обміну, а також підвищення кваліфікації викладачів.Розв’язанню проблеми покращення фундаментальної підготовки майбутніх фахівців сприяє використання нових інформаційних та телекомунікаційних технологій проведення навчального процесу з використанням відповідних технічних засобів (аудіо- і відеоапаратури, комп’ютерів, телебачення, мережі Інтернет та ін.). Для цього потрібно використовувати як мізерні бюджетні кошти, так і залучати кошти різних фондів під проекти навчально-методичного характеру. Адже саме отримання грантів у великій мірі допомагає зміцнювати матеріально-технічну базу кафедр.Також хочу зачепити іще одне болюче питання вищої школи. З метою виживання зараз у вузах ми маємо поряд із студентами, які навчаються за рахунок бюджетних коштів, так званих контрактників. Це добре, але борючись за гроші ми намагаємось зберегти більшість студентів, що веде до зниження якості навчання. У даній ситуації кафедри фундаментальної підготовки в найгіршому становищі, тому що перед ними постає завдання виправлення браку середньої школи і відбору студентів для їх подальшого навчання. В нашому університеті знайдено вихід з даної ситуації: в навчальний процес впроваджено модульну технологію в поєднанні з визначенням рейтингу студентів. Було проведено п’ять науково-методичних конференцій, результати роботи яких дозволили розробити і вдосконалити “Положення про систему поточного, підсумкового контролю і оцінювання знань та визначення рейтингу студентів”. Треба відзначити, що через консерватизм характеру людини, все нове важко приживається. Але завдяки саме волі ректора Крижанівського Є.І. дана система організації і проведення навчального процесу працює, стимулюючи систематичну і самостійну роботу студентів протягом всього семестру. Вона підвищує об’єктивність оцінки знань, активізує навчальну діяльність та розвиває творчі здібності студентів, а результати екзаменаційних сесій та висновки більшості викладачів стверджують, що впровадження даної технології навчання є виправдане і сприяє підвищенню фахового рівня спеціалістів.Аналізуючи етапи і тенденції розвитку фундаментальної підготовки в технічному вузі приходимо до висновку, що зараз, коли створені нові форми і методи управління навчальним процесом, потрібен перехід до нових принципів формування змісту. Тому, створюючи нові інтенсивні технології навчання, треба зберегти глибокі традиції нашої фундаментальної підготовки та поєднати їх із здоровим прагматизмом заходу, тобто додати їй прикладну спрямованість. Це потребує координації зусиль викладачів різних предметів, великих затрат часу, тому що ці технології повинні базуватись на ідеї синтезу усіх дисциплін та принципу фундаментальності освіти, які об’єднують закономірності процесу пізнання і повинні враховувати ментальність нашого народу.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Derkach, Tеtiana M., та Nadiia V. Stets. "СЕРЕДОВИЩЕ ПРОГРАМУВАННЯ NETLOGO У НАВЧАННІ ХІМІЇ". Information Technologies and Learning Tools 38, № 6 (10 грудня 2013): 96–110. http://dx.doi.org/10.33407/itlt.v38i6.933.

Повний текст джерела
Анотація:
У статті розглянуті переваги і можливості застосування середовища програмування NetLogo для вивчення хімічних дисциплін в університеті. Розроблені в NetLogo комп'ютерні моделі використані для організації самостійної роботи студентів у вивченні газових законів у рамках курсу неорганічної хімії. Описані особливості моделей, наведені приклади інструкцій для роботи з ними, методичних рекомендацій для викладачів, завдань для студентів, у тому числі і графічних. Показано, що застосування комп’ютерного моделювання значно покращує розуміння теми у всіх студентів, незалежно від рівня їх базової підготовки з хімії.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

VOITOVYCH, Oksana. "STRUCTURE AND CONSTRUCTION OF THE CONTENT OF THE PROGRAM OF THE EDUCATIONAL DISCIPLINE "CHEMISTRY WITH FUNDAMENTALS OF BIOGEOCHEMISTRY"." Cherkasy University Bulletin: Pedagogical Sciences, no. 4 (2020): 13–17. http://dx.doi.org/10.31651/2524-2660-2020-4-13-17.

Повний текст джерела
Анотація:
Introduction. The ecologist has to understand the causes of environmental issues and know how to solve them, thus he has to possess a set of knowledge in chemical sciences, which includes knowledge of the properties of chemicals and conditions of their transformation, ways of spreading harmful substances in the environment to predict their impact on the environment. The purpose of the article is to substantiate the structure of the curriculum of the discipline "Chemistry with the fundamentals of biogeochemistry" and identify factors in constructing the content of educational material for the training of future environmentalists. The following research methods are used in the article: theoretical - analysis of educational and methodical literature; study of scientific publications on research topics; systematization and generalization of information; study of regulatory documentation of the organization of the educational process in higher education institutions. As a result of the research we determined, the main factors in constructing the content of the discipline are taking into account the target component for designing the content of the discipline; content of the discipline in accordance with certain forms of educational activities in higher education institutions and features of the discipline; improvement of methods, forms and means of training for effective mastering of chemical competencies; constant monitoring of academic achievements of applicants for higher education and adjustment of the content of modules of the discipline. Originality. For the first time we have proposed a rational and practice-oriented approach to structuring and constructing the content of the curriculum of the discipline "Chemistry with the fundamentals of biogeochemistry" taking into account the specifics of training future environmentalists. Conclusion. We state that structuring sections of the curriculum and constructing the content of the discipline taking into account modern scientific advances in chemistry system and sequence of mastering subject competencies, availability of theoretical and practical material, nsuring the relationship of theory with practice, rational use of visual aids, complexity of development professional competence will improve the quality of the educational process. The introduction of modern approaches to the study of the chemistry of natural processes, modeling their impact on living organisms is promising.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Bolukh, V. A. "СУЧАСНІ МАТЕМАТИЧНІ МОДЕЛІ В ТЕРМОДИНАМІЦІ БІОЛОГІЧНИХ ПРОЦЕСІВ". Медична освіта, № 4 (17 вересня 2018): 127–31. http://dx.doi.org/10.11603/me.2414-5998.2018.4.9007.

Повний текст джерела
Анотація:
Мета роботи – продемонструвати шляхи формування математичної грамотності та науково-пізнавального інтересу у студентів на заняттях із дисципліни “Біофізика з фізичними методами аналізу”. Основна частина. Стаття присвячена проблемі формування науково-пізнавального інтересу у студентів на заняттях з біофізики з фізичними методами аналізу. Приділено увагу ефективному використанню математичного моделювання у наукових дослідженнях з біології, хімії, медицини та фармації. На прикладі змістового модуля “Термодинаміка біологічних процесів” розглянуто сучасні математичні моделі опису реальних біологічних систем, зокрема проаналізована невирішена проблема математичного опису фазових переходів. Висновок. Для підвищення науково-пізнавального інтересу студентів та покращення рівня розуміння навчального матеріалу з дисципліни “Біофізика з фізичними методами аналізу” слід на заняттях інформувати студентів про найновітніші відкриття в даній галузі знань, особливу увагу приділяти науковим розробкам сучасних наукових математичних та фізичних шкіл, адже це значною мірою є мотиваційним фактором вивчення дисципліни.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Кorda, М. М., H. H. Shershun, М. І. Кulitska та P. H. Lykhatskyi. "ПРИНЦИПОВІ ПІДХОДИ ДО ВИКЛАДАННЯ БІОХІМІЇ У ТЕРНОПІЛЬСЬКОМУ ДЕРЖАВНОМУ МЕДИЧНОМУ УНІВЕРСИТЕТІ ІМЕНІ І. Я. ГОРБАЧЕВСЬКОГО З ОГЛЯДУ НА ВИМОГИ КОМПЕТЕНТНОСТІ". Медична освіта, № 4 (2 жовтня 2018): 56–58. http://dx.doi.org/10.11603/me.2414-5998.2018.4.9389.

Повний текст джерела
Анотація:
Мета роботи – спроба аналізу викладання фундаментальних теоретичних дисциплін у медичному виші, зокрема з огляду на такий елемент, як компетентність. Компетентнісний підхід потребує посилення самостійної і продуктивної діяльності студентів, розвитку їх особистісних якостей і творчих здібностей, що є важливим інструментом модернізації медичної освіти. Основна частина. Сучасний фахівець медицини повинен мати не лише ґрунтовні знання, певний багаж професійних навичок й умінь, але і здатність творчо застосовувати набуті знання у різних життєвих ситуаціях, гнучко та оперативно адаптуватися в сучасному динамічному суспільстві з його інформативними та інноваційними викликами, не втрачати доленосний орієнтир. Компетентнісна освітня політика і є таким орієнтиром на шляху до міжнародних стандартів освіти. Акцент на виховання компетентності майбутнього клініциста, на наше переконання, повинен бути пріоритетним вже на етапі вивчення базових теоретичних дисциплін, зокрема біологічної хімії як основи клініко-лабораторної діагностики. Висновок. У професійному розвитку фахівця медицини провідним фактором є реалізація принципів компетентнісного підходу на етапі вивчення базових теоретичних дисциплін.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

АНІЧКІНА, О. В. "СУЧАСНИЙ ЗМІСТ ПРОФЕСІЙНОЇ ПІДГОТОВКИ ХІМІКІВ: ВІТЧИЗНЯНИЙ ТА ЗАКОРДОННИЙ ДОСВІД". АКАДЕМІЧНІ СТУДІЇ. СЕРІЯ «ПЕДАГОГІКА» 1, № 4 (18 квітня 2022): 31–37. http://dx.doi.org/10.52726/as.pedagogy/2021.4.1.5.

Повний текст джерела
Анотація:
У статті проаналізовано особливості реформування вітчизняної вищої та середньої хімічної освіти на сучасному етапі. Обґрунтовано необхідність модернізації вітчизняних освітніх програм, переліку навчальних дисциплін і методичної моделі професійної підготовки хіміків в Україні. Наведені статистичні дані, які характеризують популярність освітніх програм професійної підготовки хіміків. Визначені чинники зменшення популярності освітніх програм із хімії для вступників в Україні. Проведено порівняльний аналіз освітніх програм закладів вищої освіти – лідерів підготовки за хімічними спеціальностями в Україні та світі з метою визначення основних складників. Розглянуто основні структурні компоненти професійної підготовки хіміків, перелік навчальних дисциплін, які становлять змістове ядро, реалізують професійну спрямованість, забезпечують самореалізацію у вітчизняних закладах вищої освіти та закордоном. Проаналізовано доцільність використання адаптаційних курсів у професійній підготовці майбутніх хіміків за кордоном і можливість імплементації таких курсів у вітчизняні освітні програми. Визначено перелік окремих дисциплін, які дають змогу здобувачам набути експериментальну компетентність у закладах вищої освіти за кордоном. Вивчено закордонний досвід викладання хімічних дисциплін просвітницького характеру здобувачам різних освітніх програм із метою задоволення власних інтересів. Проаналізовано досвід закордонних закладів вищої освіти в наданні можливості отримання педагогічної кваліфікації в процесі професійної підготовки хіміка. Визначені основні шляхи оновлення змісту вітчизняних освітніх програм, переліку навчальних дисциплін професійної підготовки хіміків, які дадуть змогу популяризувати професію хіміка та забезпечать набуття вітчизняними молодими фахівцями конкурентоздатності на світовому ринку праці.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Burmas, N. I., та L. A. Boyko. "CИСТЕМА ДИСТАНЦІЙНОЇ ФОРМИ НАВЧАННЯ НА КАФЕДРІ ЗАГАЛЬНОЇ ХІМІЇ". Медична освіта, № 2 (15 серпня 2019): 15–18. http://dx.doi.org/10.11603/me.2414-5998.2019.2.10338.

Повний текст джерела
Анотація:
Дистанційне навчання – інтерактивна взаємодія як між викладачем та студентами, так і між ними та інтерактивним джерелом інформаційного ресурсу (web-сторінки), яка відображає всі компоненти навчального процесу, що здійснюється в умовах реалізації засобів інформаційно-комп’ютерних технологій (комп’ютерна візуалізація навчальної інформації, інформаційно-пошукової діяльності, автоматизація процесів інформаційно-методичного забезпечення). У статті розглянуті основні поняття і характерні особливості дистанційного навчання в університеті, яке передбачає застосування двох форм: синхронної та асинхронної. Проводиться обґрунтування актуальності використання дистанційних технологій у навчанні. У статті виділено переваги дистанційного навчання для студентів: вільний графік проведення занять; одночасне проведення навчання з декількох дисциплін, можливо, в різних навчальних закладах; використання аудіо- та відеоматеріалів, мультимедіа. Основний акцент зроблений на особливостях організації дистанційного навчання на кафедрі за допомогою сучасних технологій та мультимедіа, що реалізується через такі компоненти, як: лекції (презентації та відеозаписи); практичні заняття (тестування в системі Moodle); спілкування викладача зі студентом. Успішне створення і використання дистанційної освіти на кафедрі загальної хімії сприяє значному розширенню потенційних студентів, впровадженню нових технологій для передачі навчальної інформації та вдосконаленню педагогічної майстерності співробітників кафедри.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

BOKHAN, Iuliia, and Tetiana FOROSTOVSKA. "THE PECULIARITIES OF TEACHING THE COURSE "GANERAL AND INORGANIC CHEMISTRY" IN PROFFESIONAL PREPARATION OF FUTURE NATURE STUDIES TEACHERS." SCIENTIFIC BULLETIN OF FLIGHT ACADEMY. Section: Pedagogical Sciences, no. 5 (March 22, 2019): 325–31. http://dx.doi.org/10.33251/2522-1477-2019-5-325-331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

N.M., Rusetska, and Demchuk L.I. "IMPLEMENTATION OF THE COMPETENCE-ACTIVITY APPROACH IN THE ORGANIZATION OF SELF-EDUCATIONAL ACTIVITY OF STUDENTS-AGROENGINEERS DURING THE STUDY OF THE DISCIPLINE “CHEMISTRY”." Collection of Research Papers Pedagogical sciences, no. 95 (August 2, 2021): 33–38. http://dx.doi.org/10.32999/ksu2413-1865/2021-95-5.

Повний текст джерела
Анотація:
The article raises the problem of organizing independent work of students (CPC) of the university in the conditions of implementation of a competent-activity approach. The main components of the development of self-education activity of students-agroengines are characterized. The consistent implementation of the competent-activity approach of pedagogical action is determined, as well as a list of methodological principles of implementation of the model (approaches, principles, conditions), methodical tools with the characteristic of their essence and measure of performance. It has been found that the introduction of a competent-activity approach to the educational process involves deep system transformations of the entire educational process from defining the goal to evaluate the results of education. The competent model, which is represented in the form of an information system that reflects the structure of the educational process, provides adequate control and assessment of learning results.The personal and social significance of a competent approach is determined. It was revealed that the creation of favorable conditions for the successful entry of a young man in modern dynamic life, the development of relations with people and the environment will allow to associate the process of training with the needs of time, will enable self-realization in social processes,During the study, it is generalized that competence and competence approach is a combination of skills, knowledge, skills, ways of thinking, value landmarks and ideological beliefs that allow you to confidently and successfully go out of non-standard life situations. In particular, we have been combined with the unity of such leading provisions: directions to achieve integrated indicators of the preparation of the future specialist; systems of acquiring the main groups of competencies – general (key), professional and professional; dependency of competence systems from the level and degree of higher education, its gradual complication, renewal and enrichment; orientation for socialization and professionalization of personality, constant deepening (improvement) competencies in conditions of continuous education.Key words: competence, self-education, teacher, principles and methods of teaching, pedagogical condi-tions, model. У статті піднімається проблема організації самостійної роботи студентів (СРС) ВНЗ в умовах реалізації компетентнісно-діяльнісного підходу. Охарактеризовано основні складові частини процесу розвитку самоосвітньої діяльності студентів-агроінженерів. Визначено послідовну реалізацію компетентнісно-діяльнісного підходу педагогічної дії, а також перелік методологічних засад впровадження моделі (підходи, принципи, умови), методичний інструментарій з характеристикою їх сутності та мірою результативності. Виявлено, що впровадження компетентнісно-діяльнісного підходу в освітній процес передбачає глибокі системні перетворення всього освітнього процесу від визначення мети до оцінювання результатів освіти. Досліджено компетентнісну модель, яка представлена у вигляді інформаційної системи, що відбиває структуру освітнього процесу, забезпечує адекватний контроль та оцінювання отриманих результатів навчання.З’ясовано особистісну та соціальну значимість компетентнісного підходу. Виявлено, що створення сприятливих умов для успішного входження молодої людини в сучасне динамічне життя, розвиток взаємовідносин з людьми та з навколишнім середовищем дадуть змогу пов’язати процес навчання з потребами часу, дасть можливість для самореалізації в суспільних процесах,В ході дослідження узагальнено, що компетентність та компетентнісний підхід – це поєднання умінь, знань, навичок, способів мислення, ціннісних орієнтирів та ідейних переконань, які дають змогу впевнено та успішно виходити з нестандартних життєвих ситуацій. Зокрема, нами компетентнісний підхід засновувався на єдності таких провідних положеннях, як спрямованість на досягнення інтегральних показників підготовки майбутнього фахівця; системність набуття основних груп компетентностей, а саме загальних (ключових), професійних і фахових; залежність системи компетентностей від рівня та ступеня вищої освіти, її поступове ускладнення, оновлення й збагачення; зорієнтованість на соціалізацію і професіоналізацію особистості, постійне поглиблення (вдосконалення) компетентностей в умовах неперервної освіти.Ключові слова: компетентність, самоосвіта, викладач, принципи та методи навчання, педагогічні умови, модель.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Берзеніна, Оксана Валеріївна. "Нові кроки в удосконаленні викладання фундаментальних дисциплін для студентів заочної форми навчання". Theory and methods of learning fundamental disciplines in high school 8 (23 листопада 2013): 202–7. http://dx.doi.org/10.55056/fund.v8i1.198.

Повний текст джерела
Анотація:
Заочна форма здобування вищої освіти у сучасних соціально-економічних умовах дозволяє поєднувати професійну діяльність з отриманням фундаментальних знань за обраною спеціальністю. У теперішній час система заочного навчання в Україні багато в чому поступається денній формі навчання та потребує глобальних змін.До переваг заочного навчання, від якого поступово відмовляються провідні ВНЗ Москви та Санкт-Петербургу [1], можна віднести:– можливість вчитися паралельно з роботою, тобто студент, не перериваючи своєї основної діяльності, може підвищити професійний рівень, придбати додаткову професію, заклавши тим самим основи професійного зростання;– можливість отримати освіту особам, які мають медичні обмеження для отримання регулярного освіти в стаціонарних умовах;– менша залежність від настрою і кваліфікації викладача, більше від власних зусиль і наполегливості;– відсутність обмежень на одночасне навчання в декількох ВНЗ (студент має право відразу освоїти більше однієї спеціальності);– вільний розподіл часу на навчання (студент може займатися, коли йому зручно, він не зв’язаний розкладом);– заочне навчання дешевше за денне та гарантує при цьому повноцінну вищу освіту;– при поєднання роботи з навчанням студент отримує можливість співвідносити теорію з практикою, доповнюючи одне іншим;– ця форма навчання є ідеальною для тих, хто прагне мати другу і подальші вищі освіти.Нажаль, час приніс свої зміни. В технологічну освіту на заочну форму навчання приходить все менше студентів, які реально працюють у галузі. Це відсоток знизився до 30. До чого це призводить? Насамперед, до того, що люди отримують дипломи, які для них абсолютно знецінені, так як фахівці вони ніякі, так і працювати за цією спеціальністю вони не планують. Тобто ми опинилися в «цікавому положенні», з одного боку підприємствам потрібні фахівці, інститути повні студентами, але фахівців бракує.Окрім того заочне навчання не позбавлене і недоліків:– найважливіший з них – відсутність контакту між викладачем і студентом в період між сесіями, неможливість оперативного отримання консультації при вирішенні навчальних завдань;– заочне навчання вимагає навичок самостійної роботи, тому випускникам шкіл краще вступати на денні відділення вузів;– слабкий контроль з боку викладачів;– у сесійний час недостатньо годин лабораторних і практичних робіт;– заочникам потрібні специфічні підручники та навчальні посібники, здатні замінити відсутнього викладача; поки таких підручників недостатньо.Ці недоліки особливо серйозно позначаються в освітній діяльності технічних ВНЗ, в програмах яких є складні для вивчення природничі дисципліни. Наприклад, курс загальної та неорганічної хімії є досить об’ємним, включає великий набір нової інформації, вимагає знання елементарної шкільної хімії, фізики, математики. Практика навчання студентів заочної форми в технічних ВНЗ в останні роки показує, на молодших курсах високий відсоток невстигаючих студентів з неорганічної хімії. Одна з причин – низька готовність студентів до освоєння цієї дисципліни.Вивчення курсу загальної хімії є найважливішим базовим елементом для підготовки кваліфікованого спеціаліста у галузі хімічної технології, який сприяє розвитку навичок дослідження практичних питань майбутнього фаху.У більшості вищих навчальних закладів традиційно вивчення природничих дисциплін носить предметно-змістовний або інформаційно-репродуктивний характер [2]. Студентам не надаються продуктивні методи становлення системи знань, а пропонується визначений викладачем маршрут вивчення дисципліни, тому найчастіше за такої системи навчання студенти досить часто задовольняються лише вивченням понять і законів предмету. Основний мінус таких способів навчання полягає в тому, що в результаті такої репродуктивної діяльності у студентів не розвивається інтерес до методів і способів пошуку і становлення знань, вони «проходять» дисципліну, не пов’язуючи її із іншими, та відокремлено від наукової системи.Спілкування тільки на вербальному рівні і багато нової інформації не сприяє становленню наукових уявлень про світ і формування світогляду. При такому способі навчання знання успішно виконують інформаційну функцію, але далеко не завжди тягнуть за собою розвиток студента. Особливістю вивчення загальної та неорганічної хімії для студентів заочної форми навчання ВНЗ є значне (до 25%) зниження аудиторного навантаження, яке повинно розподілятися на лекційні, практичні та лабораторні види занять, у порівнянні з денною формою навчання. Тоді виникає слушне питання, як зробити, щоб теоретичні знання не існували окремо, а були частиною практичної діяльності майбутнього фахівця. Тому для інтенсифікації навчальної роботи та підвищення якості підготовки доцільно більш активно використовувати діяльнісну модель отримання знань. У межах діяльнісного підходу процес пізнання – це система формування та вирішення певних задач. Але у практиці навчання не завжди оцінюються переваги високого рівня цілеспрямованого та спеціально напрямленого розвитку пізнавальної самостійності студентів поза межами аудиторії.Предметом нашого дослідження стали методи контролю самостійної роботи студентів з впровадженням способів та прийомів діяльнісного підходу.У якості критеріїв оцінювання існуючої методики були обрані не тільки інформативна насиченість, а й характеристики її подання та статус її виконання, здатні або не здатні надати студенту комплексне уявлення про вивчений матеріал. Саме це підтвердило необхідність створення нової форми методики складання тестового контролю самостійної роботи студента, що має колосальне значення для заочного навчання. Також важливим питанням є знаходження оптимального співвідношення між варіативністю навчання, індивідуальним підходом та груповим методом, що є традиційним при вивченні природничих дисциплін у вищій школі.На нашу думку, досконале методичне забезпечення організації самостійної роботи студентів заочної форми навчання та зміст завдань повинні відповідати наступним вимогам:1. Відповідність освітнім стандартам. Завдання повинні максимально охоплювати матеріал, передбачений навчальною програмою.2. Диференціація. Завдання повинні бути диференційованими, в залежності від початкового рівню знань, навичок та досвіду самостійної діяльності у різних студентів та потреб обраної майбутньої спеціальності, оскільки курс загальної та неорганічної хімії є в навчальному плані майже всіх факультетів нашого навчального закладу3. Діяльнісний підхід. Завдання повинні містити всі форми та основні ідеї розвиваючого навчання.При складанні завдань треба пам’ятати, що для формування мотивації студента необхідно відтворювати в завданні проблемні ситуації. Продуктивна діяльність можлива тільки при виникненні інтересу у студентів, тому знаходження умов, при яких зовнішня мотивація сформована за допомогою таких завдань спонукала б виникнення й становлення внутрішньої мотивації у студентів, є дуже актуальним [3].Студенту першого курсу потрібно, щоб сукупний обсяг знань, накопичений за роки навчання в середній школі або технікумі, та знання, отримані на установчій сесії, дозволили йому повною мірою володіти інтегральним баченням і здатністю до узагальнення інформації.На перший погляд думка, що навчальний матеріал тим краще виконує своє завдання, чим більше він сприяє швидкому, активного і усвідомленого засвоєння інформації може здатися досить простою, але ж мова йде про впровадження нової методики, яка, на відміну від існуючої, повністю виправдовує витрачені на неї ресурси.Необхідна зміна пріоритетів у системі освіти: від простого інформаційного посередника до інтерактивного навігатора, що має своєю метою максимально ефективно привести студента до позитивного результату. Перше питання полягає в тому, чи дозволяють в принципі положення нової методики впливати на аудиторію через нову технологію подання інформації. Звичайно, це не означає необхідність різкого відходу від всіх форм традиційного освіти. За рахунок нової інтерактивної технології їх можна зробити більш привабливими як для студента, так і для викладача, причому ми маємо можливість створити комбіновану технологію, що дозволить у багато разів розширити коло охоплених дисциплін, в той же час, розвинути ідею зміцнення її переваги в налагодженні логічних зв’язків між роботою педагога і студента [4].Результати оцінювання студентів за підсумками проведеного внутрішнього контролю дають змогу стверджувати, що застосування такого типу завдань як для організації самостійного опрацювання матеріалу, так і для проведення контрольних заходів дозволяє максимально активізувати увагу студента не тільки на базовому матеріалі, але і на логічних зв’язках підвищеного рівня.Варто зазначити, що застосування цієї технології не передбачає збільшення часу на проходження матеріалу, а навпаки, економить, надаючи можливість викладачу перерозподіляти його залишок на закріплення або поглиблення матеріалу. Функції нової методики полягають не тільки в залученні інтересів студента до конкретного напрямку у дисципліні, що вивчається, але і у формуванні інтегральної уяви про обрану категорію знань.У результаті проведених досліджень ми дійшли висновку про необхідність включення до завдань для самостійної роботи студентів наступних типів загальновідомих в дидактиці завдань: на відтворення, реконструктивно-варіативні, частково-пошукові та дослідницькі.При виконанні завдань на відтворення пізнавальна діяльність студента перебігає у формі відтворення знань: студент згадує або відшукує у методичних матеріалах потрібну формулу (закон), що виражає сутність явища, встановлює фізичний або хімічний сенс явища пише рівняння та робить розрахунки. Завдання цього типу створюють студенту умови для усвідомлення та запам’ятовування тих чи інших положень досліджуваного явища, сприяють накопиченню опорних знань, цікавих фактів і способів діяльності.Виконання завдань реконструктивно-варіативної типу сприяє засвоєнню певної послідовності дій (алгоритму). Самостійна діяльність студента дозволяє приєднати новий факт до групи вже відомих, студент повинен добре знати хімічні закони та вміти їх пристосувати до нових ситуацій [5]. Таким чином ми отримуємо стійке засвоєння базових вмінь та навичок, що в свою чергу дозволяє перейти до виконання завдань більш високого рівня складності.Експериментальні роботи, які ми пропонуємо для виконання студентам під час аудиторних занять, позбавлені недоліків звичайних практикумів: відсутності інтересу і проблемних ситуацій. При практичному дослідженні студент сам у межах заданої мети розв’язує свої конкретні завдання – практичні та розрахункові. Характер пізнавальної діяльності студентів змінюється, з’являється інтерес, висока мотивація. Таким чином, внутрішній інтерес зміщується з цілі навчання на мотив – здобування свого знання, формування свого ставлення, розв’язання професійних завдань.Окремого обговорення заслуговують тестові форми, що використовуються для проведення контрольних заходів. У нашому університеті ще три роки тому відмовились від виконання студентом-заочником контрольних робіт вдома. Це було зроблено цілком свідомо, бо ні для кого не є таємницею, що більшість студентів замовляють виконання контрольних робіт всіляким «добродіям», представники яких нахабно роздають свої візитки біля університету під час сесії заочників.Така відмова змусила викладачів шукати форму проведення контролю під час сесії. Звичайні тести не можуть навчити чи перевірити вміння зіставляти, аналізувати, порівнювати та робити висновки. Занадто велике захоплення тестами в школах та деяких ВНЗ призвело вже до того, що розвивальна функція навчання майже втрачена та ми маємо зміщення навчання у бік натаскування, поверховості знання та простого зубріння.Саме тому завдання, що були складені викладачами кафедри неорганічної хімії нашого університету для проведення контрольних робіт для студентів заочної форми навчання, поєднують всі корисні властивості тестів: чіткі формулювання, наявність варіантів відповіді, більшість типів загальновідомих дидактичних завдань, одночасне проходження контрольного заходу великою кількістю студентів та стислий час на проведення і перевірку робіт.Формулювання питання тестової форми контрольної роботи у вигляді проблемного завдання [4], що інколи містить надлишкові початкові дані, сприяє формуванню у студентів основи творчої діяльності майбутнього фахівця. Виконуючи такі завдання, студент перш за все навчається комбінувати та перебудовувати наявні знання, аналізувати різні можливі шляхи рішення та обирати більш раціональні. Під час виконання такої форми контрольної роботи, що проходить у комп’ютерному класі, студенти мають змогу користуватися довідковими матеріалами як в електронному, так і в паперовому вигляді. Наявність певної кількості сценаріїв, що містять завдання різного рівня складності, можуть мати різну кількість завдань, роблять створену нами систему універсальною для проведення контрольних заходів студентам різних напрямків підготовки, навчальні плани яких передбачають різну кількість кредитів на вивчення неорганічної хімії.Практика впровадження нашої системи контролю самостійної діяльності студентів заочної форми навчання доводить, що методика застосування системи завдань із поступовим зростанням складності і проблемності є перспективною, виконує не тільки освітні, але і розвивальні функції, що підвищують якість підготовки майбутніх інженерів.Ми щиро сподіваємось, що всі ці кроки допоможуть підняти заочне навчання на новий якісний рівень, що дозволяє готувати висококваліфікованих фахівців, здатних працювати в сфері інноваційної економіки.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Бузько, Світлана. "Робота з текстами фахового спрямування під час навчання української мови як іноземної". Філологічні студії: Науковий вісник Криворізького державного педагогічного університету 19 (23 травня 2019): 145–56. http://dx.doi.org/10.31812/filstd.v19i0.2328.

Повний текст джерела
Анотація:
У статті наведено приклади роботи з текстами фахового спрямування під час викладання української мови як іноземної у закладах вищої освіти педагогічного профілю. Тематика текстів розрахована на студентів природничого, фізико-математичного і географічного факультетів. У розвідці наголошено, що на заняттях з української мови як іноземної студенти-іноземці, які здобувають вищу педагогічну освіту за різними спеціальностями, обов’язково мають працювати з текстами фахового спрямування. Це допоможе іноземним студентам засвоїти певну кількість лексичних одиниць і синтаксичних конструкцій, потрібних для вивчення низки спеціальних дисциплін (біології, хімії, фізики, астрономії, географії тощо) і здобуття вищої педагогічної освіти. Така робота насамперед має на меті підготувати студентів-іноземців до подальшого сприйняття й розуміння фахової літератури.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Зелінський, Сергій Сергійович. "ІНФОРМАЦІЙНО-ОСВІТНЄ СЕРЕДОВИЩЕ УНІВЕРСИТЕТУ: СТРУКТУРНО-ФУНКЦІОНАЛЬНА МОДЕЛЬ ПРОЦЕСУ НАВЧАННЯ ХІМІЇ". Науковий часопис НПУ імені М.П. Драгоманова. Серія 2. Комп’ютерно-орієнтовані системи навчання, № 22(29) (20 лютого 2020): 95–101. http://dx.doi.org/10.31392/npu-nc.series2.2020.22(29).13.

Повний текст джерела
Анотація:
В статті розглядаються особливості створення структурно-функціональної моделі процесу навчання хімії з використанням інформаційних технологій навчання у закладі вищої освіти. Виокремлено основні напрями застосування інформаційно-освітнього середовища в процесі навчання дисциплін хімічного циклу. Визначено умови ефективності запровадження інформаційних технологій у навчальний процес. Розроблена теоретична модель методичної системи додаткової хімічної освіти на основі інтеграції змісту навчання і активного застосування інформаційно-освітнього середовища (ІОС) і засобів інформаційно-комунікаційних технологій (ІКТ). Протягом десятиліть моделювання є одним з найактуальніших методів наукового дослідження та широко застосовується в педагогічних дослідженнях. Використання методу моделювання дає можливість об’єднати емпіричні результати і теоретичні положення в педагогічному дослідженні. Моделювання як універсальна форма пізнання застосовується під час дослідження і перетворення явищ в будь-якій сфері діяльності, це найбільш поширений метод дослідження об’єктів різної природи, в тому числі й об’єктів складної соціальної системи, тому цим методом широко користуються студенти, магістранти, аспіранти, докторанти під час проведення наукових досліджень. Застосування моделювання дуже тісно пов’язане з глибоким пізнанням сутності навчально-виховних явищ і процесів, поглибленням теоретичних основ дослідження. Також, було наведено основні форми самостійної роботи студентів із використанням мультимедійних технологій. Одним з найбільш доцільних і ефективних методів збирання і систематизації факторів є метод інформаційного моделювання. У розвитку теорії і практики моделювання процесу навчання хімії в університеті задіяні наукові дослідження та виконання завдань з різних предметних галузей, спеціальні методи подання даних для побудови електронних засобів, задіяних під час автоматизації виконання завдань інформаційного характеру.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Буденкова, Надія. "ЕКОЛОГІЧНЕ ВИХОВАННЯ ІНЖЕНЕРІВ ЯК ЧАСТИНА КОНТЕНТУ ФОРМУВАННЯ ДОВЕРШЕНОЇ ОСОБИСТОСТІ". New pedagogical thought 99, № 3 (11 лютого 2020): 145–48. http://dx.doi.org/10.37026/2520-6427-2019-99-3-145-148.

Повний текст джерела
Анотація:
Статтю присвячено проблемі екологічного виховання в технічних закладах вищої освіти. Розглянуто особливості, основні підходи та зміст екологічного виховання у процесі підготовки фахівців водогосподарського профілю. Доведено, що екологічна освіта є одним із пріоритетних напрямків у технічних вищих навчальних закладах. Це безперервний процес навчання, самоосвіти, накопичення досвіду та розвитку особистості, спрямований на формування ціннісних орієнтацій, правил поведінки та спеціальних знань про охорону навколишнього середовища та природокористування, що реалізуються в екологічно компетентній діяльності. Ці питання є особливо гострими проблемами в підготовці фахівців з питань управління водними ресурсами. Серед хімічних дисциплін, які займаються вищою освітою водного менеджменту, найбільш екологічно спрямованими слід вважати «Хімію довкілля» та «Гідрохімію води». Зазначено, що низький рівень екологічних знань інженерів водного господарства вказує на необхідність активізації процесу формування екологічних знань майбутніх фахівців та пошуку інноваційних технологій навчання.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Краснобокий, Юрій Миколайович, та Ігор Анатолійович Ткаченко. "Інтеграція природничо-наукових дисциплін у світлі компетентнісної парадигми освіти". Theory and methods of learning fundamental disciplines in high school 8 (23 листопада 2013): 83–89. http://dx.doi.org/10.55056/fund.v8i1.195.

Повний текст джерела
Анотація:
Система освіти, яка ґрунтується на наукових засадах її організації, характеризується зміщенням акцентів від отримання готового наукового знання до оволодіння методами його отримання як основи розвитку загальнонаукових компетенцій.Уже достатньо чітко визначена спрямованість нової освітньої парадигми, осмислені її детермінуючі особливості, визначено предмет постнекласичної педагогіки та її основоположні аксіоми. Вироблені пріоритети всієї постнекласичної дидактики, аж до розроблення її категоріального апарату. Проте, на фоні такої колосальної роботи педагогічної думки так і не сформульовано достатньо чітко концептуальні основи постнекласичної дидактики, яка перебуває в стані активного формування як загалом, так і по відношенню до її природничо-наукової компоненти.На сучасному етапі модернізації освіти головним завданням стає формування у студентів здатності навчатися, самостійно здобувати знання і творчо мислити, приймати нестандартні рішення, відповідати за свої дії і прогнозувати їх наслідки; за період навчання у них мають бути сформовані такі навики, які їм будуть потрібні упродовж всього життя, у якій би галузі вони не працювали: самостійність суджень, уміння концентруватися на основних проблемах, постійно поповнювати власний запас знань.Зараз вимоги до рівня підготовки випускника пред’являються у формі компетенцій. Обов’язковими компонентами будь-якої компетенції є відповідні знання і уміння, а також особистісні якості випускника. Синтез цих компонентів, який виражається в здатності застосовувати їх у професійній діяльності, становлять сутність компетенції. Отже, інтегральним показником досягнення якісно нового результату, який відповідає вимогам до сучасного вчителя, виступає компетентність випускника університету. Оволодіння сукупністю універсальних (завдяки інтегральному підходові до викладання) і професійних компетенцій дозволить випускнику виконувати професійні обов’язки на високому рівні. Необхідно шляхом інтеграції навчальних дисциплін, використовуючи активні методи та інноваційні технології, які привчають до самостійного набуття знань і їх застосування, допомагати як формуванню практичних навиків пошуку, аналізу і узагальнення любої потрібної інформації, так і набуттю досвіду саморозвитку і самоосвіти, самоорганізації і самореалізації, сприяти становленню і розвиткові відповідних компетенцій, актуальних для майбутньої професійної діяльності учителя.Стосовно обговорюваного питання, то в результаті вивчення циклу природничих дисциплін випускник повинен знати фундаментальні закони природи, неорганічної і органічної матерії, біосфери, ноосфери, розвитку людини; уміти оцінювати проблеми взаємозв’язку індивіда, людського суспільства і природи; володіти навиками формування загальних уявлень про матеріальну першооснову Всесвіту. Звичайно, що забезпечити такі компетенції будь-яка окремо взята природнича наука не в змозі. Шлях до вирішення цієї проблеми лежить через їх інтеграцію, тобто через оволодіння масивом сучасних природничо-наукових знань як цілісною системою і набуття відповідних професійних компетенцій на основі фундаментальної освіти [2].Когнітивною основою розвитку загальнонаукових компетенцій є наукові знання з тих розділів дисциплін природничо-наукового циклу ВНЗ, які перетинаються між собою. Тобто, успішність їх розвитку визначається рівнем міждисциплінарної інтеграції вказаних розділів. Загальновідомо, що найбільший інтеграційний потенціал має загальний курс фізики, оскільки основні поняття, теорії і закони фізики широко представлені і використовуються у більшості інших загальнонаукових і вузькоприкладних дисциплін, що створює необхідну базу для розвитку комплексу загальнонаукових компетентностей.У той же час визначальною особливістю структури наукової діяльності на сучасному етапі є розмежування науки на відносно відособлені один від одного напрями, що відображається у відокремлених навчальних дисциплінах, які складають змістове наповнення навчальних планів різних спеціальностей у ВНЗ. До деякої міри це має позитивний аспект, оскільки дає можливість більш детально вивчити окремі «фрагменти» реальності. З іншого боку, при цьому випадають з поля зору зв’язки між цими фрагментами, оскільки в природі все між собою взаємопов’язане і взаємозумовлене. Негативний вплив відокремленості наук вже в даний час особливо відчувається, коли виникає потреба комплексних інтегрованих досліджень оточуючого середовища. Природа єдина. Єдиною мала б бути і наука, яка вивчає всі явища природи.Наука не лише вивчає розвиток природи, але й сама є процесом, фактором і результатом еволюції, тому й вона має перебувати в гармонії з еволюцією природи. Збагачення різноманітності науки повинно супроводжуватися інтеграцією і зростанням упорядкованості, що відповідає переходу науки на рівень цілісної інтегративної гармонічної системи, в якій залишаються в силі основні вимоги до наукового дослідження – універсальність досліду і об’єктивний характер тлумачень його результатів.У даний час загальноприйнято ділити науки на природничі, гуманітарні, математичні та прикладні. До природничих наук відносять: фізику, хімію, біологію, астрономію, геологію, фізичну географію, фізіологію людини, антропологію. Між ними чимало «перехідних» або «стичних» наук: астрофізика, фізична хімія, хімічна фізика, геофізика, геохімія, біофізика, біомеханіка, біохімія, біогеохімія та ін., а також перехідні від них до гуманітарних і прикладних наук. Предмет природничих наук складають окремі ступені розвитку природи або її структурні рівні.Взаємозв’язок між фізикою, хімією і астрономією, а особливо аспектний характер фізичних знань стосовно до хімії і астрономії дають можливість стверджувати, що роль генералізаційного фактору при формуванні змісту природничо-наукової освіти можлива лише за умови функціонування системи астрофізичних знань. Генералізація фізичних й астрономічних знань, а також підвищення ролі наукових теорій не лише обумовили фундаментальні відкриття на стику цих наук, але й стали важливим засобом подальшого розвитку природничого наукового знання в цілому [4]. Що стосується змісту, то його, внаслідок бурхливого розвитку астрофізики в останні декілька десятків років потрібно зробити більш астрофізичним. Астрофізика як розділ астрономії вже давно стала найбільш вагомою її частиною, і роль її все більше зростає. Вона взагалі знаходиться в авангарді сучасної фізики, буквально переповнена фізичними ідеями й має величезний позитивний зворотній зв’язок з сучасною фізикою, стимулюючи багато досліджень, як теоретичних, так і експериментальних. Зумовлено це, в першу чергу, невпинним розвитком сучасних астрофізичних теорій, переоснащенням науково-технічної дослідницької бази, значним успіхом світової космонавтики [3].Разом з тим, сучасна астрономія – надзвичайно динамічна наука; відкриття в ній відбуваються в різних її галузях – у зоряній і позагалактичній астрономії, продовжуються відкриття екзопланет тощо. Так, нещодавно відкрито новий коричневий карлик, який через присутність у його атмосфері аміаку і тому, що його температура істотно нижча, ніж температура коричневих карликів класів L і T, може стати прототипом нового класу (його вчені вже позначили Y). Важливим є й те, що такий коричневий карлик – фактично «сполучна ланка» між зорями і планетами, а його відкриття також вплине на вивчення екзопланет.Сучасні астрофізичні космічні дослідження дозволяють отримати унікальні дані про дуже віддалені космічні об’єкти, про події, що відбулися в період зародження зір і галактик. Міжнародна астрономічна спілка (МАС) запровадила зміни в номенклатурі Сонячної системи, ввівши новий клас об’єктів – «карликові планети». До цього класу зараховано Плутон (раніше – дев’ята планета Сонячної системи), Цереру (до цього – найбільший об’єкт з поясу астероїдів, що міститься між Марсом і Юпітером) та Еріду (до цього часу – об’єкт 2003 UB313 з поясу Койпера). Водночас МАС ухвалила рішення щодо формулювання поняття «планета». Тому, планета – небесне тіло, що обертається навколо Сонця, має близьку до сферичної форму і поблизу якого немає інших, таких самих за розмірами небесних тіл. Існування в планетах твердої та рідкої фаз речовини в широкому діапазоні температур і тисків зумовлює не тільки величезну різноманітність фізичних явищ та процесів, а й перебіг різнобічних хімічних процесів, таких, наприклад як, утворення природних хімічних сполук – мінералів. На жодних космічних тілах немає такого розмаїття хімічних перетворень, як на планетах. Проте на них можуть відбуватися не тільки фізичні та хімічні процеси, а й, як свідчить приклад Землі, й біологічні та соціальні. Тобто планети відіграють особливу роль в еволюції матерії у Всесвіті. Саме завдяки існуванню планет у Всесвіті відбувається перехід від фізичної форми руху матерії до хімічної, біологічної, соціальної, цивілізаційної. Планети – це база для розвитку вищих форм руху матерії. Слід зазначити, що це визначення стосується лише тіл Сонячної системи, на екзопланети (планет поблизу інших зір) воно поки що не поширюється. Було також визначено поняття «карликова планета». Окрім цього, вилучено з астрономічної термінології термін «мала планета». Таким чином, сьогодні в Сонячній системі є планети (та їх супутники), карликові планети (та їх супутники), малі тіла (астероїди, комети, метеороїди).Використання даних сучасних астрономічних, зокрема астрофізичних уявлень переконливо свідчать про те, що дійсно всі випадки взаємодій тіл у природі (як в мікросвіті, так й у макросвіті і мегасвіті) можуть бути зведені до чотирьох видів взаємодій: гравітаційної, електромагнітної, ядерної і слабкої. В іншому плані, ілюстрація застосувань фундаментальних фізичних теорій, законів і основоположних фізичних понять для пояснення особливостей будови матерії та взаємодій її форм на прикладі всіх рівнів організації матерії (від елементарних частинок до мегаутворень Всесвіту) є переконливим свідченням матеріальної єдності світу та його пізнаваності.Наукова картина світу, виконуючи роль систематизації всіх знань, одночасно виконує функцію формування наукового світогляду, є одним із його елементів [1]. У свою чергу, з науковою картиною світу завжди корелює і певний стиль мислення. Тому формування в учнів сучасної наукової картини світу і одночасно уявлень про її еволюцію є необхідною умовою формування в учнів сучасного стилю мислення. Цілком очевидно, що для формування уявлень про таку картину світу і вироблення у них відповідного стилю мислення необхідний й відповідний навчальний матеріал. В даний час, коли астрофізика стала провідною складовою частиною астрономії, незабезпеченість її опори на традиційний курс фізики є цілком очевидною. Так, у шкільному курсі фізики не вивчаються такі надзвичайно важливі для осмисленого засвоєння програмного астрономічного матеріалу поняття як: ефект Доплера, принцип дії телескопа, світність, закони теплового випромінювання тощо.В умовах інтенсифікації наукової діяльності посилюється увага до проблем інтеграції науки, особливо до взаємодії природничих, технічних, гуманітарних («гуманітаризація освіти») та соціально-економічних наук. Розкриття матеріальної єдності світу вже не є привілеями лише фізики і філософії, та й взагалі природничих наук; у цей процес активно включилися соціально-економічні і технічні науки. Матеріальна єдність світу в тих галузях, де людина перетворює природу, не може бути розкритою лише природничими науками, тому що взаємодіюче з нею суспільство теж являє собою матерію, вищого ступеня розвитку. Технічні науки, які відображають закони руху матеріальних засобів людської діяльності і які є тією ланкою, що у взаємодії поєднує людину і природу, теж свідчать про матеріальність засобів людської діяльності, з допомогою яких пізнається і перетворюється природа. Тепер можна стверджувати, що доведення матеріальної єдності світу стало справою не лише філософії і природознавства, але й всієї науки в цілому, воно перетворилося у завдання загальнонаукового характеру, що й вимагає посилення взаємозв’язку та інтеграції перерахованих вище наук.Звичайно, що найбільший внесок у цю справу робить природознавство, яке відповідно до характеру свого предмета має подвійну мету: а) розкриття механізмів явищ природи і пізнання їх законів; б) вияснення і обґрунтування можливості екологічно безпечного використання на практиці пізнаних законів природи.Інтеграція природничо-наукової освіти передбачає застосування впродовж всього навчання загальнонаукових принципів і методів, які є стержневими. Для змісту інтегративних природничо-наукових дисциплін найбільш важливими є принцип доповнюваності, принцип відповідності, принцип симетрії, метод моделювання та математичні методи.Вважаємо за доцільне звернути особливу увагу на метод моделювання, широке застосування якого найбільш характерне для природничих наук і є необхідною умовою їх інтеграції. Необхідність застосування методу моделювання в освітній галузі «природознавство» очевидна у зв’язку зі складністю і комплексністю цієї предметної галузі. Без використання цього методу неможлива інтеграція природничо-наукових знань. У процесі моделювання об’єктів із області природознавства, що мають різну природу, якісно нового характеру набувають інтеграційні зв'язки, які об’єднують різні галузі природничо-наукових знань шляхом спільних законів, понять, методів дослідження тощо. Цей метод дозволяє, з одного боку, зрозуміти структуру різних об’єктів; навчитися прогнозувати наслідки впливу на об’єкти дослідження і керувати ними; встановлювати причинно-наслідкові зв’язки між явищами; з іншого боку – оптимізувати процес навчання, розвивати загальнонаукові компетенції.Фундаментальна підготовка студентів з природничо-наукових спеціальностей неможлива без послідовного і систематичного формування природничо-наукового світогляду у майбутніх фахівців.Науковий світогляд – це погляд на Всесвіт, на природу і суспільство, на все, що нас оточує і що відбувається у нас самих; він проникнутий методом наукового пізнання, який відображає речі і процеси такими, якими вони існують об’єктивно; він ґрунтується виключно на досягнутому рівні знань всіма науками. Така узагальнена система знань людини про природні явища і її відношення до основних принципів буття природи складає природничо-науковий аспект світогляду. Отже, світогляд – утворення інтегральне і ефективність його формування в основному залежить від ступеня інтеграції всіх навчальних дисциплін. Адже до складу світогляду входять і відіграють у ньому важливу роль такі узагальнені знання, як повсякденні (життєво-практичні), так і професійні та наукові.Вищим рівнем асоціативних зв’язків є міждисциплінарні зв’язки, які повинні мати місце не лише у змісті окремих навчальних курсів. Тому, сучасна тенденція інтеграції природничих наук і створення спільних теорій природознавства зобов’язує викладацький корпус активніше упроваджувати міждисциплінарні зв’язки природничо-наукових дисциплін у навчальний процес ВНЗ, що позитивно відобразиться на ефективності його організації та підвищенні якості навчальних досягнень студентів.Підсумовуючи вище викладене, можна зробити наступні висновки:Однією з особливостей компетентісного підходу, що відрізняє його від знанієво-центрованого, є зміна функцій підготовки вчителів з окремих дисциплін, які втрачають свою традиційну самодостатність і стають елементами, що інтегруються у систему цілісної психолого-педагогічної готовності випускника до роботи в умовах сучасного загальноосвітнього навчального закладу.Інтеграційні процеси, так характерні для сучасного етапу розвитку природознавства, обов’язково мають знаходити своє відображення в природничо-науковій освіті на рівні як загальноосвітньої, так і вищої школи. Майбутнім педагогам необхідно усвідомлювати взаємозв’язок і взаємозалежність наук, щоб вони могли підготувати своїх учнів до роботи в сучасних умовах інтеграції наук.Учителям біології, хімії, географії необхідно володіти методами дослідження об’єктів природи, переважна більшість яких базується на законах фізики і передбачає уміння працювати з фізичними приладами. Крім того, саме фізика створює основу для вивчення різноманітних явищ і закономірностей, які складають предмет інших природничих наук.Інтеграція природничо-наукових дисциплін дозволить розкрити у процесі навчання фундаментальну єдність «природа – людина – суспільство», значно посилить інтерес студентів до вивчення цього циклу дисциплін, дасть можливість інтенсифікувати навчальний процес і забезпечити високий рівень якості його результату.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Самойлова, Ольга. "ОСОБЛИВОСТІ ДОСЛІДЖЕННЯ ВЕТХИХ ДОКУМЕНТІВ, З МЕТОЮ ВИЯВЛЕННЯ ЗГАСЛИХ ЗАПИСІВ". Молодий вчений, № 2 (90) (26 лютого 2021): 236–42. http://dx.doi.org/10.32839/2304-5809/2021-2-90-48.

Повний текст джерела
Анотація:
Техніко-криміналістичне дослідження документів відрізняється різноманітністю задач, що вирішуються. Для їх вирішення судовим експертом застосовуються різні методи. В експертній практиці нерідко виникає необхідність встановлення первісного змісту реквізитів згаслих документів, в тому числі втрачених при несприятливих умовах зберігання: світла, вологи, температури і т.п. Під дією даних факторів відбувається згасання реквізитів документів. Найбільш часто об'єктами судово-технічної експертизи документів при встановленні слабо видимих реквізитів є:рукописні записи, підписи, відбитки печаток і штампів. Також виникає потреба в оволодінні знаннями основ фізики, хімії та інших наукових дисциплін судовими експертами, методикою дослідження згаслих документів, наявність лабораторних приміщень та навичок для роботи з ветхими документами. В даній роботі охарактеризовано процес старіння документів під впливом різних чинників, проаналізований хімічний склад і фізичні фарбувальної речовини штрихів згаслих текстів, надана загальна характеристика матеріалу для виготовлення паперу та висвітлені методи, які найбільш доцільно застосовувати при встановленні змісту згаслих реквізитів документів.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Конофольська, Вікторія Вадимівна. "ІНТЕГРОВАНІ УРОКИ З ІНФОРМАТИЧНОЮ СКЛАДОВОЮ ЯК НЕВІД’ЄМНА ЧАСТИНА СУЧАСНОЇ ОСВІТИ". Науковий часопис НПУ імені М.П. Драгоманова. Серія 2. Комп’ютерно-орієнтовані системи навчання, № 22(29) (20 лютого 2020): 166–72. http://dx.doi.org/10.31392/npu-nc.series2.2020.22(29).23.

Повний текст джерела
Анотація:
Глобальна інформатизація суспільства є однією з домінуючих тенденцій, в тому числі і в освіті. Важливим є вміння працювати з інформаційними ресурсами та технологіями на уроках та використовувати отримані знання в реальному житті. В умовах освітнього процесу це можливо реалізувати на інтегрованих уроках з інформатичною складовою або спецкурсах. В статті розкриваються питання міжпредметної інтеграції під час навчання учнів 5-9 класів загальноосвітніх шкіл, а саме актуальності проведення інтегрованих уроків з інформатичною складовою. Визначено основні поняття інтеграції освітнього процесу, актуальність та необхідність проведення інтегрованих уроків. Об’єктивно та неупереджено визначено переваги цього підходу. Зокрема, можливість для учнів та вчителів продемонструвати власні досягнення іншими шляхами, окрім традиційних, розкрити потенціал, застосувати творчий підхід. Розглянуто шляхи проведення інтегрованих уроків, а саме через об’єднання схожої тематики кількох навчальних предметів або через формування інтегрованих курсів шляхом об’єднання навчальних програм таких курсів. Наведено конкретні приклади інтегрування різних навчальних дисциплін з інформатикою, зокрема математики, зарубіжної літератури, фізики, біології, географії, хімії. Найбільша увага приділена урокам в 5, 7 та 9 класах загальноосвітніх навчальних закладів. Окреслено перспективи впровадження інтегрованих уроків у навчальний процес. Розширення спектру інтегрованих уроків інформатики та інших навчальних дисциплін дозволить наочно продемонструвати можливості використання інформаційних технологій (інформаційних ресурсів, прикладного програмного забезпечення) в різних життєвих ситуаціях. Дана стаття спрямована на вирішення проблеми вдосконалення методів і засобів навчання, а також підходів до подання навчального матеріалу на уроках.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Касярум, Сергій Олегович. "Специфіка моделювання модульно-рейтингової технології при викладанні фундаментальних дисциплін у вищій технічній школі". Theory and methods of learning fundamental disciplines in high school 1 (28 березня 2014): 99–102. http://dx.doi.org/10.55056/fund.v1i1.411.

Повний текст джерела
Анотація:
У терміні фундаментальні дисципліни (ФД), характерному для вищої технічної школи, закладені зміст та вимоги до таких дисциплін, як вища математика, загальна та теоретична фізика, хімія та інформатика. Вони повинні створювати базу знань, яка є підгрунтям ефективного засвоєння студентами матеріалу, професійно-орієнтованих дисциплін (ПОД). Саме тому викладанню ФД останнім часом приділяють особливу увагу.З метою підвищення ефективності навчального процесу останнім часом інтенсивно запроваджують педагогічні технології (ПТ). Серед них відомі інформаційні технології, інноваційні (пов’язані із застосуванням активних методів навчання: методу проектів, кейс-методик тощо) [1]. У більшості ж з вузів намагаються запровадити ПТ, сутність яких полягає у розробці такої організаційної структури навчання, що допомогла б діагностувати якість знань студентів на проміжних етапах навчання. Це означає планування та організацію навчального процесу на основі системи чітко визначених цілей та проміжних і кінцевих результатів навчального процесу, створення системи методів та засобів контролю, яка дозволяє досягти встановлених результатів і має прозору систему управління навчальним процесом з можливістю корекції його етапів. Зробити це дозволяє модульно-рейтингова система (МРС) організації навчання. Зараз її лише певною мірою можна розцінювати як ПТ. В той же час на її основі можна розробити достатньо гнучку технологічну схему для ФД. Поділ змісту навчального курсу на окремі модулі дозволяє визначити проміжні цілі навчання, створити необхідну систему контролю. Введення рейтингового контролю одночасно є і стимулюючим чинником, оскільки вимагає систематичної наполегливої навчальної праці [2, 144].МРС розглядалась як базова при дослідженні проблеми моделювання ПТ у вищій технічній школі. Вивчення досвіду її впровадження у практику роботи ВНЗ виявило труднощі як організаційного, так і методичного порядку, але викладачами пріоритет надається саме організаційним аспектам впровадження МРС. Методичні проблеми усвідомлюються ними не повною мірою, іноді на інтуїтивному рівні. В першу чергу це пов’язано із недостатністю психолого-педагогічних знань.Дослідження показало, що МРС не усвідомлюється викладачами як цілісна технологія, вони згодні використовувати у навчальному процесі і окремі її елементи. Так, 47% викладачів вважають, що модуль може бути не пов’язаний із рейтингом. 19% викладачів вважають, що поділ навчального курсу на модулі штучний і ускладнює процес навчання. Фактично ця частина викладачів виступає проти побудови ПТ із діагностикою проміжних результатів навчання. Розробка окремих модулів у змісті навчального курсу, як показало опитування, не є проблемою. Більшість викладачів орієнтується на логіку навчальної дисципліни, а саме – на окремі теми курсу. Найбільші складності при застосуванні МРС пов’язані із розробкою системи рейтингового контролю. 54% викладачів вважає, що для впровадження рейтингу достатньо визначити кількість балів за кожен модуль навчального курсу і ввести необхідну градацію (на “3”, на “4”, на “5”). Анкетування засвідчило, що викладачі, які будували таким чином власну технологію навчального процесу, отримали поразку. Характерно, що більшість з них, а саме 33%, вважають, що дана технологія неефективна.Вивчення досвіду впровадження МРС показало, що усі недоліки тісно пов’язані саме із початковим етапом побудови ПТ: проектуванням технології, розробкою моделі. Етап моделювання повинен закладати систему роботи викладача (організаційні і методичні аспекти) і студента (пізнавальна діяльність) над теоретичними знаннями та практичними уміннями, а також передбачити трьохрівневу структуру навчального курсу за рівнем складності запропонованих студентам завдань. На етапі моделювання МРС як ПТ перед викладачем стоять декілька завдань: 1) визначення навчальних модулів з курсу; 2) визначення мінімального обсягу теоретичних знань, необхідних для підготовки фахівця, цей обсяг буде у визначати рівень “3”; 3) розробка системи тестового контролю для вимірювання знань студентів; 4) визначення необхідного обсягу практичних умінь, якими повинен оволодіти студент; 5) розробка необхідної системи завдань практичного змісту, якими повинен оволодіти студент як майбутній фахівець. Цей рівень також у подальшому визначить рівень лише “3”; 6) розробка системи диференційованих практичних завдань різного рівня складності (передбачено два рівні, що визначать “4” та “5”); 7) визначення кількості балів на кожен навчальний модуль відповідно рівням складності; 8) при викладанні ФД створення моделі ускладнюється необхідністю розробки тісних міжпредметних зв’язків з ПОД. Дослідження показало, що більшість викладачів у моделі МРС випускає частину необхідних етапів. Не розроблено систему диференційованих практичних завдань для студентів, що є суттєвим недоліком сучасних розробок МРС як технології. Останній недолік не дає змоги побудувати гнучку ПТ, яка б відповідала завданню створення відкритих систем у освіті.Важливим компонентом ПТ є часові параметри. Дослідження виявило, що розподіл навчальних годин (лекційні та практичні) не завжди узгоджується із реальним співвідношенням між теоретичними знаннями та практичними уміннями, формування яких передбачається навчальною програмою. Формування практичних умінь – процес більш тривалий, ніж формування теоретичних знань (співвідношення у часі приблизно 3:1, зараз воно вкладає 1:1). Самостійне опрацювання практичних завдань не завжди доречне, оскільки у студентів ще не повною мірою сформована орієнтовна модель уміння. Тому вважаємо, що розробка ефективної ПТ вимагає узгодження розподілу навчальних годин з співвідношенням теоретичних знань та практичних умінь, передбачуваних навчальною програмою.Попередні дослідження [3, 57] виявили зниження рівня мотивації студентів до вивчення ФД. Це можна подолати, ввівши до моделі ПТ компоненти, засновані на міжпредметних зв’язках ФД і ПОД. Система міжпредметних зв’язків наведена у навчальних програмах переважно як посилання на навчальну дисципліну без реального відображення зв’язків у ПТ. Між тим саме їх аналіз впливає на оптимальний розподіл годин при розробці моделі ПТ для ФД. Вважаємо, що зміст ФД потрібно вивчати у контексті їх зв’язку з ПОД. Чітко визначені міжпредметні зв’язки і впроваджені на їх основі до курсів ФД корективи (розробка змісту лабораторних робіт з урахуванням змісту ПОД, впровадження у вищу математику задач, пов’язаних з змістом ПОД) дають змогу викладачу ФД познайомитись з конкретними спеціальними задачами, елементи яких можна використати при викладанні і стимулювати мотиви пізнавальної діяльності студентів. Врахування цих вимог дає змогу змінити існуюче зараз у вищій технічній школі ставлення певної частини студентів до ФД.Таким чином, дослідження виявило певні специфічні риси, що необхідно враховувати при розробці моделі ПТ, застосовуваної при вивченні ФД у вищій технічній школі.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Возняк, О. "Дефініція поняття "ятрогенія" для обгрунтування неналежного виконання медиками професійних обов"язків (На прикладі занять з дисципліни "Криміналістична хімія" для курсантів ЗВО системи МВС України)". Вища школа, № 10 (194) (2020): 68–92.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Возняк, О. "Правові аспекти захисту прав пацієнтів у випадку надання неякісної медичної допомоги психіатрамНа прикладі занять з дисципліни "Криміналістична хімія" для курсантів ЗВО системи МВС України)". Вища школа, № 4 (177) (2019): 91–104.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Корсак, Костянтин Віталійович. "Інтегроване "Природознавство" і прогрес вивчення фундаментальних наук в Україні". Theory and methods of learning fundamental disciplines in high school 1 (30 березня 2014): 111–17. http://dx.doi.org/10.55056/fund.v1i1.413.

Повний текст джерела
Анотація:
Кінець ХХ ст. в діяльності ЮНЕСКО, Світового Банку, освітніх департаментів Європейського Союзу та інших міжнародних організацій відзначений кількома важливими змінами:– безприкладним підвищенням уваги до вищої освіти та наукових досліджень як головної передумови стійкого соціального і економічного розвитку націй у ХХІ столітті (введення нових стандартів класифікації освіти в 1997 р., конференція 1998 р. в Парижі з вищої освіти та ін.);– акцентуванням проблеми вимірювання і забезпечення якості навчання і професійної підготовки, створення та поширення засобів об’єктивного оцінювання діяльності навчально-виховних закладів (здійснення проектів на кшталт PISA – масового тестування сотень тисяч учнів у десятках країн);– прискоренням розвитку фундаментальних наук і розширенням використання їх у системах освіти як незамінного засобу підготовки працівників ХХІ ст. і формування передумов для стійкого суспільно-економічного розвитку.Строго кажучи, останні два аспекти тісно поєднуються, оскільки високоякісна і сучасна освіта не може не включати вивчення точних наук і формування навичок використання новітніх інформаційних та інших “високих” технологій. Прикладом цього є рекомендації Всесвітньої конференції з точних наук, організованої під егідою ЮНЕСКО в Будапешті (26 червня – 1 липня 1999 р.) [1]. Для нас особливо важливим є та частина документів цієї конференції, де йдеться про безперспективність скорочення вивчення фундаментальних наук в системі обов’язкової освіти під фальшивим приводом їх “складності”, де пропонується змінювати й осучаснювати зміст природничо-математичної складової середньої та вищої освіти як фундаменту стійкого розвитку людства, збереження і поліпшення довкілля, забезпечення миру і стабільності.Однак, у деклараціях конференцій та інших працях експертів ЮНЕСКО мало мовиться про необхідність негайного подолання наслідків сучасного “інформаційного вибуху”, насамперед – браку в активного населення новітніх знань для ефективної й результативної діяльності. Пропонуємо називати це явище “ефект хоттабізації” на знак того, що все частіше і частіше кваліфіковані фахівці внаслідок незнання новітніх наукових досягнень повторюють дії дідугана Хоттабича, який намагався допомогти одному лінуватому підлітку скласти екзамен з фізичної географії на основі знань про довкілля, які існували за дві тисячі років до нашої ери на теренах Індії і Близького Сходу. Негативні наслідки ефекту хоттабізації загострюються тим, що нашими сучасниками є приблизно 90% всіх науковців, які жили на планеті, а продуктивність їхньої праці постійно зростає завдяки комп’ютерній техніці і створенню світових мереж для циркуляції наукової інформації та наукової співпраці (електронна пошта, Інтернет та ін.).Неусвідомлення загрози з боку ефекту хоттабізації вже привело в Україні до того, що у нас продовжують використовувати поняття “фундаментальні курси” в анахронічному аспекті як синонім тих усталених академічних знань, що датуються періодом становлення класичних наук. Наслідком цього, очевидно, стає зниження ефективності діяльності всієї системи освіти, а також певна втрата впливу наукової спільноти на громадську думку. Як відомо, цим негайно скористалися представники псевдонаук і невігласи, адепти релігійних й езотеричних вчень тощо.В Україні для вчителів шкіл і викладачів вищих навчальних закладів зникла можливість для ліквідації ефекту хоттабізації і безперешкодного отримання нових даних про результати наукових досліджень в десятках старих і молодих наук. Наукові матеріали чи повідомлення про відкриття займають маргінальне становище, зустрічаються в кількох газетах і науково-популярних журналах з мікроскопічним накладом. Не буде перебільшенням твердження, що сучасна Україна поступається більшості країн третього світу в увазі до поширення наукових знань, у виданні книг, журналів, газет, використанні спеціалізованих каналів телебачення тощо.Очевидно, що подібна деградація не віщує нам нічого хорошого у найближчому майбутньому й загрожує подальшим зниженням інтегральної виробничої компетентності населення України. Яскравий і виключно неприємний приклад стратегічно помилкових дій в освітній сфері – здійснення у нас на Кіровоградщині фінансованого зі США проекту “розвитку критичного мислення”, опис якого і перші “результати” можна знайти в статті [2]. Заокеанські “меценати” розвитку нашої школи безапеляційно оголосили всі тексти підручників “банальними й усім відомими знаннями”, а справжньою цінністю – те, що в ці книги не входить. Цим вони гранично активізували цікавість молоді до антинаукової інформації – переповідання старих релігійних текстів і псевдо-знань алхіміків, байок про легкість отримання “необмеженої енергії з вакууму” та здійснення всіх мрій людства на базі “торсійних полів”. Наслідок? Він дуже сумний – учні на заключних заняттях і залікових дискусіях затаврували всі фундаментальні науки, “довели шкідливість і помилковість” праць Ч. Дарвіна та безлічі інших геніальних вчених...Ми були б необ’єктивними, стверджуючи, що лише в Україні природничо-математичні науки страждають від активізації фанатизму і невігластва. Зауважимо, що і в зарубіжних країнах ситуація з оновленням комплексу навчальних дисциплін і врахуванням у них новітніх наукових відкриттів другої половини ХХ ст. залишається доволі строкатою. З міркувань лаконічності, вкажемо лише два приклади.На відміну від української практики 90-х років, що відзначається значним зниженням уваги до точних наук під гаслом кампанії з гуманізації та гуманітаризації діяльності системи освіти, політичне і адміністративне керівництво Франції інтенсифікувало рух у протилежному напрямі. Як свідчать останні матеріали про тенденції розвитку вищої школи Франції [7], країна обрала твердий курс на розширення охоплення молоді вищою освітою шляхом професіоналізації навчальних програм, широкого впровадження коротких професіоналізованих профілів підготовки кадрів, доповнення класичних спеціалізацій (філолога, історика тощо) додатковими – юриста середньої кваліфікації, соціолога, психолога та ін. Якщо у нас ключовим терміном є “інтелект”, то у сучасній Франції – “компетентність”. Зауважимо, що такою ж є освітня політика кількох інших розвинених країн – Фінляндії, Австрії, Нідерландів, – а також частини країн третього світу – Південної Кореї, Сінгапуру, Індії тощо.Інший приклад. Сучасна Росія, очевидно, успадкувала від СРСР не лише розташовану на своїй території мережу навчальних закладів, але й теоретично-методичний доробок науково-педагогічних дослідних установ, більшість яких концентрувалася в радянські часи у Москві. Нас особливо цікавлять досягнення в інтегруванні природничих наук, зокрема, створенні навчального курсу з інтегрованого “Природознавства”. Вже на початку 80-х років там розпочалися дослідження з диверсифікації старшої середньої школи і використання в навчальному процесі нових предметів і дисциплін.В Україні ці тенденції оновлення виявили себе у планах міністерства народної освіти ввести в майбутньому профільне навчання в старших класах середньої школи. Серед підготовчих кроків (очевидно, за дозволом Москви) воно у другій половині 80-х рр. проводило конкурс на створення програми інтегрованого предмету “Природознавство”, призначеного для заміни фізики, хімії і біології в гуманітарних профілях або потоках навчання. Протягом декількох років комісії відкинули багато невдалих варіантів. Організатори в 1990 р. запропонували автору взяти участь у конкурсі, що призвело до створення бажаної програми і закриття проблеми. Вперше нова програма з інтегрованого “Природознавства” була опублікована в №23 Інформаційного збірника міносвіти в 1991 р., а пізніше регулярно перевидавалася (напр., [3]).Ми переконані – головні ідеї цього нового предмету стають все більш актуальними. Про це свідчать і події в Росії, де експериментують з новою вузівською дисципліною “Концепції сучасного природознавства” і пропонують іншу – “Наукова картина світу” ([4] та ін.). Та вже побіжне ознайомлення з російськими варіантами інтегрованих природознавчих дисциплін засвідчує, що вони мають численні недоліки – еклектичність, відсутність певної інтегруючої ідеї, акцентування другорядної інформації та ін. Схоже, росіяни не змогли скористатися негативним досвідом країн Заходу, де у 80-х роках нова дисципліна “Наука (Science)” була найчастіше простим об’єднанням надмірно класичних фрагментів двох-трьох традиційних наук.Українська старша середня і вища школи мають врахувати вказані приклади і тенденції, створивши і використавши власний варіант дисципліни (чи групи споріднених дисциплін), де були б акумульовані й логічно поєднані в єдине ціле більшість головних відкриттів природничих наук останнього тридцятиріччя. Цей період виділений нами тому, що нові досягнення групи молодих наук дають змогу створити більш повне і сучасне уявлення про Всесвіт і довкілля, Землю і людство.Один з варіантів нових підходів ми пропонуємо у згаданому інтегрованому “Природознавстві”, яке може бути однаково корисним як у старшій середній школі, так і на базовому рівні вищої освіти.Основна особливість авторського “Природознавства” – акумуляція в ньому останніх відкриттів і досягнень цілої групи наук про природу і людину: астрофізики, ядерної і теоретичної фізики, нерівноважної термодинаміки, нелінійної хімії, геофізики і геохімії, етології, нейро- і молекулярної біології, генетики, теорії інформації, почасти, екології й ін.Розроблений варіант курсу складається з двох частин із подібними цілями, що послідовно висвітлюють сучасні уявлення про походження неживої (1-я частина курсу) і живої субстанції, їхній розвиток й постійне ускладнення, а також розглядають сучасний стан і шляхи подальшої еволюції косної і живої матерії у Сонячній системі. У центрі уваги – загальні й партикулярні закони, що детермінують цю еволюцію, а також “досягнення” людства в порушенні природної ходи подій та пошуки реального шляху ліквідації загроз його існуванню. Відсутність фінансування не дає змоги виділити півтора-два року на завершення цього досить складного проекту і створення серії підручників для навчальних закладів різного рівня (включаючи посібники для підготовки викладачів нової дисципліни). Поки-що є лише попередній текст першої частини “Природознавства” (приблизно 20 друкованих аркушів).Настільки детальна розповідь про нереалізований проект виправдана переконанням автора в тому, що в найближчому майбутньому в рамках переходу до 12-річної середньої освіти в Україні можуть активізуватися пошуки нових предметів і дисциплін для заключних рівнів первинної освіти (термін означає всю сукупність засобів і методів підготовки нових генерацій до активного життя). Наприклад, проблема адекватного викладу складних наукових аспектів сучасної екології як інтегративної науки найкраще вирішується саме в рамках ще більш інтегративного курсу “Природознавства”. Багато років автор використовував у різних комбінаціях інформацію з екології, природознавства і наукового людинознавства під час читання курсів “Вступ в екологію”, “Основи екології” і “Безпека життєдіяльності” в університетах та спеціалізованих середніх навчальних закладах Києва. Досвід показав, що учні і студенти негативно ставляться до викладу цих курсів на основі акцентування видів забруднень і правил цивільної оборони, віддаючи перевагу отриманню знань про закони живої і неживої природи та про особливості комплексних динамічних явищ довкілля.Наше заключне зауваження стосується ужитого терміну “наукове людинознавство” і, напевне, має особливе значення. Цієї науки ще немає, але існують і розширюються досить тривкі острівці наукових знань про сутність людини в рамках групи окремих молодих точних наук.Тисячоліттями сутність людини була об’єктом вивчення, аналізу і трактування гуманітарних наук і мистецтв. Накопичений ними океан знань відрізняється декількома особливостями, зокрема: а) колосальним обсягом; б) словесною або графічною формою; в) відсутністю надійного інструментарію для відділення істини від помилок і хибних гіпотез; г) непристосованістю до швидкої передачі молодим поколінням.Для автора друга половина ХХ ст. відзначена насамперед тим, що у своєму розвитку генетика, етологія, теорія інформації, нейро- і молекулярна біологія й інші точні науки “проникли” в сферу вивчення сутності людини. Багато чого з золотого фонду здогадок науковців-гуманітаріїв вони підтвердили у формі законів природи, виявивши одночасно хибність частини поширених ідей і постулатів (особливо в сфері психології й уявлень про мотиви поведінки людини, див. напр. [5,6]). Автор, зрозуміло, володіє лише частиною інформації зі сфери наукового людинознавства, але й вона чітко виявила свою виняткову ефективність у процесі виховання і викладання. Відзначимо, що окремі аналітики-прогнозисти серед педагогів-науковців (як Т. Левовицький у Польщі чи Б. Гершунський у Росії) пропонують розширити можливості педагогіки у ХХІ ст. шляхом залучення досягнень психології, соціології і кібернетики. Та значно більшого можна чекати від названих вище молодих наук, особливо етології, генетики і нейромолекулярної біології.Й досі педагоги або не підозрюють про існування, приміром, законів етології й нейрохімії людських емоцій, або, не вивчивши їх глибоко, відхиляють як небезпечну для їхньої науки єресь (“сьянтизм”). Звичайно, ці варіанти дій по-своєму логічні, але не мають перспективи з урахуванням необхідності переходу від адаптаційної до трансформаційної (існують також назви “гуманістична” і “критично-креативна”) парадигми освіти, формування в молоді потрібної в ХХI сторіччі неоцивілізаційної компетентності – фундаментальної передумови виживання людства і його стійкого прогресу.Свою частину рішення зазначених освітньо-виховних проблем може взяти на себе великий курс “Основи сучасного природознавства” як комплекс знань про походження, розвитку і сутності природи і людини, міру розумності і можливостей останнього.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Возняк, О. "Правові аспекти захисту прав пацієнтів у випадку надання неякісної медичної допомоги психіатрами (На прикладі занять з дисципліни "Криміналістична хімія" для курсантів ЗВО системи МВС України)". Вища школа, № 5 (178) (2019): 78–96.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Возняк, О. "Лікарська ятрогенія в судово-слідчій практиці: обгрунтування неналежного виконання медиками професійних обов"язків (у рамках занять з дисципліни "Криміналістична хімія" для курсантів ЗВО системи МВС України)". Вища школа, № 5 (190) (2020): 58–89.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Возняк, О. "Лікарська ятрогенія в судово-слідчій практиці: обгрунтування неналежного виконання медиками професійних обов"язків (у рамках занять з дисципліни "Криміналістична хімія" для курсантів ЗВО системи МВС України)". Вища школа, № 5 (190) (2020): 58–89.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Возняк, О. "Стандарти якості надання медичної допомоги та їх правові особливості з позиції розкриття медичних злочинів (На прикладі занять з дисципліни "Криміналістична хімія" для курсантів ЗВО системи МВС України)". Вища школа, № 8 (181) (2019): 50–71.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Нечипуренко, Павло Павлович. "Деякі аспекти імітації реальних хімічних процесів та систем у віртуальних хімічних лабораторіях". Theory and methods of e-learning 3 (11 лютого 2014): 238–44. http://dx.doi.org/10.55056/e-learn.v3i1.344.

Повний текст джерела
Анотація:
Перехід сучасного суспільства до інформаційної епохи свого розвитку висуває як одне з основних завдань, що стоять перед системою освіти, завдання формування основ інформаційної культури майбутнього фахівця. Процеси модернізації та профілізації вітчизняної шкільної освіти так само, як і модернізації вищої освіти (участь у створенні єдиного європейського простору, впровадження дистанційної освіти тощо) ведуться на базі інформаційно-комунікаційних технологій навчання. Метою даної статті є обговорення ролі сучасних комп’ютерних моделей у навчанні хімії, та проблеми якості відображення реальних хімічних процесів у комп’ютерних моделях, якими є віртуальні хімічні лабораторії.Дидактична роль нових інформаційних технологій полягає, перш за все, в активізації пізнавальної діяльності і творчого потенціалу учнів [5]. Необхідно створювати умови, аби учень став активним учасником навчального процесу, а вчитель був організатором пізнавальної діяльності учня. Адже вивчення будь-якої навчальної дисципліни – не мета, а засіб розвитку особистості. Ефективність застосування комп’ютерів у навчальному процесі залежить від багатьох чинників, у тому числі й від рівня самої техніки, від якості навчальних програм і від методики навчання, що застосовується вчителем. Більшість педагогів переконані в тому, що комп’ютер є потужним засобом для творчого розвитку дітей, дозволяє звільнитися від багатьох рутинних видів роботи і розробити нові ідеї в методиці навчання, дає можливість вирішувати більш цікаві і складні проблеми [5].Будь-який ілюстративний матеріал (мультимедійні й інтерактивні моделі в тому числі) значно розширюють можливості навчання, роблять зміст навчального матеріалу більш наочним, зрозумілим, цікавим. Не можна скидати з рахунків і психологічний чинник: сучасному учневі чи студенту набагато цікавіше сприймати інформацію саме в інтерактивній формі, ніж за допомогою застарілих схем і таблиць. Використання комп’ютерних моделей, комп’ютерних засобів візуалізації значно підвищує ефективність засвоєння матеріалу[5].Сучасні школярі, які здебільшого є представниками «покоління відеоігор», орієнтовані на сприйняття високоінтерактивного, мультимедіа насиченого навчального середовища. Згаданим вище вимогам якнайкраще відповідають освітні програми, що моделюють об’єкти і процеси реального світу і системи віртуальної реальності. Прикладом таких навчальних систем є віртуальні лабораторії, які можуть моделювати поведінку об’єктів реального світу в комп’ютерному освітньому середовищі і допомагають учням опановувати нові знання й уміння в науково-природничих дисциплінах, таких як хімія, фізика і біологія [3].Хімія – наука експериментальна, її завжди викладають, супроводжуючи демонстраційним експериментом. Ні для кого не є секретом, що матеріальний стан більшості шкіл в Україні є, м’яко кажучи, неідеальним. Дуже часто для демонстрації хімічного досліду не вистачає необхідних реактивів чи обладнання, тому доводиться обходитись теоретичним розглядом лабораторної роботи або проводити один дослід на весь клас. У такому випадку на допомогу вчителеві приходять саме спеціалізовані комп’ютерні програми, на кшталт віртуальних хімічних лабораторій, що дозволяють провести (саме провести, а не спостерігати) дослід у наближених до реальності умовах. Також, наприклад, при вивченні токсичних речовин, зокрема галогенів, віртуальне середовище надає можливість проводити хімічний експеримент без ризику для здоров’я учнів [4].На даний момент розроблена велика кількість навчальних програм для шкільного курсу хімії. Жодна з цих програм не є досконалою, проте сам факт їх створення свідчить про те, що в них існує потреба і вони мають безперечну цінність. Для того, щоб у дитини виник інтерес до співпраці з комп’ютером і в процесі цієї спільної творчості стійка пізнавальна мотивація до вирішення освітніх, дослідницьких завдань, необхідне створення таких умов, при яких учень стає безпосереднім учасником подій, що розвиваються на екрані монітора, тобто умов для повноцінного діяльнісного підходу до навчання.Умова успішного застосування комп’ютерних моделей в освітньому процесі сучасної школи закладена в добре відомих принципах педагогіки співпраці, які можна перефразовувати так: «не до комп’ютера за готовими знаннями, а разом з комп’ютером за новими знаннями» [3].Головна перевага віртуальних хімічних лабораторій полягає в тому, що віртуальні хімічні експерименти безпечні навіть для непідготовлених користувачів. Учні можуть також проводити такі досліди, виконання яких в реальній лабораторії може бути небезпечне або коштує надто дорого. Звичайно, за допомогою віртуальних дослідів не можна опанувати навички реального хімічного експерименту, але віртуальні досліди можуть застосовуватися, наприклад, для ознайомлення учнів з технікою виконання експериментів, хімічним посудом і устаткуванням перед безпосередньою роботою в лабораторії. Це дозволяє учням краще підготуватися до проведення цих або подібних дослідів в реальній хімічній лабораторії. Також проведення віртуальних експериментів допомагає учням та студентам засвоїти навички запису спостережень, складання звітів та інтерпретації даних в лабораторному журналі. Іще слід наголосити на тому, що комп’ютерні моделі хімічної лабораторії за певних умов можуть спонукати учнів експериментувати і отримувати задоволення від власних відкриттів [3].За способом візуалізації розрізняються лабораторії, в яких використовується двовимірна, тривимірна графіка і анімація. Крім того, віртуальні лабораторії можна поділити на дві категорії залежно від способу представлення знань у предметній області. Віртуальні лабораторії, в яких представлення знань у предметній області засновано на окремих фактах, обмежені набором заздалегідь запрограмованих експериментів. Цей підхід використовується при розробці більшості сучасних віртуальних лабораторій. В таких програмах змінити умови проведення експерименту і одержати якісь інші результати неможливо. Інший підхід дозволяє учням проводити будь-які експерименти, не обмежуючись заздалегідь підготовленим набором результатів. Це досягається за допомогою використання математичних моделей, що дозволяють визначити результат будь-якого експерименту і відповідний візуальний супровід. На жаль, подібні моделі поки що можливі тільки для обмеженого набору дослідів [3]. Переваги і недоліки вищезгаданих програмних продуктів достатньо повно були висвітлені Т. М. Деркач, яка, до речі, пропонує використовувати термін «імітаційні хімічні лабораторії» [1; 2].Суттєвою перевагою таких віртуальних лабораторій як ChemLab (виробник: Model Science Software), Croсоdile Chemistry (Crocodile Clips Ltd), Virtual Lab (The ChemCollective) є можливість активного втручання учня у хід роботи, а не пасивне спостерігання за відеофрагментом чи анімацією, що запрограмовані заздалегідь. При виконанні лабораторної роботи за допомогою вищезгаданих програм учень може повторити її безліч разів, при цьому щоразу змінюючи один чи декілька параметрів на власний вибір. В більшості випадків (якщо дії учня не суперечать логіці і можливі для виконання і у реальній лабораторії) учень отримає правильні результати, що лише підкреслить ті закономірності, виявлення яких і було метою роботи. Скажімо у лабораторній роботі «Гравіметричне визначення хлорид-йонів» («Gravimetric Analysis of Chloride») у віртуальній лабораторії ChemLab учень чи студент може замість запропонованих в інструкції 5 г речовини, що містить хлорид-йони, взяти 3, чи 6, чи 10 г її. Але в кожному випадку він отримає і відповідну масу осаду арґентум хлориду, за якою, при виконанні обчислень, прийде до одних і тих самих результатів і висновків.Подібний підхід, коли учень може проявити власну ініціативу при виконанні роботи, дуже позитивно відбивається і на навчальних досягненнях і на зацікавленості учнів. Але разом з ініціативою учні можуть також підключити і власну фантазію – спробувати виконати такі дії, які не були передбачені сценарієм проведення даної роботи (наприклад, нагріти розчин до кипіння, або навпаки охолодити його до температури замерзання) просто із цікавості, тим більше, що у ChemLab можна використовувати обладнання, застосування якого не передбачалось сценарієм виконання роботи. Результати таких незапланованих дій можуть переноситись учнями і на відповідні об’єкти та процеси реального світу, а тому до віртуальних лабораторій завжди висувалась жорстка вимога суворої відповідності віртуальних об’єктів та процесів реальним об’єктам і процесам.Тут доводиться констатувати протиріччя, яке існує в середовищі користувачів віртуальних хімічних лабораторій: методистів, розробників, вчителів, учнів тощо. Справа в тому, що немає і, мабуть, не може бути єдиної думки з приводу того, наскільки повно віртуальні процеси повинні відтворювати об’єктивну реальність. З одного боку, чим більше віртуальний світ схожий на реальний, тим нібито краще – в такому випадку навчання хімії за допомогою віртуальних комп’ютерних лабораторій виходить на якісно новий, більш високий рівень, з’являється набагато більше можливостей і форм застосування навчальних лабораторій у навчанні хімії, зникають передумови для одержання хибних висновків при їх використанні. Але, з іншого боку, врахування найменших дрібниць і максимальної кількості можливих варіантів розвитку подій неминуче призведе до значного ускладнення комп’ютерних програм, суттєвого збільшення баз даних і, як наслідок, подорожчання та подовження часу на розробку відповідних програмних продуктів, та, скоріш за все, суттєво ускладнить використання таких програм людьми без спеціальної підготовки. Не кажучи вже про те, що передбачити всі можливі варіанти дій користувача у віртуальній лабораторії просто неможливо.Інша точка зору полягає в тому, що віртуальні хімічні лабораторії в першу чергу є моделями, тобто системами, що відтворюють, імітують, відображають принципи внутрішньої організації або функціонування, певні властивості, ознаки чи характеристики об’єкта дослідження (оригіналу). Модель завжди є спрощеною версією модельованого об’єкта або явища (прототипу), що в достатній мірі повторює властивості, суттєві для цілей конкретного моделювання (опускаючи несуттєві властивості, в яких вона може відрізнятися від прототипу).Подібне визначення поняття «модель» фактично означає, що такі програми як віртуальні хімічні лабораторії, не повинні перевантажуватись «зайвими дрібницями» – несуттєвими для виконання певної роботи чи досліду зовнішніми ознаками, фактами і процесами. Окрім того, так само як викладач не залишить без догляду учнів у реальній лабораторії, так і викладач, що застосовує віртуальну лабораторію на занятті, повинен бути постійно поруч з учнями, надаючи їм відповідних порад або роз’яснюючи результати спостережень, що викликали питання або сумніви. Таким чином, можна попередити формування в учнів хибних уявлень, неправильних висновків тощо.У представників обох точок зору є свої аргументи. Наприклад, при виконанні стандартної лабораторної роботи в середовищі програми ChemLab «Фракційне розділення солей» («Fractional Crystallization»), сутність якої полягає в тому, що учневі пропонується розділити суміш солей (натрій хлориду та калій дихромату), використовуючи їх різну розчинність у воді за різних температур. Подібні процеси досить поширені як в промисловості (виробництво калійних добрив), так і в лабораторії (перекристалізація солей з метою їх очищення), хоча і в більш складному вигляді. Хід роботи включає в себе такі стадії: відбір наважок солей певної маси; їх розчинення у воді кімнатної температури; нагрівання розчину до повного розчинення калій дихромату; охолодження розчину до 0оС; відділення осаду калій дихромату; зважування калій дихромату, що випав в осад, та відповідні розрахунки.Якщо прискіпливо проаналізувати дану роботу, в ній можна знайти ряд неточностей або спрощень:1) при розчиненні калій дихромату у воді розчин залишається безбарвним;2) відсутній тепловий ефект при розчиненні обох солей;3) не враховано взаємний вплив солей на їх розчинність;4) розчин солей при охолодженні до температури замерзання не кристалізується;5) температура кипіння розчину солей дорівнює температурі кипіння ізомолярного з ним розчину будь-якого неелектроліту;6) зважування одержаного калій дихромату можна провести з високою точністю без попереднього промивання і висушування;7) відсутність допоміжного лабораторного обладнання (штативів, тримачів, шпателів, вакуум-насосу тощо) та можливість відбору наважок речовин без використання терезів.Подібні неточності можна знайти і у всіх інших лабораторних роботах програми ChemLab, але в більшості випадків ці неточності неочевидні, і, найголовніше, не відбиваються ані на одержанні результатів експерименту, ані на їх інтерпретації.Крім того, застосовуючи інструментарій майстра LabWіzard, що дозволяє користувачу створювати власні лабораторні роботи у ChemLab, певну кількість подібних невідповідностей можна заздалегідь передбачити й усунути у створених власноруч лабораторних проектах.[2; 4]Викладач, що використовує віртуальні хімічні лабораторії, обов’язково повинен наголосити на тому, що у віртуальній хімічній лабораторії присутні певні спрощення та невідповідності з об’єктивною реальністю. У групі учнів, що мають високий рівень знань і хімічного мислення, можна навіть побудувати роботу на тому, щоб знайти і обговорити подібні неточності. Наприклад, в рамках курсу «Комп’ютерне моделювання хімічних процесів», що викладається на ІІІ курсі спеціальності «Хімія» у Криворізькому педагогічному інституті, при розгляді особливостей віртуальної лабораторії ChemLab перед студентами була поставлена задача обґрунтовано довести наближений характер розрахунку температури початку кипіння розчину натрій хлориду у даній програмі (в межах лабораторної роботи «Fractional Crystallization»). Студенти на основі другого закону РауляΔtкип=kеб*b – для розчинів речовин-неелектролітів (1)Δtкип=i*kеб*b – для розчинів речовин-електролітів; (2)де kеб – ебуліоскопічна константа розчинника, b – моляльна концентрація розчиненої речовини (моль/кг), і – ізотонічний коефіцієнт, обчислювали температуру початку кипіння для розчину натрій хлориду тієї концентрації, яку вони самі створили у віртуальній хімічній лабораторії. Далі утворений віртуальний розчин нагрівали до кипіння і зазначали температуру початку кипіння. Вона збігалась із розрахованою за формулою (1), тобто без урахування ізотонічного коефіцієнту, який для розчину натрій хлориду повинен наближатись до 2. Значить реальна Δtкип розчину майже вдвічі повинна була б перевищувати Δtкип розчину у віртуальній лабораторії. Висновок зроблений студентами: в даній лабораторній роботі з метою спрощення не враховувався процес іонізації солі, оскільки для моделювання процесів розчинення солей за різних температур він особливого значення не має.Подібний недолік комп’ютерної програми може створити незручності з одного боку, але може бути перевагою з іншого: на основі розгляду подібних фактів можна в цікавій і нестандартній формі залучити групу студентів до повторення навчального матеріалу з різних розділів хімії та розв’язку розрахункових задач.Таким чином, можна зробити висновок про те, що віртуальні хімічні лабораторії є безумовно ефективним інструментом в руках вчителя або викладача хімії. Кожна з віртуальних хімічних лабораторій є моделлю, що описує реальні явища і процеси, а тому неминуче містить ряд спрощень і неточностей, як в плані графічного відображення об’єктів, так і в плані причинно-наслідкових зв’язків між діями користувача та їх результатами у віртуальному середовищі. Головною метою проведення дослідів у віртуальних комп’ютерних лабораторіях є усвідомлення самої сутності явища, що вивчається, його головних закономірностей, а недосконалість візуальних чи інших ефектів має другорядне значення. Подальший розвиток і вдосконалення віртуальних хімічних лабораторій, скоріш за все, буде відбуватись у напрямку збалансування простоти представлення моделі та максимальної її реалістичності.Враховуючи все, сказане вище, можна з упевненістю сказати, що розробка і впровадження віртуальних хімічних лабораторій залишається одним з пріоритетних напрямків у процесі вдосконалення навчання хімії у середній та вищій школі.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Бондаренко, Тетяна Володимирівна. "ОСВІТНІ МОЖЛИВОСТІ ВИКОРИСТАННЯ ГЕОІНФОРМАЦІЙНИХ РЕСУРСІВ GOOGLE В ПРОЦЕСІ ВІЗУАЛІЗАЦІЇ НАВЧАЛЬНОЇ ІНФОРМАЦІЇ". Information Technologies and Learning Tools 76, № 2 (22 квітня 2020): 96–107. http://dx.doi.org/10.33407/itlt.v76i2.2718.

Повний текст джерела
Анотація:
З педагогічної точки зору візуалізацію інформації варто трактувати як інструмент фіксації і трансляції унаочненого навчального матеріалу. У статті розглянуто особливості роботи ресурсів Google, підкреслено їх відкритість, доступність та значний потенціал під час інтеграції навчальних дисциплін природничо-математичного та суспільно-гуманітарного циклу в процесі візуалізації навчальної інформації. Проаналізовано додатки Google Earth, Google Mars, Google Moon, Google Sky, Google Maps, Google My Business, Google Art Project та інструмент Google Street View. Вони при підвищеному попиті на сприйняття великої кількості інформації дозволяють спрощувати подання даних через електронні засоби та ефективно сприймаються всіма учасниками навчально-виховного процесу. У статті описані можливості створення власних карт Google, які сприяють уточненню та деталізації об’єкта, що вивчається, та наведено приклади їх використання. Враховуючи певну трансдисциплінарність таких засобів картографування, подано тематику карт для предметних напрямків з географії, біології, іноземної мови, української літератури, математики, інформатики, історії, мистецтва, хімії, фізики. Розглянуто функцію панорамного перегляду вулиць Google Street View та представлено приклад використання панорамного зображення з кругозором в 360 градусів. Запропоновано поповнити інформаційний банк даних візуальною інформацією, створюючи локацію свого навчального закладу разом з додатком «Google My Business». Описано інтерактивний освітній проєкт Google Art Project, за допомогою якого створюють власні галереї, порівнюють мистецькі твори, деталізовано вивчають оцифровані об’єкти культурної спадщини світової спільноти. Виділено дослідницький, проєктний, міжпредметний та інформаційно-комунікаційний підходи, завдяки яким забезпечується активне використання геоінформаційних ресурсів у ряді предметів природничо-математичного та суспільно-гуманітарного циклів.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Джура, Н. М., та О. М. Нагірнич. "ФОРМУВАННЯ ЕКОЛОГІЧНОЇ КОМПЕТЕНТНОСТІ ЯК СКЛАДНИКА ПРОФЕСІЙНОЇ ПІДГОТОВКИ МАГІСТРІВ ОСВІТИ". Visnik Zaporiz kogo naciohai nogo universitetu Pedagogicni nauki 2, № 3 (29 квітня 2021): 37–43. http://dx.doi.org/10.26661/2522-4360-2020-3-2-05.

Повний текст джерела
Анотація:
Статтю присвячено актуальній нині проблемі формування екологічної компетентності як складової частини професійної підготовки магістрів освіти, які зможуть забезпечувати викладацьку, наукову і методичну діяльність у закладах середньої та вищої освіти. На біологічному факультеті Львівського національного університету імені Івана Франка готують бакалаврів і магістрів за предметною спеціальністю 014.05 Середня освіта (Біологія та здоров’я людини). В умовах антропогенного тиску на довкілля і загострення екологічних проблем виникає потреба переосмислити і переглянути зміст екологічної освіти майбутніх фахівців – учителів біології, хімії та здоров’я людини. Професійну екологічну компетентність доцільно формувати через екологізацію навчального процесу у вищій школі. Запропоновано для магістрів освіти включити до навчального плану курс «Екологічна культура»; у змісті лекційного матеріалу з курсів «Біорізноманіття рослин» і «Біорізноманіття тварин» – розглянути питання про сучасний вплив людини на різноманіття рослин і тварин на глобальному рівні; у змісті лекційного матеріалу з курсу «Генетика людини» – питання про вплив антропогенних факторів довкілля на мутації генів та їх наслідки. Формування екологічної компетентності є одним із найважливіших завдань освіти сталого розвитку. Проаналізовано місце освіти у сталому розвитку в новій українській школі, головна мета якої – створити школу, у якій буде приємно навчатися і яка даватиме учням не тільки знання, як це відбувається зараз, а й уміння застосовувати їх у повсякденному житті. Саме тому для магістрів освіти запропоновано вивчати курс «Екоосвітня діяльність для сталого розвитку». Така навчальна дисципліна сприятиме системному узагальненню екологічного й педагогічного досвіду, формуванню у майбутніх педагогів готовності до роботи зі здобувачами освіти на засадах сталого розвитку, вміння фахово застосовувати теоретичні знання в освітньому процесі з метою виховання у молоді ціннісного ставлення до довкілля й екологічного стилю життя.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Беседін, Борис, та Олександр Жадан. "ВИКОРИСТАННЯ ЗАДАЧ ПРИКЛАДНОГО ЗМІСТУ ПІД ЧАС ВИВЧЕННЯ МАТЕМАТИКИ У СТАРШІЙ ШКОЛІ". Гуманізація навчально-виховного процесу, № 1(100) (3 грудня 2021): 88–98. http://dx.doi.org/10.31865/2077-1827.1002021.245402.

Повний текст джерела
Анотація:
Стаття присвячена проблемі прикладної спрямованості в процесі вивчення математики у старшій школі. Проблема прикладної та практичної спрямованості в процесі навчання математики не є новою. На всіх етапах її становлення і розвитку вона була пов'язана з безліччю питань, більша частина яких до цих пір не вирішена. Багато випускників школи за час навчання не навчилися застосовувати математичні відомості, не опанували уміння логічно міркувати в повсякденному житті, тобто не усвідомили прикладний характер математики. Насправді ж, вони просто не зрозуміли, що математика є сплетінням абстрактної математики і прикладної математики. Перехід на нові освітні стандарти висуває необхідність вводити прикладну спрямованість шкільної освіти. Універсальність математичних методів дозволяє відобразити зв'язок теоретичного матеріалу різних областей знань з практикою. Передбачити всі аспекти застосування математики в майбутній діяльності учнів практично не можливо, а тим більше складно розглянути всі ці питання в школі. Науково-технічна революція у всіх областях людської діяльності висуває нові вимоги до знань, технічної культури, загального і прикладного характеру освіти. Це ставить перед сучасною школою нові завдання для вдосконалення освіти. Отже, прикладна спрямованість шкільного курсу математики здійснюється з метою підвищення якості природничо-математичної освіти учнів, застосування їх математичних знань до вирішення завдань повсякденного життя і в подальшій професійній діяльності. У статті обґрунтовується необхідність використання прикладних задач з математики в старших класах закладів середньої освіти, та пропонується комплекс задач. Задачі прикладного змісту дають можливість для реалізації загально-дидактичних принципів в процесі навчання математики. Варто також відзначити, що саме прикладні завдання можуть використовуватися з різною дидактичною метою: можуть мотивувати, зацікавити, сприяти розвитку розумової діяльності, пояснити зв'язок між математикою та іншими шкільними дисциплінами (фізика, біологія, інформатика, хімія, економіка, тощо), та зв’язок між математикою та нематематичними областями.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії